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Abstract In this work we are interested in the numerical solution of the steady incom-
pressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-
sections. We intend to compute a reduced basis approximation of the solution, employing
the geometry as a parameter in the reduced basis method. This has previously been done in
a spectral element PN − PN −2 setting in two dimensions for the steady Stokes equations.
To compute the necessary basis-functions in the reduced basis method, we propose to use
a stabilized P1 − P1 finite element method for solving the Navier-Stokes equations on dif-
ferent geometries. By employing the same stabilization in the reduced basis approximation,
we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition. This
reduces the complexity of the reduced basis method for the Navier-Stokes problem, while
keeping its good approximation properties. We prove the well posedness of the reduced
problem and present numerical results for selected parameter dependent three dimensional
pipes.

Keywords Reduced basis methods · Steady incompressible Navier-Stokes equations ·
Stabilization

1 Introduction

The approximation of the Navier-Stokes equations in deformable domains, like in fluid-
structure interaction, in shape optimization and control [16], is often expensive or requires
model order reduction to speed up the computations. One way to achieve this reduction is by
the reduced basis method, that applies to parameter dependent partial differential equations.
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Under the assumption that the solution resides on a smooth manifold with respect to the
parameter, the solution of the given problem for a specific choice of the parameter is found
as a linear combination of precomputed solutions, or basis-functions, through a Galerkin
method [13, 14].

The geometry of the domain is parametrized through a change of variables and the equa-
tions are expressed on the reference domain; this involves the Jacobian of the map from the
reference domain to the deformed parameter-dependent domain (e.g. [11]). By changing the
deformed domain, the Jacobian in the equations change accordingly.

The idea of the reduced basis method is to separate the problem into an offline stage
and an online stage. In the offline stage, N basis-functions are computed by solving the pa-
rameter dependent problem for different choices of the parameter. The basis-functions are
computed on a finite element grid which is fine enough to sufficiently resolve the problem.
Typically, N is O(10), or O(100), and N � N , where N is the number of degrees-of-
freedom in the finite element approximation. In the online stage, the reduced basis approxi-
mation for a new value of the parameter is found by identifying N coefficients, in a fraction
of the time it takes to compute the finite element solution. When the output of interest is
a derived quantity, e.g. a functional of the solution instead of the solution itself, and the
problem has affine parameter dependence, the output of interest together with effective error
bounds can be computed with online complexity independent of the finite element degrees-
of-freedom [15].

The reduced basis element method is a variation of the established reduced basis method
where the geometry of the computational domain is used as a parameter and the computa-
tional domain is decomposed into several building blocks [8, 9]. Domain decomposition is
used to identify a generic geometry as a union of building blocks, where each building block
is found as a one-to-one map of one of a limited number of reference domains. Adhering to
each reference domain is a set of precomputed basis-functions, which are computed in the
offline stage by solving the underlying equations on several different maps of the reference
domain, and then mapped back to the reference domain and stored in the reference coor-
dinate system. Scalar basis-functions are mapped through composition with the reference
variables, while vector basis-functions in addition are rotated and scaled by the Piola trans-
formation which guarantees the incompressibility and preserves the local orientation of the
vector-fields with respect to the boundary of the domain [2].

In the online stage, the reduced basis element approximation on each subdomain of the
generic geometry is found through a Galerkin projection on a space generated by the pre-
computed basis-functions. The basis-functions are now mapped from the proper reference
domain to each generic subdomain. Across subdomain interfaces, low order polynomials are
used as Lagrange multipliers to ensure weak continuity. The reduced basis element method
was developed by Maday and Rønquist in [11, 12] for heat conduction in two-dimensional
affine mappings, and by Løvgren et al. in [8, 9] for steady Stokes flow, also in two dimen-
sions, but for non-affine mappings. In [16], Rozza used several affine geometric parameters
in the reduced basis method for optimizing the shape of a two-dimensional by-pass config-
uration for a blood vessel. In a recent article, Chen et al. [4] propose the use of stabilized
discontinuous Galerkin approximation in the context of reduced basis element method for
the time-harmonic Maxwell’s equation in order to simplify the glueing of the macro ele-
ments.

This work considers only one reference domain and one generic subdomain. Although it
is a key ingredient for an efficient offline/online decomposition and also for the construction
of an optimal reduced basis, we neglect here any form of a posteriori error estimation.

There are two new aspects to the reduced basis method in this work. The first is the ex-
tension of the flow model to the Navier-Stokes equations in three dimensions. We thus have
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a non-linear model for the flow, and in addition a much richer space for geometric deforma-
tions, e.g. twisting and bending along several axes. We restrict the model to stationary flow
and deformation only in a plane, but the methodology is quite general.

The second new aspect in this work is the use of the reduced basis method together
with the stabilized P1 − P1 finite element approximation presented by Burman et al. in [3].
The use of equal order elements for pressure and velocity is practical from a computational
point of view, and the inf-sup condition is fulfilled by introducing stabilization terms in the
weak formulation of the finite element problem. We use the same stabilization terms in the
reduced basis problem, and prove that the reduced basis problem is well posed. Moreover
the computation of the reduced basis velocity and pressure solution can be split in two
sequential sub-problems, without loosing precision; indeed with a higher precision and a
lower condition number of the linear system.

As an ingredient of the three-dimensional modelling we introduce the reduced basis ele-
ment framework in an existing finite element library, LifeV [7]. The intention is to reuse the
existing operators in the library, and insert the necessary reduced basis operators in a layer
on top of the existing solvers.

In Sect. 2.1 we present the weak form of the Navier-Stokes equations, followed by the
finite element formulation in Sect. 3.1 and the reduced basis formulation in Sect. 3.2, where
we also prove the well posedness of the reduced problem. In Sect. 3.3 we include some
details of the construction of the reduced basis ingredients. Section 4 is devoted to numerical
results. Finally, we give some concluding remarks in Sect. 5.

2 Problem Statement

Our model problem is the simulation of pressure driven flow through pipes, where the shape
of the pipes changes from case to case. Applications include blood-flow through vessels
where the geometry is found from patient specific data obtained from MR imaging, and air
flowing in the respiratory system. Also engineering problems where the geometry and layout
of pipes are considered in, e.g., cooling and heating systems could be of interest. Bifurcating
geometries can be included for more complex flow systems.

The flow is modeled by the incompressible Navier-Stokes equations, where the primary
unknowns are the pressure, p, and the velocity, u, in the rigid domain �. One end of the
domain is defined as an inlet boundary, �In, and the other end as an outlet boundary, �Out.
We impose no slip boundary conditions on the sides of the domain �D . On this domain we
seek (u,p) such that

−ν�u + (u · ∇)u + ∇p = 0 in �,

∇ · u = 0 in �,

with homogeneous Dirichlet boundary conditions, u = 0, on �D , natural boundary condi-
tions, σ · n ≡ −pn + ν∂nu = 1 on �In, and homogeneous natural boundary conditions on
�Out, i.e, σ ·n = 0. Here σ is the stress tensor related to the fluid, and n is the outward facing
normal on the given boundary.

When discretizing the Stokes or Navier-Stokes equations by a Galerkin projection, the
finite element spaces for the pressure and velocity have to be inf-sup stable, i.e.,

inf
q∈M

sup
v∈X

∫
�

q ∇ · v d�

‖q‖L2(�)‖v‖H 1(�)

≥ β > 0, (1)
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where M is the pressure space, X is the velocity space, and β is a positive constant. If the inf-
sup condition is not satisfied the problem is not well-posed. Typically, if the velocity finite
element space consists of piecewise quadratic basis-functions, the corresponding pressure
space consists of piecewise linear basis-functions. In the reduced basis method for the Stokes
and Navier-Stokes problem, different methods of enriching the velocity basis are used to
guarantee a lower bound for the inf-sup constant, β; see [8, 17].

In case the spaces for the pressure and velocity do not satisfy the inf-sup condition,
Burman et al. [3, 19] introduced interior penalty stabilization methods in order to get a well-
posed problem. This allows for expressing both the velocity and the pressure on the same
finite element basis, here continuous piecewise linear elements P1. Due to the stabilization
term however, the velocity solutions are not exactly incompressible.

We use the stabilized P1 −P1 method presented below to compute our basis-functions for
the reduced basis method. In addition, we propose to use the same stabilization term directly
in our reduced basis approximation. Therefore it is not necessary to enrich the velocity basis
in order to satisfy the inf-sup condition for the reduced basis problem.

2.1 Continuous Problem

We consider a straight pipe as our reference domain, �̂ and an actual geometry described by
P independent parameters μ ∈ R

P . We let �μ define a one-to-one map from the reference
domain to a deformed domain �μ:

�μ : �̂ → �μ. (2)

In Fig. 1 we present the reference pipe to the left, and a deformed pipe found by bending the
reference domain to the right. This is a simple deformation used for illustration, and the list
of possible deformations is endless. What we assume in this work, is that all maps �μ are
one-to-one and at least C1.

On the deformed domain we define the bi-linear and tri-linear forms

a(u,v;μ) = ν

∫

�μ

∇u : ∇v d�μ,

b(v, q;μ) = −
∫

�μ

q ∇ · v d�μ,

c(u,w,v;μ) =
∫

�μ

(w · ∇)uv d�μ,

Fig. 1 On the left is the
reference domain �̂ and on the
right a generic deformed
domain �μ
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where u,v, and w are velocity fields, q is a scalar pressure field, and ν is the viscosity. In
this work we focus on the geometric deformation and set ν = 1.

Furthermore, we define the space V (�μ) = {v ∈ (H 1(�μ))3 : v|�D = 0} × L2(�μ). The
weak form of the steady incompressible Navier-Stokes equations on the deformed domain
then reads: find (u,p) in V (�μ) such that

a(u,v;μ) + c(u,u,v;μ) + b(v,p;μ) = l(v;μ)

b(u, q;μ) = 0

}

∀(v, q) ∈ V (�μ), (3)

where l(v;μ) = ∫
�In

μ
σ ·n ·vds. The problem is non-linear, and in the next section we present

one of the possible methods for dealing with this non-linearity.

3 Discretization

3.1 Finite Element Formulation of the Oseen Problem

We carry out the numerical analysis of our problem for the Oseen equations. These are
characterized by a convective vector-field w that enters in (3) as c(·,w, ·;μ). One way of
solving the steady Navier-Stokes equations is to consider pseudo time-dependence, take as
value of w the value of the velocity at the previous time-step, solve the Oseen equations,
and repeat until a steady state is reached.

Let T̂h be a regular tetrahedral mesh of the reference configuration. This mesh, i.e., the
vertices of the tetrahedrons, is mapped to a deformed domain through the map �μ. We
suppose that the mapping is regular enough such that the resulting mesh Th is still regular.
In other words, the allowed values of the parameter μ are such that the mapped mesh is
regular (avoiding negative local mass or overlapping elements). We then define P1 − P1

finite elements on the deformed domain �μ by

Vh(�μ) = {
(v,p) ∈ (C0(�μ))3 × C0(�μ) : v|�D = 0, v|K ∈ P1 and p|K ∈ P1 ∀K ∈ Th

}
,

where P1 represents first order polynomials. In addition, we let V u
h (�μ) denote the velocity

components of Vh(�μ), and V
p

h (�μ) the pressure components.
We introduce a stabilization term in order to make the discretization inf-sup stable, sim-

ilarly to [3, 19]

ĵp(p̂, q̂) =
∫

�̂I

γ
h3

f

ν
[[∇p̂]]f · [[∇q̂]]f dŝ,

jp(p, q;μ) = ĵp(p ◦ �μ, q ◦ �μ),

(4)

where γ is a dimensionless positive constant, �̂I is the union of all the internal faces of our
reference mesh, hf is the diameter of a face, and [[·]]f is the jump of a quantity across a face
(note that the gradients of p and q are not continuous across a face). With respect to [3, 19],
we assume that hf |u| < ν, where |u| is the modulus of the velocity. A further difference is
that the stabilization contributions are done with respect to the reference domain; however
the two formulations are equivalent up to a change in the stabilization parameters depending
on the families {T̂h}h and {Th}h. This is needed to guarantee good approximation properties
of the reduced basis approximation and is used in the well-posedness proof. It is possible to
also include other stabilization terms for the convection as presented in [3, 19].
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The finite element problem then reads: find (u,p) in Vh(�μ) such that

a(u,v;μ) + c(u,u,v;μ) + b(v,p;μ) − b(u, q;μ) + jp(p, q;μ) = l(v;μ)

∀(v, q) ∈ Vh(�μ), (5)

Since the problem is non-linear, we solve it by pseudo time-advancing until the steady solu-
tion is reached. In this respect we need an artificial time-step �t and a bi-linear form

m(u,v;μ) = 1

�t

∫

�μ

u · v d�μ.

Starting from an initial guess (u0,p0) we implement the following algorithm: given (un,pn)

in Vh(�μ), find (un+1,pn+1) in Vh(�μ) such that

m(un+1,v;μ) + a(un+1,v;μ) + c(un+1,un,v;μ) + b(v,pn+1;μ)

− b(un+1, q;μ) + jp(pn+1, q;μ) = l(v;μ) + m(un,v;μ) ∀(v, q) ∈ Vh(�μ). (6)

At each time-step we solve this linear problem using a preconditioned iterative method
(PGMRES). We choose (un,pn) as an initial guess for the linear solver at the next time-
step such that convergence of the linear solver in zero iterations means that we have reached
the steady state solution (5).

3.2 The Reduced Basis Method

To construct the basis-functions for the reduced basis method, we define the parameter set
SN by N samples {μ(i)}N

i=1. Each sample μ(i) ∈ D ⊂ R
P defines a one-to-one map from the

reference domain to a sample geometry, �(i) = �μ(i) : �̂ → �μ(i) . On each sample geometry
we find (u(i), p(i)) ∈ Vh(�μ(i) ) such that

a(u(i),v;μ(i)) + c(u(i),u(i),v;μ(i)) + b(v,p(i);μ(i))

− b(u(i), q;μ(i)) + jp(p(i), q;μ) = l(v;μ(i)) ∀(v, q) ∈ Vh(�μ(i) ), (7)

by the pseudo time-advancing procedure described in Sect. 3.1. The basis-functions are then
mapped to the reference domain and stored in the reference variables.

The pressure fields are scalar and are mapped as such through composition with the
maps �(i)

μ . The velocities are vector-fields and, in order to keep their orientation with respect
to the inflow and outflow boundaries and to preserve the divergence of the vector-fields,
we use the Piola transformation to map them between the different geometries. The Piola
transformation, who’s general properties are defined in [2], is defined as the transformation
of the vector-field v from �μ to �̂ given by

v̂ = 
μ(v) = (Jμ)−1(v ◦ �v)|Jμ|. (8)

Here Jμ is the Jacobian matrix of the map �μ and |Jμ| is the absolute value of its determi-
nant. Since the velocity solutions of (5), found using the stabilization method, are not com-
pletely incompressible, the Piola transformed velocities are not incompressible on the ref-
erence domain. The discretization of the Piola transformation also contributes to some loss
in the divergence free properties of a vector-field; in general, for q ∈ V

p

h (�μ), q̂ = q ◦ �μ
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is in V
p

h (�̂), while for v ∈ Vh(�μ), v̂ = 
μ(v) is not in V u
h (�̂). Our discretized problem

takes into account this difficulty by computing some of the components in the reduced basis
system matrix with respect to the reference finite element configuration.

If we assume that the Piola transformation is not approximated, we have that

b(v, q;μ) = −
∫

�μ

q ∇ · v d�μ = −
∫

�̂

q̂ ∇ · v̂ d� = b̂(v̂, q̂) (9)

for v̂ = 
μ(v) and q̂ = q ◦�μ. In practice, this is not the case; moreover the vector-fields on
the reference domain are projected on the space Vh(�̂). The following Lemma holds only if
the Piola transformation is not approximated:

Lemma 1 For a given μ in D, let (u,p) ∈ Vh(�μ) be the solution of (5), with û = 
μ(u)

and p̂ = p ◦ �μ. Let

b̂(v̂, q̂) ≡ −
∫

�̂

q̂ ∇ · v̂ d�; (10)

then for all q in V
p

h (�)

b̂(û, q ◦ �μ) = ĵp(p̂, q ◦ �μ). (11)

Proof The Lemma is proved by Property (9) and (5). �

On the reference domain the basis-functions are normalized, otherwise the condition
number of the reduced system grows uncontrollably. There are several options when choos-
ing the inner product in the modified Gram-Schmidt procedure. Usually for the approxima-
tion of the Stokes and Navier-Stokes equations by the reduced basis method the velocity
basis-functions and the pressure basis-functions are orthonormalized independently [5, 16].
Instead, before splitting the velocity and the pressure basis functions, we orthonormalize the
vectors {(û(i)

, p̂(i))}N
i=1 with respect to the norm induced by H 1(�̂)3 and ĵ (·, ·). (Indeed,

ĵ induces a seminorm on L2(�̂), thus the normalization procedure may fail; however we
noticed that the condition number of the reduced-basis system is smaller with this choice
instead of the L2-norm.)

This allows us to prove the following property:

Lemma 2 Let {(û(i)
, p̂(i))}N

i=1 be the (already) orthonormalized basis-functions on the ref-
erence domain, then for all q̂ in V

p

h (�̂)

b̂(û
(i)

, q̂) = ĵp(p̂(i), q̂). (12)

Proof The claim follows from the bi-linearity of b̂ and ĵ , Lemma 1, as well as from the
interdependent orthonormalization procedure. �

On a generic domain, �μ, we define the reduced basis approximation space

V u
N(�μ) = L

{

−1

μ (û
(i)

), i = 1, . . . ,N
}
, (13)

V
p

N (�μ) = L
{
p̂(i) ◦ �−1

μ , i = 1, . . . ,N
}
. (14)
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We say that {p(i)}N
i=1 are ĵp-linear independent if the following property holds:

N∑

i=1

αi ĵp(p̂(i), p̂(j)) = 0 ∀j = 1, . . . ,N =⇒ αi = 0 ∀i = 1, . . . ,N. (15)

This means that {p(i)}N
i=1 are linear independent and that ĵ defines a scalar product in the

space generated by these vectors. This property has to be verified offline by a Gram-Schmidt
that uses ĵ as scalar product.

The reduced basis approximation of the steady Navier-Stokes equations (3) is then given
by: find (uN,pN) ∈ V u

N(�μ) × V
p

N (�μ), such that

a(uN,v;μ) + c(uN,uN,v;μ) + b(v,pN ;μ)

− b(uN, q;μ) + jp(pN, q) = l(v;μ) ∀(v, q) ∈ V u
N(�μ) × V

p

N (�μ). (16)

We now prove that problem (16) is well-posed and that its complexity can be simplified.

Theorem 1 Assume that {p(i)}N
i=1 are ĵp-linear independent. For a given parameter μ, prob-

lem (16) is then equivalent to: find uN in V u
N(�μ), say uN = ∑N

i=1 αi

−1
μ (û

(i)
), such that

a(uN,vN ;μ) + c(uN,uN,vN ;μ) + d(uN,vN ;μ) = l(vN ;μ) ∀vN ∈ V u
N(�μ), (17)

where the bi-linear operator d(·, ·;μ) : V u
N(�μ) × V u

N(�μ) → R is defined as

d(uN,vN ;μ) =
N∑

i=1

αi b(vN, p̂(i) ◦ �−1
μ ;μ). (18)

The pressure pN can then be computed with the coefficients of uN as

pN =
N∑

i=1

αi p̂
(i) ◦ �−1

μ . (19)

We note that problem (17) is also non-linear, and we find the reduced basis solution by
the same pseudo time-advancing scheme presented for the finite element problem (5). Since
the dimension of the reduced basis problem is much smaller than the finite element problem,
N � N , we use a direct solver at each time-step. The time-advancing is then stopped when
the difference in the reduced basis coefficients, {αi}N

i=1, from one time-step to the next is
below a certain limit, measured in the l2-norm.

Assumption (15) requires a check in the construction of the basis-functions, e.g. by a
supplementary Gram-Schmidt procedure.

Proof Let (uN,pN) be a solution of problem (16) and take v = 0. Then, for all qN ∈
V

p

N (�μ),

jp(pN, qN) = b(uN, qN ;μ)
(9)= b̂(
−1

μ (uN), qN ◦ �μ)

=
∑

i

αi b̂(
−1
μ (u(i)), qN ◦ �μ) =

∑

i

αi b̂((û
(i)

), qN ◦ �μ)

(12)= ĵp

(
N∑

i=1

αip̂
(i), qN ◦ �μ

)
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thanks to the linearity of the operator 
μ. From (15) we know that the only function in
V

p

N (�μ) with this property is given by (19). Let now q = 0 and v = 0, v ∈ V u
N(�μ). Because

of (19) and the definition (18), statement (17) holds.
If uN is defined as in (17) and pN as in (19), then with similar arguments we have that

(uN,pN) is a solution of problem (16). �

As we see from this proof, when solving problem (17), the discretization of the Piola
transformation affects only the pressure.

Corollary 1 Assume (15); for a given parameter μ, problem (17) is well-posed; as a con-
sequence, also problem (16).

Proof Problem (17) is continuous because it is finite dimensional. Moreover, the continuity
constant is bounded by the continuity constant of the stabilized finite element problem [3],
thus independent of N .

To prove the coercivity, first note that when uN is a solution of (17) and pN is defined
by (19), d(uN,uN ;μ) = b(uN,pN ;μ) = jp(pN,pN) > 0 (strict inequality follows from the
property (15)). Then, from Lemma 3.3 in [3] we have that

a(uN,uN ;μ) + c(uN,u,uN ;μ) + d(uN,uN ;μ)

> a(uN,uN ;μ) + c(uN,u,uN ;μ) ≥ C|||uN |||2,
for a mesh- and problem-dependent but N -independent norm ||| · |||. �

3.3 Remarks on the Computational Strategy

The reduced basis method is decoupled in an offline and an online stage. Optimally, all
computations with respect to the underlying finite element basis should be done in the offline
stage. If the problem specific operators can be separated into a sum of products between
parameter dependent functions and operators acting only on the basis-functions, e.g.

a(u,v;μ) =
Q∑

q=1

gq(μ)aq(u,v),

we have affine parameter dependence. It is then clear that all operator evaluations with re-
spect to the basis-functions can be done independently of the given parameter, in the offline
stage. In the online stage the contributions to the system matrix are then assembled from
these precomputed values.

For problems where some derived quantity of the solution is desired, and not the solution
itself, it is shown in [15] that for affine parameter dependence, the reduced basis approxi-
mation of this output of interest, together with rigorous error bounds, can be found in the
online stage independent of the finite element degrees-of-freedom. In the case of non-affine
parameter dependence, like usually with parametrized geometries, empirical interpolation
may be employed to achieve the same independence; see [1].

Since we are interested in a proof-of-concept only, we have only implemented the bare
essentials of the reduced basis element method. This means that we omit parts of the of-
fline computations, like the non-affine decomposition and the necessary ingredients of the
empirical interpolation used to compute the operator-evaluation of the basis-functions in the
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offline stage. Instead we compute the operator-evaluation of the basis-functions in the online
stage. This slows down the online computation of the reduced basis approximation, but the
approximation results are the same. For a detailed presentation of the offline-online decou-
pling of the reduced basis method for the Navier-Stokes problem when the geometry is used
as a parameter, we refer the reader to [6, 10, 18].

4 Numerical Experiment

To demonstrate the reduced basis method with stabilization, we construct an example where
we seek the flow through a pipe which is found by contracting and bending the reference
pipe. The deformation of the domain depends on two distinct parameters: the amplitude,
μ1, of the contraction in the middle of the pipe, and the curvature, μ2, of the bent pipe.
The deformed domain �μ in Fig. 2 is mapped starting from the straight reference pipe �̂ of
length L = 5 and radius r0 = 0.5 (Fig. 1) in two steps. First the radius, r , of the cross-section
of the pipe is changed along the length, l, of the pipe according to

r(l) = r0 + μ1

2

(

cos

(
2πl

L

)

− 1

)

. (20)

Obviously, we must have μ1 < r0. Next the pipe is bent in a plane that contains the center
axis of the pipe. In a Cartesian coordinate system, we let the z axis be aligned with the center
axis of the reference pipe, and assume that one end of the pipe is in the plane z = 0. The
center axis is rotated around the point (1/μ2,0,0), and each plane perpendicular to the axis
follows a rigid body motion. For a given point (x0, y0, z0), the new coordinates are given by

x = 1

μ2
(1 − cos(μ2z0)) + x0 cos(μ2z0),

y = y0,

z = 1

μ2
sin(μ2z0) − x0 sin(μ2z0),

(21)

Fig. 2 Example of a deformed
pipe subject to both contraction
and bending. In this case
μ = (0.25,0.25)
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Table 1 The ordering of the parameters used to compute the basis-functions

i μ = (μ1,μ2) i μ = (μ1,μ2) i μ = (μ1,μ2) i μ = (μ1,μ2)

1 (0.0, 0.0) 11 (0.3, 0.8) 21 (0.1, 1.0) 31 (0.25, 0.6)

2 (0.4, 1.0) 12 (0.1, 0.8) 22 (0.3, 0.0) 32 (0.15, 0.6)

3 (0.0, 1.0) 13 (0.3, 0.3) 23 (0.3, 1.0) 33 (0.25, 0.4)

4 (0.4, 0.0) 14 (0.0, 0.2) 24 (0.1, 0.5) 34 (0.05, 0.4)

5 (0.2, 0.5) 15 (0.4, 0.7) 25 (0.3, 0.5) 35 (0.35, 0.6)

6 (0.0, 0.5) 16 (0.0, 0.7) 26 (0.05, 0.1) 36 (0.25, 0.1)

7 (0.4, 0.5) 17 (0.4, 0.2) 27 (0.35, 0.9) 37 (0.15, 0.9)

8 (0.2, 0.0) 18 (0.2, 0.7) 28 (0.05, 0.9) 38 (0.35, 0.4)

9 (0.2, 1.0) 19 (0.2, 0.2) 29 (0.35, 0.1)

10 (0.1, 0.3) 20 (0.1, 0.0) 30 (0.15, 0.4)

where z0 stands for the arc-length of the curved center axis; for |μ2| < 10−2 we replace (21)
by the second order approximation

x = μ2z
2
0

2
+ x0

(

1 − μ2
2z

2
0

2

)

,

y = y0,

z = z0 − μ2z0x0.

Since the planes perpendicular to the axis are rotated, we must have μ2 < 1
r0

to avoid inter-

section of the planes. (This restriction can locally be replaced by μ2 < 1
r(l)

, but we consider
constant bending along the entire pipe and from (20) we have r0 > r(l).) In addition, to keep
the inflow boundary from overlapping the outflow boundary, we must have μ2 < 2π

L
.

Note that in order to compute the Jacobian needed in the Piola transformation, we can
either use the analytic description of the deformation presented in (20) and (21), or we can
use the finite element basis more directly. We choose the latter approach, which also allows
for computing the Jacobian when the analytic description of the deformation is not known.

Based on the deformation parameters μ1 ∈ [0,0.4] and μ2 ∈ [0,1.0] introduced above,
we compute 38 velocity-pressure basis-functions by choosing combinations of the param-
eters in an ad-hoc optimal sense, in order to span large parts of the parameter space. From
experience with other reduced-basis procedures, we try to resemble the choices of param-
eter combinations yielded by the Greedy-algorithm, without actually implementing it. Our
choice of parameter combinations are given in an ordered fashion in Table 1, and the distri-
bution in parameter space can be seen in Fig. 3 (black circles).

In the offline stage, the basis-functions are computed and orthonormalized. In the on-
line stage, for new choices of parameters, we test the convergence of the error between the
reduced basis approximation and the corresponding finite element solution of the steady
Navier-Stokes problem with respect to the number of basis-functions used to compute the
reduced basis approximation. The choice of parameters considered for the test are the red
stars in Fig. 3; the intention is to place them far away from those used to build the reduced
basis.
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Fig. 3 The distribution of
parameters used to generate the
basis-functions (in black circles),
and the parameters used for the
test cases μ = (0.15,0.75),
(0.31,0.18), (0.32,0.68),
(0.1,0.16) (red stars). Here the
values of μ1 ∈ [0,0.4] are given
in the vertical direction, and the
values of μ2 ∈ [0,1.0] in the
horizontal direction

Fig. 4 Error behavior with increasing reduced basis dimension and comparison with different reference
meshes

In Fig. 4 we present the maximal relative errors over the four chosen values of the pa-
rameter when using the proposed split representation of velocity and pressure (17)–(19).
The error in the velocity is measured with respect to the H 1-norm and the error in the pres-
sure is measured with respect to the L2-norm. Since we do not use a Greedy-algorithm for
the generation of the basis-functions, the “usual” exponential convergence is absent. We
have performed the same error analysis on thirty more parameters equally distributed in the
parameter domain. The convergence graphs are essentially the same, although for many of
these thirty parameters the errors are smaller (one order of magnitude), since they are near
to the location of the parameters chosen to generate the basis-functions.

Both the velocity error and the pressure error depend on the mesh used in the underlying
finite element approximation. With a finer mesh we get also better reduced basis approx-
imation. This is largely due to the discretization of the Piola mapping, and hence on the
resolution of the (stabilized) divergence equation. We also remark that the finite element
resolution induces a plateau that can be lowered with finer meshes (cf. in particular the
velocity error for N > 30).

The definition of the stabilizing term (4) plays an important role in the approximation; we
tried in fact to compute it on the deformed domain instead of on the reference domain and
the results were one order of magnitude worse. In fact, the developments in Sect. 3.2 show
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Fig. 5 Similarly to Fig. 4 we plot the error w.r.t. N . Here instead of considering the proposed splitting
scheme, we consider a monolithic system (the scales w.r.t. Fig. 4 are the same)

Fig. 6 Behavior of the condition number with increasing reduced basis dimension and comparison with
different reference meshes. On the left we consider the proposed splitting scheme, on the right, a monolithic
system

that there can be a deteriorations of the approximation due to the discretization of the Piola
transformation. Using (4) the effects are attenuated thanks to simplifications at the algebraic
level.

We ran the same simulations by solving problem (16). The first note on the results pre-
sented in Fig. 5 is that the convergence with respect to a growing number of basis functions
N is monotone, while this is not always the case with the split representation. However, the
precision obtained for the pressure is one order of magnitude worse, although that for the
velocity is only slightly worse.

We also compared (Fig. 6) the condition number of the reduced systems. Except for
h = 1/20, the condition number of the simplified problem (17) is two orders of magnitude
smaller than that of (16). This is due essentially to two factors: firstly, when dealing with the
split procedure, the unknowns are only the velocity components and is not a saddle point
problem, secondly, the full system includes the stabilizing terms, which introduces artificial
eigenvalues that depends on h.
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5 Conclusions

We have presented the reduced basis method applied to the incompressible Navier-Stokes
equations, together with a procedure for stabilizing the resulting discrete problem. As op-
posed to earlier works for applying the reduced basis method to the Navier-Stokes equations,
this gives us two benefits. First, we avoid having to enrich the reduced basis velocity space
in order to satisfy the inf-sup condition related to the equations. Second, due to the relation
between the stabilization term and the divergence operator, we are able to choose a reduced
basis solution where the velocity is found by the solution of a small and well conditioned
system, and then the pressure is recovered by simple linear combination. The resulting re-
duced basis system is thus a third of the size when compared to the reduced basis method
without the stabilizing procedure and half the size when compared to a monolithic treatment
of velocity and pressure.

A crucial point in the reduced basis procedure is in the accuracy of the Piola transfor-
mation. Analytically, the computation of the divergence of a velocity field on the reference
domain is the same as computing the divergence of the Piola transformed field on a de-
formed domain. In the discrete setting this equality no longer holds, and we have to take this
into account in our approximation.
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