441 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Predictive control of a series-input, parallel-output, back-to-back, flying-capacitor multilevel converter

    Get PDF
    Thesis (MScEng (Electrical and Electronic Engineering))--Stellenbosch University, 2011.ENGLISH ABSTRACT: This thesis investigates the viability of constructing a solid-state transformer (SST) with a series-input, parallel-output connection of full-bridge, three-level ying-capacitor converters. It focusses on the active recti er front-end of the SST which is used to control the input current to be sinusoidal and in-phase with the sinusoidal input voltage. A stack of two converters are built and tested. The input current, as well as the ying capacitor voltages of the two active recti ers in the stack, are actively controlled by a nite-state model-based predictive (FS-MPC) controller. The use of multiple ying-capacitor converters poses a problem when using FS-MPC because of the large number of possible switching states to include in the prediction equations. Three FS-MPC control algorithms are proposed to attempt to overcome the problem associated with the large number of switching states. They are implemented on an FPGA digital controller. The algorithms are compared on the bases of voltage and current errors, as well as their responses to disturbances that are introduced into the system. The simulation and experimental results that are presented shows that by interleaving the control actions for the two converters, one can obtain fast and robust responses of the controlled variables. The viability of extending the interleaving control algorithm beyond two converters is also motivated.AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die moontlikheid van volbrug, drievlak vlieënde-kapasitoromsetters wat gebruik word om 'n serie-intree, parallel-uittree drywingselektroniese transformator (DET) te bou. Dit fokus op die aktiewe gelykrigter van die DET wat gebruik word om die intreestroom te beheer om sinusvormig en in fase met die sinusvormige intreespanning te wees. 'n Stapel van twee omsetters word gebou en getoets. Die intreestroom, sowel as die vlieënde kapasitorspannings van die twee aktiewe gelykrigters in die stapel, word aktief beheer met behulp van 'n eindige-toestand, model-gebaseerde voorspellende beheerder (ET-MVB). Die gebruik van veelvuldige vlieënde-kapasitoromsetters bemoeilik die implementering van 'n ET-MVB-beheerder as gevolg van die groot aantal skakeltoestande wat in die voorspellende vergelykings in ag geneem moet word. Drie ET-MVB-algoritmes word voorgestel om te poog om die probleme, wat met die groot aantal skakeltoestande geassosieer word, te oorkom. Die algoritmes word in 'n FPGA digitale verwerker geïmplementeer. Die algoritmes word vergelyk op grond van hul stroom- en spanningsfoute, asook hul reaksie op steurings wat op die stelsel ingevoer word. Die simulasie en praktiese resultate toon dat, deur die beheeraksies vir die twee omsetters te laat oorvleuel, die gedrag van die beheerde veranderlikes vinniger en meer robuust is. Die moontlikheid om die oorvleuelende beheeraksies uit te brei tot meer as twee omsetters word ook gemotiveer

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    New techniques to improve power quality and evaluate stability in modern all-electric naval ship power systems

    Get PDF
    This dissertation focuses on two crucial issues in the design and analysis of the power electronic systems on modern all-electric naval ships, i.e., power quality control and stability evaluation. It includes three papers that deal with active power filter topology, active rectifier control, and impedance measurement techniques, respectively. To mitigate harmonic currents generated by high-power high-voltage shipboard loads such as propulsion motor drives, the first paper proposes a novel seven-level shunt active power filter topology, which utilizes tapped reactors for parallel operations of switching devices. The multi-level system has been implemented in both regular digital simulation and real-time digital simulator for validation. In the second paper, a harmonic compensation algorithm for three-phase active rectifiers is proposed. Based on the theory of multiple reference frames, it provides fast and accurate regulation of selected harmonic currents so that the rectifier draws balanced and sinusoidal currents from the source, even when the input voltages are unbalanced and contain harmonics. Extensive laboratory tests on a 2 kW prototype system verifies the effectiveness of the proposed control scheme. The last paper presents a new technique for impedance identification of dc and ac power electronic systems, which significantly simplifies the procedure for stability analysis. Recurrent neural networks are used to build dynamic models of the system based on a few signal injections, then the impedance information can be extracted using off-line training and identification algorithms. Both digital simulation and hardware tests were used to validate the technique --Abstract, page iv

    Analysis of artificial intelligence in industrial drives and development of fault deterrent novel machine learning prediction algorithm

    Get PDF
    Industrial sectors rely on electrical inverter drives to power their various load segments. Because the majority of their load is nonlinear, their drive system behaviour is unpredictable. Manufacturers continue to invest much in research and development to ensure that the device can resist any disturbances caused by the power system or load-side changes. The literature in this field of study depicts numerous effects caused by harmonics, a sudden inrush of currents, power interruption in all phases, leakage current effects and torque control of the system, among others. These and numerous other effects have been discovered as a result of research, and the inverter drive has been enhanced to a more advanced device than its earlier version. Despite these measures, inverter drives continue to operate poorly and frequently fail throughout the warranty term. This failure analysis is used as the basis for this research work, which presents a method for forecasting faulty sections using power system parameters. The said parameters were obtained by field-test dataset analysis in industrial premises. The prediction parameter is established by the examination of field research test data. The same data are used to train the machine learning system for future pre-emptive action. When exposed to live data feeds, the algorithm may forecast the future and suggest the same. Thus, when comparing the current status of the device to the planned study effort, the latter provides an advantage in terms of safeguarding the device and avoiding a brief period of total shutdown. As a result, the machine learning model was trained using the tested dataset and employed for prediction purposes; as a result, it provides a more accurate prediction, which benefits end consumers rather than improving the power system\u27s grid-side difficulties

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Determination of the input filter parameters of the active rectifier with a fixed modulation frequency

    Get PDF
    Goal. Development of a methodology for calculating the parameters of the active rectifier-voltage source input filter operating with a fixed modulation frequency to ensure electromagnetic compatibility with the supply network acceptable by standards at minimum values of the input inductance and checking its main characteristics on a mathematical model. Methodology. The authors have developed a methodology for calculating the parameters of the input filter of an active rectifier-voltage source. The calculation results are verified on the constructed mathematical model of a frequency converter, the scheme of which is an active rectifier and an autonomous voltage inverter. A series of experiments was carried out on a mathematical model to study the dependence of the total harmonic distortion of current and mains voltage on the value of the input inductance for various parameters of the input filter. Results. The structure and calculation procedure the input filter of an active rectifier operating with a fixed modulation frequency are proposed. The simulation results showed that the inclusion of a filter at the input of the active rectifier significantly improves its electromagnetic compatibility with the supply network in the entire range of variation of the input inductance of the circuit and makes it possible to achieve the values of the total harmonic distortion permissible by the norms. Originality. A structure and a calculation procedure the input filter of an active rectifier-voltage source operating with a fixed modulation frequency are proposed. Practical significance. The dependencies obtained in the article allow us to evaluate the relationship between the parameters of the filter elements and its characteristics among themselves and come to a compromise between them when designing a scheme for specific technical conditions.В статті запропоновано структуру та методику розрахунку вхідного фільтру активного випрямляча-джерела напруги, який працює з фіксованою частотою модуляції. Отримані залежності дозволяють оцінити взаємозв'язок параметрів елементів фільтра та його характеристик між собою та дійти компромісу між ними під час проектування схеми для конкретних технічних умов. Результати моделювання показали, що включення додаткового ланцюга RC фільтра на вході активного випрямляча істотно покращує його електромагнітну сумісність з мережею живлення у всьому діапазоні зміни вхідної індуктивності схеми та дозволяє досягати допустимих нормами значень сумарного коефіцієнту гармонічних спотворень

    Applications of Power Electronics:Volume 1

    Get PDF

    Power Decoupling Control for Single-Phase Grid-Tied PEMFC Systems With Virtual-Vector-Based MPC

    Get PDF
    The fuel cell grid-tied power generation system usually includes a dc-dc converter and a dc-ac inverter. In a single-phase system, inherent low-order current pulsations are introduced into the system, which can have harmful effects on the fuel cell stack. For example, reducing the output voltage and output efficiency, a reduction in service life, and even accelerates the degradation rate of the membrane electrode of a proton exchange membrane fuel cell (PEMFC). In addition, dc/ac coupling power can cause distortion in the dc input current and ac grid current. To eliminate the input ripple and ensure high ac power quality on the grid side, this paper proposes a novel power decoupling control for single-phase grid-tied PEMFC systems, which uses an improved model predictive control (MPC) algorithm. With the help of the virtual vector methods, which are realized by a two-stage optimization method, excellent tracking effect and robustness can be ensured. Simulations and experimental results show that the proposed algorithm can not only completely eliminate the input current ripple and reduce the total harmonic distortion (THD) of ac current on the grid side, but also improve the transient performance of the system
    corecore