580 research outputs found

    An intuitionistic fuzzy multi-criteria decision-making method based on an exponential-related function

    Get PDF
    Intuitionistic fuzzy multiple criteria decision making (MCDM) method which is based on an exponential-related function, adopted in the Technique for order preference by similarity to ideal solution (TOPSIS) has been proposed in this study. The exponential-related function which is used for comparing intuitionistic-fuzzy-sets (IFS), and as a replacement for the traditional exponential score function which is only effective for determining priority weights that involve pairwise-comparison, has been applied, for computing the separation measure from the fuzzy positive and negative ideal solution to determine the relative closeness-coefficients of alternatives. The main advantage of this method includes (1) its ability to account for Decision-makers (DMs) attitudinal-character in the decision-making process as-well-as to represent the aggregated effect of the positive/negative evaluations in the performance ratings of the alternatives based on the IFS-data and (2) The simplicity of the method both in its concept and computational procedures. To demonstrate the feasibility of the method, it has been applied for the evaluation of some hypothetical design-related problems and for a real-life case study

    Multi-Criteria Decision-Making Model using Intuitionistic Fuzzy Entropy and Variable Weight Theory

    Get PDF
    The aim of this research is to develop a new multi-criteria decision-making method that integrates an intuitionistic fuzzy entropy measure and variable weight theory to be implemented in different fields to provide a solution for MCDM problems when the available information is incomplete. A limited number of studies have considered determining decision maker’s weights by performing objective techniques, and almost all of these researches detected a constant weights for the decision makers. In addition, most of the MCDM studies were not formulated to perform sensitivity analysis. The new method is based on the TOPSIS model with an intuitionistic fuzzy entropy measure in the exponential-related function form and the engagement of the variable weight theory to determine weights for the decision-makers that vary as per attibutes. Lastly, a mathematical model was developed in this research to be as an input for developing the mobile-aplication based method in future for virtual use of the new MCDM method

    Intuitionistic fuzzy-based model for failure detection

    Get PDF

    Intertemporal Choice of Fuzzy Soft Sets

    Get PDF
    This paper first merges two noteworthy aspects of choice. On the one hand, soft sets and fuzzy soft sets are popular models that have been largely applied to decision making problems, such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or international trade. They provide crisp or fuzzy parameterized descriptions of the universe of alternatives. On the other hand, in many decisions, costs and benefits occur at different points in time. This brings about intertemporal choices, which may involve an indefinitely large number of periods. However, the literature does not provide a model, let alone a solution, to the intertemporal problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal option in intertemporal choice problems with an infinite time horizon. We illustrate its application with a numerical example involving alternative portfolios of projects that a public administration may undertake. This allows us to establish a pioneering intertemporal model of choice in the framework of extended fuzzy set theorie

    Modeling multi-criteria decision-making problems with applications in last mile delivery and school safety assessment

    Get PDF
    The last-mile delivery option has become a focal point of academic research and industrial development in recent years. Multiple factors such as increased demands on delivery flexibility, customer requirements, delivery urgency, and many others are enforcing to adopt this option. For fulfilling this paradigm shift in delivery and providing additional flexibility, drones can be considered as a viable option to use for last-mile delivery cases. Numerous drones are available in the market with varying capacities and functionalities, posing a significant challenge for decision-makers to select the most appropriate drone type for a specific application. For this purpose, this study proposes a comprehensive list of criteria that can be used to compare a set of available last-mile delivery drones. Additionally, we introduced a systematic multi-criterion, multi-personnel decision-making approach, referred to as the Interval Valued Inferential Fuzzy TOPSIS method. This method is robust and can handle the fuzziness in decision-making, thereby providing quality drone selection decisions under different applications. We then apply this method to a real-life test setting. Results suggest that smaller drones or quadcopters are considered viable to use in urban environments, while long-range drones are preferred for the last mile delivery needs in rural settings

    Soft Computing

    Get PDF
    Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc
    • …
    corecore