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Low-Cost, High-Resolution, Fault-Robust Position
and Speed Estimation for PMSM Drives
Operating in Safety-Critical Systems

Giulio De Donato
Mario Pulvirenti

Abstract—In this paper, it is shown how to obtain a low-
cost, high-resolution, and fault-robust position sensing system for
permanent-magnet synchronous motor drives operating in safety-
critical systems, by combining binary Hall-effect sensors with high-
frequency signal injection. It is shown that the position error sig-
nal obtained via signal injection can be merged easily into the
quantization-harmonic-decoupling vector-tracking observer that
is used to process the Hall-effect sensor signals. The resulting al-
gorithm provides accurate, high-resolution estimates of speed and
position throughout the entire speed range; compared to the state-
of-the-art drives using Hall-effect sensors alone, the low-speed per-
formance is greatly improved in healthy conditions and also follow-
ing position sensor faults. It is envisaged that such a sensing system
can be successfully used in applications requiring IEC 61508 SIL
3 or ISO 26262 ASIL D compliance, due to its extremely high
mean time to failure and to the very fast recovery of the drive
following Hall-effect sensor faults at low speeds. Extensive simu-
lation and experimental results are provided on a 3.7-kW interior
permanent-magnet drive.

Index Terms—Aerospace, automotive, brushless, fault tolerance,
Hall effect, observer, permanent magnet, position sensor, redun-
dancy, resolution, safety, self-sensing, sensorless, signal injection,
synchronous motor.

I. INTRODUCTION

NGULAR position measurement of the rotor’s magnetic
field is necessary in permanent-magnet synchronous mo-
tor (PMSM) drives to achieve correct field orientation. It is well
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known that the required resolution of this measurement depends
on whether the drive is of the brushless dc (BLDC) or of the
brushless ac (BLAC) type. For the former, a 60 electrical degree
resolution, i.e., 3 bits per pole pair (BPP), is sufficient to obtain
a 120° rectangular wave current supply. On the other hand, the
BLAC drive requires a much higher resolution to produce a
sinusoidal current supply, in the range of 10-12 BPP; this is
usually achieved by using optical encoders or electromagnetic
resolvers. These high-resolution sensors are quite expensive
and do not possess a very high robustness to faults, since their
reported mean time to failure (MTTF) [1], [2] is usually in the
range of 5 10°-2 10° h. This makes their use in drives operating
in safety-critical systems, such as those found on aircrafts, vehi-
cles, cranes, hoists, or wind turbines, particularly challenging.
For these, international safety standards require less than one
dangerous system failure every 10’—10° h of operation [3]-[7].
For example, Table I reports four examples of hazardous
events in a passenger vehicle, the associated Automotive
Safety Integrity Level (ASIL) according to the ISO Standard
26262, the Safety Integrity Level (SIL) according to the IEC
Standard 61508, and the acceptable dangerous failures per
hour (DFH).

Not all failures are dangerous, and the correct value of DFH
has to be calculated carefully, by following the guidelines indi-
cated by the standards. Furthermore, the standards require the
entire system to comply with the required safety integrity lev-
els. Thus, as shown in [12], also the motor, the bearings, and the
converter must have sufficiently high MTTFs before the entire
drive can be deemed suitable for safety-critical applications.
In addition, since high-resolution position sensors have rela-
tively low MTTFs, designers must use risk reduction methods
in order to comply with the safety standards. Among possible
methods, the use of two or more redundant position sensors is
quite common [13]: this, however, increases costs noticeably.
Thus, a considerable amount of international research has been
performed over the past three decades to find robust and cost-
effective replacements for these high-resolution sensors.

One line of investigation is based on the idea of replacing the
high-resolution sensors with more rugged, low-resolution posi-
tion sensing systems [14]-[27]. Among these, binary Hall-effect
sensors are the most common and inexpensive [14], costing less
than 0.5 € when purchased in bulk. A well-known layout uses
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TABLE I
EXAMPLES OF HAZARDOUS EVENTS THAT MAY OCCUR IN A PASSENGER VEHICLE
Hazardous Event ASIL Level (ISO 26262) | SIL Level (IEC 61508) Da“ggg‘r"ﬁ;arﬂ‘“s
Unintended closing of window lifter [8] A 1 10°<DFH <107 1/h
Unitended vehicle acceleration duripg a low speed manoeuvre B 2 107 <DFH < 10° 1/h
amongst pedestrians [9]
Loss of brake-by-wire braking effect at speeds above 100 km/h [10] C 2 107 <DFH <10° 1/h
Unintended steering assist [11] D 3 10* <DFH <107 1/h
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Fig. 1. Quantized rotating position vector H , 3 loci for low-resolution posi-
tion sensing systems [14]. (a) 3 BPP. (b) 2 BPP. (c) 1 BPP.

three Hall-effect sensors, displaced 120 electrical degrees apart.
This layout provides a 60 electrical degree resolution, i.e., 3
BPP, as shown in Fig. 1(a). If only two sensors are used and
displaced by 90 electrical degrees, the resolution drops to 90
electrical degrees, i.e., 2 BPP, as shown in Fig. 1(b). The low-
est possible resolution, i.e., 180 electrical degrees, or 1 BPP, is
obtained when using a single sensor, as shown in Fig. 1(c). In

order to obtain high-resolution position and speed estimates
from these low-resolution sensing systems, a number of algo-
rithms have been developed [15]-[24]. Recently, it has been
demonstrated that the 3 BPP position sensing system, equipped
with an appropriate fault detection, identification, and compen-
sation algorithm, possesses an inherent triple modular redun-
dancy to faults, while the 2 BPP sensing system possesses a
dual modular redundancy [25], [26]. On the other hand, a key
limitation of these sensing systems is that the position sample
rate is speed dependent [19]. This results in degraded position
and speed estimation at speeds less than about 0.1 p.u. To avoid
unstable operation in this speed range, strong filtering in the
position and speed estimation algorithms is necessary, leading
to reduced performances with respect to medium- to high-speed
operation.

A second line of investigation is based on the core idea that
the motor itself can be used as a high-resolution position sensor.
This has led to the development of a significant number of self-
sensing algorithms, able to extract position and speed estimates
directly from voltage and/or current measurements [29]-[51].
In the medium- to high-speed range, back electromotive force
(EMF) tracking is the de facto industry standard method [29].
This fails at low speeds due to a reduced signal-to-noise ratio,
which produces degradation in the quality of the estimates and
ultimately causes loss of stability [30]. In this low-speed range,
self-sensing strategies based on high-frequency signal injection
have been proven to be effective for electromagnetically salient
machines. The literature reports high-frequency injection meth-
ods for both interior permanent-magnet (IPM) [31]-[46] and
surface permanent-magnet (SPM) machines [47]-[52]: for the
former, the saliency is produced by the rotor geometry, while
for the latter, it is usually due to local saturation in the stator.

In safety-critical systems, self-sensing methods cannot re-
place the position sensor but can be used as a backup following
a position sensor fault, such as in the limp-home mode available
in vehicles [53]-[55]. Not only is the use of position sensors
mandatory, but also compliance with the required SIL, to keep
the risk of dangerous failures below the limits set by the safety
standards.

The aim of this paper is to show that binary Hall-effect sensors
can be considered as a viable replacement for high-resolution
position sensors in PMSM drives requiring up to SIL 3 or ASIL
D compliance. Initially, an in-depth investigation of their relia-
bility is performed, together with an analysis of their low-speed
limitations. It then is recognized that these may be overcome
by merging the sensors’ outputs with high-frequency signal
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injection, as long as the machine possesses a detectable amount
of electromagnetic saliency. In this contribution, the state-of-
the-art quantization-harmonic-decoupling vector-tracking ob-
server (VTO) [21], is used for speed and position estimation.
It is shown how the algorithm can be integrated with any pul-
sating or rotating high-frequency signal injection method, with
negligible modifications to its structure. Extensive simulation
and experimental results are then provided for a 3.7 kW IPM
drive using 1, 2, and 3 BPP position sensing systems, in both
healthy and faulty conditions.

II. HALL-EFFECT POSITION SENSOR-BASED PMSM DRIVES

Key aspects related to Hall-effect-position-sensor-based
PMSM drives are described in this section. Basic reliability
analysis applied to Hall-effect-based position sensing is intro-
duced in Section II-A. Section II-B and II-C describes how the
sensors’ signals may be processed and fed to a VTO, in or-
der to obtain high-resolution estimates of speed and position.
Section II-D describes how the reduced position sample rate at
low-speeds degrades the performance of such drives.

A. Reliability of Hall-Effect-Based Position Sensing

From a reliability stand point, Hall-effect sensors behave like
any other nonrepairable electronic component. For these, it is
possible to define a lifetime 7, as the amount of time during
which the component performs its intended function. By nature,
T is a continuous random variable with a probability density
function f(f), known as the time to failure distribution [56].
The probability that a nonrepairable component will survive
beyond a specified time ¢, P(T > t), is equivalent to its reliability
function R(f). This is formally defined in probability theory as
a complementary cumulative distribution function

+00
=P(T>t) = f(z)dz

t

R(t) ()

The MTTF of a component is defined as the mean value of 7

+00 +00
MTTF = / tf(t)dt = / R(t)dt. 2)
0 0
Moreover, the failure rate of a component /(¢) is defined as the
conditional probability that a fault may occur in a time interval
dt, given that the component has not failed before time 7. It is
formally defined as

dlog R(x))

h(t) = =
®) R(t) dx )
Based on this, it is also possible to express R(f) as
t
R(t) = exp (/ h(x)dx) . 4
0

When faults due to infant mortality and aging are not taken
into account, it is quite common to assign a constant failure rate
A to many components

h(t) = A. 5)
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The failure rate is usually expressed in failures per hour (1/h)
or in number of failures every 10° h of operation, also known
as failures in time (FIT). Specifically, for a Hall-effect sensor,
the failure rate may be indicated as Aggy. Thus, the reliability
function for a single Hall-effect sensor becomes an exponential
distribution

Ripan (t) = e Mt (6)
For this distribution, it can easily be calculated that
1
MTTFuan = . (7
Hall

‘When more than one component is used, particular care must
be taken in order to calculate the correct MTTF [57]. For exam-
ple, when three Hall-effect sensors are used as a 3 BPP sensing
system without any fault detection, identification, and compen-
sation algorithm [25], [26], a failure of any one of the three
will compromise the entire sensing system. From a reliability-
engineering point of view, this corresponds to a series reliability
architecture. In this case, the reliability function of the whole
sensing system Rsypan(t) is equal to the product of the reliabil-
ity functions of each sensor

= Ryan1 (t) Ruan2 (t) Rigans (t) = Ryan (1)” .
(®)

In (8) and in the following equations, it is assumed that the
three sensors have equal reliability functions, i.e., they come
from the same production lot. Equation (8) implies that the
reliability of the sensing system will be smaller than that of
each Hall-effect sensor. It can be calculated that the MTTF for

such an arrangement is equal to

1 1 1
3 = = ;MTTFqan.
Si_q AHallk  SAHal 3
©)

The corresponding failure rate can be found from (3), by
using Rsypan(t)

Ry s~ wan (t)

MTTF;5 gan =

h(t)s 3 pan = 3AHan- (10)

On the other hand, if a fault detection, identification, and
compensation algorithm is used, the sensing system possesses a
triple modular redundancy and constitutes a parallel reliability
architecture. In this case, it can be shown that the reliability
function of the sensing system Ry, /(%) is equal to

Ry jman(t) =1 —[1 — Ruan ()]’ 1n

This implies that the reliability of the system will be larger
than that of each sensor. It can be calculated that the MTTF for
such an arrangement is equal to

220w

11
= —MTTFy,
6)"Hd11 6 Hatl

MTTF;3,/qan = po—

(12)

By comparing (9) and (12), it can be seen that the MTTF for a

3 BPP position sensing system improves by a factor of 5.5 when
a fault detection, identification, and compensation algorithm is
used. The failure rate is obtained by substituting R3; /pan (t)
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TABLE II
MTTEFSs AND FITS FOR 3 AND 2 BPP POSITION SENSING SYSTEMS (FOR Agar;, = 55.5 FIT AND Tyyssion' = 20 YEARS)

Series reliability architecture

(i.e. without fault detection, identification and compensation)

Parallel reliability architecture
(i.e. with fault detection, identification and compensation)

MTTF Failure Rate MTTF Failure Rate
3 BPP position sensing 610°h 166.5 FIT 3310"h 1.55 102 FIT
2 BPP position sensing 910°h 111 FIT 2710"h 1.07 FIT

into (3)

_ _ 2
3AHane AHant (]_ —e }LHallt)

1— (1 — e*)»nunt)?’

h(t)s)/man = (13)
H(z) is time dependent and increases monotonically with time;
a mission time 7 ;00 Must be defined to calculate the correct
failure rate. Standard values for Ti,ission range from 10 years
(87600 h) to 30 years (262 800 h), depending on the application.
For a 2 BPP sensing system, it can be shown that the MTTFs
for the series and parallel reliability architectures are

1 1 1
MTTF all = = = -—MTTFg,
25 Hall ST e Do 2 Hall
(14)
1 (1 3 3
MTTF = — | = = —MTTFgq.1.
2/ Hal ]; <k‘> 2AHan 2 fal
(15)

In this case, the MTTF improves by a factor of 3 when fault
detection, identification, and compensation is present. The re-
lated failure rates are

h(t)2 s Hanl = 2AHall (16)

QAHalle_)\Hallt (1 _

1—(1—ePuant)?

e—lﬁallﬁ)

h(t)2)/Han = a7

According to the limited literature available [58]-[60], es-
timates of Hall-effect sensor MTTFs are in the range of
10°-10% h, with the former value suggested for use in extreme
environmental conditions. For example, assuming MTTFy,; =
1.8 x 10" hand Agy = 55.5FIT, as reported in [60], and as-
suming 7T ission €qual to 20 years (i.e., 175 200 h), Table [T reports
the MTTFs and failure rates for 3 and 2 BPP position sensing
systems, for both series and parallel reliability architectures.

The values reported earlier prove that both 3 BPP and 2
BPP Hall-effect position sensing systems, equipped with a
fault detection, identification, and compensation algorithm, have
MTTFs and failure rates that are within the required range for
use in SIL 3 or ASIL D compliant drives.

B. Quantized Rotating Position Vectors

It was shown in [19] that the information coming from binary
Hall-effect sensors can be interpreted as a quantized-rotating
position vector H g in the stationary reference plane. Fig. 1
shows the H 3 loci for the three cases of 3, 2, and 1 BPP
resolution. As the rotor rotates, the H , 3 locus forms the vertices
of ahexagon in Fig. 1(a), consistent with a 60° spatial resolution.

Since H , s has six separate positions in the plane, it is also said
that such an arrangement has number of discrete states, Npg,
equal to 6. For a 90° resolution, the locus forms the vertices
of a square, as shown in Fig. 1(b), so Nps = 4. This is the
lowest possible resolution, from which it is possible to detect
the rotor’s direction of rotation [23]. As a visual proof of this,
Fig. 1(c) shows how the locus collapses to the 3 axis when the
position sensing system has only 1 BPP, i.e., Npg = 1. In this
case, H 3 simply switches back and forth along the axis and
no information about the direction of rotation is available.

H 3 can be decomposed into a spatial Fourier series of con-
tinuously rotating harmonic vectors [20]. The general formula-
tion, for any value of Npg, was derived in [21]

. _ +o00
Hop = (%m0 v5) 130
k=1

y _#e,j((ankfl)t?,»n,nalﬁrﬁ)
Npsk —1

1 7((ND§1€+1)0-:H 11*%)
; ¢ reHall“Np5g 1
T Npskr1” . (18)

where 6 yay is the electrical angle of the fundamental rotating
vector.

It can be seen in (18) that there are both positively and neg-
atively rotating harmonic vectors. It can also be noted that the
number, order, and amplitude of the harmonic vectors depend
on Nps. In the case of Nps = 6, i.e., BPP = 3, the first-order
(k = 1) harmonic vectors are the negatively rotating fifth and
positively rotating seventh. The frequencies of higher order har-
monic vectors are separated by six times the fundamental fre-
quency. For Npg = 4, i.e., BPP = 2, the first-order harmonic
vectors are the negatively rotating third and positively rotating
fifth. Higher order harmonic vectors are spaced apart by four
times the fundamental frequency. For Nps = 2,i.e., BPP = 1,
the first-order harmonic vectors are the negatively rotating first
and positively rotating second. Higher order harmonic vectors
are spaced apart by the fundamental frequency.

Hence, the frequency separation between harmonic vectors
depends on both the number of discrete states of the sensing
system and on the rotor’s frequency of rotation. This is due
to the fact that the sampling rate of the position measurement
fs_Han 18 speed dependent

Wy
fsman = NDSP% (19)

where P is the number of pole pairs and w, is the rotor speed.
Thus, as the speed drops, the position-sampling rate decreases
and the quantization harmonics become more tightly spaced in
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Fig. 2. Quantization-harmonic-decoupling VTO [21].

the frequency domain, making it more difficult to filter them
out. This effect degrades the low-speed performance of any
low-resolution sensor-based PMSM drive.

C. Quantization Harmonic Decoupling

By using harmonic decoupling, it is possible to extract
the fundamental-harmonic rotating vector, which contains the
sought-after high-resolution information. The higher order har-
monic vectors are removed from H, 3 by subtracting H, 3 dec,
defined as

H,jgec = Hop — eI (Oreman=7/6) (20)

Fig. 2 shows how this is achieved in a quantization-harmonic-
decoupling VTO, i.e., a Luenberger-style observer in which
vector cross-product phase detection is used together with
quantization-harmonic vector decoupling. When the VTO is
locked, the output of the phase detector can be approximated as

evro = sin (Al man) & Abrenall = Oretanl — brevro

(21
where ére,Han is the phase of the decoupled, fundamental-
harmonic rotating vector and 6, yro is the position estimate
of the VTO. An accurate estimate of the accelerating torque
Ter s allows 0,.. v1o to have virtually zero-lag and extends the
estimation bandwidth well above the bandwidth due to the VTO
controller alone. Furthermore, within the estimation bandwidth,
the parameter (inertia) error sensitivity on the estimation ac-
curacy is very limited, as shown in [28]. A zero-lag 0,. vro
is also very helpful in achieving precise quantization-harmonic
decoupling.

D. Low-Speed Limitations

Unfortunately, at very low speeds the filtering effect of the
moment of inertia is felt little, so even small errors in the in-
stantaneous estimation of 77y, will cause both the speed and
position estimates to deviate from the actual values. This in turn
causes nonideal harmonic decoupling, i.e., H, sdec(OrevT0)

[ 10rad/s

,

ALA PR RPN
W/ J ‘uv/‘ 74 ‘u/ \/ J\_/A\‘,'I "AVA! H/

_\(u,. VTO_unenh N
) Il Orad/s WMW\W\J‘J\w

1111 360° nl re_17c

0.5s

Fig. 3. Low-speed transient from 20 to 3 rad/s for a 3 BPP sensing system.
The VTO is tuned for a 20 Hz bandwidth.

is no longer equal to H, g _gec. Furthermore, due to the reduced
value of fs g, any quantization harmonic noise that is not re-
moved by the decoupling is also poorly filtered by the VTO
controller and tends to propagate, causing undesired ripple both
in the speed and position estimates. This, in turn, degrades the
torque and speed control of the drive. Fig. 3 shows this effect
experimentally on a speed-controlled PMSM drive, whose rat-
ings are reported in Section V. The resolution of the position
measurement is equal to 60° and the VTO is tuned to have a
20 Hz bandwidth. T s ; is obtained by multiplying the measured
g-axis current, 7,4, by the torque constant of the machine. Ini-
tially, the motor rotates at 20 rad/s in steady state, but when
the speed is reduced to 3 rad/s, quantization-harmonic-induced
ripple appears in the speed and position estimates due to incor-
rect harmonic decoupling, causing significant oscillations in the
actual speed of rotation.

To reduce this effect, in [21], it was proposed to reduce the
observer bandwidth at low speeds, i.e., to make the VTO con-
troller gains speed dependent. This can be seen in Fig. 2, where
the gains are linear functions of the estimated speed; usually the
unenhanced speed estimate w, yTo_unenh 1S Used, since it is more
filtered compared to the enhanced estimate w, _y1o_enn- AS a rule
of thumb, the minimum value of the VTO controller gains can
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be set to 5%—10% of their nominal values. The observer band-
width fgw should be increased as the speed of rotation increases,
up to a limit speed w, ;i above which the rated bandwidth is
reached

- 271'fBWsR
Wr lim = PNDS (22)
S (23)
fB\V

with SR being the sampling ratio between the position sampling
frequency and the observer bandwidth. The lowest value of SR is
2, as dictated by the Nyquist—-Shannon sampling theorem; usu-
ally, SR is chosen to be greater than 2, to guarantee sufficient
noise filtering by the VTO. The specific value to be used depends
on the attainable accuracy of 1. It is clear that such a solu-
tion adversely affects the dynamic response of the drive at low
speed.

III. FLUX-DEVIATION-BASED HIGH-FREQUENCY SIGNAL
INJECTION TECHNIQUE

The only way to overcome the low-speed limitation described
earlier is to exploit any additional high-resolution rotor position
information that can be obtained. If the machine possesses some
electromagnetic saliency, then this can be detected through the
injection of additional high-frequency fields and may be used to
aid position and speed estimation. In order to be a viable solu-
tion, such an additional injection should come at no additional
cost, and both the injection procedure and demodulation algo-
rithm should use the existing hardware only. While in principle
this approach will work for synchronous reluctance machines
as well, in this paper it is proposed and validated for PMSM
machines alone.

Among possible saliency-detection algorithms, the flux-
deviation-based pulsating injection technique [31] can be used
to evaluate any misalignment A6, gr between the actual and
the estimated rotor positions. By injecting a sinusoidally time-
varying voltage signal vyg at a high frequency wyg along a
fixed arbitrary direction d’ (24), a corresponding magnetomo-
tive force Fyr is generated in the air gap, as shown in Fig. 4(a).
Fyr is spatially in phase with the flux linkage Agp only if vyp
is injected along the direction of the true d- or g-axes. In all the
other cases, a flux linkage component A, yr arises on the g’-
axis orthogonal to the high-frequency injection d’-axis. Thus, a
q’-axis high-frequency back EMF e,-yr is induced, causing the
flow of a high-frequency current %,-pr. As shown in Fig. 4(a),
the amplitudes of these induced signals are modulated by the
misalignment A6, yr between the d’- and d-axes. In particular,
Agur and e pp approach zero anytime the d’-axis of injection
coincides with the true d- or g-axes. Naturally, this amplitude
modulation arises only if a saliency is present, i.e., when the
high-frequency d-axis inductance Lgyr differs from the high-
frequency g-axis inductance L,yr. It can be shown that the low-
frequency envelope Cyr of i, yr is proportional to the sine of
2A0, . yr (25), in which L is the differential high-frequency

n | ) "
.
i d*—: PI # Va abc Ves J%} t [ l o
= + \R
s { * T 6., V7O Labes
LaNF Vaur=Vur cos(@urt) ' "~
inF [ it/
LT NF - gdo /"1«
: . [« Ll
. laNF ld M.
4 ——lq'HF BPF J NF ‘ abe
HF
<~ LPF - X
i T 9re_VTO
Vd'HF
(b)
Fig. 4. Flux-deviation-based pulsating injection technique. (a) HF space vec-

tor diagram. (b) Practical implementation.

inductance, as defined in (26)

vir = [vgmr; vanr] = [0; Vi, cos (whrt)] 24)
venr  Laif .
- _ _an 2A0,., 25
Cap Semr Lome Lonr sin ( HF) (25)
L — L
Layg = —air — Zallly, (26)

2

Cyr can be obtained in practice by performing a demodulation
of i, ur. A simple and well-known method to achieve this is
shown in Fig. 4(b), in which i,y is firstly isolated from the
fundamental current through a bandpass filter (BPF); (yr is
then obtained by multiplying i,-yr by a sinusoidal signal at
the carrier frequency and by then applying a low-pass filter.
No additional hardware is required. Notch filters (NF) remove
the high-frequency component from the feedback. The reference
frame transformations are performed by using 6, . yro, meaning
that the misalignment between the d- and d’-axes is equal to

Abre vy = Orevr0o — Orenr 27

with 6, gr the position of the true d-axis, as sensed via the
high-frequency injection.
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IV. SIGNAL-INJECTION-AIDED POSITION AND
SPEED ESTIMATION

A theoretical analysis of the signal-injection-aided VTO is
performed in Section IV-A. The operating point models are
derived, highlighting some key aspects that arise in speed and
position estimation due to the merging of self-sensing with Hall-
effect sensors. Section IV-B reports simulations of the drive
in the low-speed range, comparing performances both without
and with the signal-injection aid. In Section IV-C, Hall-effect
sensor faults at low speeds are simulated in order to investigate
how the signal-injection-aided VTO-based drive compares to
the standard VTO-based drive in faulty conditions.

A. Operating Point Analysis

By comparing (21) and (25), it can be noted that (yg has the
same nature as eyyo. The core idea of this paper is to blend
these signals together in the simplest possible way, to improve
the low-speed performance of the quantization-harmonic de-
coupling VTO. This can be done if both signals have the same
units, so (yr must be multiplied by

war Laur Lgur

Kyr = (28)
veur  Laig
so that an error ey results
1.
enr = Knr(ur = —3sin (2A0,¢ ur) (29)
if AO,. gr is small, then
EHF ~ *AQT(’/,HF' (30)

Subtracting eyto and ey results in the following:

EVTO — EHF & (Qre,Hau - 9re,VT0) — (Oremr — brevro)

€19}

The difference between ey and egr is therefore equal to
the difference between the phase of the decoupled fundamental
vector and the true d axis, as sensed via the high-frequency
signal injection.

Consequently, the VTO should be modified as shown in
Fig. 5(a). Compared to Fig. 2, an additional path is present,
comprising the high-frequency signal injection, the demodu-
lation process and the subtraction of eyp with eyro. The flux
deviation technique is represented in this figure, since it is the
technique used in this research; however, any state-of-the-art,
pulsating or rotating signal injection method may be used in its
place without altering the structure, as long as Ky is consistent.
In the figure, the estimated value of Kyr is indicated as a func-
tion of iq and 4,. This is because, Kyr as well as the position
of the true d-axis sensed by the high-frequency injection 6,.. yr
are the functions of L;yr and L,yF; as a consequence, they may
vary due to magnetic saturation. The extent of such variations is
machine dependent. These issues have been comprehensively
examined in previous literature [39]-[44], in which lookup
tables, structured neural networks, nonlinear adaptive decou-
pling schemes, and other methods have been proposed. These

= 91‘6Ha11 - Hre,HF~
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methods all require some form of self-commissioning proce-
dures to map Ky as a function of 44 and ¢,.

Fig. 5(b) shows the signal-injection-aided VTO’s operating
point model. Ideal quantization harmonic decoupling is as-
sumed, so that ér&Han represents the angular position of the
fundamental rotating vector. The high-frequency signal injec-
tion and demodulation technique is modeled as an equivalent
low pass filter transfer function LPF.quiv (%), the input of which
is —A#,. yr, with the negative sign required for consistency
with (30). The actual transfer function depends on the spe-
cific injection and demodulation technique that is used [37].
By applying some simple arithmetic manipulations, the oper-
ating point model becomes the one shown in Fig. 5(c). Here,
the signal injection correction is shown in terms of 6,. vto
and 0, gy, separately. 6,.. yto is now fed back to the input thor-
ough 1 — LPF.q, (2); this means that within the signal injection
and demodulation bandwidth, i.e., as long as LPF.quiv(2) ~ 1,
0, vro is removed from the feedback. Conversely, 0. yr is
fed back to the input through LPF.q(2); this means that
within the signal injection and demodulation bandwidth, 6,.. yg
acts as the signal-injection-aided VTO’s feedback. Assuming
LPF.qiv(2) =~ 1, Fig. 5(d) shows the resulting operating point
model, which is also consistent with (31).

Outside the bandwidth of the signal injection and demodu-
lation technique, the correct operating point model is the one
shown in Fig. 5(c), which indicates that the error signal feed-
ing the VTO controller is no longer precisely equal to (31)
and the tracking will deteriorate. Generally speaking, in order
to increase the bandwidth of the signal injection method it is
necessary to increase the injection frequency [37].

B. Low-Speed-Range Simulations

Simulations have been performed with Simulink to verify the
performance of the signal-injection-aided VTO in the low-speed
range. An IPM motor drive with the same rated values as the one
used in the experimental tests was simulated. Fig. 6 shows the
simulated behavior of the drive during the same low-speed tran-
sient reported in Fig. 3. No gain scheduling is implemented to
reduce the VTO bandwidth at low speeds. Initially, the measured
speed and position show oscillations, which are damped out as
soon as the high-frequency injection aid becomes active. Fig. 7
shows the observer input errors, eyto, €gr, and eyro — €nr,
immediately before and after the transition. The visible spikes
are produced by the Hall-effect sensor transitions and by the
harmonic decoupling, as explained in [21]. It is very insightful
to compare eyto With egg. The former is nonzero only when the
information coming from the low-resolution Hall-effect sensors
is observable [22]; conversely, the latter is continuously active
due to its inherently high-resolution nature, and, as explained
earlier, is instrumental in forcing the VTO to track the speed
and position states with very limited errors, as shown in Fig. 8.
These results prove that the use of signal injection overcomes
the limitations described in Section II-D and allows to maintain
constant VTO gains throughout the entire speed range.

Signal injection is useful until f; y,y is sufficiently high to
guarantee proper operation of the VTO with the low-resolution
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Fig. 5.  Signal-injection-aided quantization-harmonic decoupling VTO. (a) Block diagram. (b) Operating point model. (c) Equivalent operating point model.

(d) Simplified operating point model, assuming LPFequiv(2) ~ 1.
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Fig. 8. Simulated low-speed transient from 20 to 3 rad/s for a 3 BPP sensing

system. (a) Position estimation error. (b) Speed estimation error.

sensors alone. Thus, above the speed calculated by (22), it is
possible to simply deactivate the high-frequency injection by
setting eygr = 0. For example, in the case of a 3 BPP resolution,
3 pole pairs, 20 Hz VTO bandwidth, the lowest mechanical
speed at which the transition can be performed, i.e., for SR = 2,
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Fig. 9. Simulated low-speed Hall-effect sensor fault transients without signal
injection. (a) Position estimation error. (b) Speed estimation error.

is 14 rad/s. It is also possible to execute a smooth transition
by implementing a speed-dependent linear combination of eyp
and eyto between minimum and maximum speed thresholds.
Such a solution has already been proposed in the literature for
transitions between signal-injection and back-EMF based self-
sensing [46], [49] and will not be explored further here.

C. Hall-Effect Sensor Fault Simulations

Simulations have also been performed to evaluate the perfor-
mance of the position sensing system following sensor faults at
low speeds. To this end, a 3 BPP system has been used, as it
possesses triple modular redundancy. The fault detection, iden-
tification, and compensation algorithm described in [25] was
used. A single fault is detected when the zero H,z vector is
measured, i.e., when all of the three sensor signals become 1 or
0. Fault identification occurs at the following sensor state tran-
sition, allowing to pinpoint the faulty sensor and the fault type.
This is achieved within 360° electrical from the occurrence
of the fault. Compensation is then performed by suitably re-
adapting the quantization harmonic decoupling. At low speeds,
this can mean that a considerable amount of time has to elapse
between the occurrence fault and the compensation in the VTO,
leading to large position and speed estimation errors and, con-
sequently, oscillatory operation of the drive. This behavior is
visible in Fig. 9, which shows the performance of the drive fol-
lowing two successive faults when the speed command is equal
to 20 rad/s. For this simulation, no signal injection was used. It
can be seen in Fig. 9(a) that the position estimation error reaches
120° electrical in the first post-fault transient and 180° in the
second. In addition, Fig. 9(b) shows how the shaft undergoes
considerable oscillations following the second fault, before fault
compensation is obtained. Conversely, Fig. 10 shows a signif-
icantly improved performance following the same faults when
the signal-injection-aided VTO is used. Due to the contribu-
tion coming from the signal injection, the drive maintains stable
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TABLE III
PMSM NAMEPLATE DATA

Rated Power 3.7kW Rated Current | 6.8 A
Rated Torque 20.2 Nm Rs 1.8Q
Rated Speed 1750 rpm Lq 0.0377 H
Rated Supply Frequency | 87.5 Hz Ld 0.0329 H
Rated Voltage 369 V Pole Pairs 3

operation and both faults are identified and compensated faster,
since the shaft is able to maintain a smoother speed of rota-
tion. It should be noted that this algorithm is not able to detect
failures in the current sensors, which are required for HF injec-
tion; a separate fault detection algorithm is necessary for this.

V. EXPERIMENTAL TESTS

The performance of the signal-injection-aided quantization-
harmonic decoupling VTO has been evaluated on a three-phase
PMSM drive, whose motor specifications are listed in Table III.
The position and speed estimation algorithm, the injection and
demodulation algorithms and the field-oriented control have
been implemented in a single prototyping controller board. The
speed control bandwidth of the drive is set to 15 Hz. The un-
enhanced VTO speed estimate w,_y1o_uenh 18 used for speed
feedback. The current control bandwidth is set to 200 Hz. Three
low-resolution position sensing systems with 3, 2, and 1 BPP
have been emulated by downsampling the output of a 4096 pulse
per revolution optical incremental encoder. The signal-injection
amplitude and frequency have been set to 25 V and 500 Hz, re-
spectively, for all tests. The demodulation algorithm uses a 200
Hz bandwidth, fourth-order Butterworth BPF centred at 500 Hz
and a second-order Butterworth low-pass filter, with a 500 Hz
cutoff frequency. The electrical angular position 6. and the
mechanical speed w, measured by the encoder are shown in the
following figures for comparison.
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Fig. 11.  Blocked rotor no-load high-frequency pulsating signal-injection test.
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Fig. 12.  Low speed behavior when the drive is equipped with a 3 BPP position
sensing system and the VTO is tuned for a 20 Hz bandwidth. (a) Transient from
20 to 3 rad/s. (b) Operation for reference speed set to 3 rad/s.

A. No-Load Tests

This section is devoted to tests that have been carried out at no
load, i.e., with a disconnected shaft. An initial blocked-rotor test
has been performed to measure the degree of electromagnetic
saliency of the machine. In this test, only the pulsating high-
frequency magnetic field has been injected into the machine
and its axis of injection is slowly rotated. Fig. 11 shows some
key waveforms recorded during the test: the high-frequency
current ,yF, the demodulated saliency signal Cxg, and the fic-
titious angle used to rotate the injection axis 6, ¢, Which is
fed to the reference frame transformation of the current control
loops. This test has allowed to identify the high-frequency induc-
tances Lqur = 33.4mH, L,yr = 54 mH and thus determine
Kyr = 23.84. Load tests have shown that the high-frequency
inductances tend to remain quite constant throughout the en-
tire operating range, so Ky is maintained equal to the no load
value for all of the experimental tests. Fig. 12(a) shows the ex-
perimental equivalent of the no-load test shown in Fig. 7, in
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Fig. 15.

which the signal-injection-aided VTO is activated at 3 rad/s,
after some time. As expected, the ripple in both rotor position
and speed is significantly mitigated once the signal injection is
activated. Fig. 12(b) shows another transition from a standard
VTO to a signal-injection-aided VTO, with the high-frequency
signal injection active throughout the test, but initially not fed
to the VTO. Here (yr and ¢, are also shown, demonstrating how
the signal injection tracking is stabilized and the torque ripple
is reduced as soon as the signal injection is activated. In order
to evaluate the steady state performance of the drive, tests have
been executed with the speed reference set to a constant value.
The standard deviation of the measured speed o, has been
recorded. o, is used as a measure of the speed ripple and of the
ability of the drive to track the commanded speed. These tests
have been performed at speeds from 20 rad/s down to 1 rad/s, for
3,2, and 1 BPP resolutions, with standard and signal-injection-
aided VTOs, and for observer bandwidths equal to 20, 10, and 5
Hz. Results for the high-resolution encoder-based drive are also
reported for comparison. Fig. 13 shows the results related to a 3
BPP resolution. Fig. 13(a) compares o, for the drive operating
with 20 Hz bandwidth VTOs; the results obtained when using
the standard and signal-injection-aided VTO-based drives, com-
pared to the high-resolution encoder-based drive. Below 5 rad/s,
o,y 1s considerably reduced for the signal-injection-aided VTO-
based drive; at 3 rad/s, o, is only 18% of that for the standard
VTO-based drive, indicating a very strong improvement in speed
command tracking when signal-injection is present. Below
3 rad/s the drive without signal injection is unstable, and there-

Standard deviation versus speed reference for a 1 BPP position sensing system, for VTO bandwidths equal to (a) 20 Hz, (b) 10 Hz, and (c) 5 Hz.
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Fig. 16. Low-speed no-load command tracking when the drive is equipped
with a 1 BPP position sensing system.

fore, it has not been possible to measure o,,,.. Conversely, the
drive using the signal-injection-aided VTO operates stably at
all speeds, with values of ¢,,,, comparable to those of the high-
resolution encoder. Fig. 13(b) reports the same results when the
VTO bandwidth is equal to 10 Hz. Compared to Fig. 13(a), it
can be seen that no instability occurs, due to the stronger fil-
tering provided by the VTO. For example, at 3 rad/s, o, for
the signal-injection-aided drive is 80% of that for the standard
VTO-based drive. Fig. 13(c) reports the same results when the
VTO bandwidth is equal to 5 Hz. At 3 rad/s, o, for the signal-
injection-aided drive is 72% of that for the standard VTO-based
drive. Furthermore, below 3 rad/s, the drive using the standard
VTO is jerky, but not unstable. This performance degradation
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compared to Fig. 13(b) is caused by poor speed regulation due to
the strongly filtered estimates provided by the VTO. Figs. 14 and
15 report the results for a 2 BPP and a 1 BPP resolution sensing
system respectively. It can be seen that instability occurs in a
progressively wider speed range, when signal-injection is not
used: below 5 rad/s for the 2 BPP system and below 14 rad/s for
the 1 BPP system. Furthermore, the low-speed performance of
the standard drive, when operating close to its stability limits, is
further degraded compared to the 3 BPP case. Fig. 14(a) shows
that o, for the signal-injection-aided drive is a 10.9% of that
for the standard VTO-based drive at 5 rad/s. Fig. 15(a) shows
that o, for the signal-injection-aided drive is 8.8% of that for
the standard VTO-based drive at 14 rad/s. In general, whenever
signal injection is used, oy, is independent from the resolution
of the position sensing system and the VTO can be tuned much
more aggressively, thereby providing strongly beneficial effects
on drive performance in the low-speed range.

Fig. 16 shows the speed command tracking performance when
a 1 BPP resolution is used, in conjunction with the signal-
injection-aided VTO. The speed command starts at O rad/s, then
switches to —10 rad/s, +10 rad/s and then back to O rad/s.
The drive is able to track the variations in the speed command,
within the motion controller bandwidth. It is worth mention-
ing that this performance is not possible without signal injec-
tion, because a 1 BPP position sensing system alone cannot
recognize variations in the direction of rotation, as explained
in Section II.

B. Load Tests

Disturbance response tests have been performed to evalu-
ate the disturbance rejection capability of the drive. For these
tests, the motor has been connected to a torque-controlled dc
drive. The tests are carried out with a fixed speed command
set to 10 rad/s and a 0.4 p.u. step load torque applied to the

shaft. Higher step load torques have not been applied because
drive stability is compromised when high-frequency injection
is deactivated. The VTO is tuned to have a 20 Hz bandwidth.
Fig. 17 shows w,, W, v1o_unenn, and ¢, following the step load
when signal injection is not used. As expected, the disturbance
response deteriorates as the resolution drops from 3 BPP to 1
BPP. The drive however always recovers and does not lose sta-
bility. This is ascribable to the stabilizing effect of the inertia
of the dc machine load. Fig. 18 shows the disturbance response
when the signal-injection-aided VTO is used. The response is
much smoother, and the drive recovers the commanded speed
more quickly. It can be noted that there are no significant differ-
ences in the responses associated to 3, 2, or 1 BPP, thanks to the
signal injection. Fig. 19 shows a speed ramp from 0 to 60 rad/s
in 0.5 s, at 0.6 p.u. load. The drive is equipped with a 3 BPP
sensing system. At 30 rad/s, the high-frequency signal injection
is removed and the VTO operates with the Hall-effect sensor
inputs only. It can be seen that the instantaneous transition to
sensor-only operation does not cause any visible effect and the
drive continues to operate very smoothly. This is due to the fact
that the switch is performed at a speed at which the position
sample rate of the sensors is sufficiently high to guarantee cor-
rect position tracking and quantization harmonic decoupling in
the VTO.

C. Hall-Effect Sensor Fault Tests

Experimental tests have also been performed to evaluate the
performance of the position sensing system following sensor
faults at low speeds. Consistently with the simulations per-
formed in Section IV-C, a 3 BPP system has been used, together
with the same fault detection, identification, and compensation
algorithm. Fig. 20(a) shows the performance of the drive
following the emulation of two successive faults, at 0.6 p.u.
load and at 20 rad/s commanded speed. For this test, no signal
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injection was used. It can be seen that the position estimation
error exceeds 90° electrical in both of the post-fault transients.
As predicted by the simulations, the second sensor fault
produces considerable rotor oscillations before compensation
is obtained. As expected, Fig. 20(b) shows the significantly
improved performance following the same faults, when the
signal-injection-aided VTO is used. In this case the maximum
position estimation error is around 60° electrical and the rotor
does not undergo any oscillation.

Following the second sensor fault, only one Hall-effect sen-
sor is working correctly. Depending on the strategy, operation
can continue with the single sensor or the sensor can be de-
activated, and limp-home mode can be entered by switching
to self-sensing alone. As an example, Fig. 20(b) shows a tran-
sition to high-frequency injection self-sensing, about 2 s after
the compensation of the second fault: no influence on the drive
performance can be seen. In the event that the second fault
were to occur at higher speeds, a transition to back-EMF-based
self-sensing can be easily implemented.
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VI. CONCLUSION

This paper has shown that binary Hall-effect sensor-based po-
sition sensing systems are strong candidates for use in PMSM
drives operating in safety-critical applications, for which self-
sensing alone is not allowed and the use of a highly reliable
position sensor is mandatory. The key conclusions can be sum-
marized as follows.

1) Binary Hall-effect-based sensing systems possess much
higher MTTFs and much lower failure rates than high
resolution position sensors, at a much lower cost.

2) As long as the machine possesses sufficient electromag-
netic saliency, high-frequency signal injection can be eas-
ily merged with binary Hall-effect-based sensing systems,
by forming a signal-injection-aided VTO; this allows to
achieve a low-speed performance similar to that obtained
with high-resolution sensors.

3) An operating point model of the signal-injection-aided
VTO has been derived, which shows that, when signal
injection is present, the VTO is forced to track the rotor
position as sensed by the high-frequency injection.

4) Transition to operation without signal-injection can be
done at speeds above 0.1 p.u., by simply de-activating
the signal injection contribution or by implementing a
smooth, speed-dependent transition.

5) Simulations and experimental results have demonstrated
how the use of the signal-injection-aided VTO removes
low-speed instability, allows to maintain constant VTO
gains throughout the entire speed range, considerably im-
proves speed command tracking and also allows a much
faster recovery of the drive following Hall-effect sensor
faults at low speeds.
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