239 research outputs found

    Diverse Contributions to Implicit Human-Computer Interaction

    Full text link
    Cuando las personas interactúan con los ordenadores, hay mucha información que no se proporciona a propósito. Mediante el estudio de estas interacciones implícitas es posible entender qué características de la interfaz de usuario son beneficiosas (o no), derivando así en implicaciones para el diseño de futuros sistemas interactivos. La principal ventaja de aprovechar datos implícitos del usuario en aplicaciones informáticas es que cualquier interacción con el sistema puede contribuir a mejorar su utilidad. Además, dichos datos eliminan el coste de tener que interrumpir al usuario para que envíe información explícitamente sobre un tema que en principio no tiene por qué guardar relación con la intención de utilizar el sistema. Por el contrario, en ocasiones las interacciones implícitas no proporcionan datos claros y concretos. Por ello, hay que prestar especial atención a la manera de gestionar esta fuente de información. El propósito de esta investigación es doble: 1) aplicar una nueva visión tanto al diseño como al desarrollo de aplicaciones que puedan reaccionar consecuentemente a las interacciones implícitas del usuario, y 2) proporcionar una serie de metodologías para la evaluación de dichos sistemas interactivos. Cinco escenarios sirven para ilustrar la viabilidad y la adecuación del marco de trabajo de la tesis. Resultados empíricos con usuarios reales demuestran que aprovechar la interacción implícita es un medio tanto adecuado como conveniente para mejorar de múltiples maneras los sistemas interactivos.Leiva Torres, LA. (2012). Diverse Contributions to Implicit Human-Computer Interaction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17803Palanci

    A Browser Extension Assisting Tabbed Browsing Behavior Research

    Get PDF
    This thesis is focused on the tabbed browsing behavior research with the assistance of a Chrome browser extension. A Chrome browser extension was designed and developed, aiming to better collect and arrange browsing behavioral data. This thesis put an emphasis on the engineering aspect of the extension. After the extension was developed, a lab study were carried out to validate the usability of the extension and to explore the relation between task difficulty and browsing behaviors. Results show that applying new metrics and hierarchical linear model improves the prediction performance for task difficulty. Results also report a few behavioral observations to further validate the outcomes of the lab study. These findings can potentially help design systems that better predict the task difficulty and provide assistance for users in case of browsing clutter

    Interactive visualization for information analysis in medical diagnosis

    Get PDF
    This paper investigates to what extend the findings and solutions of information analysis in intelligence analysis can be applied and transferred into the medical diagnosis domains. Interactive visualization is proposed to address some of the problems faced by both domain. Its design issues related to selected common problems are then discussed in details. Finally, a visual sense making system INVISQUE is used as an example to illustrate how the interactive visualization can be used to support information analysis and medical diagnosis

    Providing end-user facilities to simplify ontology-driven web application authoring

    Full text link
    This is the author’s version of a work that was accepted for publication in Interacting with Computers. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Interacting with Computers, Interacting with Computers 17, 4 (2007) DOI: 10.1016/j.intcom.2007.01.006Generally speaking, emerging web-based technologies are mostly intended for professional developers. They pay poor attention to users who have no programming abilities but need to customize software applications. At some point, such needs force end-users to act as designers in various aspects of software authoring and development. Every day, more new computing-related professionals attempt to create and modify existing applications in order to customize web-based artifacts that will help them carry out their daily tasks. In general they are domain experts rather than skilled software designers, and new authoring mechanisms are needed in order that they can accomplish their tasks properly. The work we present is an effort to supply end-users with easy mechanisms for authoring web-based applications. To complement this effort, we present a user study showing that it is possible to carry out a trade-off between expressiveness and ease of use in order to provide end-users with authoring facilities.The work reported in this paper is being partially supported by the Spanish Ministry of Science and Technology (MCyT), projects TIN2005-06885 and TSI2005-08225-C07-06

    SenseMap: supporting browser-based online sensemaking through analytic provenance

    Get PDF
    Sensemaking is described as the process in which people collect, organize and create representations of information, all centered around some problem they need to understand. People often get lost when solving complicated tasks using big datasets over long periods of exploration and analysis. They may forget what they have done, are unaware of where they are in the context of the overall task, and are unsure where to continue. In this paper, we introduce a tool, SenseMap, to address these issues in the context of browser-based online sensemaking. We conducted a semi-structured interview with nine participants to explore their behaviors in online sensemaking with existing browser functionality. A simplified sensemaking model based on Pirolli and Card's model is derived to better represent the behaviors we found: users iteratively collect information sources relevant to the task, curate them in a way that makes sense, and finally communicate their findings to others. SenseMap automatically captures provenance of user sensemaking actions and provides multi-linked views to visualize the collected information and enable users to curate and communicate their findings. To explore how SenseMap is used, we conducted a user study in a naturalistic work setting with five participants completing the same sensemaking task related to their daily work activities. All participants found the visual representation and interaction of the tool intuitive to use. Three of them engaged with the tool and produced successful outcomes. It helped them to organize information sources, to quickly find and navigate to the sources they wanted, and to effectively communicate their findings

    The visualization of evolving searches

    Get PDF

    Principles of Query Visualization

    Full text link
    Query Visualization (QV) is the problem of transforming a given query into a graphical representation that helps humans understand its meaning. This task is notably different from designing a Visual Query Language (VQL) that helps a user compose a query. This article discusses the principles of relational query visualization and its potential for simplifying user interactions with relational data.Comment: 20 pages, 12 figures, preprint for IEEE Data Engineering Bulleti

    eStorys: A visual storyboard system supporting back-channel communication for emergencies

    Get PDF
    This is the post-print version of the final paper published in Journal of Visual Languages & Computing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.In this paper we present a new web mashup system for helping people and professionals to retrieve information about emergencies and disasters. Today, the use of the web during emergencies, is confirmed by the employment of systems like Flickr, Twitter or Facebook as demonstrated in the cases of Hurricane Katrina, the July 7, 2005 London bombings, and the April 16, 2007 shootings at Virginia Polytechnic University. Many pieces of information are currently available on the web that can be useful for emergency purposes and range from messages on forums and blogs to georeferenced photos. We present here a system that, by mixing information available on the web, is able to help both people and emergency professionals in rapidly obtaining data on emergency situations by using multiple web channels. In this paper we introduce a visual system, providing a combination of tools that demonstrated to be effective in such emergency situations, such as spatio/temporal search features, recommendation and filtering tools, and storyboards. We demonstrated the efficacy of our system by means of an analytic evaluation (comparing it with others available on the web), an usability evaluation made by expert users (students adequately trained) and an experimental evaluation with 34 participants.Spanish Ministry of Science and Innovation and Universidad Carlos III de Madrid and Banco Santander
    corecore