1,457 research outputs found

    APMEC: An Automated Provisioning Framework for Multi-access Edge Computing

    Full text link
    Novel use cases and verticals such as connected cars and human-robot cooperation in the areas of 5G and Tactile Internet can significantly benefit from the flexibility and reduced latency provided by Network Function Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks managing and orchestrating MEC and NFV are either tightly coupled or completely separated. The former design is inflexible and increases the complexity of one framework. Whereas, the latter leads to inefficient use of computation resources because information are not shared. We introduce APMEC, a dedicated framework for MEC while enabling the collaboration with the management and orchestration (MANO) frameworks for NFV. The new design allows to reuse allocated network services, thus maximizing resource utilization. Measurement results have shown that APMEC can allocate up to 60% more number of network services. Being developed on top of OpenStack, APMEC is an open source project, available for collaboration and facilitating further research activities

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Unified Management of Applications on Heterogeneous Clouds

    Get PDF
    La diversidad con la que los proveedores cloud ofrecen sus servicios, definiendo sus propias interfaces y acuerdos de calidad y de uso, dificulta la portabilidad y la interoperabilidad entre proveedores, lo que incurre en el problema conocido como el bloqueo del vendedor. Dada la heterogeneidad que existe entre los distintos niveles de abstracción del cloud, como IaaS y PaaS, hace que desarrollar aplicaciones agnósticas que sean independientes de los proveedores y los servicios en los que se van a desplegar sea aún un desafío. Esto también limita la posibilidad de migrar los componentes de aplicaciones cloud en ejecución a nuevos proveedores. Esta falta de homogeneidad también dificulta el desarrollo de procesos para operar las aplicaciones que sean robustos ante los errores que pueden ocurrir en los distintos proveedores y niveles de abstracción. Como resultado, las aplicaciones pueden quedar ligadas a los proveedores para las que fueron diseñadas, limitando la capacidad de los desarrolladores para reaccionar ante cambios en los proveedores o en las propias aplicaciones. En esta tesis se define trans-cloud como una nueva dimensión que unifica la gestión de distintos proveedores y niveles de servicios, IaaS y PaaS, bajo una misma API y hace uso del estándar TOSCA para describir aplicaciones agnósticas y portables, teniendo procesos automatizados, por ejemplo para el despliegue. Por otro lado, haciendo uso de las topologías estructuradas de TOSCA, trans-cloud propone un algoritmo genérico para la migración de componentes de aplicaciones en ejecución. Además, trans-cloud unifica la gestión de los errores, permitiendo tener procesos robustos y agnósticos para gestionar el ciclo de vida de las aplicaciones, independientemente de los proveedores y niveles de servicio donde se estén ejecutando. Por último, se presentan los casos de uso y los resultados de los experimentos usados para validar cada una de estas propuestas

    Component-aware Orchestration of Cloud-based Enterprise Applications, from TOSCA to Docker and Kubernetes

    Full text link
    Enterprise IT is currently facing the challenge of coordinating the management of complex, multi-component applications across heterogeneous cloud platforms. Containers and container orchestrators provide a valuable solution to deploy multi-component applications over cloud platforms, by coupling the lifecycle of each application component to that of its hosting container. We hereby propose a solution for going beyond such a coupling, based on the OASIS standard TOSCA and on Docker. We indeed propose a novel approach for deploying multi-component applications on top of existing container orchestrators, which allows to manage each component independently from the container used to run it. We also present prototype tools implementing our approach, and we show how we effectively exploited them to carry out a concrete case study

    NetO-App: A Network Orchestration Application for Centralized Network Management in Small Business Networks

    Full text link
    Software-defined networking (SDN) is reshaping the networking paradigm. Previous research shows that SDN has advantages over traditional networks because it separates the control and data plane, leading to greater flexibility through network automation and programmability. Small business networks require flexibility, like service provider networks, to scale, deploy, and self-heal network infrastructure that comprises of cloud operating systems, virtual machines, containers, vendor networking equipment, and virtual network functions (VNFs); however, as SDN evolves in industry, there has been limited research to develop an SDN architecture to fulfill the requirements of small business networks. This research proposes a network architecture that can abstract, orchestrate, and scale configurations based on small business network requirements. Our results show that the proposed architecture provides enhanced network management and operations when combined with the network orchestration application (NetO-App) developed in this research. The NetO-App orchestrates network policies, automates configuration changes, and manages internal and external communication between the campus networking infrastructure.Comment: 12 pages, 4 figures, To appear in the Proceedings of the 4th International Conference on Networks & Communications, 28-29 July 2018, Sydney, Australi

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Self-healing Multi-Cloud Application Modelling

    Get PDF
    Cloud computing market forecasts and technology trends confirm that Cloud is an IT disrupting phenomena and that the number of companies with multi-cloud strategy is continuously growing. Cost optimization and increased competitiveness of companies that exploit multi-cloud will only be possible when they are able to leverage multiple cloud offerings, while mastering both the complexity of multiple cloud provider management and the protection against the higher exposure to attacks that multi-cloud brings. This paper presents the MUSA Security modelling language for multi-cloud applications which is based on the Cloud Application Modelling and Execution Language (CAMEL) to overcome the lack of expressiveness of state-of-the-art modelling languages towards easing: a) the automation of distributed deployment, b) the computation of composite Service Level Agreements (SLAs) that include security and privacy aspects, and c) the risk analysis and service match-making taking into account not only functionality and business aspects of the cloud services, but also security aspects. The paper includes the description of the MUSA Modeller as the Web tool supporting the modelling with the MUSA modelling language. The paper introduces also the MUSA SecDevOps framework in which the MUSA Modeller is integrated and with which the MUSA Modeller will be validated.The MUSA project leading to this paper has received funding from the European Union’s Horizon 2020 research and innovation pro- gramme under grant agreement No 644429
    corecore