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Abstract

A numerical formulation to solve the MHD problem with thermal coupling is presented in full
detail. The distinctive feature of the method is the design of the stabilization terms, which serve
several purposes. First, convective dominated flows in the Navier-Stokes and the heat equation can
be dealt with. Second, there is no restriction in the choice of the interpolation spaces of all the
variables and, finally, flows highly coupled with the magnetic field can be accounted for. Different
aspects related to the design of the final fully discrete and linearized algorithm are also discussed.

1 Introduction

The objective of this work is to present a finite element method for the approximation of the thermally-
coupled magneto-hydrodynamic (MHD) problem. We discuss several issues related to the time dis-
cretization, the linearization and the iterative coupling of the unknowns. However, our main concern is
the design of a stabilization technique that allows one to use any continuous interpolation for all the
unknowns, in particular, equal interpolation is allowed.

Considering first the thermally uncoupled case, in principle the unknowns involved are the magnetic
field, the fluid velocity and the hydrodynamic pressure. However, to enforce the divergence free con-
dition for the numerical approximation of the magnetic field we introduce a magnetic pseudo-pressure
(whose exact value should be zero). This zero divergence condition is automatically satisfied at the
continuous level for the transient problem if the initial magnetic field is solenoidal, but it is conve-
nient to explicitly enforce it in the numerical approximation, especially for stationary problems. With
the introduction of the magnetic pseudo-pressure we are left with a system of four equations with
four unknowns. The ‘augmented’ approach used in this work is discussed for example in [19] in the
context of MHD and more recently in [5] for the Maxwell equations. The same approach is used in
[14, 29, 24, 23, 28] (see also references therein). Other possibilities of enforcing the divergence free
condition for the magnetic field are penalty strategies (see for example [1]) or the use of (weakly) di-
vergence free interpolations based on Nédelec-type elements (described for example in [25, 26]). These
elements can also be used in combination with the augmented approach using a continuous approxima-
tion for the magnetic pseudo-pressure [28] so as to satisfy the adequate inf-sup condition between this
scalar and the magnetic field. This condition also holds if an equal order discontinuous interpolation is
used for both variables [17]. Nevertheless, there is also the possibility of relying on the mathematical
structure of the equations and to expect that the original problem will already yield a magnetic field
close enough to solenoidal. This is the idea followed in [22], which probably contains the first analysis
of a finite element approximation to the MHD problem, and it is also used in [15], among other papers.

Having introduced the magnetic pseudo-pressure as a new unknown in the problem, its finite ele-
ment approximation has several difficulties. First, there is the well known compatibility condition be-
tween the approximation spaces for the velocity and the pressure, but also for the approximation spaces
for the magnetic field and the magnetic pseudo-pressure. Both conditions can be expressed in a standard
inf-sup form [2]. There is also the problem of dealing with situations in which first order derivatives,
both in the Navier-Stokes equations and in the equation for the magnetic field, dominate (from the nu-
merical point of view) the second order terms that give an elliptic nature to the system of equations to
be solved. These are the classical convection-dominated flow problems. Both the compatibility condi-
tion between interpolating spaces and the oscillations found in flows dominated by convection can be
overcome by using stabilized finite element methods. First approaches in this direction can be found
in [15] (without the introduction of the magnetic pseudo-pressure) and in [24, 23] (where the magnetic
pseudo-pressure is also introduced). However, another particular feature of the MHD problem are the
couplings involved. In the magnetic problem, the coupling with the hydrodynamic problem comes from
the convective term in the equation for the magnetic field, whereas in the Navier-Stokes equations the
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coupling with the magnetic problem comes from Lorentz’s force. Our objective is to design a stabilized
finite element method that takes these couplings into account.

The stabilized finite element method presented here is based on the two-scale decomposition of
the unknowns into their finite element component and a subscale that cannot be captured by the finite
element space. The format that we follow of this idea was introduced in [18]. In particular, the version
for systems we employ here was already presented in [6]. A first version of our formulation, considering
only the stationary and thermally uncoupled problem, can be found in [9].

The formulation is first designed for linear problems, and therefore our first concern is to devise a
linearization technique for the fully coupled problem. For simplicity, we consider a fixed point method.
Among the different possibilities, we identify the only one that leads to a linearized problem that is
coercive, and thus guarantees existence and uniqueness of solution. This fixed point method is often
used, but rarely justified. It is for this linearized problem that we propose a stabilized finite element
method based on the subgrid scale concept. The important point is how to approximate the subgrid
scales. We use the simplest approach of taking them proportional to a projection of the residual of the
finite element approximation multiplied by the so called matrix of stabilization parameters. We consider
two possibilities for the projection. The first is to take it as the identity (at least when applied to the
residual of the finite element solution), and the second is to consider this projection as the orthogonal
to the finite element space. The first option leads to a classical residual based stabilized finite element
method, whereas the second was termed orthogonal subscale stabilization formulation (OSS) in [7],
where it is fully developed for incompressible flows. A thorough numerical analysis for the stationary
and linearized problem can be found in [8].

The design of the matrix of stabilization parameters is solely based on the stability and convergence
analysis of the problem. This analysis will be presented in a situation as simple as possible, trying to
avoid mathematical technicalities. It is not the purpose of this paper a deep numerical analysis of the
formulation to be presented, but to present it with a sound motivation. The resulting formulation differs
from the one proposed in [24] both in the structure of the stabilizing terms (no attempt is made there
to account neither for convection-dominated situations nor for the coupling effects) and in the design
of the stabilization parameters. It also differs form the method proposed in [15] in the inclusion of the
magnetic pseudo-pressure and in the design of the stabilization parameters.

The paper is organized as follows. The problem to be solved is presented in the Section 2, including
its strong and its variational forms. Issues not directly related to the finite element approximation are
treated in Section 3, where a simple time integration scheme is described and linearization possibilities
are discussed, starting with the identification of the only feasible fixed-point iteration for the thermally
uncoupled MHD problem and then including the thermal coupling. The stabilization method is proposed
and fully analyzed for the linearized stationary MHD problem in Section 4. The scheme we finally
propose is written in Section 5. Numerical examples are presented in Section 6 and conclusions are
finally drawn in Section 7.

2 Problem statement

2.1 Initial and boundary value problem

Let Ω ⊂ Rd (d = 2 or 3) be a domain where we want to solve the thermally coupled MHD problem
during the time interval [0, T ], the thermal coupling being modeled through Boussinesq’s assumption.
The unknowns of the problem are the fluid velocity u : Ω × (0, T ) −→ Rd, the pressure p : Ω ×
(0, T ) −→ R, the magnetic induction (which we will simply call magnetic field) B : Ω × (0, T ) −→
Rd, the magnetic pseudo-pressure r : Ω × (0, T ) −→ R and the temperature ϑ : Ω × (0, T ) −→ R,
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which are solution of the system of partial differential equations:

∂tu + u · ∇u− ν∆u +
1
ρ
∇p− 1

µmρ
(∇×B)×B + gβϑ = f f + g[1 + βϑr], (1)

∇ · u = 0, (2)

∂tB +
1

µmσ
∇× (∇×B)−∇× (u×B) +∇r = fm, (3)

∇ ·B = 0, (4)

∂tϑ+ u · ∇ϑ− kt

ρcp
∆ϑ− 1

ρcpµ2
mσ
|∇ ×B|2 − 2µf

ρcp
|∇Su|2 = Q. (5)

In these equations, ρ is the fluid density, µf the fluid viscosity, ν = µf/ρ is the kinematic viscosity, g the
gravity acceleration vector, β the thermal expansion coefficient, f f the body force of the flow motion,
ϑr a known reference temperature, µm the magnetic permeability, σ the conductivity, fm a forcing term
for the magnetic field (zero in the applications), kt the thermal conduction coefficient, cp the specific
heat at constant pressure,∇S is the symmetrical gradient operator and Q the heating source. From now
on, we consider that f f contains g[1 + βϑr]. All physical properties will be considered constant.

In order to write the boundary conditions for problem (1)-(5), let us consider the disjoint splittings
∂Ω = ΓE,u ∪ ΓN,u = ΓE,B ∪ ΓN,B = ΓE,ϑ ∪ ΓN,ϑ. Subscript E refers to essential boundary con-
ditions in the variational form to be presented, whereas N refers to natural boundary conditions. The
second subscript indicates the variable to which the condition is applied. If we denote with an overbar
prescribed values, the boundary conditions to be considered for all time t ∈ (0, T ] are:

On ΓE,u : u = 0. (6)

On ΓN,u : − pn + νn · ∇u = t̄. (7)

On ΓE,B : n×B = 0, r = 0. (8)

On ΓN,B : n ·B = B̄, n× (∇×B) = J̄ . (9)

On ΓE,ϑ : ϑ = 0. (10)

On ΓN,ϑ :
kt

ρcp
n · ∇ϑ = q̄. (11)

In these equations, n denotes the unit external normal to the boundary. Note that essential boundary
conditions have been considered all homogeneous. This simplifies the writing of the problem (the func-
tional spaces where the solutions belong will be linear instead of affine). Note also that the boundary
condition (7) does not correspond to the prescription of the physical traction, but it is the natural condi-
tion associated to the way the viscous term in (1) has been written.

To complete the definition of the problem we need to add initial conditions of the form u = u0,
B = B0 and ϑ = ϑ0, all holding in the spatial domain Ω at t = 0.

Remark 1 The forcing term fm, introduced for generality, has to be divergence free. Likewise, the
initial field B0 must be also solenoidal. If one takes the divergence of (3) and uses the boundary
conditions (8), it turns out that r = 0. However, from the numerical point of view the introduction of
r will be very useful to enforce the zero divergence condition (4) while keeping the correct functional
setting of the problem, as we will see in the next subsection.

Even though we will work with the dimensional form of the problem (1)-(5) to highlight the way it
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needs to be scaled, the equations can also be written in terms of the following dimensionless numbers:

Re :=
`U

ν
, Reynolds number,

Pe :=
`U

κ
, Péclet number,

Pr :=
ν

κ
, Prandtl number,

Gr :=
β|g|`3δϑ

ν2
, Grashof number,

Rem := µmσ`U, Magnetic Reynolds number,

Ha := B`

√
σ

ρν
, Hartmann number,

S :=
B2

µmρU2
, Coupling number,

where ` is a characteristic length of the problem, U a characteristic velocity,B a characteristic magnetic
field and δϑ a characteristic temperature difference, usually computed from temperature boundary val-
ues when these are not zero. These numbers are obviously not independent. For example, Pe = RePr,
Ha = (ReRemS)1/2. The data for the numerical examples presented in Section 6 will be given in terms
of these numbers.

2.2 Weak form

To write the weak form of (1)-(5) with the boundary conditions (6)-(11), let v, q, C, s and ψ be the
test functions for u, p, B, r and ϑ, respectively. We consider them time-independent (time will be
discretized using a finite difference scheme), v and ψ are assumed the be zero on ΓE,u and ΓE,ϑ,
respectively, and on ΓE,B it holds that n×C = 0 and s = 0.

Let us write 〈f, g〉ω =
∫
ω fg, where f and g are two generic functions defined on a region ω

such that the integral of their product is well defined. No subscript will be used when ω = Ω. When
f, g ∈ L2(Ω), we will write 〈f, g〉 = (f, g). The norm in L2(Ω) will be denoted by ‖f‖ = (f, f)1/2.
These symbols will be used for scalars, vectors or second order tensors.

Once equations (1)-(5) are multiplied by the corresponding test functions, integrated over Ω and
second order terms integrated by parts, the resulting variational form of the problem that we consider is

(∂tu,v) +Auu(u,u,v) +AuB(B,B,v) +Auϑ(ϑ,v)− bu(p,v) = Lu(v), (12)

bu(q,u) = 0, (13)

(∂tB,C) +ABu(u,B,C) +ABB(B,C) + bB(r,C) = LB1(C), (14)

bB(s,B) = LB2(s), (15)

(∂tϑ, ψ) +Aϑu,1(u, ϑ, ψ) +Aϑu,2(u,u, ψ) +AϑB(B,B, ψ) +Aϑϑ(ϑ, ψ) = Lϑ(ψ), (16)

which must hold for all test functions v, q, C, s and ψ in the functional spaces indicated next.
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The different multilinear forms appearing in (12)-(16) are given by

Auu(u1,u2,v) = 〈v,u1 · ∇u2〉+ ν(∇v,∇u2),

AuB(B1,B2,v) = − 1
µmρ
〈v, (∇×B1)×B2〉,

Auϑ(ϑ,v) = β(v, g ϑ),
ABu(u,B,C) = −〈C,∇× (u×B)〉,

ABB(B,C) =
1

µmσ
〈∇ ×C,∇×B〉,

Aϑu,1(u, ϑ, ψ) = 〈ψ,u · ∇ϑ〉,

Aϑu,2(u1,u2, ψ) = −2µf

ρcp

〈
ψ,∇Su1 : ∇Su2

〉
,

AϑB(B1,B2, ψ) = − 1
ρcpµ2

mσ
〈ψ, (∇×B1) · (∇×B2)〉,

Aϑϑ(ϑ, ψ) =
kt

ρcp
(∇ψ,∇ϑ),

bu(q,v) =
1
ρ
(q,∇ · v),

bB(s,C) = (∇s,C),
Lu(v) = 〈v,f f〉+ 〈v, t̄〉ΓN,u

,

LB1(C) = (C,fm) +
〈
v, J̄

〉
ΓN,B

,

LB2(s) =
〈
s, B̄

〉
ΓN,B

,

Lϑ(ψ) = 〈ψ,Q〉+ 〈ψ, q̄〉ΓN,T
.

If we consider the functional spaces

Vu = {v ∈ H1(Ω)d | v = 0 on ΓE,u},

Vp = {q ∈ L2(Ω) |
∫

Ω
q = 0 if ΓN,u = ∅},

VB = {C ∈ H(curl,Ω) | n×C = 0 on ΓE,B},
Vr = {s ∈ H1(Ω) | s = 0 on ΓE,B},
Vϑ = {ψ ∈ H1(Ω) | ψ = 0 on ΓE,ϑ},

all the multilinear forms introduced, except Aϑu,2(u1,u2, ψ) and AϑB(B1,B2, ψ), are well defined
and continuous for

u1,u2,u ∈ L2(0, T ;Vu), v ∈ Vu,

p ∈ D′(0, T ;Vp), q ∈ Vp,

B1,B2,B ∈ L2(0, T ;VB), C ∈ VB,

r ∈ D′(0, T ;Vr), s ∈ Vr,

ϑ ∈ L2(0, T ;Vϑ), ψ ∈ Vϑ.

In these expressions, L2(0, T ;X) denotes the set of mappings defined on Ω × (0, T ) such that their
X-spatial norm is an L2(0, T ) function. Similarly, D′(0, T ;X) denotes the set of mappings for which
their X-spatial norm is a distribution in time.
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If Aϑu,2(u1,u2, ψ) and AϑB(B1,B2, ψ) need to be taken into account, one should require∇Sv ∈
W 1,4(Ω)d×d in the definition of Vu and ∇ × C ∈ L4(Ω)d in the definition of VB . It is also assumed
that f f ∈ V ′

u, fm ∈ V ′
B and Q ∈ V ′

ϑ (a.e. in time), where X ′ denotes the topological dual of a function
space X .

To close this section, let us note that (12)-(16) can be written as a single variational equation of the
form

M(∂tU ,V ) +A(U ,V ) = L(V ), (17)

where

U = [u, p,B, r, ϑ]t, V = [v, q,C, s, ψ]t,
A(U ,V ) := Auu(u,u,v) +AuB(B,B,v) +Auϑ(ϑ,v)− bu(p,v) + bu(q,u)

+ αB [ABu(u,B,C) +ABB(B,C) + bB(r,C)− bB(s,B)]
+ αϑ [Aϑu,1(u, ϑ, ψ) +Aϑu,2(u,u, ψ) +AϑB(B,B, ψ) +Aϑϑ(ϑ, ψ)] ,

L(V ) := Lu(v) + αB[LB1(C) + LB2(s)] + αϑLϑ(ψ),
M(U ,V ) := (u,v) + αB〈B,C〉+ αϑ〈ϑ, ψ〉.

The scaling coefficients αB and αϑ need to be introduced to make the semilinear form A(U ,V ) and
the linear form L(V ) dimensionally consistent.

3 Time integration and linearization

3.1 Time discretization

Consider a nonlinear system of ordinary differential equations of the form

ẋ = F (x, t)

where x : (0, T ) −→ Rn, n ≥ 1, is a vector function. Let us define, for θ ∈ [0, 1],

xn+θ := θxn+1 + (1− θ)xn, tn+θ := θtn+1 + (1− θ)tn, Fn(x, t) := F (xn, tn),

where tn := nδt, xn is an approximation to x(tn) and δt is the time step size of a uniform partition of
[0, T ]. There are two families of one-step time integration methods, namely, the generalized trapezoidal
rule and the generalized mid-point rule. They read:

1
δt

(xn+1 − xn) = θFn+1(x, t) + (1− θ)Fn(x, t),

1
δt

(xn+1 − xn) = F (xn+θ, tn+θ).

For linear autonomous problems, that is to say, when F is linear and time independent, these two
methods coincide.

The generalized mid-point rule is simpler to implement numerically. Its application to the varia-
tional problem given by (17) is given by

M(δtUn,V ) +A(Un+θ,V ) = L(V ), (18)

where δtUn = δt−1(Un+1 − Un) = (θδt)−1(Un+θ − Un). This is the time discretization of the
problem that we will consider, although other time integration schemes could be also applied to obtain
the final fully discrete and linearized problem.
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3.2 Linealization and block-iterative coupling

In this section we present a linearization for the time discrete problem (18). If fact, we are also interested
in uncoupling the calculation of the temperature from the rest of unknowns.

3.2.1 Linearization of the stationary MHD problem

The first issue we consider is the linearization of the nonlinear terms in (18). To this end, it is enough
to consider the thermally uncoupled and stationary problem, whose differential form is given by

(u · ∇)u− ν∆u +
1
ρ
∇p− 1

µmρ
(∇×B)×B = f f

∇ · u = 0,
1

µmσ
∇× (∇×B)−∇× (u×B) +∇r = fm,

∇ ·B = 0.

If we introduce now the vector of unknowns U = [u, p,B, r]t and the corresponding test functions
V = [v, q,C, s]t, the variational problem can be written as

A(U ,V ) = L(V ),

now with

A(U ,V ) = Auu(u,u,v) +AuB(B,B,v)− bu(p,v) + bu(q,u)
+ αB [ABu(u,B,C) +ABB(B,C) + bB(r,C)− bB(s,B)] .

Taking the scaling coefficient as αB = 1/(µmρ) we have

A(U ,V ) = 〈v,u · ∇u〉+ ν(∇v,∇u)− 1
µmρ
〈v, (∇×B)×B〉 − 1

ρ
(p,∇ · v) +

1
ρ
(q,∇ · u)

+
1

µmρ

[
−〈C,∇× (u×B)〉+ 1

µmσ
(∇×C,∇×B) + (∇r,C)− (∇s,B)

]
. (19)

The simplest way to linearize the problem is by a fixed point treatment of the quadratic terms. Let
us assume we have an estimate for the velocity and the magnetic field at iteration k, uk and Bk,
respectively, and we have to compute these fields at iteration k + 1. If ei(k) = k or ei(k) = k + 1 and
e′i(k) = 2k+ 1− ei(k), the approximation of A(U ,V ) at iteration k+ 1 using the fixed point method
may be written as

Ak+1(U ,V ) =
〈
v, (ue1(k) · ∇)ue′

1(k)
〉

+ ν
(
∇v,∇uk+1

)
− 1
µmρ

〈
v, (∇×Be2(k))×Be′

2(k)
〉
− 1
ρ

〈
pk+1,∇ · v

〉
+

1
ρ

〈
q,∇ · uk+1

〉
+

1
µmρ

[
−

〈
C,∇× (ue3(k) ×Be′

3(k))
〉

+
1

µmσ

(
∇×C,∇×Bk+1

)
+

(
∇rk+1,C

)
−

(
∇s,Bk+1

)]
.
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In order to have a stable problem at each iteration, we should guarantee that Ak+1(Uk+1,Uk+1) ≥ 0,
which leads to conditions∫

Ω
uk+1 · (ue1(k) · ∇)ue′

1(k) ≥ 0,∫
Ω

[
−uk+1 · (∇×Be2(k))×Be′

2(k) −Bk+1 · ∇ × (ue3(k) ×Be′
3(k))

]
≥ 0.

When ∇ · uk = 0, ∇ · Bk = 0, these conditions hold only if e1(k) = k (as it is well known),
e2(k) = k + 1 and e3(k) = k + 1. Therefore, calling a ≡ uk, u ≡ uk+1, b ≡ Bk, B ≡ Bk+1, the
only fixed point linearization of the problem that is stable is

(a · ∇)u− ν∆u +
1
ρ
∇p− 1

µmρ
(∇×B)× b = f f ,

∇ · u = 0,
1

µmσ
∇× (∇×B)−∇× (u× b) +∇r = fm,

∇ ·B = 0.

This is the problem for which the stabilized finite element method will be presented in Section 4. Note
that the problem needs to be solved in a coupled way, without the possibility to segregate the fluid
mechanics problem from the magnetic one. The same would happen if instead of a simple fixed-point
linearization scheme, the classical Newton-Raphson linearization is used.

3.2.2 Full coupling and block-iterative coupling

Let us consider again the stationary problem, but now accounting also for the thermal coupling. Once
we have determined how to deal with the nonlinearity arising because of the velocity-magnetic field
coupling, the thermal coupling is easy to treat, since the temperature term in the momentum equation is
linear. We may consider either a full coupling or a block iterative coupling. Both options can be written
in a single format as follows. If e(k) = k or e(k) = k+ 1 and e′(k) = 2k+ 1− e(k), we introduce the
fully linearized and coupled problem

Auu(uk,uk+1,v) +AuB(Bk+1,Bk,v) +Auϑ(ϑe(k),v)− bu(pk+1,v) = Lu(v), (20)

bu(q,uk+1) = 0,

ABu(uk+1,Bk,C) +ABB(Bk+1,C) + bB(rk+1,C) = LB1(C),

bB(s,Bk+1) = LB2(s),

Aϑu,1(ue′(k), ϑk+1, ψ) +Aϑϑ(ϑk+1, ψ) = Lk
ϑ(ψ), (21)

where

Lk
ϑ(ψ) = Lϑ(ψ)−Aϑu,2(ue′(k),ue′(k), ψ)−AϑB(Be′(k),Be′(k), ψ). (22)

It is clear that when e(k) = k+1 (and thus e′(k) = k), the problem needs to be solved for uk+1, pn+1,
Bk+1, sk+1 and ϑk+1 in a coupled way. The production of heat given by Aϑu,2(ue′(k),ue′(k), ψ) and
AϑB(Be′(k),Be′(k), ψ) needs to be evaluated at the previous iteration (unless a Newton-Raphson-type
strategy is used). On the other hand, when e(k) = k the problem can be solved first for uk+1, pn+1,
Bk+1 and rk+1. Once these variables are computed, temperature may be updated by solving (21). In
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this case, it is possible to use the variables uk+1 and Bk+1 just computed, thus leading to a Gauss-
Seidel-type coupling. Of course, a Jacobi coupling, in which Lk

ϑ in (22) is evaluated with uk and Bk,
would also be possible. However, the computational effort is the same, and convergence is known to be
faster for Gauss-Seidel-type schemes (see [4] for further discussion).

3.3 Time discrete and linearized scheme

The next step is to consider the time discrete problem using the mid-point rule together with the lin-
earization scheme described previously. This leads to the following problem: For n = 0, 1, 2, ..., given
un, pn, Bn, rn and ϑn, find un+1, pn+1, Bn+1, rn+1 and ϑn+1 as the converged solutions of the
following iterative algorithm:

(δtun,k+1,v) +Auu(un+θ,k,un+θ,k+1,v) +AuB(Bn+θ,k+1,Bn+θ,k,v)

+Auϑ(ϑn+θ,e(k),v)− bu(pn+1,k+1,v) = Ln+θ
u (v), (23)

bu(q,un+1,k+1) = 0, (24)

(δtBn,k+1,C) +ABu(un+θ,k+1,Bn+θ,k,C) +ABB(Bn+θ,k+1,C)

+ bB(rn+1,k+1,C) = Ln+θ
B1 (C), (25)

bB(s,Bn+1,k+1) = Ln+θ
B2 (s), (26)

(δtϑn,k+1, ψ) +Aϑu,1(un+θ,e′(k), ϑn+θ,k+1, ψ) +Aϑϑ(ϑn+θ,k+1, ψ) = Ln+θ,k
ϑ (ψ), (27)

with the obvious definition

Ln+θ,k
ϑ (ψ) = Ln+θ

ϑ (ψ)−Aϑu,2(un+θ,e′(k),un+θ,e′(k), ψ)−AϑB(Bn+θ,e′(k),Bn+θ,e′(k), ψ).

In all these expressions, the first superscript denotes the time step level and the second the iteration
counter.

For implementation purposes, it is very convenient to write the problem to be solved as a time-
discrete system of linear convection-diffusion-reaction equations. Let us consider the case e(k) = k+1
in (20), the case e(k) = k being similar, and let us call a ≡ un+θ,k, u ≡ un+θ,k+1, b ≡ Bn+θ,k,
B ≡ Bn+θ,k+1, ϑ ≡ ϑn+θ,k+1 and δtfn = (θδt)−1(f−fn) for any of the unknowns f . The differential
equations associated to (23)-(27) are

δtu + (a · ∇)u− ν∆u +
1
ρ
∇p− 1

µmρ
(∇×B)× b + gβϑ = f f ,

∇ · u = 0,

δtB +
1

µmσ
∇× (∇×B)−∇× (u× b) +∇r = fm,

∇ ·B = 0,

δtϑ+ a · ∇ϑ− kt

ρcp
∆ϑ = Qtot,

where

Qtot = Q− 1
ρcpµ2

mσ
|∇ × b|2 − 2µf

ρcp
|∇Sa|2.

The problem considered can be written as the vector differential equation

MδtU + L(U) = F in Ω, (28)
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where M = diag(I, 0, αBI, 0, αϑ), I being the d × d identity, δtU = (δt)−1(U − Un), with Un

known, F = [f f , 0, αBfm, 0, αϑQtot]t is a known vector of nunk = 2d + 3 components and the
(scaled) operator L is given by

L(U) =



a · ∇u− ν∆u + 1
ρ∇p+ 1

µmρb× (∇×B) + gβϑ

∇ · u
αB

[
−∇× (u× b) + 1

µmσ∇× (∇×B) +∇r
]

αB∇ ·B
αϑ

[
a · ∇ϑ− kt

ρcp
∆ϑ

]

 . (29)

This is an operator of the form

L(U) := Ai∂iU − ∂i (Kij∂jU) ,

where Ai and Kij are nunk × nunk matrices (i, j = 1, ..., d) whose identification is obvious and will
be omitted. Here and in what follows, repeated indexes imply summation up to the number of spatial
dimensions and ∂i is the partial derivative with respect to the Cartesian coordinate xi.

Let matrices Ai be split as Ai = Ac
i + Af

i , where Ac
i is the part of the convection matrices which

is not integrated by parts and Af
i the part that is integrated by parts. In our case, matrices Af

i come from
the first order derivatives of the hydrodynamic pressure p. It would be also possible to integrate by parts
the first order derivatives corresponding to the terms u · ∇u and ∇× (u×B).

The weak form of the problem supplied with the appropriate homogeneous boundary conditions
can be written again as the time discrete and linearized counterpart of (17):

M(δtU ,V ) +Alin(U ,V ) = L(V ),

where

Alin(U ,V ) := (V ,Ac
i∂iU)− ((Af

i)
t∂iV ,U) + (∂iV ,Kij∂jU),

and L(V ) := (V ,F ) plus boundary contributions that depend on the problem. For the particular case
of MHD, taking αB = 1/(µmρ):

Alin(U ,V ) = 〈v,a · ∇u〉+ ν(∇v,∇u)− 1
µmρ
〈v, (∇×B)× b〉 − 1

ρ
(p,∇ · v) +

1
ρ
(q,∇ · u)

+
1

µmρ

[
−〈C,∇× (u× b)〉+ 1

µmσ
(∇×C,∇×B) + 〈∇r,C〉 − 〈∇s,B〉

]
. (30)

From now on, we will redefine p← p/ρ, that is to say, we will work with the kinematic pressure.

4 Stabilized formulation for the stationary, linearized and thermally un-
coupled problem

4.1 Stability of the Galerkin approximation

Consider the linearized uncoupled stationary problem. Its variational form is: Find U ∈W such that

Alin(U ,V ) = L(V ) ∀V ∈W, (31)
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where W = Vu × Vp × VB × Vr. If we assume that ∇ · a = 0, ∇ · b = 0, Alin satisfies the stability
estimate

Alin(U ,U) = ν‖∇u‖2 +
1

µmρµmσ
‖∇ ×B‖2. (32)

This stability estimate and the inf-sup conditions between Vu and Vp and between VB and Vr, given by

inf
q∈Vp\{0}

sup
v∈Vu\{0}

(q,∇ · v)
‖q‖ ‖∇v‖

≥ βf > 0, (33)

inf
s∈Vr\{0}

sup
C∈VB\{0}

(∇s,C)
‖∇s‖ (`‖∇ ×C‖+ ‖C‖)

≥ βm > 0, (34)

where βf and βm are constants, are enough to guarantee that the linearized problem is well posed. The
parameter ` has dimensions of length and has been introduced with the only purpose of having a correct
scaling for the norm in VB ⊂ H(curl,Ω). Therefore, for each iteration k, given uk and Bk there is a
unique Uk+1 = (uk+1, pk+1,Bk+1, rk+1), solution of the linearized problem (31).

It can be shown that, under the same condition for which the nonlinear problem has a unique so-
lution (see [28]), the sequence {Uk}k≥0 converges (strongly) to the (unique) solution of the nonlinear
problem. The proof of this result is technical, but follows the same strategy as for the stationary Navier-
Stokes equations without magnetic coupling.

Remark 2 Since the exact solution of the problem is r = 0, one could replace (4) by −`2σµm∆r +
∇ ·B = 0, where ` is again a length scale. If this is done, the term `2 σ

ρ‖∇r‖
2 should be added to the

right-hand-side of (32), so that additional stability is obtained on the magnetic pseudo-pressure. We
will not use this possibility here, although it may be needed if a method able to converge to singular
solutions is required (see Remark 3).

4.2 The subgrid scale framework for a general CDR system of equations

The basic idea of the stabilization method proposed here is based on the subgrid scale concept intro-
duced in [18] and that can be also found in different contexts (not only numerical). What follows is a
summary of the approach described in [6].

The starting idea is to split the continuous space as W = Wh ⊕ W̃ , where Wh is the finite element
space (and therefore finite dimensional) in which the approximate solution will be sought. We call W̃
the space of subscales or subgrid scales. It is readily checked that the continuous problem can be written
as the system of equations:

Alin(Uh,V h) +Alin(Ũ ,V h) = L(V h) ∀V h ∈Wh, (35)

Alin(Uh, Ṽ ) +Alin(Ũ , Ṽ ) = L(Ṽ ) ∀Ṽ ∈ W̃ , (36)

where U = Uh + Ũ and Uh ∈Wh, Ũ ∈ W̃ .
It is useful for the following to introduce the notation

〈·, ·〉h :=
nel∑
e=1

〈·, ·〉Ωe , 〈·, ·〉∂h :=
nel∑
e=1

〈·, ·〉∂Ωe ,

where nel is the number of elements of the finite element partition used to build Wh and Ωe denotes the
domain of element number e.
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Integrating by parts all the terms in Alin(Ũ ,V h) in (35) and the left-hand-side terms of (36) within
each element domain, we get

Alin(Uh,V h) +
〈
Ũ , ni(Kij∂jV h − (Af

i)
tV h)

〉
∂h

+
〈
Ũ ,L∗(V h)

〉
h

= L(V h), (37)〈
Ṽ , ni[Kij∂j(Uh + Ũ)−Af

i(Uh + Ũ)]
〉

∂h
+

〈
Ṽ ,L(Ũ)

〉
h

=
〈
Ṽ ,F − L(Uh)

〉
h
, (38)

where ni is now the i-th component of the exterior normal to ∂Ωe and L∗ is the adjoint operator of L
with homogeneous Dirichlet conditions, given by

L∗(U) := −∂i(At
iU)− ∂i(Kt

ij∂jU).

Equation (38) is equivalent to:

L(Ũ) = F − L(Uh) + V h,ort in Ωe, (39)

Ũ = Ũ ske on ∂Ωe, (40)

where V h,ort is obtained from the condition that Ũ must belong to W̃ (and not to the whole space W )
and Ũ ske is a function defined on the element boundaries and such that

qn := ni[Kij∂j(Uh + Ũ)−Af
i(Uh + Ũ)]

is continuous across interelement boundaries, and therefore the first term in the left-hand-side of (38)
vanishes.

Different subgrid scale (SGS) stabilization methods can be devised depending on the way problem
(39)-(40) is approximated. The purpose of this paper is not to propose a new methodology, but rather to
see how to apply a well established formulation to the incompressible MHD problem. This well known
method can be obtained by approximating the subscales by the algebraic expression

Ũ ≈ τ P̃ [F − L(Uh)] , (41)

where τ is a nunk × nunk matrix of stabilization parameters, the expression of which is discussed
in the following subsection, and P̃ is the projection onto the space of subscales. There are two main
possibilities for choosing P̃ and, therefore, for determining the space of subscales. The most common
one is to take P̃ = I , the identity, when applied to the finite element residual appearing in the right-
hand-side of (41). Another possibility, which is actually the one that we favor, is to take P̃ as the
L2-projection onto the space orthogonal to the finite element space [7, 8]. For the sake of conciseness,
we will restrict ourselves to the first option (P̃ = I), although the second one has clear advantages,
particularly in time dependent problems [11]. The design of the stabilization parameters, which is our
main concern, is the same using both approaches.

To close the approximation, we neglect the interelement boundary terms in (37), which can be
understood as taking Ũ ske = 0 on the interelement boundaries. The final problem is: find Uh ∈ Wh

such that

Alin(Uh,V h) +
〈
Ũ ,L∗(V h)

〉
h

= L(V h) ∀V h ∈Wh,

which, upon substitution of the subscales by (41) with P̃ = I , yields the following discrete problem:
find Uh ∈Wh such that

Alin
stab(Uh,V h) = Lstab(V h) ∀V h ∈Wh, (42)

where the bilinear form Alin
stab and the linear form Lstab are now given by

Alin
stab(Uh,V h) = Alin(Uh,V h)− 〈L∗(V h), τL(Uh)〉h, (43)

Lstab(V h) = L(V h)− 〈L∗(V h), τF 〉h. (44)
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4.3 Stabilized finite element approximation for the linearized MHD problem

In this subsection we present a stabilized finite element method to approximate problem (31). First of
all, we recast it as a system of linear convection-diffusion equations. It is in this general setting that the
finite element approximation will be described.

Stabilization for this problem has several goals. The first is to avoid the need to satisfy the discrete
counterpart of the inf-sup conditions (33) and (34), which would lead to different interpolation for the
variables of the problem. To fix ideas, we will assume equal and continuous interpolation for all the
unknowns. The second goal is to obtain error estimates valid in the limit ν → 0 and σµm →∞, that is,
for convection-dominated flows (both in the Navier-Stokes equation and the equation for the magnetic
field). Finally, the third objective is to account properly for the coupling of the hydrodynamic and the
magnetic problems (case ρµm → 0). That these goals are all satisfied will be seen in the error estimate
to be presented.

Up to now we have described the algebraic version of the SGS stabilization in a general setting. The
objective now is to apply it to the MHD problem we are considering. In particular, the adjoint operator
of the linearized uncoupled MHD problem L∗(V h), taking once again αB = 1/(µmρ), is now given
by

L∗(V ) =


−a · ∇v − ν∆v −∇q − 1

ρµm
b× (∇×C)

−∇ · v
1

ρµm
∇× (v × b) + 1

ρµmσµm
∇× (∇×C)− 1

ρµm
∇s

− 1
ρµm
∇ ·C

 . (45)

To define the method for the particular MHD problem, an expression for the matrix of stabilization
parameters τ needs to be proposed. To our knowledge, there is no general way to define it for sys-
tems of equations [6]. It must be designed for each particular problem taking into account its stability
deficiencies.

In the case we are considering, we will see in the following subsection that stability can be improved
maintaining optimal accuracy by taking a simple diagonal expression for τ , with one scalar component
for each of the equations. In the 3D case, we take

τ = diag(τ1, τ1, τ1, τ2, τ3, τ3, τ3, τ4). (46)

Using this expression and (45), it follows that the stabilized bilinear form that we have to consider in
problem (42) is

Alin
stab(Uh,V h) = Alin(Uh,V h)− 〈L∗(V h), τL(Uh)〉

= 〈a · ∇uh,vh〉+ ν(∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)

+
1

ρµm
〈Bh,∇× (vh × b)〉 − 1

ρµm
〈Ch,∇× (uh × b)〉

+
1

ρµmσµm
(∇×Bh,∇×Ch) +

1
ρµm

(∇rh,Ch)− 1
ρµm

(∇sh,Bh)

+ 〈Xu(vh, qh,Ch) + ν∆vh, τ1(Xu(uh, ph,Bh)− ν∆uh)〉h
+ 〈∇ · vh, τ2(∇ · uh)〉h

+
〈
XB(sh,vh)− 1

ρµmσµm
∇× (∇×Ch), τ3(XB(rh,uh) +

1
ρµmσµm

∇× (∇×Bh))
〉

h

+
1

ρ2µ2
m

〈∇ ·Ch, τ4(∇ ·Bh)〉h, (47)
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where we have introduced the abbreviations

Xu(vh, qh,Ch) := a · ∇vh +∇qh +
1

ρµm
b× (∇×Ch),

XB(sh,vh) := − 1
ρµm
∇× (vh × b) +

1
ρµm
∇sh.

Finally, the right-hand-side of the stabilized problem (44) is now given by

Lstab(V h) = L(V h)− 〈L∗(V h), τF 〉

= 〈f f ,v〉+
1

ρµm
(fm,C)

+ 〈Xu(vh, qh,Ch) + ν∆vh, τ1f f〉h

+
〈
XB(sh,vh)− 1

ρµmσµm
∇× (∇×Ch), τ3fm

〉
h

. (48)

The definition of the stabilized finite element method is now complete up to the expression of the
stabilization parameters. The expressions we propose are the following:

α := c1
a

h
+ c2

ν

h2
, β := c3

1
ρµm

b

h
, γ := c4

1
ρµm

1
σµm

1
h2

τ1 = α−1

(
1 +

1
√
αγ

β

)−1

, τ2 = c5
h2

τ1
(49)

τ3 = γ−1

(
1 +

1
√
αγ

β

)−1

, τ4 = c6ρ
2µ2

m

h2

τ3
(50)

It is understood that these expressions are evaluated element by element. Here, a is the maximum
norm of the velocity field a computed in the element under consideration. Likewise, b denotes the
maximum norm of b in this element, and h the element diameter. The constants ci, i = 1, 2, 3, 4, 5, 6, are
independent of the physical parameters of the problem and of the mesh discretization. In the numerical
calculations we take them as c1 = 2, c2 = 4, c3 = 1, c4 = 4, c5 = 1, c6 = 1.

In the following subsection we justify in detail this choice from the numerical analysis of the prob-
lem. We will proceed in a constructive manner, posing conditions on the stabilization parameters ob-
tained from the requirement that the method is stable (coercive) and optimally accurate.

Remark 3 At this point it is important to remark a property of the stabilized formulation we propose
concerning convergence to non-regular solutions. In the following analysis we consider the simplest
situation, trying to avoid technicalities and focusing our attention on the convenience of the formula-
tion designed. We will prove stability of the method and convergence to smooth solutions, assuming all
the regularity we need. However, it is known that the problem may exhibit solutions for the magnetic
field which are strictly in H0(curl,Ω), not even in (H1(Ω))d. This happens when Ω has re-entrant cor-
ners [12]. Methods based on penalization, which introduce some sort of control on the divergence of
the magnetic field, fail to converge to these non-regular solutions. The remedy is either to weight the
terms that give this divergence control, so as to skip it near singularities [13, 16], or to use mixed inter-
polations (including the magnetic pseudo-pressure). The former option does not seem easily applicable
to general three-dimensional problems, whereas the latter requires the discrete version of the inf-sup
condition (34). It is not easy to satisfy it (see [28, 17] for possible ways to comply with it). In partic-
ular, we are not aware of continuous interpolations satisfying it. Thus, stabilized methods, as the one
proposed here, seem to be the only alternative to use the simple continuous Lagrangian approximation
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of the magnetic field. However, in the formulation we propose the last term in (47) gives also control on
the divergence of B. In order to converge to non-regular solutions, expressions of τ4 smaller than the
one given by (50) might be required.

4.4 Numerical analysis and design of the stabilization parameters

In this subsection we proceed to analyze the formulation introduced above and, in particular, to justify
the choice (49)-(50). For the sake of simplicity in the notation, we will assume that a and b are constant.
Likewise, we will assume that the finite element meshes are quasi-uniform. In this case, h in (49)-
(50) can be taken the same for all the elements (the maximum element diameter), and therefore τi,
i = 1, 2, 3, 4, are also constant. Moreover, for quasi-uniform meshes the following inverse estimates
hold:

‖∇vh‖ ≤
Cinv

h
‖vh‖, ‖∇∇vh‖ ≤

Cinv

h
‖∇vh‖ , (51)

for any function vh in the finite element space and for a certain constant Cinv.
The stability and convergence analysis will be made using the following mesh-dependent norm:

|||Uh|||2 := ν‖∇uh‖2 +
1

ρµmσµm
‖∇ ×Bh‖2

+ τ1‖a · ∇uh +∇ph +
1

ρµm
b× (∇×Bh)‖2 + τ2‖∇ · uh‖2

+ τ3
1

ρ2µ2
m

‖ − ∇× (uh × b) +∇rh‖2 + τ4
1

ρ2µ2
m

‖∇ ·Bh‖2

≡ ν‖∇uh‖2 +
1

ρµmσµm
‖∇ ×Bh‖2

+ τ1‖Xu(uh, ph,Bh)‖2 + τ2‖∇ · uh‖2

+ τ3‖XB(rh,uh)‖2 + τ4
1

ρ2µ2
m

‖∇ ·Bh‖2. (52)

In all what follows, C will denote a positive constant, not necessarily the same at different appearances.

4.4.1 Coercivity

Let us start by proving stability in the form of coercivity of the bilinear form (47). It is immediately
checked that

Alin
stab(Uh,Uh) = Alin(Uh,Uh)− 〈L∗(Uh), τL(Uh)〉h

= ν‖∇u‖2 +
1

ρµmσµm
‖∇ ×B‖2

+ τ1‖Xu(uh, ph,Bh)‖2 − τ1ν2‖∆uh‖2 + τ2‖∇ · uh‖2

+ τ3‖XB(rh,uh)‖2 − τ3
1

ρ2µ2
mσ

2µ2
m

‖∇ ×∇×B‖2 + τ4
1

ρ2µ2
m

‖∇ ·Bh‖2.

Using the second inverse estimate in (51), it is clear that a sufficient condition for Alin
stab to be coercive

is that

ν − τ1ν2C
2
inv

h2
≥ αν ⇐⇒ τ1 ≤ (1− α)

1
ν

h2

C2
inv

, (53)

1
ρµmσµm

− τ3
1

ρ2µ2
mσ

2µ2
m

C2
inv

h2
≥ α 1

ρµmσµm
⇐⇒ τ3 ≤ (1− α)ρµmσµm

h2

C2
inv

, (54)
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with 0 < α < 1. Conditions (53) and (54) yield

Alin
stab(Uh,Uh) ≥ C|||Uh|||2, (55)

for a constant C independent of the discretization and of the physical parameters (it depends only on
the constants of the stabilization parameters).

4.4.2 Optimal accuracy

We have obtained conditions (53) and (54) on the stabilization parameters by requiring stability. The rest
of conditions will be obtained by imposing that the stabilized method proposed is optimally accurate,
which will lead to optimal convergence.

For a function v, let πh(v) be its optimal finite element approximation. We assume that the following
interpolation estimates hold:

‖v − πh(v)‖Hi(Ω) ≤ εi(v) := Chk+1−i|v|Hk+1(Ω), i = 0, 1, (56)

where ‖v‖Hq(Ω) is the Hq(Ω)-norm of v, that is, the sum of the L2(Ω)-norm of the derivatives of v
up to degree q (and thus the H0(Ω)-norm coincides with the L2(Ω)-norm), |v|Hq(Ω) the corresponding
semi-norm, and k is the degree of the finite element approximation.

We will prove in the following that the error function of the formulation is

E(h) := τ
−1/2
1 ε0(u) + τ

−1/2
2 ε0(p) + τ

−1/2
3 ε0(B) + τ

−1/2
4 ε0(r). (57)

The conditions on the stabilization parameters we will obtain will in fact show that this is indeed the
error function and that this error function is optimal.

Let U be the solution of the continuous problem and πh(U) its optimal finite element approxima-
tion. The accuracy estimate that will be needed to prove convergence later on is

Alin
stab(U − πh(U),V h) ≤ CE(h)|||V h|||, (58)

for any finite element function V h.
Let us prove this by showing that both the Galerkin and the stabilization terms in Alin

stab satisfy
estimate (58) for sufficiently smooth solutions of the continuous problem. Starting with the Galerkin
contribution, integrating some terms by parts we have that

Alin(U − πh(U),V h)
= −(u− πh(u),a · ∇vh) + ν(∇(u− πh(u)),∇vh)
− (p− πh(p),∇ · vh)− (∇qh,u− πh(u))

− 1
ρµm

(u− πh(u), b×∇×Ch) +
1

ρµm
(B − πh(B),∇× (vh × b))

+
1

ρµmσµm
(∇×Ch,∇× (B − πh(B)))− 1

ρµm
(r − πh(r),∇ ·Ch)

− 1
ρµm

(∇sh,B − πh(B))

≤ C
(
ε0(u)τ−1/2

1 τ
1/2
1 ‖Xu(vh, qh,Ch)‖+ ν1/2ε1(u)ν1/2‖∇vh‖

+ ε0(p)τ
−1/2
2 τ

1/2
2 ‖∇ · vh‖

+ ε0(B)τ−1/2
3 τ

1/2
3 ‖XB(sh,vh)‖+

1
(ρµmσµm)1/2

ε1(B)
1

(ρµmσµm)1/2
‖∇ ×Ch‖

+ ε0(r)τ
−1/2
4 τ

1/2
4

1
ρµm
‖∇ ·Ch‖

)
. (59)
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Conditions (53) and (54) and the expression of the interpolation errors imply

ν1/2ε1(u) ≤ Cε0(u)τ−1/2
1 ,

1
(ρµmσµm)1/2

ε1(B) ≤ Cε0(B)τ−1/2
3 ,

and therefore from (59) it follows that the Galerkin contribution Alin(U − πh(U),V h) to Alin
stab(U −

πh(U),V h) can be bounded as indicated in (58). It remains to prove that also the stabilization terms
can be bounded in this way:

− 〈L∗(V h), τL(U − πh(U))〉h
=

〈
Xu(u− πh(u), p− πh(p),B − πh(B))− ν∆(u− πh(u)),

τ1(Xu(vh, qh,Ch) + ν∆vh)
〉

h

+ 〈∇ · (u− πh(u)), τ2∇ · vh〉h

+
〈
XB(r − πh(r),u− πh(u)) +

1
ρµmσµm

∇×∇× (B − πh(B)),

τ3(XB(sh,vh)− 1
ρµmσµm

∇×∇×Ch)
〉

h

+
1

ρ2µ2
m

〈∇ · (B − πh(B)), τ4∇ ·Ch〉h

≤ C
(
τ

1/2
1 ‖Xu(u− πh(u), p− πh(p),B − πh(B))‖+ τ

1/2
1 ν‖∆(u− πh(u))‖

)
×

(
|||V h|||+ τ

1/2
1 ν‖∆vh‖

)
+ Cτ

1/2
2 ε1(u)|||V h|||

+ C
(
τ

1/2
3 ‖XB(r − πh(r),u− πh(u))‖+ τ

1/2
3

1
ρµmσµm

‖∇ ×∇× (B − πh(B))‖
)

×
(
|||V h|||+ τ

1/2
3

1
ρµmσµm

‖∇ ×∇×Ch‖
)

+ Cτ
1/2
4

1
ρµm

ε1(B)|||V h|||. (60)

Using once again conditions (53) and (54) and the inverse estimates (51) we have that

τ
1/2
1 ν‖∆vh‖ ≤ Cτ

1/2
1 ν1/2Cinv

h
ν1/2‖∇vh‖ ≤ C|||V h|||,

τ
1/2
3

1
ρµmσµm

‖∇ ×∇×Ch‖ ≤ Cτ
1/2
3

1
(ρµmσµm)1/2

Cinv

h

1
(ρµmσµm)1/2

‖∇ ×Ch‖ ≤ C|||V h|||.

So far, we have not posed any additional conditions on the stabilization parameters other than (53) and
(54), found from the requirement of coercivity. The rest of conditions will come from the requirement
of optimal accuracy.
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From (60) we have that

− 〈L∗(V h), τL(U − πh(U))〉

≤ C|||V h|||τ
1/2
1

(
a

h
ε0(u) +

ν

h2
ε0(u) +

1
h
ε0(p) +

1
ρµm

b

h
ε0(B)

)
+ C|||V h|||τ

1/2
2

1
h
ε0(u)

+ C|||V h|||τ
1/2
3

1
ρµm

(
b

h
ε0(u) +

1
σµm

1
h2
ε0(B) +

1
h
ε0(r)

)
+ C|||V h|||τ

1/2
4

1
ρµm

1
h
ε0(B)

≤ C|||V h|||

[
τ

1/2
1

(a
h

+
ν

h2

)
+
τ

1/2
3

ρµm

b

h
+ τ

1/2
2

1
h

]
ε0(u)

+ C|||V h|||
[
τ

1/2
1

1
h

]
ε0(p)

+ C|||V h|||

[
τ

1/2
1

ρµm

b

h
+
τ

1/2
3

ρµm

1
σµm

1
h2

+
τ

1/2
4

ρµm

1
h

]
ε0(B)

+ C|||V h|||

[
τ

1/2
3

ρµm

1
h

]
ε0(r).

From the definitions (49)-(50) of the stabilization parameters it follows that these terms can be bounded
also as indicated in (58).

Remark 4 The last step provides in fact the crucial design condition for the stabilization parameters.
Expressions (49)-(50) follow by imposing that

τ
1/2
1

(a
h

+
ν

h2

)
+
τ

1/2
3

ρµm

b

h
+ τ

1/2
2

1
h
∼ τ−1/2

1 ,

τ
1/2
1

1
h
∼ τ−1/2

2 ,

τ
1/2
1

ρµm

b

h
+
τ

1/2
3

ρµm

1
σµm

1
h2

+
τ

1/2
4

ρµm

1
h
∼ τ−1/2

3 ,

τ
1/2
3

ρµm

1
h
∼ τ−1/2

4 ,

where∼ stands for equality up to constants. The solution of these set of conditions is precisely (49)-(50).

4.4.3 Convergence

As a consequence of the properties of stability and accuracy in the sense of (58), it is trivial to show
that the method is optimally convergent. From the orthogonality property Alin

stab(U −Uh,V h) = 0 for
any finite element function V h (a direct consequence of the consistency of the method), we have that

C|||πh(U)−Uh|||2 ≤ Alin
stab(πh(U)−Uh, πh(U)−Uh)

≤ Alin
stab(πh(U)−U , πh(U)−Uh)

≤ CE(h)|||πh(U)−Uh|||,
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from where |||πh(U)−Uh||| ≤ CE(h). Now the triangle inequality implies

|||U −Uh||| ≤ |||U − πhU |||+ |||πh(U)−Uh|||
≤ |||U − πhU |||+ CE(h).

A trivial check using the expression of the norm |||·||| given by (52), the interpolation estimates (56) and
the stabilization parameters (49)-(50) shows that |||U − πhU ||| ≤ CE(h), from where

|||U −Uh||| ≤ CE(h). (61)

The fact that this error estimate is exactly the same as the estimate for the interpolation error
|||U − πhU ||| ≤ CE(h) justifies why it has to be considered ‘optimal’. Moreover, a simple inspec-
tion of what happens in the limit of dominant second order terms shows that in this case the error
estimate reduces to the estimate that could be found using the Galerkin method using finite element
spaces satisfying the discrete form of (33)-(34), but now, however, using equal interpolation for all the
variables. Likewise, in the limit ν → 0 and σµm → ∞, the error estimate (61) does not blow up and
the result can also be considered optimal.

5 Final numerical scheme

The final numerical scheme that we propose is obtained by applying the finite element stabilization
technique described in Section 4 to the time discrete and linearized problem (23)-(27). The space dis-
cretization of these equations, adding stabilization terms as those that appear in (47) and (48) for the
stationary thermally uncoupled problem, will lead to the following algorithm: For n = 0, 1, 2, ..., given
un, pn, Bn, rn and ϑn, find un+1

h , pn+1
h , Bn+1

h , rn+1
h and ϑn+1

h , as the converged solutions of the
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following iterative algorithm:

(δtu
n,k+1
h ,vh) +Auu(un+θ,k

h ,un+θ,k+1
h ,vh) +AuB(Bn+θ,k+1

h ,Bn+θ,k
h ,vh)

+Auϑ(ϑn+θ,e(k)
h ,vh)− bu(pn+1,k+1

h ,vh)

+
〈
un+θ,k

h · ∇vh + ν∆vh, τ
n+θ,k
1 Rn+θ,k+1

h,u

〉
h

+
〈
∇ · vh, τ

n+θ,k
2 Rn+θ,k+1

h,p

〉
h

+
〈
−∇× (vh ×Bn+θ,k), τn+θ,k

3 Rn+θ,k+1
h,B

〉
h

= Ln+θ
u (vh), (62)

bu(qh,u
n+1,k+1
h )

+
〈
∇qh, τn+θ,k

1 Rn+θ,k+1
h,u

〉
h

= 0, (63)

(δtBn,k+1h ,Ch) +ABu(un+θ,k+1
h ,Bn+θ,k

h ,Ch) +ABB(Bn+θ,k+1
h ,Ch)

+ bB(rn+1,k+1
h ,Ch)

+
〈
− 1
µmρ

(∇×Ch)×Bn+θ,k
h , τn+θ,k

1 Rn+θ,k+1
h,u

〉
h

+
〈

1
µmσ

∇× (∇×Ch), τn+θ,k
3 Rn+θ,k+1

h,B

〉
h

+
〈
∇ ·Ch, τ

n+θ,k
4 Rn+θ,k+1

h,r

〉
h

= Ln+θ
B1 (Ch), (64)

bB(sh,B
n+1,k+1
h )

+
〈
∇sh, τ

n+θ,k
3 Rn+θ,k+1

h,B

〉
h

= Ln+θ
B2 (sh), (65)

(δtϑ
n,k+1
h , ψh) +Aϑu,1(un+θ,e′(k)h , ϑn+θ,k+1

h , ψh) +Aϑϑ(ϑn+θ,k+1
h , ψh)

+
〈

un+θ,k
h · ∇ψh +

kt

ρcp
∆ψh, τ

n+θ,k
5 Rn+θ,k+1

h,ϑ

〉
h

= Ln+θ,k
T (ψh), (66)

where we have introduced the residuals

Rh,u := δtuh + a · ∇uh − ν∆uh +∇ph −
1

µmρ
(∇×Bh)× b + gβϑh − f f ,

Rh,p := ∇ · uh,

Rh,B := δtBh +
1

µmσ
∇× (∇×Bh)−∇× (uh × b) +∇rh − fm,

Rh,r := ∇ ·Bh,

Rh,ϑ := δtϑh + a · ∇ϑh −
kt

ρcp
∆ϑh −Qtot.

The superscript n+ θ, k+ 1 in (62)-(66) denotes that these residuals are evaluated with uh, ph, Bh, rh
and ϑh at this time step and iteration counter, whereas now a ≡ un+θ,k

h , b ≡ Bn+θ,k
h .

The stabilization parameters τi, i = 1, 2, 3, 4, are given in (49)-(50) (and computed within each
element), whereas

τ5 =
(
c1
a

h
+ c2

kt

ρcph2

)−1

.

Note that the thermal coupling effect has been neglected in the design of the stabilization terms. This
approximation is justified in [10].
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Figure 1: Flow over a circular cylinder. Domain and finite element mesh.

6 Numerical examples

In this section we present three numerical example designed to show that the formulation presented in
this paper satisfies the main requirements posed for its design, namely, it yields smooth solutions for the
thermally coupled MHD problem in a wide rank of the physical parameters. To show this in the simplest
possible setting, three numerical examples will be discussed. For a convergence test demonstrating
optimal accuracy order and for results obtained in the classical Hartmann’s problem, see [9].

As a general comment from the physical point of view, let us mention that it is well known that the
presence of magnetic fields in flows where oscillations can occur precludes their onset. The examples
to be presented show clearly this behavior.

6.1 Flow over a circular cylinder

This numerical simulation was taken from [1]. The problem consists in the flow of a conducting fluid
around a 2D circular cylinder while a magnetic field is imposed. From the physical point of view,
the main objective in this numerical simulation is to observe the vanishing of the vortexes shed by
the cylinder. Our interest is to show that the stabilized formulation we propose yields the correct time
response, with the correct coupling between the hydrodynamic and the magnetic problem.

The domain and the finite element mesh used to discretize it are shown in Fig. 1. This mesh is
made of 4000 linear triangular elements and 2100 nodes. The boundary conditions for this simulation
consist of an imposed constant velocity at the inlet (left boundary), zero normal velocity on the upper
and lower boundaries of the domain, zero velocity on the cylinder and free velocity at the outlet. The
boundary conditions for the magnetic field consist of an imposed normal component on the upper and
lower boundaries of the domain with zero current (condition (9)), an imposed tangential component at
the inlet and the outlet (condition (8)), and a tangent component also on the cylinder.

Numerical simulations have been carried out for Re = 100 and the following Hartmann numbers:
Ha = 0.0, 1.0, 2.5, and 10.0. These Hartmann numbers are obtained increasing the imposed magnetic
field. The magnetic Reynolds Number is Rem = 10−5 and the coupling parameter is taken as S =
Ha2/Rem Re.

The intended effect of the increment in the Hartmann number is to suppress the vortex shedding
behind the cylinder. This effect can be observed in Fig. 2, where the contours of the norm of the velocity
field at a certain time step are shown for Ha = 0.0, Ha = 1.0, Ha = 2.5 and Ha = 10. In this last case,
not only the shedding has disappeared, but also the vortices have been drastically reduced.
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Figure 2: Flow over a circular cylinder. Velocity contours. From the top to the bottom: Ha = 0.0, 1.0,
2.5 and 10.
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Figure 3: Flow over a circular cylinder. Time evolution of the drag coefficient for Ha = 0.0 (left) and
Ha = 1.0 (right)

The suppression of the vortex shedding can also be observed from Fig. 3, where the time evolution
of the drag coefficient is plotted for Ha = 0.0 and Ha = 1.0. The spontaneous shedding occurs
approximately at the same time, but the amplitude is clearly higher for Ha = 0.0 than for Ha = 1.0. At
Ha = 2.5 it can be seen that the oscillations in the drag coefficient have vanished (not shown).

6.2 Clogging in continuous casting of steel

The main objective of this numerical simulation is to observe the behavior of the flow in a continuous
casting nozzle while a magnetic field is applied. In operations of continuous casting a very serious
problem is the clogging of the nozzles. This is particularly problematic when low carbon steels are
casted because some deoxidation products (e.g. alumina) get attached to the walls of the nozzle, forming
buildups. These buildups can eventually prevent the flow of steel through the nozzle. This can lead to
a decrease in the quality of the steel or even to stop the continuous casting operation and diminish the
productivity (see [27]).

The origin of the buildups in the nozzle is associated to the appearance of a recirculation zone at
the entry of the nozzle. This recirculation zone is originated by a deattachment of the flow. Although
the nozzle can be designed to prevent recirculation, even a small misalignment can originate a deattach-
ment. In order to prevent the recirculation of the flow, the use of a magnetic field has been proposed (see
[20, 21]). The magnetic field used to suppress the recirculation is produced by a coil oriented coaxially
with the flow. The general effect of the magnetic field is to produce a radial force over the fluid and
therefore it tends to attach to the walls of the nozzle.

In order to perform the numerical simulation of the process, a 2D model corresponding to a nozzle
section has been constructed. The computational domain considered, as well as the magnetic field pre-
scribed, are shown in Fig. 4 (left). Zero velocity has been prescribed on the walls of the domain. A mesh
of 18282 linear triangular elements with 9335 nodes has been used. The following Hartmann numbers
have been considered: Ha = 1.0, 10.0, 50.0 and 120.0. The Reynolds number that has been taken is
Re ≈ 20000 and the magnetic Reynolds Rem = 0.03632.

The nature of this example is purely qualitative because there is no numerical benchmark to compare
with. The dimensions and general setting of this example have been taken from [21], where the approach
to tackle this problem is purely analytical. Due to the dynamical nature of this example the Hartmann
number used in order to get a uniform velocity field for the fluid is really high. As it can be seen from
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Figure 4: Clogging in continuous casting. Computational domain (left) and finite element mesh (right)

 

 
 

 
 

Figure 5: Clogging in continuous casting. Velocity vectors for different Hartmann numbers. From the
left to the right and from the top to the bottom: Ha = 1, Ha = 10, Ha = 50 and Ha = 120.
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Figure 6: Crystal growth example. Computational domain (top), cross section (bottom left) and bound-
ary conditions (bottom right)

Fig. 5, the use of magnetic fields in the nozzle precludes the onset of the recirculation zone. The velocity
of the fluid tends to get uniform and therefore the occurrence of buildups is avoided.

6.3 Crystal growth

The main objective of this numerical simulation is to observe the behavior of the molten silicon in-
side a crucible, in the so called Czochralski process. The numerical simulation to be presented is based
on the one proposed by Bückle and Schäfer [3]. The numerical modeling of this crystal growth pro-
cess is quite complex because it involves a heat transfer problem together with the MHD problem. In
the Czochralski process, the heat convection gives rise to fluid motion which can be harmful for the
crystalline structure of the silicon. Basically, convection movements can introduce structural defects in
the crystal. By applying an intense magnetic field, these convection movements are damped inside the
crucible and the defects are diminished or completely eliminated. Cylindrical coordinates were used,
assuming the solution to be axisymmetric, although with a non-zero azimuthal velocity. This, together
with the axisymmetry of the domain, allowed us to simulate only half of a cross section. A simplified
geometry for this problem is presented in Fig. 6.

The general setting for this numerical benchmark is also depicted in Fig. 6. As it can be seen there,
the problem consists in a vertical cylindrical crucible filled with molted silicon up to a height H , which
is rotating with angular velocity ΩC . The coaxial crystal on the top of the crucible is also rotating, but
in the sense opposite to the crucible and with angular velocity ΩX . It is assumed that the crystal and the
crucible are isothermal, with temperatures TX and TC , respectively.

Boundary conditions for this numerical simulation are also indicated in Fig. 6. The boundary con-
ditions for the fluid velocity consist of non-slip conditions on the crucible walls and on the crystal, and
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Figure 7: Crystal growth example. Velocity vectors. Left: case A1, right: case C1. From the top to the
bottom: Ha = 0, Ha = 5 and Ha = 10.
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Figure 8: Crystal growth example. Temperature contours for case C1. Top left: Ha = 0, top right:
Ha = 5, bottom: Ha = 10
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Figure 9: Crystal growth example. Convergence towards the steady state (case D2, Ha = 10), measured
as the norm of δtU in time normalized by δtU in the first time step and in percentage.
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Problem Gr ReX ReC

A1 0 102 0
A2 0 103 0
B1 0 102 −2.5× 101

B2 0 103 −2.5× 102

C1 103 0 0
C2 104 0 0
D1 103 101 0
D2 104 102 0

Table 1: Values of the physical parameters for the crystal growth example

a zero traction condition at the surface of the liquid at the top of the crucible. The non-slip boundary
condition for the velocity implies that the velocity of the fluid on the crucible walls is the same as the
velocity of the walls, and therefore given by the product ΩCRC , where RC is the radius of the crucible.
The velocity of the fluid in contact with the crystal is given by ΩXRX , where RX is the radius of the
crystal. Concerning the temperature, the boundary conditions are imposed temperature on the crucible
walls and on the free surface at the top of the crucible and zero heat flux at the bottom of the crucible.
For the magnetic field it is assumed that all interfaces are non-conducting.

In order to completely characterize this numerical simulation, some parameters must be defined.
These parameters are the Reynold number for the crucible and the crystal, the Prandtl and Grashof
numbers and the aspect ratios, defined as

ReC :=
R2

CΩC

ν
, ReX :=

R2
XΩX

ν

Pr :=
ν

κ
, Gr :=

gβ(TC − TX)R3
C

ν2
,

α̂ :=
H

RC
, β̂ :=

RX

RC
.

For this particular numerical simulation the aspect ratios and the Prandtl number have been fixed to
α̂ = 1.0, β̂ = 0.4 and Pr = 0.05. The rest parameters have been defined according to eight cases that
were proposed by Bückle and Schäfer in their original paper [3]. Table 1 defines these cases. Although
all of them were ran in our numerical testing, in this paper only the results of cases A1 and C1 are
presented.

The finite element mesh used to discretize the computational domain consists of 5408 linear trian-
gular elements and 2809 nodes, being refined near the boundaries.

Fig. 7 (left) shows the velocity vectors for case A1. An increase in the Hartmann number from
Ha = 0.0 to Ha = 10.0 has as a consequence a more uniform velocity field. This uniformity in the
velocity field around the crystal prevents the formation of defects in the crystal being created. This also
prevents the breaking of the free surface and therefore avoids the inclusion of foreign bodies in the
molten silicon.

Fig. 8 shows the distribution of temperature in the molten silicon in the crucible for case C1. As it
can be seen from the pictures, the temperature is mainly convected and the profiles of temperatures are
strongly influenced by the velocity of the molten silicon.

Fig. 7 (right) shows the velocity vectors for case C1. As it can be seen in the pictures, the influence of
the magnetic field over the velocity is strong enough to diminish the velocity in the crucible. This effect
prevents any particle from the walls to get into the area where the crystal is beginning its solidification.
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We observe therefore that the influence of magnetic fields in the Czochralski process may become an
important tool to enhance the quality of crystals made by this process.

From the numerical point of view, this examples shows the effectiveness of the coupling algorithm
proposed to deal with the MHD problem with thermal effects. Referring to this point, Fig. 9 shows the
convergence towards the steady state for case D2 with Ha = 10, measured as the time evolution of
the norm of δtU introduced in (18) (with the array of unknowns made dimensionless and the norm
normalized with its initial value). This quantity decreases uniformly, until it is below the convergence
tolerance chosen of 0.01 %. All variables (velocity, pressure, magnetic field, magnetic pseudo-pressure
and temperature) are well converged.

7 Conclusions

In this paper we have presented a numerical formulation to solve thermally coupled MHD flows. It
is a stabilized finite element method, whose design is based on splitting the unknown into a finite
element component and a subscale and on giving an approximation for the latter. The main features of
the formulation are that it allows to use equal interpolation for all the unknowns and it is stable and
optimally convergent in a norm that remains meaningful in the whole range of the physical parameters.

Regarding the interpolation issue, it is particularly relevant in problems involving the magnetic field.
The method proposed allows us to approximate it using standard continuous interpolations. It has to be
remarked that if the solution of the continuous problem exhibits singularities (in non-convex domains),
the expression of the stabilization parameters needs to be modified. This is, however, a point that we
have not analyzed. Referring to the norm of the stability and error analysis, it gives some sort of control
on the unknowns for all values of physical parameters for the linearized problem. Obviously, the fully
nonlinear problem may display very complex physics, which need to be approximated not only by a
robust formulation, but also by an appropriate discretization. Our objective in this paper has been to
address the first point.

The formulation proposed depends on some stabilization parameters. A key point of the work pre-
sented here is that these parameters have been designed based on the stability and convergence analysis
of the method for the thermally uncoupled problem.

Several computational aspects of the final formulation, such as the time integration, the linearization
and the block iterative coupling, have been discussed. Altogether this has led to a method for solving
thermally coupled MHD problems that we believe is robust and easy to implement. Some simple nu-
merical examples presented support these statements.
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