208 research outputs found

    Automated testing with Wireless Communication in the digitalised industry : A case study of Mirka Oy

    Get PDF
    Advanced automation technologies are changing the dynamics of the process and manufacturing industries. Product development processes are becoming smarter with the application of intelligent solutions and automated testing. The industry 4.0 concept of centralized control for industrial devices results in a rapid increase in the demand for the industrial Internet of Things (IoT) and cordless machines. Wireless communication protocols are integral to the functioning of such devices. This thesis work is performed with Mirka Oy during the development process of a smart industrial cordless tool. Various available short-range wireless communication protocols are studied to find out the best possible solution to match the product requirements. Besides, an automated testing platform is developed to verify and validate the functional description of the devices. All the stages, starting from the types of embedded system testing, device test requirements, test case designing leading to a comprehensive testing platform are explained. Results generated by the automated platform are analysed, which shows that all the test execution is successful. The successful implantation of this automated testing platform would significantly increase the efficiency of the development and testing process. Moreover, this dissertation highlights further development in terms of the application of the Artificial Intelligence (AI) and Machine learning (ML) technique for smarter testing processes and increase the overall performance of the testing framework

    Exploring Data Security and Privacy Issues in Internet of Things Based on Five-Layer Architecture

    Get PDF
    Data Security and privacy is one of the serious issues in internet-based computing like cloud computing, mobile computing and Internet of Things (IoT). This security and privacy become manifolded in IoT because of diversified technologies and the interaction of Cyber Physical Systems (CPS) used in IoT. IoTs are being adapted in academics and in many organizations without fully protecting their assets and also without realizing that the traditional security solutions cannot be applied to IoT environment. This paper explores a comprehensive survey of IoT architectures, communication technologies and the security and privacy issues of them for a new researcher in IoT. This paper also suggests methods to thwart the security and privacy issues in the different layers of IoT architecture

    Development of a wireless sensor network for agricultural monitoring for Internet of Things (IoT)

    Get PDF
    Monitoring of the agricultural environment has become an important area of control and protection which provides real-time system and control communication with the physical world. This thesis focuses on Development ofa wireless Sensor Network for agricultural monitoring for Internet of things (IoT) to monitor environmental condition. Among the various technologies for Agriculture monitoring, Wireless Sensor Networks (WSNs) are perceived as an amazing one to gather and process information in the agricultural area with low-cost and low-energy consumption. WSN is capable of providing processed field data in real time from sensors which are physically distributed in the field. Agriculture and farming are one of the industries which have a late occupied their regards for WSNs, looking for this financially acute innovation to improve its production and upgrade agribusiness yield standard. Wireless Sensor Networks (WSNs) have pulled in a lot consideration in recent years.The proposed system uses WSN sensors to capture and track information pertaining to crop growth condition outside and inside greenhouses. 6LowPAN network protocol is used for low power consumption and for transmitting and receiving of data packets.This thesis introduces the agricultural monitoring system's hardware design, system architecture, and software process control. Agriculture monitoring system set-up is based on Contiki OS while device testing is carried out using real-time farm information and historical dat

    Wireless communication technologies for the Internet of Things

    Get PDF
    Internet of Things (IoT) is the inter-networking paradigm based on many processes such as identifying, sensing, networking and computation. An IoT technology stack provides seamless connectivity between various physical and virtual objects. The increasing number of IoT applications leads to the issue of transmitting, storing, and processing a large amount of data. Therefore, it is necessary to enable a system capable to handle the growing traffic requirements with the required level of QoS (Quality of Service). IoT devices become more complex due to the various components such as sensors and network interfaces. The IoT environment is often demanding for mobile power source, QoS, mobility, reliability, security, and other requirements. Therefore, new IoT technologies are required to overcome some of these issues. In recent years new wireless communication technologies are being developed to support the development of new IoT applications. This paper provides an overview of some of the most widely used wireless communication technologies used for IoT applications

    Intelligent Personal Assistants Solutions in Ubiquitous Environments in the Context of Internet of Things

    Get PDF
    Internet of Things (IoT) will create the opportunity to develop new types of businesses. Every tangible object, biologic or not, will be identified by a unique address, creating a common network composed by billions of devices. Those devices will have different requirements, creating the necessity of finding new mechanisms to satisfy the needs of all the entities within the network. This is one of the main problems that all the scientific community should address in order to make Internet of Things the Future Internet. Currently, IoT is used in a lot of projects involving Wireless Sensor Networks (WSNs). Sensors are generally cheap and small devices able to generate useful information from physical indicators. They can be used on smart home scenarios, or even on healthcare environments, turning sensors into useful devices to accomplish the goals of many use case scenarios. Sensors and other devices with some reasoning capabilities, like smart objects, can be used to create smart environments. The interaction between the objects in those scenarios and humans can be eased by the inclusion of Intelligent Personal Assistants (IPAs). Currently, IPAs have good reasoning capabilities, improving the assistance they give to their owners. Artificial intelligence (AI), new learning mechanisms, and the evolution assisted in speech technology also contributed to this improvement. The integration of IPAs in IoT scenarios can become a case of great success. IPAs will comprehend the behavior of their owners not only through direct interactions, but also by the interactions they have with other objects in the environment. This may create ubiquitous communication scenarios where humans act as passive elements, being adequately informed of all the aspects of interest that surrounds them. The communication between IPAs and other objects in their surrounding environment may use gateways for traffic forwarding. On ubiquitous environments devices can be mobile or static. For example, in smart home scenarios, objects are generally static, being always on the same position. In mobile health scenarios, objects can move from one place to another. To turn IPAs useful on all types of environments, static and mobile gateways should be developed. On this dissertation, a novel mobile gateway solution for an IPA platform inserted on an IoT context is proposed. A mobile health scenario was chosen. Then, a Body Sensor Network (BSN) is always monitoring a person, giving the real time feedback of his/her health status to another person responsible by him (designated caretaker). On this scenario, a mobile gateway is needed to forward the traffic between the BSN and the IPA of the caretaker. Therefore, the IPA is able to give warnings about the health status of the person under monitoring, in real time. The proposed system is evaluated, demonstrated, and validated through a prototype, where the more important aspects for IPAs and IoT networks are considered

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources

    Get PDF
    Internet growth has generated new types of services where the use of sensors and actuators is especially remarkable. These services compose what is known as the Internet of Things (IoT). One of the biggest current challenges is obtaining a safe and easy access control scheme for the data managed in these services. We propose integrating IoT devices in an access control system designed for Web-based services by modelling certain IoT communication elements as resources. This would allow us to obtain a unified access control scheme between heterogeneous devices (IoT devices, Internet-based services, etc.). To achieve this, we have analysed the most relevant communication protocols for these kinds of environments and then we have proposed a methodology which allows the modelling of communication actions as resources. Then, we can protect these resources using access control mechanisms. The validation of our proposal has been carried out by selecting a communication protocol based on message exchange, specifically Message Queuing Telemetry Transport (MQTT). As an access control scheme, we have selected User-Managed Access (UMA), an existing Open Authorization (OAuth) 2.0 profile originally developed for the protection of Internet services. We have performed tests focused on validating the proposed solution in terms of the correctness of the access control system. Finally, we have evaluated the energy consumption overhead when using our proposal.Ministerio de Economía y CompetitividadUniversidad de Alcal
    corecore