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ABSTRACT
Industrial sectors rely on electrical inverter drives to power their various load segments. Because
themajority of their load is nonlinear, their drive systembehaviour is unpredictable. Manufactur-
ers continue to investmuch in research anddevelopment to ensure that the device can resist any
disturbances causedby thepower systemor load-side changes. The literature in this fieldof study
depicts numerous effects caused by harmonics, a sudden inrush of currents, power interrup-
tion in all phases, leakage current effects and torque control of the system, among others. These
and numerous other effects have been discovered as a result of research, and the inverter drive
has been enhanced to a more advanced device than its earlier version. Despite these measures,
inverter drives continue to operate poorly and frequently fail throughout thewarranty term. This
failure analysis is used as the basis for this research work, which presents a method for fore-
casting faulty sections using power system parameters. The said parameters were obtained by
field-test dataset analysis in industrial premises. The prediction parameter is established by the
examination of field research test data. The same data are used to train themachine learning sys-
tem for future pre-emptive action. When exposed to live data feeds, the algorithmmay forecast
the future and suggest the same. Thus, when comparing the current status of the device to the
planned study effort, the latter provides an advantage in terms of safeguarding the device and
avoiding a brief period of total shutdown. As a result, the machine learning model was trained
using the tested dataset and employed for prediction purposes; as a result, it provides a more
accurate prediction, which benefits end consumers rather than improving the power system’s
grid-side difficulties.
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1. Introduction

The rate of growth of any commercialized product
grows at a significantly faster pace. From conventional
analysis to artificial intelligence, the prediction of con-
sumer behaviour plays a significant role in deciding
the commercialization of the same. Similarly, any con-
sumer products are manufactured in industries with
an electrical system such as inverter drives to perform
the desired task of the industry. In these technologies,
commercialization plays a vital role, but artificial intel-
ligence is not that popular in the current inverter drives
used in the industries. Additionally, as noted in this
article, Ghosh Majumder et al. [1] employs a fault-
tolerant multi-stage inverter technology that results in
a higher manufacturing advantage due to the reduced
number of components in the drive framework. In this
paper [2], the author suggests a technique formitigating
harmonics caused by low power quality in connected
systems. The author is able to decrease current and volt-
age distortion by utilizing neural network approaches
(total harmonic distortion – THD). Khalilzadeh et al.
[3] described themodel predictive control approach for

motor drives using a current control strategy for the
voltage vectors in the drive converter circuit. By imple-
menting this strategy, the performance of the same can
be enhanced in any unpredictable condition that may
arise during operation. Gundogdu et al. [4] described
the direct torque control (DTC) systems for induction
motor drives with the FPGA in loop methodology. The
author also attempts to provide an improved multi-
stage inverter-fed multiphase induction machine drive
phase reconfiguration in this paper [5]. By looking into
the survey, most of the literature survey tells us that
the problem associated with the drives, their topologi-
calmerits and demerits, their switching issues, etc. As of
now, some drives have IoT-connected technology been
incorporated and Wi-Fi, etc. Services are available to
the end customer for better feasibility, but the artificial
intelligence-based system is not prevalent. In most of
the research articles, the researchers also concentrate
only on the problem it faces because of power quality
issues, the condition of the working environment, and
the type of load it has been operated on. In this arti-
cle, the authors gave an insight into the forecasting of
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power system disturbances using artificial intelligence
[6,7]. The author devised a technique that allows elec-
trical fault occurrences to be separated into datasets
based on the kind of fault. These datasets have been
categorized and can predict future events using correct
machine learning techniques. This article [8,9] cites the
control technique to eliminate the zero-sequence cur-
rent promulgating inside the induction motor drive. As
per the article strategy, the model predictive control
scheme can able to reduce the common-mode voltage
and thereby oust the zero-sequence circulating current.
Even the advanced speed controlling schemes are also
proposed in this article [10] regarding induction motor
inverter drive. Instead of using PI (proportional inte-
gral) and PID (proportional–integral–derivative) con-
trollers, the wavelet-fuzzy algorithm regulates speed
through the inverter drive system. The reference vec-
tors based on the frequency components give the speed
error and the torque reference components and the
desired task was performed. Yet another vital research
is total harmonic distortion (THD) causes and effects.
So, the THD reduction based on the filter circuit has
been discussed in this paper [11]. An intelligent compu-
tational inverter system uses the fuzzy logic algorithm
to control THDbyhaving a steadyDCvoltage, reducing
the THD to the 13th level. These articles give the pre-
dictive analysis strategy to improve the performance of
the inverter in an industrial environment. The impact
of load resistance and inductance mishap because of
nonlinear loading conditions, their effects on current
parameters, and THD levels were analysed and given a
probable mechanism to deter the feedback errors also
current and THD levels [12,13]. Also, when fed to the
grid system, their complexity was too analysed, and
based on inverter switching states, it was given a solu-
tion using vector control algorithms [14]. Few articles
had their research interest in instability in grid voltages.
When non-symmetrical voltage prevails in the grid, it
addresses the effects of increasing current harmonics
and compensating the voltage parameter through the
model prediction method. By having a suitable current
compensating system using a voltage reference vec-
tor, both increasing current THD and instantaneous
real and reactive power compensation were performed
using prediction vectors [15,16].

The above set of literature studies has a prediction
algorithm for various in-app fault controlling schemes
and but hard to find the artificial intelligent electrical
drives which tell about the health status of the same and
the operating parameters of the inverter drives. In this
research work, the main aim is to use artificial intelli-
gence in inverter drives to tell us the main parameters
of the same, predict the machine’s operability, and give
the anticipated results towards the monitoring aspects.
By keep in this mind, the key factors which affect the
performance of the electrical drives are ambient tem-
perature, derating factor, the vibration of the drives and

IGBT (insulated-gate bipolar transistor) temperature,
the said techniques will be implemented based on the
previous years of datasets, and novel algorithms are
developed to predict the health monitoring of the same
and also to give us an indication towards the overhaul-
ing of the machine in the near future. By doing so, the
operator can visualize the system’s health; thereby, the
electrical drives can be operated in an optimized man-
ner. Predictive healthmonitoring includes avoidance of
the sudden or emergency shutdown of the machine.

This research work discusses the current market sta-
tus of inverter drives and artificial intelligence.Machine
learning training also discussed comparative schemes.
Then, power quality analysis is performed on industrial
premises to identify prediction analysis parameters for
machine learning training. The sample dataset is tested
for predictive fault analysis and a modified algorithm
is proposed for better fault prediction during drive
operation.

2. Inverter drives algorithm current status in a
market

Themajority of the industrial drives follow either of the
control algorithms for driving the loads. They are vector
control, sensorless vector control, direct torque con-
trol and flux control methods. Depending on the load
and application constraints, any one of the algorithms
may be fitted in. Comparing the DC drives with the
four-quadrant operation, AC drives with variable speed
control include power electronics converters and AC
motors. In addition, microprocessor and DSP-based
control schemes also respond to high-speed dynamics
and are available in the present market. While consid-
ering the vector control schemes in the said applica-
tion, as the name depicts, the current and phase angle
components need to be addressed for better perfor-
mance. Since vector control is also specifically called
torque-controlled drive, the manufacturers go with
direct torque control schemes for high-performance
operation. Manufacturers control flux linkages inside
the ac machines, stator and rotor current components
in both techniques and, of course, the switching fre-
quency of the inverter drives about the required torque.
The torque estimation of the various control schemes in
the electric drive is given in the below equation.

Te = k1s|ψs|issy (1)

Te = k1r|ψr|irsy (2)

Te = k1m|ψm|imsy (3)

The above set of equations denotes the torque cur-
rent component employed in the inverter drives tech-
nique,ψ s,ψ r,ψm are themodulus of the relevant space
vectors, and is, ir, im are the reference frames. It is
possible to achieve stator flux, rotor flux and magnetiz-
ing flux-oriented control based on the needed torque
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Figure 1. Vector control scheme of induction motor drive.

and kind of application [17]. The desired job can be
obtained by altering the parameters in the preceding
equation. In vector control systems, direct or indirect
vector control schemes are used in the drive, either
by measuring direct estimation of the abovementioned
parameters and position vectors or using a machine
model. Because the latter utilized machine parameters
primarily in the algorithm, which is not the case with
direct control schemes, many industrial applications
used the latter because of its simplicity and good perfor-
mance, even in low-frequency switching applications
[17]. If the above parameters were not properly esti-
mated, the torque component’s performance would be
impaired, and the system’s responsiveness would be low
at low frequencies or low speeds. Figure 1 illustrates the
inverter drive’s vector control method.

In the case of direct control drive, the parameters
above are directly controlled independently as per the
inverter switching. With the voltage vector table of the
inverter, torque response, losses and errors will be min-
imized. Also, having an estimation of flux linkages and
torque, a predictive vector table about inverter switch-
ing voltage is processed [17]. The main advantages of

the DTC technique deal with direct linkages to flux and
torque and indirectly to voltage and current parameters
and, of course, non-necessity of coordinate transforma-
tion, fewer controllers in the block. The block diagram
of the main DTC schemes applied in the inverter drive
is shown in Figure 2. In this scheme, either predic-
tive or non-predictive voltage vector inverter switch-
ing can be done. Also, sensorless control of drives has
become popular among the industrial community, and
it featured optimal encoders used for position pur-
poses and electromagnetic resolvers too for rotor posi-
tion. By reducing the complexity and increasing the
robustness, sensorless featured drives play an essential
role in this regard. Also, by adopting this technique
will increase reliability, maintenance less operation,
immune to noise. By incorporating sensorless drive,
which has a monitoring system for voltage and current
at the stator side. Estimation parameter about harmonic
voltages, filters, reference system and lastly comes the
artificial intelligence for prediction aspects.

Incorporating power electronics into this field will
lead to greater reliability and energy savings. The ben-
eficiaries in this scheme can even be better enhanced

Figure 2. Direct torque control scheme of induction motor drive.
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Figure 3. (a) A different machine learning algorithm in industrial application. (b) A comparative study of different machine learning
algorithms. (c) Flowchart for the proposed research work.
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through some artificial intelligence techniques such
that the failure or the performance factors can be
measured then and there and suitably performance
improvement can be incorporated in the near future.
Based on artificial intelligence techniques, manufactur-
ers are assuring their maximum potential to safeguard
as well as give the product a guarantee of operation.
In spite of all these efforts, there is still a larger extent
where the drives face their vulnerabilities. In that case,
either the manufacturer or the end customer stands
face-to-face without any solution to the failure. In this
regard, even though a lot of in-depth analysis and safe-
guardingmechanisms are inbuilt with the drive system,
there are still a lot of chances of failure too. So, to make
the system even more robust to another extent, it is
indeed necessary to incorporate an additional level of
technological enhancement to cater to the in-demand
quality in the power system [17].

3. A perspective onmachine learning
algorithms in industrial application: machine
learning algorithm

Machine learning is nothing but an artificial intel-
ligence with different unique algorithms available to
make use of the same and is given in Figure 3(a). In
the below-given algorithms, each one has its unique-
ness, and it can be used to track which suits better for
one particular application.

The above figure shows the comparative merits and
demerits of the specified algorithm. Ray [18] citesmany
machine learning algorithms like Gradient Descent,
Linear Regression, Multivariate Regression Analysis,
Logistic Regression, Decision Tree, Support Vector
Machine, Bayesian Learning, Naïve Bayes, Nearest
Neighbour Algorithm, K Means Clustering Algorithm,
Back Propagation Algorithm. Of these algorithms and
their integration in the drive, issueswere literature stud-
ied and given below for further insights in this regard.
This research work is carried out with the current mar-
ket status and followed the following flowchart for the
proposed research work.

4. A current scenario in intelligent application
to industrial problems

Since before the start of artificial intelligence technol-
ogy, many researches have been conducted to have
intelligent techniques injected into the system. With
the rapid boom in artificial intelligence, many field
domains prefer to incorporate the same in their prod-
uct for an enhanced version of their product. Again, as
previously said in the introduction section, researchers
tried to give the best possible solution to the discussed
problems in an enhanced smart manner. In this arti-
cle [19], an improvised algorithm for DTC strategy in
inverter drives is tried out. The author combined DTC

with a predictive algorithm to have enhanced speed reg-
ulation by using the Kalman filter. With this, torque
reference and flux estimation vectors, various param-
eters like torque, speed, dynamic behaviour during
transients and current disturbances are also addressed.
Hannan et al. [20] cite the machine learning approach
to inverter pulse modulation to enhance their perfor-
mance. The Random Forest algorithm offers good per-
formance comparing the conventionalmodel. Learning
algorithm enhances the performance of PI-controlled
defaulted in the drive system, thereby improving speed
and current response. Janabi et al. [21] suggest an intel-
ligent algorithm to track the live feed PWM (pulse-
width-modulation) pulse option. By having the said
scheme in inverter drives, the complexity reduction
in particular choice of selection of harmonic elimina-
tion is performed. So rather than discarding alone, it
modulates the particular harmonics and, through this,
reduces the computation time of the controller.

This article [22] addresses the monitoring of volt-
age and current through online mode during the dis-
torted voltage times. Since the monitoring of the same
will have a predetermined operation of the drive dur-
ing uncertain times, minimizing the system’s irregular
dynamic response. In this to numerous torque para-
metric issues, Habibullah et al. [23] solve computation
workload by reducing the voltage reference vectors.
Based on stator flux and its deviation from the nominal
value, reference vectors are predicted. So, a reduced vec-
tor can be obtained, and computational worry reduces
to as low as 38%. In this research paper [24], a suit-
able algorithm has been proposed to find the inverter
fault due to open-circuit conditions. The algorithm is
based on deviation from the current value references
without any added sensory circuits in the drive system.
The author in this article [25] cites performance analy-
sis in inverter drive using intelligent fuzzy techniques.
It commented the drive operation during reduced RPM
(revolution per minute), the fuzzy logic technique used
in the same, factors affecting the vector orientation in
the drive algorithm and hint out the principal short-
comings of the system.

Researchers have looked at power system equipment
concerns that involve inverters; according to this paper
[26], an unique current algorithm has been devised
to address the power system component’s transient
behaviour. The system can handle supply end difficul-
ties like current ripple reduction and reactive power
adjustment by using an appropriate PWM approach
and a correct voltage reference. An inverterwith switch-
ing faults is taken up for analysis in this article [27].
By taking the positive and negative cycles of bridge
voltages, the open switch fault algorithm can iden-
tify the fault location in the inverter system without
requiring any complex calculations. The system can
detect the fault location using this algorithm within
a fundamental period. Akhil Vinayak et al. [28] pro-
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pose an algorithm for detecting a short circuit fault
in the induction motor drive’s stator circuitry. Under
various conditions, the author proposed a solution
through SVM (Support Vector Machine) algorithm
to harmonic effects arising from the said fault con-
ditions. The author of this paper [29] discusses low-
level harmonic effects that occur when converter cir-
cuits are exposed to intermediate-level voltages due to
the converters’ quick dynamic response. The proposed
algorithm-based PWM technique can outperform the
conventional method in terms of the aforementioned
issues. Intelligent algorithms have been used to address
various methods of DTC control of inverter drives
[30–33] with regard to transients, switching frequen-
cies, torque, current ripples and, of course, system
robustness factors. Similarly, electromagnetic interfer-
ence issues were raised and methods to reduce it
were examined in these articles [34,35]. Aside from
the application of intelligent algorithms to various
fault events mentioned above, some researchers [36,37]
have focused on common-mode voltage reduction and
inductionmachine efficiency enhancement. In addition
to these applications, issues such as open-circuit faults
[38,39], elimination of harmonics content on both the
AC and DC sides [40–42], leakage current inside the
inverter [43], inverter drive switching periods [44] and
power quality analysis as compared to the inverter
drive [45] suggested various solutions to the said issues,
either through artificial intelligence or assisted with
the same. According to the above literature, artificial
intelligence-based preventive mechanisms at the input
section of an inverter drive are rarely seen and imple-
mented in industrial inverter drives. To address the
aforementioned issues, a power grid must be analysed
and validated before a suitable predictivemechanism in
the drive system can be proposed.

5. A power quality analysis in industrial drives

State-of-the-art technologies find a place in modern
industries to perform the desired task. Despite a variety
of load conditions, prime movers must perform their
duties without delay. According to the literature, power
quality plays an important role in the failure of elec-
trical drives. As a result, a field analysis is required to
determine how much the power quality influences the
performance of the same. In this regard, the following
analysis is based on four to five months of observation.

Figure 4 shows the average or three-phase voltages
at the electrical drive’s input section, where the line-to-
line RMS voltages are recorded for continuous 10-cycle
counts. Figure 4 shows the majority of device opera-
tion in the nominal line-to-line voltage range, as well
as below and above nominal values, but not for contin-
uous 10-cycle counts in their operating conditions. It
means that nominal values are observed below or above
the same, not for a continuous 10-cycle counts.

Figure 4. Line-to-line phase voltages recorded at input drive
section.

Figure 5. Current patterns during the line–line RMS voltage
value at input section of drive.

Figure 6. Frequency patterns during the line–line RMS voltage
value at input section of drive.

For the same period of time, current behaviour, fre-
quency patterns, THD at voltage and current patterns
were observed and analysed, as shown in Figures 5–8.
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Figure 7. Percentage voltage THD during the line–line RMS
voltage value at input section of drive.

Figure 8. Percentage voltage THD during the line–line RMS
voltage value at input section of drive.

During the field study, it was discovered that
there is a significant impact on current, THD for
both voltage and current factor, and, of course, fre-
quency patterns remain undisturbed and at nomi-
nal value. Only the line-to-line and line-to-neutral
voltage values at the input section of the electrical
inverter drive, which experiences a very poor volt-
age sag condition at one particular uncertain moment,
either at individual phases or multiple phases, are of
serious concern. Figure 9 shows a comparison of the
abovementioned parameters with respect to the time
frame.

6. Selection of prediction parameters for
machine learning training

According to the graphs above, it is clear that current
and other parameters have a crucial role in the drive
performance, as indicated in the literature, and they
play a substantial impact. According to the literature
review, numerous fault-tolerant systems with respect

Figure 9. Comparison of voltage, current, frequency, voltage,
and current THD in particular time frame.

Figure 10. Percentage of time voltage range observed during
testing phase.

Figure 11. Line-to-line RMS voltage recorded during test
phase.

to said parameters have been developed and integrated
into systems in recent years, but significant failure and
performance degradation occur as a result of uncer-
tain voltage sag conditions or voltage levels above the
safe value. Figure 10 illustrates the voltage range val-
ues encountered during the test condition. As shown
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Table 1. Ripple factor algorithm simulation – single-phase
rectifier topology analysis.

Simulation of normal voltage input/output measurement (RL load)

Input Vrms = 200 V R = 100 Ω L = 200mH
Output Vdc = 178.2 V Ripple factor = 1.121
Simulation of abnormal voltage (Sag) input/output measurement (RL load)
Input Vrms = 7.6 V R = 100 Ω L = 100mH
Output Vdc = 5.32 V Ripple factor = 1.444
Simulationof abnormal voltage (Swell) input/outputmeasurement (RL load)
Input Vrms = 425 V R = 100 Ω L = 100mH
Output Vdc = 380.9 V Ripple factor = 1.115

in Figure 10, the nominal value of the voltage has been
recorded and supplied to the inverter drive section for
the majority of the loading time.

As seen in the preceding figure, while the drive often
receives good voltage values, at times, as illustrated in

Figure 4, the drive receives very poor-quality voltage
from the grid end. This may be verified once more in
Figure 11, which displays the minimum, average and
maximum voltages measured during the test phase.

By comparing Figures 4, 9, 10 and 11, it is clear that
by using input phase voltages as a prediction parameter,
it is possible to train artificial intelligence algorithms for
prediction analysis, hence avoiding the failure rate in
inverter drives.

7. Predictive analysis usingmachine learning
algorithm

Aspreviously described in the literature, each algorithm
has its own distinct characteristics, and four algorithms

Figure 12. Voltage range observed at input section of inverter drive.

Figure 13. (a) Comparison of prediction training algorithmwith different parameters, (b) voltage vs. current graph during the same
time frame, (c) voltage vs. percentage VTHD, (d) voltage vs. frequency patterns.
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Figure 14. (a) Comparative analysis of prediction of poor quality of power at inverter drive section. (b) Flag trigger start and closing
time period during drive operation.

have been chosen and are being used to train the test
data based on the test data patterns and their qualities.
The graph in Figure 12 is based on the test condi-
tions and various parametric values collected during
the same.

The above graph displays sample data collected dur-
ing the test phase, which is fed into the machine learn-
ing system for predictive analysis. Figure 13 illustrates
the predictive analysis graph based on the training out-
come. Figure 13(a) chart shows the flag or fault event
recorded during the test phase. The arrow indicates the
severe voltage sag condition which is experienced by
the drive section. Chart whenever gets a dig in their

spike–wave; a sag condition prevails in the network
which might affect the performance of the drive or may
even cause a breakdown. As the previous comparison
donemanually, machine learning comparison too done
in the next two graph chart with that of the voltage
sag condition. From the comparison, it is clear that,
when sag occurs, the other parameter shows no abnor-
mal response to the sag in the grid structure. As the
other figure parameters like current Figure 13(b), volt-
age distortion Figure 13(c) and frequency Figure 13(d)
remain scattered during both flag/fault event and nor-
mal condition of drive operation as indicated in the
charts graph.
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Figure 15. Ripple factor algorithm simulation – single-phase rectifier topology analysis.

Figure 16. Output voltage of rectifier section under normal voltage condition.

As shown in the preceding graph, voltage is the lone
parameter that degrades performance in the inverter
drive section due to poor power quality. Thus, the
accompanying Figure 14(a) illustrates the voltage as a
dataset to be detected by themachine algorithm and the
training for predictive analysis.

The graphs above demonstrate that voltages nearly
always maintain their nominal value, but under uncer-
tain conditions, they also record voltage sag condi-
tions in any of the individual phases or many phases.
When the algorithm is trained in this manner, it pro-
duces accurate results when it encounters the defective
note at the drive section’s input. As a result, the pre-
diction algorithm may be utilized to take proactive
action in relation to electrical industrial drives, result-
ing in their protection and safe functioning. Even if the

predetermination of the training has a high level of pre-
diction, as illustrated in the figure, the voltage values
are extremely unpredictable, and this is within a time
span of 300,000ms as shown in Figure 14(b). Thus, in
order to develop an algorithm capable of accurate and
trustworthy prediction, the updated conditionsmust be
incorporated into the existing algorithms.

8. Proposedmodifiedmachine learning
algorithm (ripple factor algorithm) for
prediction control electrical drives

Given the limits imposed by the test data, it is clear
that decoding the above set of prediction results will
result in a positive conclusion. Nonetheless, the sce-
nario based on the time period during which the



AUTOMATIKA 359

Figure 17. Output voltage of rectifier section under abnormal voltage condition.

parameters weremeasured is insufficient or too rapid to
respond to the prediction. Thus, to achieve the best fea-
sible solution to this limitation, it is hard to forecast the
exact and trustworthy consequences because the dete-
riorated performance at the input section is not visible
throughmeasurement instruments. With these consid-
erations inmind, amodified algorithm is proposed here
that allows for the detection of impaired performance
and the exact and reliable prediction of problematic
segments in the power system that may be communi-
cated to operational staff in an industrial context. To
validate the modified algorithm, MATLAB simulations
were carried out to find out the unique behavioural
pattern from the rectifier section of the Inverter
Drives.

Because the changes inside the inverter drive section
when subjected to voltage difficulties must be anal-
ysed, a novel ripple factor algorithm has been created to

increase forecast reliability based on the previous result.
The drawbacks of the non-unique prediction analysis of
the aforementioned outcomeof Figure 14 are avoided to
a greater extent based on the simulation results. Because
different topologies are used by different manufactur-
ers in their drive frameworks, the ripple factor dataset
was acquired by simulating several topologies. The
normal and abnormal voltage output waveforms of a
single-phase full-wave rectifier are shown below in Fig-
ures 15–17 for sample prototype investigation. Table 1
displays the lower and upper extreme values of RMS
voltage to the rectifier section, as well as their related
output patterns, as simulation input and output param-
eters. The figure shows the ripple factor dataset for the
rectifier input voltage as a result of this proportionate
output behaviour.

While there is no noticeable degradation in perfor-
mance at the prediction parameter during the testing

Figure 18. Ripple factor variation with respect to individual faulty phase in power system.
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Figure 19. Comparative analysis of different machine learning algorithm for prediction of faulty section in inverter drives.

phase, it is obvious that after a short amount of time, i.e.
around 1,000,000ms time frames, the parameter tran-
sitions from normal to fault and back to its nominal
value. Due to the unpredictability in the input volt-
agemagnitude recorded behavioural pattern, it must be
assessed in the inverter part. If the inverter’s nominal
value is deviated from, there must be a major change in
the converter part of the inverter drive.Within this little
period of time, the DC-bus voltage inside the inverter
portion will have an effect. This parametric change in
values that deviate from the nominal range might serve
as the X-factor for training the predictionmodel. Along
with the normal method prediction, the ripple factor
deviation from the nominal value can be taught. The

ripple factor of the inverter rectifier section is simulated
using MATLAB under various loading situations, and
the change in ripple factor for their respective individ-
ual phases is shown in Figure 18.

According to the graphs above, when any particu-
lar phase falls below par or is undervalued, it impacts
the performance or may cause the inverter drive to fail
to exhibit the deteriorated performance at its nominal
value. So, when these numbers are added to the train-
ing process and the preceding set of rules, ripple factors
build up and provide a forecast far before the occur-
rence of the defective section. Figure 19 depicts the
improved method training outcomes for two distinct
rectifier topologies in this case.
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Figure 20. Live data prediction of the modified algorithm – before faulty data.

Figure 21. Pre-emptive action triggered by modified algorithm to safeguard the drive system.

Based on the methods listed above, nearest neigh-
bours, random forest and neural network algorithms
nearly determine 80%of defective parts. The total num-
ber of documented defective events in the first graph
is 82. It recognizes 80% of the same as well as 80% of
the second topology. The erroneous data are 38, and
the performance is also unchanged. So, once this result
is obtained, it is put into live data via IoT technol-
ogy, and the live prediction of the problematic portion
is observed. As predicted by the experimental results,
once the faulty portion is noticed, or when reduced per-
formance at the inverter drive input section is noted,

the algorithms pre-emotively inform the working per-
son, allowing the working person to select whether to
continue the operation or discontinue it. When the
improved algorithm anticipates the invalid note, the
prototype model sends an email and displays a warn-
ing LED on the IoT (Internet of Things) Dashboard.
Figures 20–22 show the live prediction result for the
aforementioned method.

As shown in the above graphs, by having the decided
prediction in accordance with the stated scheme of
things and the prediction algorithm as a separate
subroutine within the Inverter Drive Algorithm, it is
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Figure 22. Live data prediction of the modified algorithm – after degrading factor at the input section of inverter drive.

feasible to foresee a problematic part ahead of time and
act appropriately to safeguard it.

9. Conclusion

Industrial drivesmust performconsistently under vary-
ing loading situations. They are exposed to a variety
of external disturbances and issues even under typi-
cal operation settings, i.e. with adequate power qual-
ity. Thus, manufacturers, after extensive research and
development, made every effort to provide their con-
sumers with a fault-tolerant device. Additionally, they
provided automatic switching off of low-performance
operation to safeguard the inverter drive system in
addition to this problem in the power system section.
Despite these safety features, power supply problems
remain the primary concern, and individual phase
faults at inconvenient periods frequently result in drive
failure well inside the guarantee time frame. Taking
this into account, the grid structure’s voltage behaviour
is investigated in both normal and abnormal circum-
stances for machine learning training. The voltage
behaviour patterns were fed into a machine learning
system for data training and observed the outcome.
From the outcome, it is found that the occurrence of
the fault or flag event is vague, and there is no distinct
pattern that develops within the fault time periods.

This artificial intelligence fault prediction bottleneck
in electrical drive systems requires a novel algorithm

method. It is founded on the premise that any modifi-
cations to the drive’s input section will have an equal
impact on the drive’s internal part. In view of the
said context, a new ripple factor algorithm was devel-
oped using simulation through MATLAB. To train the
machine learning using the ripple factor algorithm,
the dataset is prepared with both normal and abnor-
mal voltage levels and fed for the training of the same.
The prediction result demonstrates that the ripple fac-
tor algorithm can forecast the defective note when the
incoming voltage value changes. As a result, producers
will be able to take preventative action by implement-
ing this prediction algorithm. Additionally, they can
train their system to improve their forecast based on
real-time data patterns. Additionally, because grid-side
standards are non-negotiable by nature and must be
implemented in accordance with government laws, the
end customer can use the fault-tolerant device to pro-
tect their products from being damaged by poor power
quality in their regional area.
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