487 research outputs found

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    A cloud-based remote sensing data production system

    Get PDF
    The data processing capability of existing remote sensing system has not kept pace with the amount of data typically received and need to be processed. Existing product services are not capable of providing users with a variety of remote sensing data sources for selection, either. Therefore, in this paper, we present a product generation programme using multisource remote sensing data, across distributed data centers in a cloud environment, so as to compensate for the low productive efficiency, less types and simple services of the existing system. The programme adopts “master–slave” architecture. Specifically, the master center is mainly responsible for the production order receiving and parsing, as well as task and data scheduling, results feedback, and so on; the slave centers are the distributed remote sensing data centers, which storage one or more types of remote sensing data, and mainly responsible for production task execution. In general, each production task only runs on one data center, and the data scheduling among centers adopts a “minimum data transferring” strategy. The logical workflow of each production task is organized based on knowledge base, and then turned into the actual executed workflow by Kepler. In addition, the scheduling strategy of each production task mainly depends on the Ganglia monitoring results, thus the computing resources can be allocated or expanded adaptively. Finally, we evaluated the proposed programme using test experiments performed at global, regional and local areas, and the results showed that our proposed cloud-based remote sensing production system could deal with massive remote sensing data and different products generating, as well as on-demand remote sensing computing and information service

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Increasing service visibility for future, softwarised air traffic management data networks

    Get PDF
    Air Traffic Management (ATM) is at an exciting frontier. The volume of air traffic is reaching the safe limits of current infrastructure. Yet, demand for more air traffic continues. To meet capacity demands, ATM data networks are increasing in complexity with: greater infrastructure integration, higher availability and precision of services; and the introduction of unmanned systems. Official recommendations into previous disruptive outages have high-lighted the need for operators to have richer monitoring capabilities and operational systems visibility, on-demand, in response to challenges. The work presented in this thesis, helps ATM operators better understand and increase visibility into the behaviour of their services and infrastructure, with the primary aim to inform decision-making to reduce service disruption. This is achieved by combining a container-based NFV framework with Software- Defined Networking (SDN). The application of SDN+NFV in this work allows lightweight, chain-able monitoring and anomaly detection functions to be deployed on-demand, and the appropriate (sub)set of network traffic routed through these virtual network functions to provide timely, context-specific information. This container-based function deployment architecture, allows for punctual in-network processing through the instantiation of custom functionality, at appropriate locations. When accidents do occur, such as the crash of a UAV, the lessons learnt should be integrated into future systems. For one such incident, the accident investigation identified a telemetry precursor an hour prior. The function deployment architecture allows operators to extend and adapt their network infrastructure, to incorporate the latest monitoring recommendations. Furthermore, this work has examined relationships in application-level information and network layer data representing individual examples of a wide range of generalisable cases including: between the cyber and physical components of surveillance data, the rate of change in telemetry to determine abnormal aircraft surface movements, and the emerging behaviour of network flooding. Each of these examples provide valuable context-specific benefits to operators and a generalised basis from which further tools can be developed to enhance their understanding of their networks

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie
    • 

    corecore