405 research outputs found

    Some Permanent Magnet Synchronous Motor (PMSM) Sensorless Control Methods based on Operation Speed Area

    Get PDF
    This paper compares some sensorless Permanent Magnet Synchronous Motor (PMSM) controls for driving an electric vehicle in terms of operating speed. Sensorless control is a type of control method in which sensors, such as speed and position sensors, are not used to measure controlled variables.  The controlled variable value is estimated from the stator current measurement. Sensorless control performance is not as good as a sensor-based system. This paper aims are to recommend a control method for the PMSM sensorless controls that would be used to drive an electric vehicle. The methods that we will discuss are divided into four categories based on the operation speed area.  They are a startup, low speed, high speed, and low and high-speed areas. The low and high-speed area will be divided into with and without switching.  If PMSM more work at high speed, the most speed area that is used, we prefer to choose the method that works at high speed, that is, the modification or combination of two or more conventional methods

    Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety-critical systems

    Get PDF
    In this paper it is shown how to obtain a low-cost, high-resolution and fault-robust position sensing system for permanent magnet synchronous motor drives operating in safety-critical systems, by combining high-frequency signal injection with binary Hall-effect sensors. It is shown that the position error signal obtained via high-frequency signal injection can be merged easily into the quantization-harmonic-decoupling vector tracking observer used to process the Hall-effect sensor signals. The resulting algorithm provides accurate, high-resolution estimates of speed and position throughout the entire speed range; compared to state-of-the-art drives using Hall-effect sensors alone, the low speed performance is greatly improved in healthy conditions and also following position sensor faults. It is envisaged that such a sensing system can be successfully used in applications requiring IEC 61508 SIL 3 or ISO 26262 ASIL D compliance, due to its extremely high mean time to failure and to the very fast recovery of the drive following Hall-effect sensor faults at low speeds. Extensive simulation and experimental results are provided on a 3.7 kW permanent magnet drive

    Hybrid sensorless control of PMSM in full speed range using HFI and back-EMF

    Get PDF
    The permanent magnet synchronous motors (PMSM) are more and more used because of their high performance compared with other AC motors. The present paper proposes a hybrid controller which consists of a high frequency injection estimator and a back-electromotive-force observer in full speed range for the sensorless control of PMSM. The aim objective of the study to prevent speed overshot in startup time of the motor and provides a better dynamic response in transient and permanent states using this structure. A hybrid algorithm is applied to realize a smooth transition from low to high speed. At standstill and very low speed region, HF injection technique is used to detect the rotor initial position. In this first step study, the position estimation is derived from a HF current injection by using only one filter. When the rotor speed goes up to a certain value where back-EMF can provide adequate information, a back-EMF observer will dominate. Thanks to this structure, the mechanical sensor can be engaged using the best estimates and the developed control method is fast, simple, and flexible. The effectiveness, superiority, and performance of the proposed control method and extensive simulation results are provided on a 1 kW permanent magnet synchronous motor drive, demonstrating the expected performances

    High Frequency Injection Sensorless Control for a Permanent Magnet Synchronous Machine Driven by an FPGA Controlled SiC Inverter

    Get PDF
    As motor drive inverters continue to employ Silicon Carbide (SiC) and Gallium Nitride (GaN) devices for power density improvements, sensorless motor control strategies can be developed with field-programmable gate arrays (FPGA) to take advantage of high inverter switching frequencies. Through the FPGA’s parallel processing capabilities, a high control bandwidth sensorless control algorithm can be employed. Sensorless motor control offers cost reductions through the elimination of mechanical position sensors or more reliable electric drive systems by providing additional position and speed information of the electric motor. Back electromotive force (EMF) estimation or model-based methods used for motor control provide precise sensorless control at high speeds; however, they are unreliable at low speeds. High frequency injection (HFI) sensorless control demonstrates an improvement at low speeds through magnetic saliency tracking. In this work, a sinusoidal and square-wave high frequency injection sensorless control method is utilized to examine the impact an interior permanent magnet synchronous machine’s (IPMSM) fundamental frequency, injection frequency, and switching frequency have on the audible noise spectrum and electrical angle estimation. The audible noise and electrical angle estimation are evaluated at different injection voltages, injection frequencies, switching frequencies, and rotor speeds. Furthermore, a proposed strategy for selecting the proper injection frequency, injection voltage, and switching frequency is given to minimize the electrical angle estimation error

    Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review

    Get PDF
    Sensorless control of permanent magnet synchronous motors is nowadays used in many industrial, home and traction applications, as it allows the presence of a position sensor to be avoided with benefits for the cost and reliability of the drive. An estimation of the rotor position is required to perform the field-oriented control (FOC), which is the most common control scheme used for this type of motor. Many algorithms have been developed for this purpose, which use different techniques to derive the rotor angle from the stator voltages and currents. Among them, the so-called passive methods have gained increasing interest as they do not introduce additional losses and current distortion associated instead with algorithms based on the injection of high-frequency signals. The aim of this paper is to present a review of the main passive sensorless methods proposed in the technical literature over the last few years, analyzing their main features and principles of operation. An experimental comparison among the most promising passive sensorless algorithms is then reported, focusing on their performance in the low-speed operating region

    High frequency signal injection method for sensorless permanent magnet synchronous motor drives

    Get PDF
    The objective of this project is to design a high frequency signal injection method for sensorless control of permanent magnet synchronous motor (PMSM) drives. Generally, the PMSM drives control requires the appearance of speed and positon sensor to measure the motor speed hence to feedback the information for variable speed drives operation. The usage of the sensor will increase the size, cost, extra hardwire and feedback devices. Therefore, there is motivation to eliminate this type of sensor by injecting high frequency signal and utilizing the electrical parameter from the motor so that the speed and positon of rotor can be estimated. The proposed position and speed sensorless control method using high frequency signal injection together with all the power electronic circuit are modelled using Simulink. PMSM sensorless driveis simulated and the results are analyzed in terms of speed, torque and stator current response without load disturbance but under the specification of varying speed, forward to reverse operation, reverse to forward operation and step change in reference speed. The results show that the signal injection method performs well during start-up and low speed operation

    Sensorless Control of Switched-Flux Permanent Magnet Machines

    Get PDF
    This thesis investigates the sensorless control strategies of permanent magnet synchronous machines (PMSMs), with particular reference to switched-flux permanent magnet (SFPM) machines, based on high-frequency signal injection methods for low speed and standstill and the back-EMF based methods for medium and high speeds

    Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer

    Get PDF
    This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations

    Observability analysis of sensorless synchronous machine drives

    Get PDF
    This paper studies the local observability of synchronous machines using a unified approach. Recently, motion sensorless control of electrical drives has gained high interest. The main challenge for such a technology is the poor performance in some operation conditions. One interesting theory that helps understanding the origin of this problem is the observability analysis of nonlinear systems. In this paper, the observability of the wound-rotor synchronous machine is studied. The results are extended to other synchronous machines, adopting a unified analysis. Furthermore, a high-frequency injection-based technique is proposed to enhance the sensorless operation of the wound-rotor synchronous machine at standstill

    Improved signal injection based sensorless technique for PM brushless AC drives

    Get PDF
    The accuracy of rotor position estimation in the conventional signal injection based sensorless control of permanent magnet brushless AC drives depends on the load current. This paper proposes an improved method, which significantly reduces the estimation error by accounting for the cross-coupling effect between the d-and q-axes. The conventional and proposed methods are described and their performance is compared by both simulation and experiment
    • …
    corecore