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Observability Analysis of Sensorless Synchronous Machine Drives

Mohamad Koteich1,2, Abdelmalek Maloum1, Gilles Duc2 and Guillaume Sandou2

Abstract— This paper studies the local observability of syn-
chronous machines using a unified approach. Recently, motion
sensorless control of electrical drives has gained high inter-
est. The main challenge for such a technology is the poor
performance in some operation conditions. One interesting
theory that helps understanding the origin of this problem is
the observability analysis of nonlinear systems. In this paper,
the observability of the wound-rotor synchronous machine
is studied. The results are extended to other synchronous
machines, adopting a unified analysis. Furthermore, a high-
frequency injection-based technique is proposed to enhance the
sensorless operation of the wound-rotor synchronous machine
at standstill.

I. INTRODUCTION

Electrical rotating machines are becoming very popular in
nowadays transport industries, such as electric vehicle and
more electric aircraft [1] [2].

Synchronous machine (SM) is one of the biggest families
of electrical machines, which is widely used in high per-
formance industry applications. Various types of SMs can
be classified depending on the rotor configuration [3]; there
exist wound-rotor (WRSM), permanent-magnet (PMSM) and
reluctance type (SyRM) synchronous machines.

Over the last few decades, many control techniques have
been proposed and used for electrical drives [4]. Mechanical
sensorless techniques [5] [6] [7] have been good candidates
for reliable and costless electrical drives [8]. Nevertheless,
these techniques have the problem of deteriorated perfor-
mance in some operation conditions.

Recently, observability analysis of electrical drives, based
on local weak observability theory of nonlinear systems [9],
has taken more interest in order to understand observer’s
deteriorated performance.

In contrast to observability of linear systems, observability
of nonlinear systems depends on the inputs and initial condi-
tions. An observable nonlinear system might be unobservable
with some inputs (singular inputs), which affects the observer
operation [10].

Observability of induction machines (IM) is studied in
[11], [12] and [13]. More recently, the observability study
of SMs has started only for the PMSM [14] [15] [16].
To the best of the authors knowledge, the first paper that
could formulate useful explicit observability conditions for
the PMSM is [17], where the conditions are expressed in the
rotor reference frame.
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In the present work, the WRSM observability is analyzed,
and the results are extended to the other SMs using a
unified approach. Furthermore, based on the aforementioned
analysis, a high-frequency (HF) injection-based technique is
proposed, in order to ensure the WRSM observability in
the unobservable region. The results are validated using an
Extended Kalman Filter (EKF) and illustrated via numerical
simulations.

The main result of the unified observability analysis is the
definition of a fictitious observability vector for SMs; the
local observability of any SM is guaranteed as soon as the
rotational velocity of the observability vector with respect to
the rotor is different from the electrical velocity of the rotor
with respect to the stator.

This paper is organized as follows: in section II, the local
observability concept of nonlinear systems is presented. In
section III, the state-space model of the WRSM is given,
the other SMs models are derived from the WRSM one.
The observability of SMs is studied in section IV. Section
V presents illustrative simulations that validate the obtained
results with the proposed HF injection technique.

II. OBSERVABILITY THEORY

There are many approaches to study the observability of
nonlinear systems. In this section, the local weak observ-
ability concept [9], based on the rank criterion approach, is
presented. This approach provides only sufficient conditions.

A. Problem statement
Systems of the following form (denoted Σ) are considered:

Σ :

{
ẋ = f (x(t), u(t))

y = h (x(t))
(1)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ Rm is the
control vector (input), y ∈ Rp is the output vector, f and h
are C∞ functions.

The observation problem can be then formulated as fol-
lows [10]: Given a system described by a representation (1),
find an accurate estimate x̂(t) for x(t) from the knowledge
of u(τ), y(τ) for 0 ≤ τ ≤ t.
B. Definitions

a) Indistinguishability: Let x0 and x1 be two initial
states of the system Σ (1) at the time t0 (x0, x1 ∈ x ⊂ X).
The pair (x0, x1) is indistinguishable if, for any admissible
input u(t), the system outputs y0(t) and y1(t), respectively
associated to x0 and x1, follow the same trajectories from
t0 to t, i.e. starting from those two initial states, the system
realizes the same input-output map [9]. Otherwise, x0 and
x1 are distinguishable.



b) Observability: A system (1) is observable (resp. at
x0) if it does not admit any indistinguishable pair (resp. any
state indistinguishable from x0) [10].

This definition is too general. In practice, one might be
interested in distinguishing states from their neighbors.

c) Local weak observability: A system (1) is locally
weakly observable (resp. at x0) if there exists a neighborhood
V of any x (resp. of x0) such that for any neighborhood W of
x (resp. x0) contained in V , there is no indistinguishable state
from x (resp. x0) in W when considering time intervals for
which trajectories remain in W . This roughly means that one
can distinguish every state from its neighbors without “going
too far”. This notion is of more interest in practice, and also
presents the advantage of admitting some ‘rank condition’
characterization [10].

d) Observation space: The observation space for a
system (1) is defined as the smallest real vector space
(denoted by Sh) of C∞ functions containing the components
of h and closed under Lie derivation along fu := f(., u) for
any constant u ∈ Rm:

Sh(x) =


L0
fh(x)

Lfh(x)
L2
fh(x)

...
Ln−1
f h(x)

 (2)

where Lkfh is the kth-order Lie derivative of the function h
with respect to the vector field f .

C. Observability rank condition

The system Σ is said to satisfy the observability rank
condition at x0 if the Jacobian of the observability space
(called observability matrix and denoted by Oh(x)) is full
rank at x0:

rank Oh(x)|x0 = rank

[
∂Sh(x)

∂x

]
x0

= n (3)

D. Observability theorem

From the previous definitions, the following theorem can
be stated [9]: A system Σ (1) satisfying the observability rank
condition at x0 is locally weakly observable at x0. More
generally, a system Σ (1) satisfying the observability rank
condition, for any x0, is locally weakly observable.

III. SYNCHRONOUS MACHINE MODEL

In this section, the mathematical model of the WRSM is
presented. The models of other SMs can be extended from
the WRSM one. The assumption of linear lossless magnetic
circuit is adopted, with sinusoidal distribution of stator mag-
netomotive force. The machine parameters are considered to
be known constants. Nevertheless, the parameters variation
does not call the observability study results into question;
it impacts the observer performance, which is beyond the
scope of this study.

va

vb

vc

vα

vβ

vf

d

q

θ
α
a

β

b

c

Fig. 1. Symbolic representation of the salient-type wound-rotor syn-
chronous machine

A. Machine description

Synchronous machines are electromechanical systems
composed of two parts (see Fig. 1):
• Stator, the stationary part, fed by a three-phase source.
• Rotor, the moving part, which defines the sub-family of

an SM depending on its type:
1- WRSM: the rotor is an electromagnet supplied by

a DC source.
2- PMSM: the rotor is made of permanent magnets

that can be Interior (IPMSM), or Surface-mounted
(SPMSM).

3- SyRM: the rotor has neither permanent magnets nor
windings, it is made of a ferromagnetic core.

Both the WRSM and PMSM can be either salient-type (non
cylindrical) rotor, that is airgap between stator and rotor
varies as the rotor moves, or non-salient type (cylindrical)
rotor. As for the SyRM, its rotor is necessarily salient type,
since the operation principle of this machine is based on rotor
alignment with the stator rotating magnetic field following
the minimum reluctance magnetic path.

B. State-space model of salient-type WRSM

The electromagnetic behaviour of the stator windings in a
three-phase electrical machine, such as the WRSM, can be
fully described using two equivalent (fictitious) two-phase
stator windings [18] [19], denoted α and β (Fig. 1). The
state-space model of the salient-type WRSM can be written,
in the (αβ) stationary reference frame, in a way to be fitted
to the structure (1):

ẋ = f(x, u) :



dI
dt

= −L−1ReqI + L−1V
dω

dt
= −fv

J
ω +

p

J
Tm −

p

J
Tl

dθ

dt
= ω

(4)

y = h(x) = I (5)



where the state, input and output vectors are respectively:

x =
[
IT ω θ

]T
; u = V ; y = I (6)

The first equation in the system (4) comes from the Ohm’s
law, where I and V are the current and voltage vectors:

I =
[
iα iβ if

]T
; V =

[
vα vβ vf

]T
(7)

Indices α and β stand for stator signals, index f stands for
rotor (field) ones.
L is the (θ-dependent) matrix of inductances:

L =

L0 + L2 cos 2θ L2 sin 2θ Mf cos θ
L2 sin 2θ L0 − L2 cos 2θ Mf sin θ
Mf cos θ Mf sin θ Lf

 (8)

where L0 = (Ld + Lq)/2 and L2 = (Ld − Lq)/2. Ld
and Lq being the direct and quadrature inductances of the
equivalent machine model in the rotor (dq) reference frame
(Fig. 1) [18] [19]. Lf is the rotor winding inductance and
Mf is the maximal mutual inductance between stator and
rotor windings.

Req is the equivalent resistance matrix defined as:

Req = R +
∂L

∂θ
ω (9)

R is the matrix of resistances (Rs and Rf stand respectively
for stator and rotor resistance):

R =

Rs 0 0
0 Rs 0
0 0 Rf

 (10)

ω denotes the electrical speed (rad/sec) and θ the electrical
position of the rotor1.

The second state equation of the system (4) comes from
the Newton’s second law for rotational motion, where J is
the moment of inertia of the rotor with its associated load,
fv is the viscous friction coefficient, p is the number of pole
pairs, Tl is the load torque and Tm is the motor torque given
by:

Tm =
3

2
.
p

2
IT ∂L

∂θ
I (11)

C. State-space model of the other SMs

The other SMs can be seen as special cases of the salient-
type WRSM; the IPMSM model (Fig. 2(b)) can be derived
by considering the rotor magnetic flux to be constant:

dif
dt

= 0 (12)

and by substituting Mf if by the permanent magnet flux ψr:

if =
ψr
Mf

(13)

The SyRM model (Fig. 2(a)) can be derived from the IPMSM
model by considering the rotor magnetic flux ψr to be zero:

ψr ≡ 0 (14)

1electrical speed (resp. position) = p × mechanical speed (resp. position)
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Fig. 2. Symbolic representation of SyRM(a) and IPMSM(b) in the αβ
reference frame
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Fig. 3. Symbolic representation of non-salient WRSM(a) and SPMSM(b)
in the αβ reference frame

The equations of the non-salient WRSM and SPMSM
(Fig. 3) are the same as the salient WRSM and IPMSM re-
spectively, except that the stator self-inductances are constant
and independent of the rotor position, that is:

L2 = 0 =⇒ Ld = Lq = L0 (15)

IV. SYNCHRONOUS MACHINE OBSERVABILITY

In this section, the local observability of the system (4) is
analyzed, in order to know if the mechanical states ω and
θ can be estimated when only the currents I and voltages
V are known. The state-space model (4) is considered and
the observability theory presented in section II is used. The
machine model is strongly nonlinear; some calculations will
be done using symbolic math software. It should be kept in
mind that the observability rank condition is only a sufficient
condition.

A. Observability matrix

The system (4) is a 5-th order system. Its observability
matrix should contain the output and its derivatives up to
the 4-th order. In this study, only the first order derivatives
are calculated, higher order derivatives are very difficult to
calculate and to deal with. This gives the following “partial”



observability matrix:

Oy =

[
I3×3 O3×1 O3×1

−L−1Req −L−1L′I L−1
′
LdIdt − L−1L′′ωI

]
(16)

where In×n is an n × n identity matrix, and On×m is an
n×m zero matrix. L′ and L′′ denote, respectively, the first
and second partial derivatives of L with respect to θ:

L′ =
∂

∂θ
L ; L′′ =

∂

∂θ
L′ (17)

The matrix (16) is a 6×5 matrix. It is full-rank if, at least, one
of its 5×5 sub-matrices is full-rank. Regarding the structure
of the matrix (16), the rank study can be restricted to the
following 3× 2 sub-matrix:[

−L−1L′I , L−1
′
LdIdt − L−1L′′ωI

]
(18)

It is sufficient to have two linearly independent lines in the
sub-matrix (18) to ensure the local weak observability of the
system.

B. WRSM observability conditions

The first two lines of (18), which come from the first
derivatives of iα and iβ , are studied. This choice is motivated
by the fact that these currents are available for measurement
in all synchronous machines, the rotor current (from which
the third line of the matrix (18) is calculated) does not exist
in the case of PMSM and SyRM. Another reason comes
from the physics of the machine: if is a DC signal, whereas
both iα and iβ are AC signals, so it is more convenient for
physical interpretation to take AC signals together.

Symbolic math software is used to evaluate the determi-
nant ∆y of the sub-matrix composed of the first two lines of
(18). In order to make the interpretation of this determinant
easier, αβ currents are expressed as functions of dq currents2

using the Park transformation:

iα = id cos θ − iq sin θ (19)
iβ = id sin θ + iq cos θ (20)

Finally, the determinant has the following form:

∆y = Dω +N (21)

where

D =
1

LDLq

[
(Lδid +Mf if )

2
+ L∆Lδi

2
q

]
(22)

N =
L∆

LDLq

[(
Lδ
did
dt

+Mf
dif
dt

)
iq (23)

− (Lδid +Mf if )
diq
dt

]
with

Lδ = Ld − Lq ; L∆ = Lδ −
M2
f

Lf
; LD = Ld −

M2
f

Lf
(24)

2dq currents are the machine currents in the rotating reference frame,
which rotates at the rotor electrical speed (see Fig. 1). The machine
equations in this reference frame are derived using the following Park
transformation given by (19) and (20).
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Fig. 4. Vector diagram of the WRSM showing stator reference frame
(thick), rotor reference frame, and the observability vector (dashed)

The observability condition ∆y 6= 0 implies:

ω 6=
(Lδid +Mf if )L∆

diq
dt −

(
Lδ

did
dt +Mf

dif
dt

)
L∆iq

(Lδid +Mf if )
2

+ L∆Lδi2q
(25)

The above equation can be written as:

ω 6=
(Lδid +Mf if )

2
+ L2

∆i
2
q

(Lδid +Mf if )
2

+ L∆Lδi2q
× (26)

(Lδid +Mf if )L∆
diq
dt −

(
Lδ

did
dt +Mf

dif
dt

)
L∆iq

(Lδid +Mf if )
2

+ L2
∆i

2
q

then

ω 6=
(Lδid +Mf if )

2
+ L2

∆i
2
q

(Lδid +Mf if )
2

+ L∆Lδi2q
×

d

dt
arctan

(
L∆iq

Lδid +Mf if

)
(27)

The following approximation can be adopted3:

(Lδid +Mf if )
2

+ L2
∆i

2
q

(Lδid +Mf if )
2

+ L∆Lδi2q
≈ 1 (28)

Thus, the WRSM observability condition can be formu-
lated as:

ω 6= d

dt
arctan

(
L∆iq

Lδid +Mf if

)
(29)

It can be seen that the above equation describes a vector,
which will be called the observability vector and denoted
ΨO (Fig. 4), that has the following components in the dq
reference frame:

ΨOd = Lδid +Mf if (30)
ΨOq = L∆iq (31)

The condition (29) becomes:

ω 6= d

dt
θO (32)

3This approximation does not affect the observability conditions at
standstill where ω = 0 and currents are nonzero.



where θO is the phase of the vector ΨO in the rotor (dq)
reference frame (see Fig. 4).

Finally, the following WRSM observability condition can
be stated: the local observability of a WRSM is guaranteed if
the rotational velocity of the observability vector with respect
to the rotor is different from the electrical velocity of the
rotor with respect to the stator. Therefore, at standstill, the
observability vector should rotate and not be fixed. It turns
out that the d−axis component of the observability vector is
nothing but the active flux, introduced by Boldea et al. in
[20], which is, by definition, the torque producing flux.

Obviously, if the (nonzero) currents id, iq , and if are
constant at standstill, then the currents iα and iβ are also
constant (this is straightforward from the equations (19) and
(20)). In this case, the determinant (21) is equal to zero,
and the observability condition is not fulfilled. To overcome
this situation, we propose to inject a high-frequency (HF)
current in the rotor winding in a way to make if variable,
so that the observability vector “vibrates” at standstill, and
the observability condition (32) is fulfilled. In practice, this
technique can be useful for the starting of the machine, then,
during the machine operation, the HF current will be injected
only when the rotor estimated speed is near zero, in order to
ensure the observability.

C. Other SMs observability conditions

The other SMs observability conditions can be derived
from the previous results, taking into consideration the
adequate equations of section III-C for each machine. In
addition, the following substitutions should be made for the
PMSM and SyRM:

LD = Ld ; L∆ = Lδ (33)

which means that the approximation (28) is an equality for
these machines.

The observability conditions interpretation can be general-
ized using the observability vector concept. For instance, the
observability vector of the SPMSM is equivalent to the rotor
permanent magnet flux vector, then the only case where the
observability is not guaranteed is the standstill (for further
remarks on PMSM observability refer to [21]). Furthermore,
the observability vector of the SyRM is aligned with the
stator current space vector.

V. ILLUSTRATIVE SIMULATIONS

The present section is aimed at illustrating the previous
observability analysis using numerical simulation. For this
purpose, an extended Kalman filter (EKF) is designed. In
order to make the study of some critical situations easier,
the following operation mode is installed: the rotor position
is considered to be driven by an external mechanical system,
which imposes the following speed profile (Fig. 5): zero
speed during 1.5 sec, then a constant angular acceleration
of 500 rd/s2 during one second, then the speed is fixed
at 500 rd/s. Stator and rotor currents are regulated, using
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Fig. 5. Rotor speed profile

standard proportional-integral (PI) controllers, to fit with the
following set-points:

i∗d = 4 A ; i∗q = 15 A ; i∗f = 4 A (34)

Table I shows the machine parameters.

A. Extended Kalman Filter

The EKF algorithm is described below:
1) Model linearization:

Ak =
∂f(x, u)

∂x

∣∣∣∣
xk,uk

; Ck =
∂h(x)

∂x

∣∣∣∣
xk

(35)

2) Prediction:

x̂k+1/k = x̂k/k + Tsf(x̂k/k, uk) (36)

Pk+1/k = Pk + Ts(AkPk + PkA
T
k ) +Qk (37)

3) Gain:

Kk = Pk+1/kC
T
k (CkPk+1/kC

T
k +Rk)−1 (38)

4) Innovation:

x̂k+1/k+1 = x̂k+1/k +Kk(y − h(x̂k+1/k)) (39)
Pk+1/k+1 = Pk+1/k −KkCkPk+1/k (40)

where Ts is the sampling period.
5) Tuning: EKF tuning is done by the choice of covari-

ance matrices Qk and Rk, using trial and error method:

Qk =

 I3×3 O3×1 O3×1

O1×3 200 0
O1×3 0 5

 ; Rk = I3×3 (41)

B. HF current injection

The following HF current is added to the rotor current if
during the time interval [1 s., 1.5 s.]:

ifHF
= IfHF

sinωHF t = 0.5 sin 2π103t A (42)

Fig. 6 shows the real and estimated rotor angular positions.
It is obvious that, at standstill, the EKF does not converge
to the correct value of θ until the HF current is injected. For
nonzero speeds, there is no position estimation problem. The
speed estimation error is shown in Fig. 7; the error slightly
increases with the HF injection, but it remains reasonable.

The choice of the injected signal amplitude IfHF
and

its angular frequency ωHF has to be done taking into
consideration some practical aspects: very high frequencies
generate more losses in the magnetic circuit, however, low
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TABLE I
PARAMETERS OF THE WRSM USED IN SIMULATION

Parameters Value [Unit]

Number of pole pairs (p) 2
Stator resistance Rs 0.01 [Ω]
Rotor resistance Rf 6.5 [Ω]
Direct inductance Ld 0.8 [mH]
Quadratic inductance Lq 0.7 [mH]
Rotor inductance Lf 0.85 [H]

frequencies generate undesired vibration in the motor. High
amplitude HF current generates both more losses and more
vibration, whereas low amplitude (and very high frequencies)
might be filtered by the rotor electrical inertia without any
effect on the observability.

VI. CONCLUSIONS

The concept of observability vector is introduced in this
paper. The observability analysis of sensorless synchronous
machine drives shows that the local observability can be
guaranteed if the rotational speed of the observability vector
with respect to the rotor is different from the electrical
angular speed of the rotor with respect to the stator.

Based on the above analysis, a high-frequency current
injection technique is proposed for the wound-rotor syn-
chronous machine sensorless control; it consists of injecting
an HF alternating current in the rotor windings when the
rotor speed is near zero, which makes the observability vector
vibrate around its position.

The unified approach adopted in this paper can be useful
in finding similar solutions for the other synchronous dives.
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