2,301 research outputs found

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    A Survey on the Application of Evolutionary Algorithms for Mobile Multihop Ad Hoc Network Optimization Problems

    Get PDF
    Evolutionary algorithms are metaheuristic algorithms that provide quasioptimal solutions in a reasonable time. They have been applied to many optimization problems in a high number of scientific areas. In this survey paper, we focus on the application of evolutionary algorithms to solve optimization problems related to a type of complex network likemobilemultihop ad hoc networks. Since its origin, mobile multihop ad hoc network has evolved causing new types of multihop networks to appear such as vehicular ad hoc networks and delay tolerant networks, leading to the solution of new issues and optimization problems. In this survey, we review the main work presented for each type of mobile multihop ad hoc network and we also present some innovative ideas and open challenges to guide further research in this topic

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN

    Get PDF
    In the last decade, user demand has been increasing exponentially based on modern communication systems. One of these new technologies is known as mobile ad-hoc networking (MANET). One part of MANET is called a vehicular ad-hoc network (VANET). It has different types such as vehicle-to-vehicle (V2V), vehicular delay-tolerant networks, and vehicle-to-infrastructure (V2I). To provide sufficient quality of communication service in the Vehicular Delay-Tolerant Network (VDTN), it is important to present a comprehensive survey that shows the challenges and limitations of VANET. In this paper, we focus on one type of VANET, which is known as VDTNs. To investigate realistic communication systems based on VANET, we considered intelligent transportation systems (ITSs) and the possibility of replacing the roadside unit with VDTN. Many factors can affect the message propagation delay. When road-side units (RSUs) are present, which leads to an increase in the message delivery efficiency since RSUs can collaborate with vehicles on the road to increase the throughput of the network, we propose new methods based on environment and vehicle traffic and present a comprehensive evaluation of the newly suggested VDTN routing method. Furthermore, challenges and prospects are presented to stimulate interest in the scientific community

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Cluster Based Optimization of Routing in Distributed Sensor Networks Using Bayesian Networks with Tabu Search

    Get PDF
    This paper proposes a cluster based optimizat ion of routing in Distributed Sensor Network (DSN) by employing aBayesian network with Tabu search approach. Bayesian Network based approach is used to select efficient clusterheads, as well as construction of Bayesian Networks for the proposed scheme. This approach incorporates energylevel of each node, bandwidth and link efficiency. Simulations have been conducted to compare the performance ofthe proposed approach and LEACH.The optimization of routing is considered as a design issue in DSNs due to lack of energy consumption, delayand maximum time required for data transmission between source nodes (cluster heads) to sink node. In this work,optimization of routing takes place through cluster head nodes by using Tabu search. This meta - heuristic techniqueis used to optimize the routing in the DSN environment that guides a local search procedure to explore the solutionspace beyond local optimality. The objective of the proposed work is to improve the performance of network interms of energy consumption, throughput, packet delivery ratio, and time efficiency of optimizat ion of routing. Theresults shows that the proposed approach perform better than LEACH protocol and proposed protocol utilizesminimum energy and latency for cluster formation, thereby reducing the overhead of the protocol

    Routing Optimization in Vehicular Networks: A New Approach Based on Multiobjective Metrics and Minimum Spanning Tree

    Get PDF
    Recently, distributed mobile wireless computing is becoming a very important communications paradigm, due to its flexibility to adapt to different mobile applications. As many other distributed networks, routing operations assume a crucial importance in system optimization, especially when considering dense urban areas, where interference effects cannot be neglected. In this paper a new routing protocol for VANETs and a new scheme of multichannel management are proposed. In particular, an interference-aware routing scheme, for multiradio vehicular networks, wherein each node is equipped with a multichannel radio interface is investigated. NS-2 has been used to validate the proposed Multiobjective routing protocol (MO-RP) protocol in terms of packet delivery ratio, throughput, end-to-end delay, and overhead

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio
    corecore