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The last-mile delivery option has become a focal point of academic research and 

industrial development in recent years. Multiple factors such as increased demands on delivery 

flexibility, customer requirements, delivery urgency, and many others are enforcing to adopt this 

option. For fulfilling this paradigm shift in delivery and providing additional flexibility, drones 

can be considered as a viable option to use for last-mile delivery cases. Numerous drones are 

available in the market with varying capacities and functionalities, posing a significant challenge 

for decision-makers to select the most appropriate drone type for a specific application. For this 

purpose, this study proposes a comprehensive list of criteria that can be used to compare a set of 

available last-mile delivery drones. Additionally, we introduced a systematic multi-criterion, 

multi-personnel decision-making approach, referred to as the Interval Valued Inferential Fuzzy 

TOPSIS method. This method is robust and can handle the fuzziness in decision-making, thereby 

providing quality drone selection decisions under different applications. We then apply this 

method to a real-life test setting. Results suggest that smaller drones or quadcopters are 

considered viable to use in urban environments, while long-range drones are preferred for the 

last mile delivery needs in rural settings. 
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CHAPTER I 

LAST MILE DELIVERY DRONE SELECTION AND EVALUATION USING THE 

INTERVAL VALUED INFERENTIAL FUZZY TOPSIS 

1.1 Introduction 

Autonomous drone deployment has become a focal point of research in recent years. 

Market-leading companies, such as Google, Amazon, DHL, have been researching and expanding 

both the capabilities and feasibilities of using this technology for the last mile delivery needs 

(Stewart, 2014; Guardian, 2016; DHL, 2018). For instance, Amazon's Prime Air and Google's 

Project Wing are two such projects designed to examine the applicability of using drones of 

different specifications into last-mile delivery operations (Stewart, 2014; Guardian, 2016; Rheude, 

2018). Most recently, the United States Department of Transportation (U.S. DoT) and the Federal 

Aviation Administration (FAA) announced ten regions of the nation to participate in the 

Unmanned Aircraft Systems (UAS) Integration pilot program (U.S. Department of 

Transportation., 2018). This new initiative has accelerated the attempts for drone integration into 

the US airspace while widening the opportunities for deploying drones for use within the logistics 

fields. The main objective of this FAA program is the safe integration of drones into the US 

airspace beyond the sight of human pilots. With this upgraded regulation, different states have 

collaborated with private companies (e.g., Flirtey, Zipline) to carry out wide variants of testing 

such as tests for delivering medical equipment's, package delivery, emergency management, blood 

delivery, infrastructure inspection, crop inspection, and so on. Several other countries, such as the 
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UK and Rwanda, also regulated several projects for possible implementation of drones as last-mile 

delivery needs (Rheude, 2018). While the ideation of and execution with drone delivery systems 

may be growing in both popularity and scope, selection of the best drone option is constrained by 

a number of crucial factors such as package size, delivery distance, demographics of the drone 

deployment area, dominant weather conditions of the area to be served, and many more. Selecting 

the best-suited drone considering all these solutions' specific and situational attributes is a 

complicated and time-consuming problem, requiring a thorough exploration to make the selection 

process more structured.  

With the growth of the world economy, the need for faster package delivery is increasing. 

In the past few years, several studies have been conducted to test the feasibility of using drones in 

delivery tasks such as pizza delivery (Bamburry, 2015) or medical supplies delivery (Bamburry, 

2015; Bryan, 2014; Poudel et al., 2019). Even though drone solutions are a plausible option for 

last-mile delivery, due to the differences in sizes, shapes, flight distances, loading capacities, and 

many others, choosing the best drones to deploy for different applications is considered 

challenging. Some drones are faster but have low load-carrying capacities, while others are slower 

but have higher load carrying capacities and can cover longer fight distances. Also, not all delivery 

drone solutions are suitable for use in all environmental conditions, such as in high winds or in 

different forms of precipitation. Therefore, it is essential to have a standard and structured 

methodology for last-mile delivery drone selection. However, to date, no research has been 

conducted that attempts to provide a standard, well-structured methodology to perform drone 

selection that would be applicable to any delivery-based use cases. To address this gap, this paper 

proposes a standardized method to select the best drone option among a list of potential drone 

solutions that could be applicable for last-mile delivery cases. 



 

 

3 

Till now, the majority of the existing studies have attempted to optimize the drone routing 

decisions by assuming that a set of drones are available for deployment. The focuses for such 

mathematical models primarily lie in minimizing the overall delivery cost, energy consumption, 

travel time, and/or a combination thereof. For instance, Motlagh et al. (2016) propose two integer 

programming model formulations to minimize the energy consumption and the operation time of 

a set of known drones. Lee (2017) presents a modular drone delivery method that is beneficial in 

increasing the fleet readiness and decreasing the overall fleet size. Gatteschi et al. (2015) consider 

the hardware choice problem for quadcopters delivery drones only. Ponza (2016) optimizes the 

routing path of the truck-based last-mile delivery drone. The author utilizes the classical traveling 

salesman problem approach to model the solution. Other notable research in optimizing the drone 

delivery under diverse application areas can be found in (Oruc and Kara, 2018; Carlsson and Song, 

2017; Campbell et al., 2018; Derpich et al., 2018; Li et al., 2018; Kim et al., 2017). For a 

comprehensive overview of drone routing and optimizing literature, interested readers are referred 

to review the recent article by Otto et al. (2018). Note that all the prior studies assume that a set of 

drones are available for possible deployment to different needs. However, to date, no rigorous 

methodology has been developed that can appropriately characterize drones to find their suitability 

for a given application and/or environment, more specific to last-mile delivery problem in our case. 

To fill this literature gap, this study proposes a rigorous methodology for selecting last-

mile delivery drones. First, a comprehensive list of criteria is developed to characterize a drone 

appropriately. Then, a systematic multi-criterion, multi-personnel decision-making approach, 

namely, Interval Valued Inferential Fuzzy (IVIF) TOPSIS method, is proposed to select a drone 

for a given application from a set of available drones. To the end, several realistic last-mile delivery 

problem scenarios are constructed to derive valuable managerial insights and to demonstrate the 
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applicability of the proposed methodology. Note that the last mile delivery drone selection problem 

includes a number of conflicting attributes. Decision-makers or experts prefer to provide linguistic 

assessments other than the exact numerical judgments, which can later be converted to their 

corresponding numerical values and used in the MCDM method through the fuzzy set theory. 

MCDM methods such as fuzzy TOPSIS (Kahraman et al., 2007), fuzzy AHP (Tuysuz and 

Kahraman, 2006), and fuzzy VIKOR (Kaya and Kahraman, 2011) utilize the ordinary fuzzy sets. 

Extensions of regular fuzzy sets such as hesitant fuzzy sets (Torra, 2010), intuitionistic fuzzy sets 

(Bustince and Burillo, 1996), and type-2 fuzzy sets (Zadeh, 1975) are the recent inclusions into 

multi-criteria decision making which can better define the membership functions compared to 

ordinary fuzzy sets (Boran, 2011; Boran et al., 2011; Onar et al., 2015). We used Interval Valued 

Inferential Fuzzy (IVIF) TOPSIS method for our last-mile delivery drone selection problem. This 

method uses IVIF sets to provide a more robust definition of the membership functions, can better 

handle the vagueness of user's input, and efficiently handle judgmental biases. 

The exposition of this paper is as follows. Section 2 provides the dissection of the last mile 

delivery drone selection problem and proposes critical factors that have a significant influence on 

this selection process. Section 3 introduces the IVIF TOPSIS decision-making model by 

illustrating each step of the model. In section 4, a real-life case study visiting different drone 

deployment scenarios is presented that demonstrates the suitability of using different drones under 

varying deployment cases while revealing crucial managerial insights in these scenario-dependent 

drone deployment situations. Finally, we conclude and present avenues for future research in 

Section 5. 
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1.2 Problem Statement And Criterion Selection 

From the airspace regulatory perspective, drones are becoming a more realistic option for 

last-mile delivery among different industries such as logistics, retail, service-sector, military, and 

anywhere that assets need to be moved and tracked from an origin to a destination. The efficient 

and enhanced performance (Espana, 2018), improved flight time (Zeng et al., 2016), and relaxed 

navigational regulations (Park et al., 2016) are motivating companies (Thomas and Qidwai, 2004) 

that rely upon product delivery in any capacity to consider upgrading or deploying this technology 

in the near future. Several variants of delivery drones are available in the market that can 

successfully handle the last-mile delivery operations. These drones possess distinguishing features 

that might make one drone more preferred over another depending on particular use cases. 

Therefore, selecting the appropriate drone for the delivery process is critical for both efficiency 

and economics. Selection of the proper last-mile delivery drone depends upon a number of device-

specific and performance-related factors. This paper proposes a comprehensive list of the key 

factors that have a significant influence on drone selection. A total of 28 sub-criteria have been 

identified and grouped under five main criteria, namely, (i) physical specification, (ii) economic, 

(iii) performance, (iv) environmental, and (v) payload capacity. All these criteria are extracted 

from online literature and expert opinion. Detailed descriptions for each sub-criterion are provided 

in this section, while Figure 1 visualizes the hierarchical representation of the sub-criterions under 

each main criterion. The methodology flow diagram for applying the IVIF TOPSIS method can be 

seen in Figure 2. 

1.2.1 Physical Specification (A) 

• Drone Overall Size (𝑨𝟏): There is no particular standard for the classification of drones 

according to their sizes. Hence, the standard varies among the defense agencies and the 
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civilians. However, drones can be roughly classified into several subclasses, such as very 

small (30 cm – 50 cm), small (50 cm – 2 m), medium (5 m – 10 m), and large (above 10 

m). 

• Weight (𝑨𝟐): The weight of a drone plays a significant role in its performance, agility, and 

flight duration. Weight varies in drones according to their sizes and shell/casing materials 

(e.g., plastic, metal, composite, foam). The weight of a drone can vary from 1.2 kg up to 

as much as 2 tons, but a delivery drone typically falls within 5 kg to 8.6 kg.  

• Drone Type (𝑨𝟑): Indicates the genre of the drone according to its rotor or wing formation. 

On the basis of rotor/wing formation, drones can be divided into several classes, such as 

fixed-wing, rotary-wing, hybrids that combine fixed and rotary, flapping-wing, and blimps. 

Fixed, rotary and hybrid types are more conducive for delivery-type operations; thus, in 

this study, flapping-wing and blimps-type drones are not taken into consideration. 

• Fuel Type (𝑨𝟒): This indicates the type of fuel source used to provide power to a UAV. 

There are six basic ways (e.g., batteries, solar energy, hydro fuel cell, combustion engine, 

tethered, and laser transmitter) through which drones can be powered. Based on the 

currently available options, both battery and fuel-powered drones are considered in this 

study. 

1.2.2 Performance (B) 

• Internal Computing Components (𝑩𝟏): Internal computing components often include 

different sensors used in the drone such as accelerometer, stabilizer, 3-axis Gyroscope, 

Magnetometer, Barometer, and like such. 
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• Location and Proximity Accuracy (𝑩𝟐): This criterion details the capability of the drone 

to accurately measure distance and location using different sensors such as distance 

identification, obstacle detection (ultrasonic, laser, and LIDAR based), occupancy sensors, 

proximity sensors, motion sensors, and collision detection sensors are included in this sub-

criteria. 

• Communication and Data Quality (𝑩𝟑): In some cases, communication and data quality 

influence the performance level of a drone. Internet of Things (IoT) and radio connectivity 

fall under this section. 

• Traceability (𝑩𝟒): The ability of a drone to locate an object as well as the previous route 

from the drone's history. GPS sensors would typically be grouped in this sub-criterion. 

• Reliability (𝑩𝟓): The length of the operational lifetime of the drone without any failure. 

1.2.3 Economic (C) 

• Repair Cost (𝑪𝟏): After being in operation for some time, drones may damage, or the 

performance may deteriorate. Repairs are then made to bring a drone back to its initial 

operating condition or to keep the drone functioning at its current state. 

• Total Unit Cost (𝑪𝟐): This cost includes all infrastructure costs (fixed, variable, and 

overhead costs) associated with each unit of a drone. The overhead cost could consist of 

items such as storing the equipment or building out charging or refueling infrastructure 

required to operate each drone over time. 

• Total Lifecycle Cost (𝑪𝟑): This cost refers to the total cost of ownership associated with 

the drone over its entire product lifecycle. 
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• Operating Cost (𝑪𝟒): The cost for the operation of a drone that could include unmanned 

pilot expenses, fuel, and any airspace usage charges. 

• Training Cost (𝑪𝟓): The costs for training the employees or operators to use the drone for 

delivery. 

1.2.4 Environmental (D) 

• Adaptability (𝑫𝟏): This criterion represents the ability of the drone to operate in normal 

and extreme weather conditions successfully (e.g., icing, wind, rain, hail, and fog). 

• Recharge/Refuel Location (𝑫𝟐): Recharge and refuel locations consider the availability 

and the geographical distribution of the charging facilities for delivery drones. Drones can 

stop and recharge/refuel in these places to provide continuous service. This criterion 

significantly impacts the performance and the speed of the delivery process. 

• Environmental Impact (𝑫𝟑): This sub-criterion denotes the possible impacts (e.g., noise 

pollution and carbon footprint) to the environment that might occur due to drone 

deployment for last-mile delivery. 

• Required Delivery Distance (𝑫𝟒): The distance from the inventory or product storage and 

the actual location of the customer or drop-off point where the product needs to be 

delivered. 

1.2.5 Payload Capacity (E) 

• Max Flight Time (𝑬𝟏): This indicates the maximum time that a drone can fly without 

recharge/refuel both with and without payload. 

• Total Recharge/Refuel Time (𝑬𝟐): The total time required for the drone to be recharged 

or refueled. This impacts the amount the drone will be unavailable for use. 



 

 

9 

• Charge/Fuel Usage Rate (𝑬𝟑): Charge/Fuel usage rate means the rate at which the drone 

consumes the charge/fuel per unit time (e.g., hour and second). Also, in consideration for 

this criterion is the total number of recharges or refuels that can occur and when items such 

as batteries will need to be replaced. 

• Maximum Load (𝑬𝟒): This factor represents the maximum load carrying capacity of the 

drones and is highly compatible with the size and engine strength of the drone. 

• Maximum Carry Dimensions (𝑬𝟓): This indicates the overall dimension of the package 

to be delivered. 

• Maximum Reachable Altitude (𝑬𝟔): The maximum allowable altitude for drones in the 

U.S. is restricted by the Federal Aviation Administration (FAA) regulations. According to 

these regulations, drones are not permitted to fly above 400 feet from the ground. On the 

contrary, the limit is 500 feet for European Union drones. Other than the allowable altitude, 

the capacity of the drone can be another limiting factor to reach a certain height. This factor 

considers both cases. 

• Drone Speed (𝑬𝟕): This sub-criterion stands for the maximum allowable speed of the 

drone. 

• Adaptability to Dynamic Assignment (𝑬𝟖): Adaptability to dynamic assignment/routing 

is the ability of a drone to align with the continuously updating routing decisions, which is 

different from the current routing path the drone is following. 

• Package Handling Flexibility (𝑬𝟗): This sub-criterion indicates the safety and damage 

prevention factors of the drone. 
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• Delivery Flexibility (𝑬𝟏𝟎): This defines the ability of the drone to adjust to varying 

package sizes, shapes, and handling. Some drones will have restrictions and limitations in 

this case. 
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Figure 1.1 Criterion list for last mile delivery drone selection 

 



 

 

12 

Step-1

Definition of 

criterion, sub-

criterion, and 

alternatives of 

interest

Step-2

Obtaining 

Pairwise 

comparison 

judgements 

and converting 

them into IVIF 

matrices

Step-3

Aggregation of 

all IVIF 

judgement 

matrices

Step-4

Determination 

of criterion 

weights using 

priority vectors 

and possibility 

degree matrix

Step-5

Obtaining 

decision 

matrices from 

all experts

Step-6

The scores of 

the alternatives 

with respect to 

each criterion

Step-8

Ranking all 

alternatives 

depending on 

closeness 

measures and 

selection of the 

best one

Set of criterion,

subcriterion, and

alternatives

Pairwise 

comparison 

values

Priority of 

involved experts 

Positive and negative ideal 

solution definition by each 

expert

Step-7

Determination 

of closeness of 

each 

alternative with 

respect to ideal 

solutions

Inputs

Steps

 

Figure 1.2 Methodology flow diagram with inputs 
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1.3 Interval Valued Intuitionistic Fuzzy (IVIF) Multi-Criterion Decision Making Model 

In this section, we introduce a robust hierarchical group decision-making model that can 

be applied to any complex multi-criteria decision-making problem. Oztaysi et al. (2017b) first 

integrate the concept of interval-valued intuitionistic fuzzy (IVIF) preference relations along with 

the IVIF-TOPSIS decision-making method. The methodology begins with pairwise comparisons 

between different criteria and alternatives, followed by several sequential steps for obtaining the 

final set of decisions with the overall weight of different alternatives. For creating a better 

understanding of the method, in this section, we provided some basic definitions of IVIF sets and 

relevant calculations of IVIFS along with step by step illustration of procedures for applying IVIF 

sets in the multi-criterion decision-making process. Interested readers are suggested to follow the 

article Oztaysi et al. (2017b) for a better understanding of IVIF numbers and their fundamental 

calculations. 

1.3.1 Definition 3.1: Interval Valued Intuitionistic Fuzzy Numbers 

Interval-valued inferential fuzzy set 𝑰 over the universe of discourse 𝑿 can be defined as 

𝑰 = {< 𝑥, 𝜇𝐼(𝑥), 𝜈𝐼(𝑥) > 𝑥 ∈ 𝑿}, where 𝐶 ⊆ [0, 1] is the set of all closed subintervals of 

intervals, where 𝐶 ⊆ [0, 1] is the set of all closed intervals of the interval 𝜇𝐼
  
→  𝐶 ⊆

[0, 1], 𝜈𝐼(𝑥)
  
→  𝐶 ⊆ [0,1] with the conditions 0 ≤ 𝑠𝑢𝑝 𝜇𝑖 (𝑥) + 𝑠𝑢𝑝 𝜈𝑖 (𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. 
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1.3.2 Definition 3.2: Hesitancy degree of IVIF numbers 

The unknown degree or hesitancy degree of IVIF numbers of Xx in 𝑰= 

   ( )+−+−

IIII  ,,,  can be represented as follows: 𝜋𝐼(𝑥) = 1 − 𝜇𝐼(𝑥) − 𝜈𝐼(𝑥) = (1 −

𝜇𝐼
+(𝑥) − 𝜈𝐼

+(𝑥), 1 − 𝜇𝐼
−(𝑥) − 𝜈𝐼

−(𝑥)) = (𝜋𝐼
𝑙(𝑥), 𝜋𝐼

𝑢(𝑥)). Here, 𝜇𝐼(𝑥) = [𝜇𝐼
−, 𝜇𝐼

+] and 

𝜈𝐼(𝑥) = [𝜈𝐼
−, 𝜈𝐼

+]. 

1.3.3 Definition 3.3: Score function 

For any IVIFN 𝑰, the score function is defined in equation (1).  

𝑆(𝐼) =
𝜇𝐼
− + 𝜇𝐼

+ − 𝜈𝐼
− − 𝜈𝐼

+

2
 (1.1) 

1.3.4 Definition 3.4: Accuracy function 

For any IVIFN 𝑰, the accuracy function is determined following equation (2). 

𝐻(𝐼) =
𝜇𝐼
− + 𝜇𝐼

+ + 𝜈𝐼
− + 𝜈𝐼

+

2
 (1.2) 

The step by step procedure for conducting the proposed MCDA approach is described 

below:   

Step 1: In the first step, we should define the MCDA problem of interest and represent it in a 

hierarchical structure with 𝑛 criteria, sub-criterion (if any), and 𝑚 decision alternatives. In 

addition, the experts' inputs should be collected, and pairwise comparison matrices should 

be formed following the linguistic comparison scale shown in Table 1 (Oztaysi et al., 

2017a). Table 3 represents a simple form of data accumulation table having pairwise 

comparison values in it. This kind of table should be formed for all criteria and sub-

criterions levels for every expert providing inputs to the study. 
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Table 1.1 Linguistic scale with corresponding IVIFS Oztaysi et al. (2017a) 

Linguistic 

terms 

IVIFS 

Absolutely 

Low (AL) 

([0.10, 0.25],[0.65, 0.75]) 

Very Low 

(VL) 

([0.15, 0.30],[0.60, 0.70]) 

Low (L) ([0.20, 0.35],[0.55, 0.65]) 

Medium Low 

(ML) 

([0.25, 0.40],[0.50, 0.60]) 

Exactly Equal 

(EE) 

([0.50, 0.50],[0.50, 0.50]) 

Approximately 

Equal (AE) 

([0.45, 0.55],[0.30, 0.45]) 

Medium High 

(MH) 

([0.50, 0.60],[0.25, 0.40]) 

High (H) ([0.55, 0.65],[0.20, 0.35]) 

Very High 

(VH) 

([0.60, 0.70],[0.15, 0.30]) 

Absolutely 

High (AH) 

([0.65, 0.75],[0.10, 0.25]) 

 

 



 

 

16 

Table 1.2 Example of a basic pairwise comparison matrix using linguistic scales 

𝒌th Decision-

maker 

1st 

criterion 

2nd 

criterion 

3rd 

criterion 

… 𝒏th 

criterion  

1st criterion EE AL MH  EE 

2nd criterion  EE VH  MH 

3rd criterion   EE  ML 

….      

𝑛th criterion      EE 

 

Step 2: The linguistic data obtained in the previous step should be converted to their corresponding 

IVIFS following Table 1. This conversion will yield individual IVIF judgement matrices 

P
~

for each decision-maker. Since this is a pairwise comparison matrix, the dimension of 

this matrix is 𝑛 × 𝑛. The definition of this IVIF judgement matrix P
~

= (𝑝𝑖𝑗)𝑛×𝑛 can be 

seen in equation (3) where 𝑖(𝑖 = 1,2,3,……𝑛) and 𝑗(𝑗 = 1,2,3, ……𝑛) represents the 

criterion number. 

 

�̃� = [
([𝜇11

− , 𝜇11
+ ], [𝜈11

− , 𝜈11
+ ]) . . . ([𝜇1𝑛

− , 𝜇1𝑛
+ ], [𝜈1𝑛

− , 𝜈1𝑛
+ ])

⋮ ⋱ ⋮
([𝜇𝑛1

− , 𝜇𝑛1
+ ], [𝜈𝑛1

− , 𝜈𝑛1
+ ]) … ([𝜇𝑛𝑛

− , 𝜇𝑛𝑛
+ ], [𝜈𝑛𝑛

− , 𝜈𝑛𝑛
+ ])

] (1.3) 

Note that, the reciprocal value of any IVIF number [𝜇𝑖𝑗
− , 𝜇𝑖𝑗

+], [𝜈𝑖𝑗
−, 𝜈𝑖𝑗

+] will be 

simply[𝜈𝑗𝑖
−, 𝜈𝑗𝑖

+], [𝜇𝑗𝑖
− , 𝜇𝑗𝑖

+]. 

Step 3: After constructing all the pairwise matrices and using IVIFS for each expert, all the 

corresponding matrices are aggregated into a single judgement matrix �̃�𝑔 (equation (4)). 
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This aggregation is done by following equation (5) where    +−+−= iiiii  ,,,~ (𝑖 =

1,2, …… , 𝑛) is a collection of IVIF numbers and 𝑤 represents the set of experts weights 

𝑤 = (𝑤1, 𝑤2, …… ,𝑤𝑛) such that 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.   

 

�̃�𝑔 = [

([𝜇𝑔11
− , 𝜇𝑔11

+ ], [𝜈𝑔11
− , 𝜈𝑔11

+ ]) . . . ([𝜇𝑔1𝑛
− , 𝜇𝑔1𝑛

+ ], [𝜈𝑔1𝑛
− , 𝜈𝑔1𝑛

+ ])

⋮ ⋱ ⋮
([𝜇𝑔𝑛1

− , 𝜇𝑔𝑛1
+ ], [𝜈𝑔𝑛1

− , 𝜈𝑔𝑛1
+ ]) … ([𝜇𝑔𝑛𝑛

− , 𝜇𝑔𝑛𝑛
+ ], [𝜈𝑔𝑛𝑛

− , 𝜈𝑔𝑛𝑛
+ ])

] (1.4) 

  

𝑊𝐴𝑤(�̃�1, �̃�2, . . . . . . , �̃�𝑛) = ⟨[1 −∏(1 − 𝜇𝑖
−)𝑤𝑖

𝑛

𝑖=1

, 1 −∏(1 − 𝜇𝑖
+)𝑤𝑖

𝑛

𝑖=1

] , [∏(𝜈𝑖
−)𝑤𝑖

𝑛

𝑖=1

,∏(𝜈𝑖
+)𝑤𝑖

𝑛

𝑖=1

]⟩ (1.5) 

  

Step 4: In this step, the score judgement matrix S
~

= (�̃�𝑖𝑗)𝑛×𝑛  and interval multiplicative matrix 

A
~

= (�̃�𝑖𝑗)𝑛×𝑛 should be constructed by using equations (6) and (7), respectively. The 

values of this obtained matrix A
~

 are between 0 and 1. 

 

�̃� = [

[𝜇𝑔11
− − 𝜈𝑔11

+ , 𝜇𝑔11
+ − 𝜈𝑔11

− ] … [𝜇𝑔1𝑛
− − 𝜈𝑔1𝑛

+ , 𝜇𝑔1𝑛
+ − 𝜈𝑔1𝑛

− ]

⋮ ⋱ ⋮
[𝜇𝑔𝑛1
− − 𝜈𝑔𝑛1

+ , 𝜇𝑔𝑛1
+ − 𝜈𝑔𝑛1

− ] … [𝜇𝑔𝑛𝑛
− − 𝜈𝑔𝑛𝑛

+ , 𝜇𝑔𝑛𝑛
+ − 𝜈𝑔𝑛𝑛

− ]

] (1.6) 

  

�̃� = [
[𝑒(𝜇𝑔11

− −𝜈𝑔11
+ ), 𝑒(𝜇𝑔11

+ −𝜈𝑔11
− )] … [𝑒(𝜇𝑔1𝑛

− −𝜈𝑔1𝑛
+ ), 𝑒(𝜇𝑔1𝑛

+ −𝜈𝑔1𝑛
− )]

⋮ ⋱ ⋮

[𝑒(𝜇𝑔𝑛1
− −𝜈𝑔𝑛1

+ ), 𝑒(𝜇𝑔𝑛1
+ −𝜈𝑔𝑛1

− )] … [𝑒(𝜇𝑔𝑛𝑛
− −𝜈𝑔𝑛𝑛

+ ), 𝑒(𝜇𝑔𝑛𝑛
+ −𝜈𝑔𝑛𝑛

− )]

] = [
[�̃�11
− , �̃�11

+ ] … [�̃�1𝑛
− , �̃�1𝑛

+ ]
⋮ ⋱ ⋮

[�̃�𝑛1
− , �̃�𝑛1

+ ] … [�̃�𝑛𝑛
− , �̃�𝑛𝑛

+ ]
] (1.7) 

Step 5: After computing the interval multiplicative matrix A
~

, the priority vector of this 

exponential matrix can be calculated as follows. 
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𝑤𝑖 = [
∑ �̃�𝑖𝑗

−𝑛
𝑗=1

∑ ∑ �̃�𝑖𝑗
+𝑛

𝑗=1
𝑛
𝑖=1

,
∑ �̃�𝑖𝑗

+𝑛
𝑗=1

∑ ∑ �̃�𝑖𝑗
−𝑛

𝑗=1
𝑛
𝑖=1

] = [𝑤𝑖
−, 𝑤𝑖

+], 𝑖 = 1,2, …… , 𝑛 (1.8) 

  

Step 6: In this step, the weights
iw~ obtained in Step 5 should be compared, and the possibility 

degree matrix is obtained following equations (9) and (10), respectively.  

𝜓(𝑤𝑖 > 𝑤𝑗) = 𝜓𝑖𝑗 =
𝑚𝑎𝑥( 0,𝑤𝑖

+ − 𝑤𝑗
−) − 𝑚𝑎𝑥( 0, 𝑤𝑖

− − 𝑤𝑗
+)

(𝑤𝑖
+ − 𝑤𝑖

−) + (𝑤𝑗
+ − 𝑤𝑗

−)
 (1.9) 

  

𝜓(𝑤𝑗 > 𝑤𝑖) = 𝜓𝑗𝑖 =
𝑚𝑎𝑥( 0,𝑤𝑗

+ − 𝑤𝑖
−) − 𝑚𝑎𝑥( 0, 𝑤𝑗

− − 𝑤𝑖
+)

(𝑤𝑖
+ − 𝑤𝑖

−) + (𝑤𝑗
− − 𝑤𝑗

+)
 (1.10) 

  

where  .,1,0 2
1==+ iijiijij   The possibility matrix ( )

nnij 
=   prioritization is 

done according to (11).  

𝑤𝑖 =
∑ 𝜓𝑖𝑗 − 1
𝑛
𝑗=1

𝑛
+ 0.5 (1.11) 

  

Step 7: Next, the vector {𝑤𝑖}; ∀ 𝑖 ∈ 𝑛 comprising of weights for criteria and sub-criterion are 

normalized, and this normalized matrix is obtained by the following equation. 

𝑤𝑖
𝑇 =

𝑤𝑖
∑ 𝑤𝑖
𝑛
𝑖=1

 (1.12) 

Step 8: The weight calculation should be done for all criteria and sub-criterion of the hierarchy 

following Steps 1 to 7. After performing this step, we should have all the weights for 

criteria and sub-criterions listed as vectors which will be used in the alternative evaluation.  
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Step 9: From this step, we should start the incorporation of the IVIF-TOPSIS method into our 

model. First, we obtain the decision matrix [
kD

~
] from each decision-maker using Table 1 

as a basis for comparison. Equation (13) depicts the anatomy of the decision matrix [�̃�𝑘] 

where 𝑛 and 𝑚 stands for the number of criteria (𝑖 = 1,2, …… , 𝑛) and the number of 

alternatives (𝑗 = 1,2, …… ,𝑚), respectively.  The overall IVIF-TOPSIS method is 

elaborated in Step 10. 

 

   ( )    ( )    ( )
   ( )    ( )    ( )

   ( )    ( )    ( )+−+−+−+−+−+−

+−+−+−+−+−+−

+−+−+−+−+−+−

=

nmknmknmknmkknknknknknknknknn

mkmkmkmkkkkkkkkk

mkmkmkmkkkkkkkkk

m

k

C

C

C

AAA

D







,,,,,,,,,

,,,,,,,,,

,,,,,,,,,
~

22221111

222222222222212121212

111112121212111111111
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 (1.13) 

 

Here, 𝐶1, 𝐶2,…, 𝐶𝑛 represents the weight vector of element 𝑛. 

Step 10: The TOPSIS method requires the definition of positive and negative ideal solutions for 

each criterion, and these inputs are obtained from experts. The fuzzy positive ideal solution 

+

kSI
~

 and fuzzy negative ideal solution −

kSI
~

for 𝑘th decision-maker are obtained from 

equations (14) and (15), respectively, along with the score function (1) and accuracy 

functions (2) as appropriate.    

 

𝐼�̃�𝑘
+ = (([𝜇1*𝑘

− , 𝜇1*𝑘
+ ], [𝜈1*𝑘

− , 𝜈1*𝑘
+ ]), ([𝜇2*𝑘

− , 𝜇2*𝑘
+ ], [𝜈2*𝑘

− , 𝜈2*𝑘
+ ]), . . . . . . , ([𝜇𝑛*𝑘

− , 𝜇𝑛*𝑘
+ ], [𝜈𝑛*𝑘

− , 𝜈𝑛*𝑘
+ ])) (1.14) 

 
 

𝐼�̃�𝑘
− = (([𝜇1−𝑘

− , 𝜇1−𝑘
+ ], [𝜈1−𝑘

− , 𝜈1−𝑘
+ ]), ([𝜇2−𝑘

− , 𝜇2−𝑘
+ ], [𝜈2−𝑘

− , 𝜈2−𝑘
+ ]), . . . . . . , ([𝜇𝑛−𝑘

− , 𝜇𝑛−𝑘
+ ], [𝜈𝑛−𝑘

− , 𝜈𝑛−𝑘
+ ])) (1.15) 
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Here    ( )+−+−

kkkk *1*1*1*1 ,,,   and    ( )+

−

−

−

+

−

−

− kkkk 1111 ,,,   are representatives of maximum 

and minimum intuitionistic fuzzy sets, respectively, among the alternatives’ values for 𝑖th 

criterion. Next, we obtain the separation measures between 𝑗th alternative and +

kSI
~

 and −

kSI
~

for each decision-maker as follows. 

𝐷𝑗
∗𝑘 = √1 2⁄ ∑𝑤𝑖

𝑇 [
(𝜇𝑖𝑗𝑘
− − 𝜇1∗𝑘

− )
2
+ (𝜇𝑖𝑗𝑘

+ − 𝜇1∗𝑘
+ )

2
+ (𝜈𝑖𝑗𝑘

− − 𝜈1∗𝑘
− )

2
+ (𝜈𝑖𝑗𝑘

+ − 𝜈1∗𝑘
+ )

2

+(𝜋𝑖𝑗𝑘
𝑙 − 𝜋𝑖∗𝑘

𝑙 )
2
+ (𝜋𝑖𝑗𝑘

𝑢 − 𝜋𝑖∗𝑘
𝑢 )

2 ]

𝑛

𝑖−1

 (1.16) 

𝐷𝑗
−𝑘 = √1 2⁄ ∑𝑤𝑖

𝑇 [
(𝜇𝑖𝑗𝑘
− − 𝜇1−𝑘

− )
2
+ (𝜇𝑖𝑗𝑘

+ − 𝜇1−𝑘
+ )

2
+ (𝜈𝑖𝑗𝑘

− − 𝜈1−𝑘
− )

2
+ (𝜈𝑖𝑗𝑘

+ − 𝜈1−𝑘
+ )

2

+(𝜋𝑖𝑗𝑘
𝑙 − 𝜋𝑖−𝑘

𝑙 )
2
+ (𝜋𝑖𝑗𝑘

𝑢 − 𝜋𝑖−𝑘
𝑢 )

2 ]

𝑛

𝑖−1

 (1.17) 

 

Where u

ijk

l

ijk  ,  and u

ki

l

ki ** ,  are calculated following hesitancy degree equation 

(Definition 3.2). Finally, we aggregate the separation measures following (18) and (19). 

Equation (20) provides the overall closeness co-efficient for all alternatives. The values of 

this closeness coefficient 
jU dictate the preference order of alternatives where the larger 

value means more preference. The final ranking of alternatives is conducted based on this 

closeness coefficient
jU . 

𝐷𝑗
∗ =∑(𝜆𝑘𝐷𝑗

∗𝑘)

𝑘

𝑘=1

 

 

(1.18) 

𝐷𝑗
− =∑(𝜆𝑘𝐷𝑗

−𝑘)

𝑘

𝑘=1

 (1.19) 
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𝑈𝑗 =
𝐷𝑗
−

𝐷𝑗
− + 𝐷𝑗

+ (1.20) 

1.4 Case Study 

This paper presents a well-structured case study introducing a real-life problem 

experienced by logistics companies while deploying drones for last-mile delivery. As companies 

pursue the decision to deploy drones for last-mile product delivery, they need to select one or 

multiple drone solutions depending upon requirements among a wide variety of available drones 

with different capability levels and diversified feature sets. After thoroughly reviewing 

characteristics of drone technologies available for purchase at the time of this study, four device 

options are designated: Drone A (small quadcopter), Drone B (larger quadcopter), Drone C (tilt-

wing), and Drone D (fixed wing), which are representative of actual delivery drones having 

different levels of specified device characteristics. For each of these drones, six major features - 

dimension, drone type, control panel, payload capacity, delivery distance, and flight time - are 

considered as distinguishing factors. Each category has different combinations of these 

characteristics to aid in the proof of concept of the proposed decisions tool selection. The selected 

drone types are familiar to many regions of the world, and the pictures of these drones (Figure 3) 

are chosen based on these common characteristic combinations strictly for visualization purposes. 

First, the input parameters of this case study are discussed, showing the summary of the attributes 

of these selected drone solutions (Table 3)1. Next, we apply the IVIF TOPSIS method, a robust 

MCDA methodology, to obtain the base case results. By analyzing different real-life delivery 

 
1 Please note that the characteristics of the drones provided in Table 3 are not representative of the actual drones 

depicted in the Figure 3. Pictures represent the functional intent of the solution while the information in Table 3 are 

used to provide varying combinations of characteristics of available solutions in order to demonstrate how the 

identified criterion weight certain solutions differently given the context of real-world use cases 
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requirements, multiple sensitivity analyses generating different realistic scenarios are conducted. 

In total, four discrete scenarios are generated: (i) stationary deployment urban canyon drone 

delivery, (ii) truck-based deployment urban canyon drone delivery, (iii) truck-based deployment 

rural area drone delivery, and (iv) drone delivery in a disaster affected area. These sensitivity 

analyses results reveal different key managerial insights that can be used to provide decision-

makers with a general baseline to make drone selection depending on different use cases. 
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(a) Drone A 

 

(b) Drone B 

 

(c) Drone C 

 

(d) Drone D 

Figure 1.3 Pictures of studied drones 

 

1.4.1 Base Case Result 

In the base case, the robust IVIF TOPSIS methodology is applied to select the best drone 

option for the last mile delivery. The generalized criterion list for the last mile delivery drone 

selection, discussed in Section 2, is considered as a baseline for this research. The proposed 

criterion list contains 5 hierarchical levels with 5 main criterions and 28 sub-criterions. Following 

the IVIF methodology, we construct the pairwise comparison matrices (PCM’s) for each 
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hierarchical level in (Figure 1) and perform necessary calculations. For this case study, the pairwise 

comparison matrices are provided by three Subject Matter Experts (SME’s) who ranked the 

criterions separately using their practical judgement and relevant experience on drone research. 

The PCM’s start with comparisons between the main criteria. Later, the PCM’s are generated for 

each sub-criterion. Therefore, for the base case, each decision-maker provided 6 PCM’s using the 

linguistic scale. Table 4 provides an example of the PCM for the main criterion level given by the 

first expert. Each of the three experts provided PCM’s for the 5 main criterions. The linguistic data 

obtained in the previous table are converted to their corresponding IVIF’s using Table 1. This 

conversion yields individual IVIF judgement matrices, as shown in Table 5. 
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Table 1.3 Specifications of the selected drones 

        Drone A                            Drone B Drone C Drone D 

Type Quadcopter Quadcopter Tilt wing Tail sitter 

Pay Load Up to 1.2 

kg 

Up to 1.2 kg Up to 2 kg 

Up to 1.4 

kg 

Delivery 

Distance  

1 km 12 km 8.3 km 5 km 

Flight time 15 min 15 min 8-9 min 9-10 min 

Control Manual Automatic Automatic Automatic 

Dimension 1030 mm 1030 mm 2200 mm 
1500 

 

Table 1.4 Pairwise Comparison Matrix 

  𝐴 𝐵 𝐶 𝐷 𝐸 

Physical 

Specification (𝐴) 

EE H AE MH ML 

Economic (𝐵)   EE AE MH ML 

Performance (𝐶)    EE H MH 

Environmental (𝐷)     EE L 

Payload Capacity (𝐸)       EE 
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After obtaining the individual judgement matrix for each SME, we aggregate them to get 

an aggregated judgment matrix following equation (4). Later, we use equations (5)-(7) to obtain 

an interval multiplicative matrix. Table 6 represents the interval multiplicative matrix. After 

computing the interval multiplicative matrix, the priority vector is calculated using equation (8). 

These weights are then compared, and the possibility degree matrix is calculated using equations 

(9) and (10). Following this, the prioritization is conducted using equation (11). Finally, the 

weights are normalized using equation (12), and the resultant normalized matrix is presented in 

Table 7. The same procedure is repeated for obtaining the final rankings for the sub-criterions as 

well. The overall aggregated rankings for criterion and sub-criterion are presented in Table 8. 
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Table 1.5 IVIF Judgement Matrix 

  Physical Spec (A) Economic (B) Performance (C) Environmental (D) Payload Capacity (E) 

Physical Specification (A) 0.50 0.50 0.50 0.50 0.55 0.65 0.20 0.35 0.45 0.55 0.30 0.45 0.50 0.60 0.25 0.40 0.25 0.40 0.50 0.60 

Economic (B)         0.50 0.50 0.50 0.50 0.45 0.55 0.30 0.45 0.50 0.60 0.25 0.40 0.25 0.40 0.50 0.60 

Performance (C)                 0.50 0.50 0.50 0.50 0.55 0.65 0.20 0.35 0.50 0.60 0.25 0.40 

Environmental (D)                         0.50 0.50 0.50 0.50 0.20 0.35 0.55 0.65 

Payload Capacity (E)                                 0.50 0.50 0.50 0.50 

 

 

Table 1.6 Interval Exponential Matrix 

 𝑨 𝑩 𝑪 𝑫 𝑬 

𝑨 [1, 1] [1.314, 1.696]   [1, 1.284]  [1.188, 1.531]  [0.619, 0.795] 

𝑩 [0.590, 0.761] [1, 1] [1, 1.284] [1.188, 1.531] [0.661, 0.850] 

𝑪 [0.779, 1] [0.779, 1] [1, 1] [1.314, 1.696] [1.270, 1.636] 

𝑫 [0.653, 0.842] [0.653, 0.842] [0.590, 0.761] [1, 1] [0.639, 0.821] 

𝑬 [1.258, 1.616] [1.177, 1.512] [0.611, 0.787] [1.218, 1.565] [1, 1] 



 

 

28 

Table 1.7 Normalized weight Matrix 

Main criteria 
 

Weight 

Physical Spec 𝐴 0.231 

Economic 𝐵 0.186 

Performance 𝐶 0.232 

Environmental 𝐷 0.112 

Payload Capacity 𝐸 0.239 
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Table 1.8 Base case final rankings for criterion and sub-criterion 

Main 

Criteria 

Weight   Sub Criteria Weight 

Physical Spec 0.231 UAS Overall Size (𝐴1) 

Weight (𝐴2) 

Drone Type (𝐴3) 

Fuel Type (𝐴4) 

 

0.365 

0.275 

0.196 

0.164 

 

Economic 0.186 Internal Computing Components (𝐵1) 

Location Accuracy (𝐵2) 

Communication and Data Quality (𝐵3) 

Traceability (𝐵4) 

Reliability (𝐵5) 

 

0.237 

0.270 

0.120 

0.198 

0.175 

 

Performance 0.232 Repair Cost (𝐶1) 

Total Unit Cost (𝐶2) 

Total Lifecycle Cost (𝐶3) 

Operating Cost (𝐶4) 

Training Cost (Ec) (𝐶5) 

 

0.212 

0.116 

0.205 

0.243 

0.224 

 

Environmental 0.112 Adaptability to Extreme Weather Conditions 

(𝐷1) 

Environmental Impact (𝐷2) 

Recharge (𝐷3) 

Required Delivery Distance (𝐷4) 

 

0.375 

0.200 

0.161 

0.264 
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Table 1.8 (continued) 

Main 

Criteria 

Weight   Sub Criteria Weight 

Payload 

Capacity 

0.239 Max Flight Time Without Recharge (𝐸1) 

Total Recharge (𝐸2) 

Charge/ Fuel Usage Rate (𝐸3) 

Maximum Load (𝐸4) 

Maximum Carry Dimensions (𝐸5) 

Maximum Reachable Altitude (𝐸6) 

Drone Speed (𝐸7) 

Adaptability to Dynamic Assignment (𝐸8) 

Packaging Handling Flexibility (𝐸9) 

Delivery Flexibility (𝐸10) 

 

0.121 

0.039 

0.035 

0.243 

0.093 

0.093 

0.057 

0.068 

0.169 

0.082 
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Table 1.9 Decision matrix for the alternatives and definition of fuzzy positive ideal solution and fuzzy negative ideal solution  

Criterion Drone 

A 

Drone B Drone 

C 

Drone 

D 

IS IS2 Weight 

𝐴1 MH VH H MH [0.60,0.70],[0.15,0.30] [0.50, 0.60],[0.25, 

0.40] 

0.084 

𝐴2 AE H MH AE [0.55,0.65],[0.20, 

0.35] 

[0.50, 0.50],[0.50, 

0.50] 

0.064 

𝐴3 H H MH AE [0.55,0.65],[0.20, 

0.35] 

[0.50, 0.50],[0.50, 

0.50] 

0.045 

𝐴4 H H H ML [0.55,0.65],[0.20, 

0.35] 

[0.25, 0.40],[0.50, 

0.60] 

0.038 

𝐵1 L H AE H [0.55,0.65],[0.20, 

0.35] 

[0.20, 0.35],[0.55, 

0.65] 

0.044 

𝐵2 L H MH VH [0.60,0.70],[0.15,0.30] [0.20, 0.35],[0.55, 

0.65] 

0.050 
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Table 1.9 (continued) 

Criterion Drone 

A 

Drone B Drone 

C 

Drone 

D 

IS IS2 Weight 

𝐵3 L H H MH [0.55,0.65], 

[0.20, 0.35] 

[0.20, 0.35], 

[0.55, 0.65] 

0.022 

𝐵4 AE H H MH [0.55,0.65], 

[0.20, 0.35] 

[0.50, 0.50], 

[0.50, 0.50] 

0.037 

𝐵5 AE H H MH [0.55,0.65], 

[0.20, 0.35] 

[0.50, 0.50], 

[0.50, 0.50] 

0.033 

𝐶1 H VL AE VL [0.55,0.65], 

[0.20, 0.35] 

[0.15, 0.30], 

[0.60, 0.70] 

0.049 

𝐶2 VH VL L AL [0.60,0.70], 

[0.15,0.30] 

[0.15, 0.30], 

[0.60, 0.70] 

0.027 

𝐶3 H L ML VL [0.55,0.65], 

[0.20, 0.35] 

[0.15, 0.30], 

[0.60, 0.70] 

0.048 

𝐶4 VH H ML AE [0.60,0.70], 

[0.15,0.30] 

[0.25, 0.40], 

[0.50, 0.60] 

0.056 



 

 

33 

Table 1.9 (continued) 

        

𝐶5 VH H L ML [0.60,0.70], 

[0.15,0.30] 

[0.20, 0.35], 

[0.55, 0.65] 

0.052 

𝐷1 ML VH H MH [0.60,0.70], 

[0.15,0.30] 

[0.25, 0.40], 

[0.50, 0.60] 

0.042 

𝐷2 VH H H VL [0.60,0.70], 

[0.15,0.30] 

[0.15, 0.30], 

[0.60, 0.70] 

0.023 

𝐷3 VH VH ML H [0.60,0.70], 

[0.15,0.30] 

[0.25, 0.40], 

[0.50, 0.60] 

0.018 

𝐷4 VL VH VH AH [0.65,0.75], 

[0.10,0.25] 

[0.15, 0.30], 

[0.60, 0.70] 

0.030 

𝐸1 AL H H VH [0.60,0.70], 

[0.15,0.30] 

[0.10, 0.25], 

[0.65, 0.75] 

0.029 

𝐸2 MH AE AE AH [0.65,0.75], 

[0.10,0.25] 

[0.50, 0.50], 

[0.50, 0.50] 

0.009 
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Table 1.9 (continued) 

Criterion Drone 

A 

Drone B Drone 

C 

Drone 

D 

IS IS2 Weight 

𝐸3 H MH AE ML [0.55,0.65], 

[0.20, 0.35] 

[0.25, 0.40], 

[0.50, 0.60] 

0.009 

𝐸4 VL L AE VH [0.60,0.70], 

[0.15,0.30] 

[0.15, 0.30], 

[0.60, 0.70] 

0.058 

𝐸5 VL L MH VH [0.60,0.70], 

[0.15,0.30] 

[0.15, 0.30], 

[0.60, 0.70] 

0.022 

𝐸6 L MH AH AH [0.65,0.75], 

[0.10,0.25] 

[0.20, 0.35], 

[0.55, 0.65] 

0.022 

𝐸7 ML ML VH H [0.60,0.70], 

[0.15,0.30] 

[0.25, 0.40], 

[0.50, 0.60] 

0.014 

𝐸8 VL VH MH AE [0.60,0.70], 

[0.15,0.30] 

[0.15, 0.30], 

[0.60, 0.70] 

0.016 

𝐸9 AE MH ML VII [0.60,0.70], 

[0.15,0.30] 

[0.25, 0.40], 

[0.50, 0.60] 

0.040 
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Table 1.9 (continued) 

Criterion Drone 

A 

Drone B Drone 

C 

Drone 

D 

IS IS2 Weight 

𝐸10 AE MH AE VL [0.50, 0.60], 

[0.25, 0.40] 

[0.15, 0.30], 

[0.60, 0.70] 

0.020 
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After obtaining the overall aggregated rankings for criterion and sub-criterion, decision 

matrices are collected for all experts. These matrices are generated following equation (13) where 

all four drone options are compared using the linguistic scale provided in Table 1. One example 

decision matrix obtained from the first decision-maker is shown in Table 9. Additionally, 

following Step 10, we obtain the fuzzy positive ideal solution (𝐼�̃�+) and fuzzy negative ideal 

solution 𝐼�̃�− for each criterion and list them in two separate columns in Table 9. The separation 

measure between the 𝑗th alternative and 𝐼�̃�+for 𝑘thdecision-maker (𝐷𝑗
∗𝑘) is calculated using 

equation (16). Similarly, we calculate (𝐷𝑗
−𝑘) using equation (17) and the separation measures 

obtained from all three decision-makers are listed in Table 10. Note that we used the weights in 

Table 9 to calculate the separation measures for the alternatives. Now, we use Table 10 information 

in (18)-(20) to obtain the final ranking of the alternatives (base case result). The summary of the 

base case results is presented in Figure 4. The results demonstrate that Drone B is a preferred 

selection under base case settings. However, several other drones also received high weights and, 

in fact, very close to the weight of Drone B (e.g., Drones C and D). This is because, in an ideal 

case, many different types of drones can be used to perform similar tasks (i.e., last-mile delivery 

tasks). Note that this result would be more specific under different specialized drone deployment 

scenarios which are discussed in detail in the following subsections. 
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Table 1.10 Final separation measures from all decision-makers 

Separation 

measures 

Drone A Drone B Drone C Drone D 

𝐷𝑗
∗1 0.352 0.231 0.259 0.257 

𝐷𝑗
−1 0.303 0.339 0.312 0.352 

𝐷𝑗
∗2 0.364 0.234 0.248 0.262 

𝐷𝑗
−2 0.312 0.341 0.324 0.347 

𝐷𝑗
∗3 0.367 0.226 0.245 0.257 

𝐷𝑗
−3 0.310 0.348 0.325 0.344 

 

 

Drone Weight Base Ranking 

 

Drone A 0.461 4 

Drone B 0.597   1* 

Drone C 0.561 3 

Drone D 0.573 2 

*Preferred Drone 

Figure 1.4 Base case ranking 

 

1.4.2 Sensitivity Analysis 

This subsection identifies how drone selection decisions are impacted under different 

possible yet realistic scenarios and draws key managerial insights. The first scenario represents the 

last mile drone delivery case in an urban area where a drone collects the parcels from a base station 

and delivers them to the destination. The next scenario is almost similar to the first one; however, 

in this case, the drone collects parcels from a delivery truck that is already out for delivery. The 
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third scenario is similar to the second one in the sense that the drone deploys from a delivery 

vehicle but takes place in rural areas where the distribution of customers is generally less than that 

of urban areas. The last scenario investigates the appropriate drone option to be selected in the 

event of possible disruptions, such as a natural disaster event that would limit accessibility to a 

group of people in need. Under this scenario, it is challenging to utilize the routing truck for drone 

delivery since as the infrastructure of the disaster impacted area might totally be collapsed. For 

example, hurricane damage may limit road access needed to get time-sensitive medicine to disaster 

survivors. Therefore, the only delivery possibility in this scenario is with a stationary-based drone 

that collects parcels from a base and delivers them to the disaster-affected areas. Following these 

scenarios, the IVIF TOPSIS methodology is applied to obtain the best possible drone options in 

different scenarios. Note that decision-makers' preference or criterion-wise choice of alternatives 

depends significantly on the scenario under consideration. The input decision matrix obtained from 

the first decision-maker for each of these four scenarios is listed in Tables 11-14 in Appendix A. 

The next few subsections detail the rationale behind investigating these scenarios and report the 

results obtained from the performed analysis. 

1.4.2.1 Scenario 1: Stationary Urban Canyon Scenario 

According to the most recent census by the United States Census Bureau, about 80.7% of 

the total population of the United States resides in urban areas (United States Census Bureau., 

2018). The number of customers per unit area is also very dense in this type of environment, 

requiring more delivery activities per square mile than in most other demographic region types. 

Hence, the drone solution for this scenario has to climb higher altitudes to cover the customers’ 

locations for delivering parcels. A drone has to carry the parcel from the base station, deliver the 

product/parcel, and then come back to the base station. Therefore, the base station should be 
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located somewhere in the center of the urban area such that the drones can cover the customers at 

the urban area borders as well as ones in the more densely populated central regions. The results 

of this scenario can be seen in Figure 5. Similar to the base case, in this scenario, Drone B shows 

the highest preference ranking, among others. Drone A can also be used, but drone type D will not 

be a viable option in this specific case. 

 

Drone Weight New 

Ranking 

Base 

Ranking 

 

Drone A 0.597 2 4 

Drone B 0.693  1* 1 

Drone C 0.532 3 3 

Drone D 0.456 4 2 

*Preferred Drone 

Figure 1.5 Final ranking of the last mile delivery drones under scenario 1 

 

1.4.2.2 Scenario 2: Truck Based Urban Canyon Scenario 

The next scenario simulates a situation within a large urban area where maintaining quick 

deliveries would be difficult if the base station is located at the center of the urban canyon. In this 

case, the drone would be operated from one or multiple delivery trucks moving in predefined routes 

while carrying the parcels to be delivered. The trucks themselves are considered to be the delivery 

bases/hubs. Whenever the truck approaches a delivery destination, the drone is used to carry the 

parcel, delivering them to the destination. After the delivery, the drone returns to the base truck 

and prepares for the next delivery. This method is more effective because a drone does not need 

to visit the actual base station every time for package delivery; instead, it can collect packages 

from the truck and perform the last-mile delivery. The results (shown in Figure 6) for this scenario 

identify drone type B as the top preference. This is because, considering the delivery type, small 
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drones such as Drone B would be more effective as they are designed to fly short distances. Drone 

type A is also small, and it also shows convincing results compared to Drone type C and D. But, 

Drone A did not get the highest preference due to having a manual control system. To be specific, 

Drone type B is the most effective option for this scenario. 

 

Drone Weight New 

Ranking 

Base 

Ranking 

 

Drone A 0.623 2 4 

Drone B 0.774  1* 1 

Drone C 0.545 3 3 

Drone D 0.432 4 2 

 *Preferred Drone  

Figure 1.6 Final rankings of the last mile delivery drones under scenario 2 

 

1.4.2.3 Scenario 3: Truck Based Rural Area 

This scenario shifts focus from urban to rural areas. In rural areas, houses are more sparsely 

located; hence, the delivery locations are more scattered than those of urban areas. Therefore, 

collecting packages from a base station and delivering them to the destination becomes less 

practical than in an urban setting. As with the last scenario, in this use case, the delivery process 

to be controlled from a truck base is considered. The results for this scenario (see Figure 7) show 

that type C and D drones outperform types A and B. Between type C and D, type C shows slightly 

better performance. The result is realistic considering that rural areas are not always well 

developed, and the routing optimization might put the truck too far from the actual delivery 

destination requiring bigger drones to be deployed. Type C and D drones are comparatively bigger 

in size, having better range hence obtaining better results for this scenario. 
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1.4.2.4 Scenario 4: Stationary Based Disaster Affected Area Drone Delivery 

The last scenario considers disaster-affected areas as potential delivery locations. The 

infrastructures for the areas where time-sensitive deliveries need to be made are most likely to be 

damaged, thereby making standard road-based transportation impossible. Therefore, the last mile 

delivery drone can play a useful role in these areas to enable immediate delivery. This scenario is 

analyzed with the proposed IVIF TOPSIS technique. The results (shown in Figure 8) suggest that 

drone type D seems to be the most appropriate option under this specific scenario. Drone D has 

higher capacity and longer flight distance which are critical for this use case. On the contrary, type 

A drone demonstrates the least viable option primarily due to the lower flying range, poor altitude 

adjustment capacity, and extensive need for manual control. 

 

Drone Weight New 

Ranking 

Base 

Ranking 

 

Drone A 0.376 4 4 

Drone B 0.494  3 1 

Drone C 0.644 1* 3 

Drone D 0.619 2 2 

*Preferred Drone 

Figure 1.7 Final rankings of the last mile delivery drones under scenario 3 

 

Drone Weight New 

Ranking 

Base 

Ranking 

 

Drone A 0.099 4 4 

Drone B 0.357 3 1 

Drone C 0.629 2 3 

Drone D 0.906 1* 2 

*Preferred Drone 

Figure 1.8 Final rankings of the last mile delivery drones under scenario 4 
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1.5 Conclusion 

This paper proposes a standardized methodology for selecting last-mile delivery drones. A 

comprehensive list of criterions, which will be applicable for comparing between any set of last 

mile delivery drones, are proposed. A systematic multi-criterion, multi-personnel decision-making 

approach, Interval Valued Inferential Fuzzy TOPSIS method is proposed to perform this analysis. 

The proposed methodology can handle the fuzziness in decision making, remove judgmental 

biases, and provide the best result depending on the use cases. A simple demonstration of the 

decision-making model, designing a real-life case study, is demonstrated. Further, multiple 

sensitivity analyses are performed, and the results from these analyses provide insightful grounds 

for the decision-makers involved in this process. Overall, these analyses provide a clear idea about 

which type of drones might be more applicable in different use cases based on different situations 

and delivery needs. This work can be extended in different directions. The demographic impact 

and cultural differences in drone selection based on specific drone deployment situations can be 

addressed in the future. Besides, more detailed drone deployment studies can be conducted 

considering different types of disruption (natural and artificial) situations. Further, to handle the 

uncertainty in decision making different types of fuzzy sets can be employed, such as hesitant 

fuzzy sets, non-stationary fuzzy sets, fuzzy multisets. The usability and competitive benefits of 

using different types of fuzzy sets in terms of robust decision-making are another essential 

elements requiring crucial investigation. We will address these issues in future studies. 
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CHAPTER II 

 MULTI-CRITERIA DECISION FOR SCHOOLS SHOOTING SOLUTION  

2.1 Introduction 

During the post-coronavirus period, there has been a change in most aspects of social life. 

The school shootings seem to take pause judging by the latest events that they remind us have not 

gone away. With various school shootings, the issue has again taken the consciousness of the 

public (Daniels et al., 2010). When school shootings happen, attention is placed on the likely 

causes and prospective solutions that might assist the country in addressing the problem.  

Considering the concern regarding the school shootings and their sudden increase, the 

policymakers are searching for answers on why such events happen and how to prevent them. In 

the 1990s, the federal government commenced working on the assessments of school shooters and 

ways of preventing them (Lawrence & Birkland, 2004). Much planning has often happened before 

the school shooting, and the shooters often showed concerning behaviors beforehand. However, 

there is a lack of a profile that would sufficiently define the spectrum of the school shooters.  

Solution for school shootings has become a significant point of research in recent years. 

The stakeholders in the education sector have been researching their effectiveness in preventing a 

school shooting. They have begun exploring how to impede school shootings. For instance, school-

based programs have been introduced to reduce the aggression of learners. The U.S. Department 

of Education has been instrumental in brainstorming strategies to get rid of the school shooting. 

Many countries, especially the United States, have explored different criteria for choosing the 
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appropriate solution for school shootings. Whereas the ideation of and execution with school 

shootings might be rising in popularity, the selection of the best school shooting solution is 

constrained by various factors (Arcus, 2002). Choosing the appropriate school shooting solution 

necessitates an in-depth exploration to make the process of selection more structured.  

With the rise of social issues, there is a need for prompt prevention of school shootings 

(Gerard et al., 2016). In the previous years, various studies have been carried out to test the 

feasibility of using school shooting solutions to remove the vice in society. It is challenging to 

select suitable school shooting solutions. Some school shooting solutions are effective, and others 

are less effective. Thus, it is vital to have a structured methodology for school shooting solutions 

selection. However, there is a lack of research that has been carried out to offer a standard, well-

structured methodology to perform school shooting solutions selection that would be suitable for 

any academic institution. To fill this gap, this paper suggests a standardized method to choose the 

school shooting solutions option among the list of prospective school shooting solutions that would 

be suitable for any academic institution.  

To address the literature gap, this exploration suggests a comprehensive methodology for 

choosing school shooting solutions. First, a comprehensive list of criteria requires to be developed 

to describe the solution for a school shooting. Then, a multi-criterion decision-making approach, 

namely, Interval Valued Inferential Fuzzy (IVIF) TOPSIS method, is suggested to choose a 

solution from the list of alternatives. The school shooting problem scenarios are made to derive 

managerial insights and to show the application of the proposed methodology. The contradicting 

attributes are the building blocks of the school shooting selection problem. The decision-makers 

offer linguistic evaluation, which can be converted to their numerical value and used in the MCDM 

technique via the fuzzy set theory. The MCDM methods, including the fuzzy TOPSIS, fuzzy 
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VIKOR, and fuzzy AHP, use the normal fuzzy sets. The extension of frequent fuzzy sets includes 

the type-2 fuzzy sets and intuitionistic fuzzy sets. There was the use Interval Valued Inferential 

Fuzzy (IVIF) TOPSIS technique for school shooting solutions selection problem. The method 

utilizes the IVIF sets to offer a more robust description of membership functions that can address 

the judgmental biases.  

The paper is broken down into different chapters. Chapter 2 offers the description of the 

school shootings solutions selection problem and suggests the important factors that can 

significantly impact the process of selection. Section 2.2familiarizes the audience with the IVIF 

TOPSIS decision-making model by indicating the steps of the model. In section 2.3 , a real-life 

case study indicating the distinct deployment of school shooting solutions scenarios is presented 

that shows the appropriateness of using the distinct school shooting solutions under the different 

deployment scenarios whereas disclosing the vital managerial insights of these cases. In section 5, 

there is a summarization and presentation of the further research.  

2.2 Problem Statement And Criterion Selection 

From the perspective of school administration, school shooting solutions offer an option 

for handling social vices in academic institutions. The loss of innocent lives among students is 

forcing the stakeholders in the education sector to consider deploying the solutions to addressing 

the social vice. U.S. Department of Education has recommended the many variants of addressing 

school shootings. These school shooting solutions are defined by distinguishing characteristics that 

can address the social vice in academic institutions. Thus, choosing a suitable school shooting 

solution is crucial for its efficiency. The choosing of effective school shooting solutions relies on 

various factors. The paper recommended a list of the main factors that influence the school 

shooting solutions selection. A total of twenty-eight sub-criteria have been identified and 
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categorized under the main criteria, namely, (i) physical specification, (ii) economic, (iii) 

performance, (iv) environmental, and (v) payload capacity. Notably, the criteria are sourced from 

literature. The in-depth descriptions for every sub-criterion are offered in this area. Figure indicates 

the hierarchical representation of sub-criterion under every criterion. Figure shows the 

methodology flow diagram for the application of the IVIF TOPSIS method.  

2.3 Methodology 

 As mentioned in the beginning, a survey was conducted with a focus group. A group of 

well-educated stakeholders received a group of questions discussion. The survey that was 

conducted by asking a set of open-ended questions to a small group of the target population. This 

population was all stakeholders in the education. Some participants were teachers, paraeducators, 

principals, and parents. The small group is derived from the fact that the selected groups are 

“concentrated” on a given topic. 

Thus, the selection criteria for participants in the group of survey takers include having 

domain knowledge on the topic, being within the age range, and being comfortable taking the 

survey. Compared to individual surveys, the main advantage of the selected group is in that the 

group could promote a collaboration, which results in more than the sum of each individual’s 

output. In order to achieve the objective of this study, a series of online focus group surveys were 

conducted, which could adapt geographically circulated populations in a virtual space.   

 The participants of the focus group survey were found through professional organizations 

and societies that focus on education safety, as well as experts from leading schools. Purposive 

variety was used to select participants with expertise in the two key areas, understanding the 

student population and building security. These are the following requirements to be included in 

the survey, participants must (1)  over 18 years old, (2) be D in English speaking, (3) be able to 
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hear and talk remotely, and (4) have expertise in relevant areas, such as terrorism/active shooter 

incidents, school/office building design, security engineering in buildings, and a stakeholder in the 

school. The participants’ professions were engineers, operations directors, parents, students, 

schools’ teachers, and counselors (5). All of the participants had professional experience and 

expertise closely related to education and being in the school environment. Specifically, 4 

participants have been involved in decision-making for school safety. The other participants 

mainly focus on students' and students' safety, including electronics security, anti-terrorism design, 

and crime prevention through environmental design.  

The survey was designed to rank the best alternatives/solutions according to the 

participant's knowledge and expertise. The first five questions were related to demographics. More 

than 50% of the participants were female. This number indicates that there is a larger female 

population in the education industry. More than 70% of the participants hold a degree of a master’s 

or higher. This indicates that participants are very educated and rounded in the field of education. 

The largest age group was between 30 to 45. This also correlates with the degree and level of 

experience of participants  

The first part covers the beginning of the survey, includes welcome messages, explanation 

of the survey purpose and use of data, obtainment of participants’ consent to participate in the 

study to be used, and self-introduction of the participants. In the second part, the survey asks the 

participants a demographic question, ‘How old are you’ ‘what is your highest level of education’, 

"What gender do you identify as?". All these questions assisted us with the right sample. All 

participants had great knowledge. The third part of the questions was ranking the alternatives 

according to groups. The first part of this section included an overall ranking of the groups. The 
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solutions were ranked into four main categories: 1-outside device, 2- trainings, 3-Increase Security, 

and 4- Distrations.  

 

 

Figure 2.1 All categories as solutions  

 

According to Figure 2.1 outside devices ranked the highest than came distractions. This 

can be an indicator that stakeholders do prefer having assists with some tool they can personally 

use. As you can see in Table 2.1 Training ranked the least wanted from participants. This indicates 

the lack of wanting knowledge.  
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Table 2.1 Analysis of responses for main categories 
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Figure 2.2  Methodology flow diagram with inputs. 
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Table 2.2 List of school safety alternatives  

The alternative list for school shootings solutions selection. 

 

Outside device Overall Trainings Increasing security in 

buildings 

Distractions 

All teachers carry guns Students and teachers 

do onsite training 

related to school 

shootings 

Increase Security 

guards at school 

Loud noise to distract 

the shooter 

All administration 

carries guns 

Teachers and 

Administration do 

onsite training 

Doors will have 

special lockdown 

devices 

Strong beam to distract 

the shooter 

Any administration or 

teaching will have the 

option to carry or not 

to carry guns 

Teachers and students 

do online training 

Increase metal 

detectors 

Loud noise and beam 

together 

All teachers carry 

teasers 

Teachers do online 

training 

Create an Emergency 

app 

Smoke to distract a 

shooter 

All administration 

carries a taser 

Teachers and Admin 

do online training 

All classrooms will 

have bulletproof 

jackets 
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Table 2.2 (continued) 

 Everyone does online 

training 

  

 Everyone does onsite 

training 

  

 

2.3.2 Criteria and Sub-criteria 

1. Cost of implementation 

This criterion highlights the resources required to implement the solution and whether the 

resources are readily available to the organization 

2. Effectiveness  

This criterion establishes whether the chosen intervention will yield the desired result in addressing 

the shooting menace in the school environment. 

3. Feasibility 

This criterion establishes the practicability of the proposed solution and whether it can be 

implemented within the stipulated timelines while yielding the desired results 

4. Safety 

This criterion establishes the safety of the intervention and whether it is likely to predispose the 

people in the school environment to further pressure and anxiety. 
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2.3.3 Interval Valued Intuitionistic Fuzzy Multi-Criterion Decision Making Model: 

In this section, we introduce a robust hierarchical group decision-making model that can 

be applied to any complex multi-criteria decision-making problem. This model (Oztaysi et al., 

2017) used the concept of interval-valued intuitionistic fuzzy (IVIF) preference relations along 

with the IVIF-TOPSIS decision-making method. The methodology begins with pairwise 

comparisons between different criteria and alternatives followed by several sequential steps for 

obtaining the final set of decisions with the overall weightage of different alternatives. For creating 

a better understanding of the method, in this section, we provided some basic definitions of IVIF 

sets and relevant calculations of IVIFS along with step by step illustration of procedures for 

applying IVIF sets in the multi-criterion decision-making process. Interested readers are suggested 

to follow the article Oztaysi et al. (2017) for learning more about IVIF numbers and their basic 

calculations.  

Definition 3.1: Interval Valued Intuitionistic Fuzzy Numbers 

Interval-valued inferential fuzzy set 𝐼 over the universe of discourse 𝑋 can be defined as: 

})(),(,{
~

XxxxxI II = 
, where ]1,0[C is the set of all closed subintervals of intervals, 

where ]1,0[C is the set of all closed intervals of the interval 

]1,0[)(],1,0[ ⎯→⎯⎯→⎯ CxC II 
with the conditions 

Xxxx ii + ,1)(sup)(sup0 
. 

 

Definition 3.2: Hesitancy degree of IVIF numbers 

The unknown degree or hesitancy degree of IVIF numbers of Xx in 𝐼 = 
   ( )+−+−

IIII  ,,,
 can be 

represented as 
))(),(())()(1),()(1()()(1)( xxxxxxxxx u

I

l

IIIIIIII  =−−−−=−−= −−++

. 
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Here, 
 +−= III x  ,)(

 and 
 +−= III x  ,)(

 

 

Definition 3.3: Score function 

For any IVIFN 𝐼 the score function defined in equation (1)  

𝑆(𝐼) =
𝜇𝐼
− + 𝜇𝐼

+ − 𝜈𝐼
− − 𝜈𝐼

+

2
 (2.1) 

 

 

Definition 3.4: Accuracy function 

For any IVIFN 𝐼, the accuracy function is determined following equation (2). 

𝐻(𝐼) =
𝜇𝐼
− + 𝜇𝐼

+ + 𝜈𝐼
− + 𝜈𝐼

+

2
 (2.2) 

 

The step by step procedure for conducting the proposed MCDA approach is described as 

follows:   

Step 1: In the first step, we should define the MCDA problem of interest and represent it in a 

hierarchical structure with n criteria, sub-criterion (if any), and m decision alternatives. In addition, 

the experts' inputs should be collected, and pairwise comparison matrices should be formed 

following the linguistic comparison scale shown in table 1.14(Oztaysi et al., 2015). Table 2 

represents a simple form of data accumulation table having pairwise comparison values in it. This 

kind of table should be formed for all criteria and sub-criterions levels for every expert providing 

inputs to the study.  
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Table 2.3 Linguistic scale with corresponding IVIFS (Oztaysi et al., 2015). 

Linguistic terms IVIFS 

Absolutely Low (AL) ([0.10, 0.25],[0.65, 0.75]) 

Very Low (VL) ([0.15, 0.30],[0.60, 0.70]) 

Low (L) ([0.20, 0.35],[0.55, 0.65]) 

Medium Low (ML) ([0.25, 0.40],[0.50, 0.60]) 

Exactly Equal (EE) ([0.50, 0.50],[0.50, 0.50]) 

Approximately Equal (AE) ([0.45, 0.55],[0.30, 0.45]) 

Medium High (MH) ([0.50, 0.60],[0.25, 0.40]) 

High (H) ([0.55, 0.65],[0.20, 0.35]) 

Very High (VH) ([0.60, 0.70],[0.15, 0.30]) 

Absolutely High (AH) ([0.65, 0.75],[0.10, 0.25]) 
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Table 2.4 Example of a basic pairwise comparison matrix using linguistic scales 

𝒌th decision maker 1st criterion 2nd criterion 3rd criterion … 𝑛th criterion  

1st criterion EE AL MH  EE 

2nd criterion  EE VH  MH 

3rd criterion   EE  ML 

….      

𝑛th criterion      EE 

 

Step 2: The linguistic data obtained in the previous step should be converted to their corresponding 

IVIFS according to table 3. This conversion will yield individual IVIF judgement matrices P
~

for 

each decision-maker. Since this is a pairwise comparison matrix, the dimension of this matrix is 

𝑛 × 𝑛. The definition of this IVIF judgement matrix P
~

= (𝑝𝑖𝑗)𝑛×𝑛 can be seen in equation (3) 

where 𝑖(𝑖 = 1,2,3, ……𝑛) and 𝑗(𝑗 = 1,2,3, ……𝑛) represents the criterion number. 

 

�̃� = [
([𝜇11

− , 𝜇11
+ ], [𝜈11

− , 𝜈11
+ ]) . . . ([𝜇1𝑛

− , 𝜇1𝑛
+ ], [𝜈1𝑛

− , 𝜈1𝑛
+ ])

⋮ ⋱ ⋮
([𝜇𝑛1

− , 𝜇𝑛1
+ ], [𝜈𝑛1

− , 𝜈𝑛1
+ ]) … ([𝜇𝑛𝑛

− , 𝜇𝑛𝑛
+ ], [𝜈𝑛𝑛

− , 𝜈𝑛𝑛
+ ])

] (2.3) 

 

 

Note that the reciprocal value of any IVIF number 
   +−+−

ijijijij  ,,,
 will be simply 

   +−+−

jijijiji  ,,,
. 

Step 3: After constructing all the pairwise matrices and using IVIFS for each expert, all the 

corresponding matrices are aggregated into a single judgement matrix �̃�𝑔 (equation 4). This 
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aggregation is done by following equation (5) where 
   +−+−= iiiii  ,,,~

(𝑖 = 1,2, …… , 𝑛) is a 

collection of IVIF numbers and 𝑤 represents the set of experts weights 𝑤 = (𝑤1, 𝑤2, …… ,𝑤𝑛) 

such that 𝑤𝑖 ∈ [0,1], ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.   

𝑊𝐴𝑤(�̃�1, �̃�2, . . . . . . , �̃�𝑛) = ⟨[1 −∏(1 − 𝜇𝑖
−)𝑤𝑖

𝑛

𝑖=1

, 1 −∏(1 − 𝜇𝑖
+)𝑤𝑖

𝑛

𝑖=1

] , [∏(𝜈𝑖
−)𝑤𝑖

𝑛

𝑖=1

,∏(𝜈𝑖
+)𝑤𝑖

𝑛

𝑖=1

]⟩ (2.4) 

 

Step 4: In this step, the score judgement matrix S
~

= (�̃�𝑖𝑗)𝑛×𝑛  and interval multiplicative matrix 

A
~

= (�̃�𝑖𝑗)𝑛×𝑛 should be constructed by using equations 6 and 7, respectively. The values of this 

obtained matrix A
~

 is between 0 and 1. 

�̃� = [

[𝜇𝑔11
− − 𝜈𝑔11

+ , 𝜇𝑔11
+ − 𝜈𝑔11

− ] … [𝜇𝑔1𝑛
− − 𝜈𝑔1𝑛

+ , 𝜇𝑔1𝑛
+ − 𝜈𝑔1𝑛

− ]

⋮ ⋱ ⋮
[𝜇𝑔𝑛1
− − 𝜈𝑔𝑛1

+ , 𝜇𝑔𝑛1
+ − 𝜈𝑔𝑛1

− ] … [𝜇𝑔𝑛𝑛
− − 𝜈𝑔𝑛𝑛

+ , 𝜇𝑔𝑛𝑛
+ − 𝜈𝑔𝑛𝑛

− ]
] (2.5) 

 

 

�̃� = [
[𝑒(𝜇𝑔11

− −𝜈𝑔11
+ ), 𝑒(𝜇𝑔11

+ −𝜈𝑔11
− )] … [𝑒(𝜇𝑔1𝑛

− −𝜈𝑔1𝑛
+ ), 𝑒(𝜇𝑔1𝑛

+ −𝜈𝑔1𝑛
− )]

⋮ ⋱ ⋮

[𝑒(𝜇𝑔𝑛1
− −𝜈𝑔𝑛1

+ ), 𝑒(𝜇𝑔𝑛1
+ −𝜈𝑔𝑛1

− )] … [𝑒(𝜇𝑔𝑛𝑛
− −𝜈𝑔𝑛𝑛

+ ), 𝑒(𝜇𝑔𝑛𝑛
+ −𝜈𝑔𝑛𝑛

− )]

]

= [
[�̃�11
− , �̃�11

+ ] … [�̃�1𝑛
− , �̃�1𝑛

+ ]
⋮ ⋱ ⋮

[�̃�𝑛1
− , �̃�𝑛1

+ ] … [�̃�𝑛𝑛
− , �̃�𝑛𝑛

+ ]
] 

(2.6) 

 

Step 5: After computing the interval multiplicative matrix A
~

, the priority vector of this 

exponential matrix can be computed as follows. 

 

�̃�𝑖 = [
∑ �̃�𝑖𝑗

−𝑛
𝑗=1

∑ ∑ �̃�𝑖𝑗
+𝑛

𝑗=1
𝑛
𝑖=1

,
∑ �̃�𝑖𝑗

+𝑛
𝑗=1

∑ ∑ �̃�𝑖𝑗
−𝑛

𝑗=1
𝑛
𝑖=1

] = [𝑤𝑖
−, 𝑤𝑖

+], 𝑖 = 1,2, . . . . . . , 𝑛 (2.7) 
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Step 6: In this step, the weights iw~
obtained in step 5 should be compared, and the possibility 

degree matrix is obtained following equations (9) and (10).  

 

𝜓(�̃�𝑖 > �̃�𝑗) = 𝜓𝑖𝑗 =
𝑚𝑎𝑥( 0,𝑤𝑖

+ − 𝑤𝑗
−) − 𝑚𝑎𝑥( 0, 𝑤𝑖

− − 𝑤𝑗
+)

(𝑤𝑖
+ − 𝑤𝑖

−) + (𝑤𝑗
+ − 𝑤𝑗

−)
 (2.8) 

 

𝜓(�̃�𝑗 > �̃�𝑖) = 𝜓𝑗𝑖 =
𝑚𝑎𝑥( 0,𝑤𝑗

+ − 𝑤𝑖
−) − 𝑚𝑎𝑥( 0, 𝑤𝑗

− − 𝑤𝑖
+)

(𝑤𝑖
+ − 𝑤𝑖

−) + (𝑤𝑗
− − 𝑤𝑗

+)
 (2.9) 

 

where 
.,1,0 2

1==+ iijiijij 
 The possibility matrix 

( )
nnij 

= 
 prioritization is done 

according to (11).  

 

𝑤𝑖 =
∑ 𝜓𝑖𝑗 − 1
𝑛
𝑗=1

𝑛
+ 0.5 (2.10) 

 

Step 7: Next, the vector iw
comprising of weights for criteria and sub criteria are normalized, and 

this normalized matrix is obtained by the following equation. 

 

𝑤𝑖
𝑇 =

𝑤𝑖
∑ 𝑤𝑖
𝑛
𝑖=1

 (2.11) 

 

Step 8: The weight calculation should be done for all criteria and sub-criterion of the hierarchy 

following step 1 to 7. After performing this step, we should have all the weights for criteria and 

sub-criterions listed as vectors that will be used in the alternative evaluation.  

Step 9: From this step, we should start the incorporation of IVIF-TOPSIS method into our model 

(Ye, 2010). First, we obtain the decision matrix [ kD
~

] from each decision-maker using the same 
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table 1.14 as a basis for comparison. Equation 11 depicts the anatomy of the decision matrix [ kD
~

] where 𝑛 and 𝑚 stands for the number of criterion (𝑖 = 1,2, …… , 𝑛) and number of alternatives 

(𝑗 = 1,2, …… ,𝑚) respectively.  The overall IVIF-TOPSIS method is elaborated in Step 10. 

 

   ( )    ( )    ( )
   ( )    ( )    ( )

   ( )    ( )    ( )+−+−+−+−+−+−

+−+−+−+−+−+−

+−+−+−+−+−+−

=

nmknmknmknmkknknknknknknknknn

mkmkmkmkkkkkkkkk

mkmkmkmkkkkkkkkk

m

k

C

C

C

AAA

D







,,,,,,,,,

,,,,,,,,,

,,,,,,,,,
~

22221111

222222222222212121212

111112121212111111111

21











 

(2.12) 

 

Here, 𝐶1, 𝐶2,…, 𝐶𝑛 represents the weight vector of element 𝑛. 

Step 10: The TOPSIS method requires the definition of positive and negative ideal solutions for 

each criterion, and these inputs are obtained from experts. The fuzzy positive ideal solution 
+

kSI
~

 

and fuzzy negative ideal solution 
−

kSI
~

for 𝑘th decision maker is obtained by using equations (2.13) 

and (2.14) along with the score function (1) and accuracy functions (2) as appropriate.  

 

𝐼�̃�𝑘
+ = (([𝜇1*𝑘

− , 𝜇1*𝑘
+ ], [𝜈1*𝑘

− , 𝜈1*𝑘
+ ]), ([𝜇2*𝑘

− , 𝜇2*𝑘
+ ], [𝜈2*𝑘

− , 𝜈2*𝑘
+ ]), . . . . . . , ([𝜇𝑛*𝑘

− , 𝜇𝑛*𝑘
+ ], [𝜈𝑛*𝑘

− , 𝜈𝑛*𝑘
+ ])) (2.13) 

 

𝐼�̃�𝑘
− = (([𝜇1−𝑘

− , 𝜇1−𝑘
+ ], [𝜈1−𝑘

− , 𝜈1−𝑘
+ ]), ([𝜇2−𝑘

− , 𝜇2−𝑘
+ ], [𝜈2−𝑘

− , 𝜈2−𝑘
+ ]), . . . . . . , ([𝜇𝑛−𝑘

− , 𝜇𝑛−𝑘
+ ], [𝜈𝑛−𝑘

− , 𝜈𝑛−𝑘
+ ])) (2.14) 

 

Here, 
   ( )+−+−

kkkk *1*1*1*1 ,,, 
 and 

   ( )+

−

−

−

+

−

−

− kkkk 1111 ,,, 
 are representatives of maximum and 

minimum intuitionistic fuzzy sets respectively among the alternatives’ values for 𝑖th criterion. 
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Next, the separation measures between 𝑗th alternative and 
+

kSI
~

 and 
−

kSI
~

for each decision maker 

can be obtained as follows.  

 

𝐷𝑗
*𝑘 = √1 2⁄ ∑𝑤𝑖

𝑇 [(𝜇𝑖𝑗𝑘
− − 𝜇1*𝑘

− )
2
+ (𝜇𝑖𝑗𝑘

+ − 𝜇1*𝑘
+ )

2
+ (𝜈𝑖𝑗𝑘

− − 𝜈1*𝑘
− )

2
+ (𝜈𝑖𝑗𝑘

+ − 𝜈1*𝑘
+ )

2
+ (𝜋𝑖𝑗𝑘

𝑙 − 𝜋𝑖*𝑘
𝑙 )

2
+ (𝜋𝑖𝑗𝑘

𝑢 − 𝜋𝑖*𝑘
𝑢 )

2
]

𝑛

𝑖−1

 (2.15) 

 

𝐷𝑗
−𝑘 = √1 2⁄ ∑𝑤𝑖

𝑇 [(𝜇𝑖𝑗𝑘
− − 𝜇1−𝑘

− )
2
+ (𝜇𝑖𝑗𝑘

+ − 𝜇1−𝑘
+ )

2
+ (𝜈𝑖𝑗𝑘

− − 𝜈1−𝑘
− )

2
+ (𝜈𝑖𝑗𝑘

+ − 𝜈1−𝑘
+ )

2
+ (𝜋𝑖𝑗𝑘

𝑙 − 𝜋𝑖−𝑘
𝑙 )

2
+ (𝜋𝑖𝑗𝑘

𝑢 − 𝜋𝑖−𝑘
𝑢 )

2
]

𝑛

𝑖−1

 (2.16) 

 

where 
u

ijk

l

ijk  ,
 and 

u

ki

l

ki ** ,
 are calculated following the hesitancy degree equation (Definition 

3.2). 

Finally, the separation measures are aggregated following (18) and (19). Equation (20) 

provides the overall closeness co-efficient for all alternatives. The values of this closeness 

coefficient jU
dictates the preference order of alternatives where the larger value means more 

preference. The final ranking of alternatives is done based of this closeness coefficient jU
. 

𝐷𝑗
* =∑(𝜆𝑘𝐷𝑗

*𝑘)

𝑘

𝑘=1

 (2.17) 

 

𝐷𝑗
− =∑(𝜆𝑘𝐷𝑗

−𝑘)

𝑘

𝑘=1

 (2.18) 

 

𝑈𝑗 =
𝐷𝑗
−

𝐷𝑗
− + 𝐷𝑗

+ (2.19) 
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2.4 Case Study 

This paper showcases a comprehensive case study familiarizing an actual issue experienced 

by tertiary institutions with rude and impolite students. As the corporations pursue the decision to 

apply the solutions for a school shooting, they require choosing at least one solution relying on the 

requirements among a diversity of available solutions with distinct capabilities. After thoroughly 

examining the characteristics of the available solutions, four alternatives were chosen. For each of 

the solutions for school shootings is perceived as distinguishing factor. Every category has distinct 

combinations of these features to help in the proof of notion. The chosen solutions for school 

shootings have been suggested by different tertiary institutions are selected grounded on the 

common characteristics for the purpose of visualization.  

First, the input parameters of the characters have illuminated the summary of the attributes 

of the chosen solutions for school shootings. We applied the IVIF TOPSIS method, a robust 

MCDA methodology, to get the outcomes of the base case. By assessing the distinct actual 

requirements of the school, multiple sensitivity analyses producing distinct realistic scenarios are 

performed. The outcomes of the sensitivity analysis disclose the major managerial insights that 

can be used to offer the policymakers a baseline to make school shooting selection relying on 

distinct use cases. 

Table 2.5 Weights  for criteria  

Criteria Weight 

Cost of 

Implementation 

0.25 

Effectiveness 0.25 

Feasibility 0.25 

Safety 0.25 
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Table 2.6 Alternatives Scores 

Alternatives Score  Weight 

Outside Device 3.08 0.311 

Training 2 0.202 

Increasing 

Security 

2.19 0.221 

Distractions 2.63 0.266 

 

Table 2.7 Pairwise matrix  

Pairwise Comparison Matrix 
 

 
Cost of 

Implementation 

Effectiveness Feasibility Safety 

Cost of 

implementation 

EE L MH L 

Effectiveness 
 

EE H VH 

Feasibility 
  

EE MH 

Safety 
   

EE 

 

Table 2.8 Score Judgment matrix  

  Cost of 

Implementation 

Effectiveness Feasibility Safety 

Cost of 

implementation 

(0,0) (-0.35,-0.30) (0.25,0.20) (-0.35,-0.3) 

Effectiveness 
 

(0,0) (0.35,0.30) (0.45,0.40) 

Feasibility 
  

(0,0) (0.25,0.20) 

Safety       (0,0) 
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Table 2.9 Interval Exponential Matrix  

  Cost of 

Implementation 
Effectiveness Feasibility Safety 

Cost of 

implementation 
[1,1] 

[0.70468809, 

0.740818221] 

[1.284025417, 

1.221402758] 

[0.70468809, 

0.740818221] 

Effectiveness  [1,1] 
[1.419067549, 

1.349858808] 

[1.568312185, 

1.491824698] 

Feasibility   [1.1] 
[1.284025417, 

1.221402758] 

Safety       [1,1] 
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Table 2.10 Decision Maker one  rankings and solutions 

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
ML MH VH VL 

Effectiveness ML H H VL 

Feasibility H VH MH ML 

Safety L VH VH VL 

     
     

 
Pairwise Comparison Matrix 

 

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 

([0.25, 0.40], 

[0.50, 0.60]) 

([0.50, 0.60], 

[0.25, 0.40]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.15, 0.30], 

[0.60, 0.70]) 

Effectiveness ([0.25, 0.40], 

[0.50, 0.60]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.15, 0.30], 

[0.60, 0.70]) 

Feasibility ([0.55, 0.65], 

[0.20, 0.35]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.50, 0.60], 

[0.25,0.40]) 

([0.25, 0.40], 

[0.50, 0.60]) 

Safety ([0.20, 0.35], 

[0.55, 0.65]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.15, 0.30], 

[0.60, 0.70])      

 
Score Judgement Matrix 

 

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
(-0.25,-0.2) (0.25,0.20) (0.45,0.40) (-0.45,-0.40) 

Effectiveness (-0.25,-0.2) (0.35,0.30) (0.35,0.30) (-0.45,-0.40) 

Feasibility (0.35,0.30) (0.45,0.40) (0.25,0.20) (-0.25,-0.2) 

Safety (-0.35,-0.30) (0.45,0.40) (0.45,0.40) (-0.45,-0.40) 
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Table 2.11 Decision Maker two rankings and solutions 

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
ML H AH L 

Effectiveness MA MH EE AL 

Feasibility MH H ML ML 

Safety EE AH MH ML 
     

     

 Pairwise Comparison Matrix  

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 

([0.25, 0.40], 

[0.50, 0.60]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.65, 0.75], 

[0.10, 0.25]) 

([0.20, 0.35], 

[0.55, 0.65]) 

Effectiveness 
([0.50, 0.60], 

[0.25, 0.40]) 

([0.50, 0.60], 

[0.25, 0.40]) 

([0.50, 0.50], 

[0.50, 0.50]) 

([0.10, 0.25], 

[0.65, 0.75]) 

Feasibility 
([0.50, 0.60], 

[0.25, 0.40]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.25, 0.40], 

[0.50, 0.60]) 

([0.25, 0.40], 

[0.50, 0.60]) 

Safety 
([0.50, 0.50], 

[0.50, 0.50]) 

([0.65, 0.75], 

[0.10, 0.25]) 

([0.50, 0.60], 

[0.25, 0.40]) 

([0.25, 0.40], 

[0.50, 0.60]) 

     

 Score Judgemnt Matrix  

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
(-0.25,-0.20) (0.35,0.30) (0.55,0.50) (-0.35,-0.30) 

Effectiveness (0.25,0.20) (0.25,0.20) (0,0) (-0.55,-0.50) 

Feasibility (0.25,0.20) (0.35,0.30) (-0.25,-0.20) (-0.25,-0.20) 

Safety (0,0) (0.55,0.50) (0.25,0.20) (-0.25,-0.20) 

 

  



 

65 

Table 2.12 Decision Maker three rankings and solutions 

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
L VH AH ML 

Effectiveness VL AE H AL 

Feasibility MH H AE L 

Safety VL VH VH ML 
     

 Pairwise Comparison Matrix  

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 

([0.20, 0.35], 

[0.55, 0.65]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.65, 0.75], 

[0.10, 0.25]) 

([0.25, 0.40], 

[0.50, 0.60]) 

Effectiveness 
([0.15, 0.30], 

[0.60, 0.70]) 

([0.45, 0.55], 

[0.30, 0.45]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.10, 0.25], 

[0.65, 0.75]) 

Feasibility 
([0.50, 0.60], 

[0.25, 0.40]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.45, 0.55], 

[0.30, 0.45]) 

([0.20, 0.35], 

[0.55, 0.65]) 

Safety 
([0.15, 0.30], 

[0.60, 0.70]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.25, 0.40], 

[0.50, 0.60]) 
     

 Score Judgement Matrix  

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
(-0.35,-0.30) (0.45,0.40) (0.55,0.50) (-0.25,-0.2) 

Effectiveness (-0.45,-0.4) (-0.15,-0.10) (0.35,0.30) (-0.55,-0.50) 

Feasibility (0.25,0.2) (0.35,0.30) (-0.15,-0.10) (-0.35,-0.30) 

Safety (-0.45,-0.4) (0.45,0.40) (0.45,0.40) (-0.25,-0.2) 
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Table 2.13 Decision Maker three rankings and solutions 

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
ML MH H MH 

Effectiveness VL MH VH L 

Feasibility AE H H L 

Safety L AE H AL 
     

     

 Pairwise Comparison Matrix  

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 

([0.25, 0.40], 

[0.50, 0.60]) 

([0.50, 0.60], 

[0.25, 0.40]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.50, 0.60], 

[0.25, 0.40]) 

Effectiveness 
([0.15, 0.30], 

[0.60, 0.70]) 

([0.50, 0.60], 

[0.25, 0.40]) 

([0.60, 0.70], 

[0.15, 0.30]) 

([0.20, 0.35], 

[0.55, 0.65]) 

Feasibility 
([0.45, 0.55], 

[0.30, 0.45]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.20, 0.35], 

[0.55, 0.65]) 

Safety 
([0.20, 0.35], 

[0.55, 0.65]) 

([0.45, 0.55], 

[0.30, 0.45]) 

([0.55, 0.65], 

[0.20, 0.35]) 

([0.10, 0.25], 

[0.65, 0.75]) 
     

 Score Judgement Matrix  

Criteria Outside device Training Increase security Distractions 

Cost of 

Implementation 
(-0.25,-0.20) (0.25,0.20) (0.35,0.30) (0.25,0.20) 

Effectiveness (-0.45,-0.40) (0.25,0.20) (0.45,0.40) (-0.35,-0.30) 

Feasibility (0.15,0.10) (0.35,0.30) (0.35,0.30) (-0.35,-0.30) 

Safety (-0.35,-0.30) (0.15,0.10) (0.35,0.30) (-0.55,-0.50) 

 

2.4.1 Scenario 1: Large School Setting   

According to the Department of Education, school shooting has become a hurdle towards academic 

brilliance in many tertiary institutions. Hence, the stakeholders prefer having assistance with some 

tools they can use. The base station should be located at the school such that the solutions can 

cover the students in the most affected areas. In this scenario, the outside device shows the highest 

preference ranking compared to others.  
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Table 2.14  Preferred solution for large school setting 

School Shooting 

Solution 

Weight  Score   

Outside Device 0.311  3.08* 

Training 0.202 2 

Increasing Security 0.211 2.19 

Distraction 0.266 2.63 

Distraction 

*Preferred School Shooting Solution 

 

2.4.2 Scenario 2: Small school Setting  

The different stakeholders in the education sector choose the solution that students and 

teachers do onsite training related to school shootings. In this scenario, distractions show the 

highest preference ranking compared to others. 
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Table 2.15 Preferred solution in small school setting 

School Shooting 

Solution 

Weight  Score   

Outside Device 0.111  1.6 

Training 0.202 2 

Increasing Security 0.211 2.19 

Distraction 0.266 2.63* 

Distraction 

*Preferred School Shooting Solution 

 

2.4.3 Scenario 3: K-12 schools   

The different stakeholders in the education sector choose the solution; increasing security 

will decrease the level of school shootings. In this scenario, the outside device shows the highest 

preference ranking compared to distraction and outside devices. 

Table 2.16 Preferred solution for K-12 

School Shooting 

Solution 

Weight  Score   

Outside Device 0.311  3.08* 

Training 0.202 2 

Increasing Security 0.211 2.19 

Distraction 0.266 2.63 

Distraction 

*Preferred School Shooting Solution 
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2.5 Conclusion 

The paper recommends a methodology for choosing the school shooting solutions. A list 

of criteria will be suitable for comparing the solutions for school shooting are proposed. A multi-

criterion Interval Valued Inferential Fuzzy TOPSIS method is suggested to carry out this 

assessment. The suggested methodology can address the fuzziness in making decisions and offer 

the best outcomes relying on the use cases. The use of the decision-making model by crafting an 

actual case study is shown. Also, the various sensitivity analyses are carried out, and the outcomes 

from the analyses offer the knowledge for the decision-makers who engage in the process. Overall, 

the analyses provide a clear notion regarding the appropriate solution grounded on distinct 

circumstances. This work can be elongated into distinct directions. To address the uncertainty in 

decision-making, distinct kinds of fuzzy sets can be applied. The use of distinct kinds of fuzzy sets 

in terms of making decisions forms an important element that necessitates further investigation. 

The best solution for multi-criteria solution for a school shooting is outside devices. Continuous 

seminars on using outside devices among students are effective because they will help develop 

insight among the students on the need to avoid school shootings in academic institutions and 

embrace peace. 
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APPENDIX A 

DECISION MATRIX  
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Table A.1 Decision matrix for stationary urban canyon scenario (Scenario 1) 

 

 

 

 

 

Criterion Detail Drone A Drone B Drone C Drone D 

𝐴1 UAS overall size VH VH VL AL 

𝐴2 Weight VH H ML AL 

𝐴3 Drone Type VH VH VL AL 

𝐴4 Fuel Type VH VH VH AL 

𝐵1 Internal Computing Components ML MH AE ML 

𝐵2 Location and Proximity Accuracy ML VH H AE 

𝐵3  Communication and Data Quality ML H H MH 

𝐵4 Traceability ML H H MH 

𝐵5 Reliability ML VH H MH 

𝐶1 Repair Cost H VL AE VL 

𝐶2 Total Unit Cost VH AE ML L 

𝐶3 Total Lifecycle Cast H L ML VL 

𝐶4 Operating Cost VH H ML AE 

𝐶5 Training Grit MH VH L L 

𝐷1 Adaptability H VH MH ML 

𝐷2 Environmental Impact VH H H VL 

𝐷3 Recharge/ Refuel location VH VH ML H 

𝐷4 Required Delivery Distance ML VH VH AH 

𝐸1 Max Flight Time ML VH VH VH 

𝐸2 Total Recharge/   fuel Time MH AE AE AH 

𝐸3 Charge/Fuel Usage Rate H MN AE ML 

𝐸4 Maximum Load AE H H VH 

𝐸5 Maximum Carry Dimensions AE H H VH 

𝐸6 Maximum Reachable Altitude VL H AH AH 

𝐸7 Drone Speed ML ML VH H 

𝐸8 Adaptability to Dynamic Assignment VL VH MH AE 

𝐸9 Package Handling Flexibility AE MH ML VH 

𝐸10 Delivery Flexibility VH AH VL AL 
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Table A.2 Decision matrix for truck based urban canyon scenario (Scenario 2) 

Criterion Detail  Drone A Drone B Drone C Drone D 

𝐴1 UAS overall size AH VH V L AL 

𝐴2 Weight AH H ML AL 

𝐴3 Drone Type AH AH V L AL 

𝐴4 Fuel Type AH AH AH AL 

𝐵1 Internal Computing Components L H H AE 

𝐵2 Location and Proximity Accuracy ML VH H AE 

𝐵3  Communication and Data Quality ML H H MH 

𝐵4 Traceability ML H H MH 

𝐵5 Reliability ML VH H MH 

𝐶1 Repair Cost VH MH AE L 

𝐶2 Total Unit Cost VH MH AE L 

𝐶3 Total Lifecycle Cost VH AE AE L 

𝐶4 Operating Cost VH H ML L 

𝐶5 Training Cost H VH L VL 

𝐷1 Adaptability VH AH AE L 

𝐷2 Environmental Impact VH VH H AL 

𝐷3 Recharge/ Refuel Location AH AH V L AL 

𝐷4 Required Delivery Distance ML VH VH AH 

𝐸1 Max Flight Time ML VH VH VH 

𝐸2 Total Recharge/Refuel Time H MH MH AH 

𝐸3 Charge/Fuel Usage Rate AE H H AE 

𝐸4 Maximum Load ML H H VH 

𝐸5 Maximum Carry Dimensions ML H H VH 

𝐸6 Maximum Reachable Altitude AE AH AH AH 

𝐸7 Drone Speed ML ML VH H 

𝐸8 Adaptability to Dynamic Assignment VL VH MH AE 

𝐸9 Package Handling Flexibility AE MH ML VH 

𝐸10 Delivery Flexibility VH AH L V L 
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Table A.3  Decision matrix for truck-based rural area scenario (Scenario 3) 

Criterion Detail Drone A 

Drone 

B 

Drone 

C 

Drone 

D 

𝐴1 UAS overall size AH VH VL AL 

𝐴2 Weight AH H ML AL 

𝐴3 Drone Type AH AH H ML 

𝐴4 Fuel Type A H AH AH AE 

𝐵1 Internal Computing Components VL H H MH 

𝐵2 Location and Proximity Accuracy L AH H MH 

𝐵3  Communication and Data Quality L AH H MH 

𝐵4 Traceability L H H MH 

𝐵5 Reliability ML VH H MH 

𝐶1 Repair Cost H AE ML AL 

𝐶2 Total Unit Cost AE ML ML VL 

𝐶3 Total Li recycle Cost H MH MH ML 

𝐶4 Operating Cost VH H ML L 

𝐶5 Training Cast H H ML ML 

𝐷1 Adaptability VH AH MH AE 

𝐷2 Environmental Impact VH V H H AL 

𝐷3 Recharge/ Refuel Location AH H MH ML 

𝐷4 Required Delivery Distance AL VH VH AH 

𝐸1 Max Flight Time AL VH VH VH 

𝐸2 Total Recharge/Refuel Time H MH MH AH 

𝐸3 Charge /Fuel Usage Rate AE H H AE 

𝐸4 Maximum Load L MH VH AH 

𝐸5 Maximum Carry Dimensions L MH VH AH 

𝐸6 Maximum Reachable Altitude ML H AH AH 

𝐸7 Drone Speed ML ML VH H 

𝐸8 
Adaptability to Dynamic 

Assignment VL V H MH AE 

𝐸9 Package Handling Flexibility ML MH H VH 

𝐸10 Delivery Flexibility AE AH H MH 
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Table A.4 Decision matrix for disaster affected area scenario (Scenario 4) 

Criterion Detail Drone A Drone B Drone C Drone D 

𝐴1 UAS overall size VL L AE VH 

𝐴2 Weight VL AE AE VH 

𝐴3 Drone Type AE AE AE AE 

𝐴4 Fuel Type L L L H 

𝐵1 Internal Computing Components AE H H MH 

𝐵2 Location and Proximity Accuracy AE H H H 

𝐵3  Communication and Data Quality AE H H H 

𝐵4 Traceability AE H H H 

𝐵5 Reliability L ML AE H 

𝐶1 Repair Cost AE AE AE AE 

𝐶2 Total Unit Cost AE AE AE AE 

𝐶3 Total Lifecycle Cost AE AE AE AE 

𝐶4 Operating Cost ML L V L AE 

𝐶5 Training Cost MH MH AE AE 

𝐷1 Adaptability VL L MH VH 

𝐷2 Environmental Impact VH H H AE 

𝐷3 Recharge/ Refuel Location L L L VH 

𝐷4 Required Delivery Distance AL AE AE AH 

𝐸1 Max Flight Time AL AE AE VH 

𝐸2 Total Recharge /Refuel Time AE AE AE AH 

𝐸3 Charge/Fuel Usage Rate AE AE AE AE 

𝐸4 Maximum Load AL L ML VH 

𝐸5 Maximum Carry Dimensions AL ML MH VH 

𝐸6 Maximum Reachable Altitude AL VL AH AH 

𝐸7 Drone Speed ML ML VH H 

𝐸8 
Adaptability to Dynamic 

Assignment AE VH H MH 

𝐸9 Package Handling Flexibility AL ML MH VH 

𝐸10 Delivery Flexibility AL MH VH AH 
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