164 research outputs found

    Complexity Hierarchies and Higher-order Cons-free Term Rewriting

    Get PDF
    Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of the left-hand sides; the computational intuition is that rules cannot build new data structures. In programming language research, cons-free languages have been used to characterize hierarchies of computational complexity classes; in term rewriting, cons-free first-order TRSs have been used to characterize the class PTIME. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the type order of the systems. We prove that, for every K ≥\geq 1, left-linear cons-free systems with type order K characterize EK^KTIME if unrestricted evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal term rewriting systems with no assumptions on reduction strategy, (ii) we consequently obtain much larger classes for each type order (EK^KTIME versus EXPK−1^{K-1}TIME), and (iii) results for cons-free term rewriting systems have previously only been obtained for K = 1, and with additional syntactic restrictions besides cons-freeness and left-linearity. Our results are among the first implicit characterizations of the hierarchy E = E1^1TIME ⊊\subsetneq E2^2TIME ⊊\subsetneq ... Our work confirms prior results that having full non-determinism (via overlapping rules) does not directly allow for characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes like admitting product types or non-left-linear rules.Comment: extended version of a paper submitted to FSCD 2016. arXiv admin note: substantial text overlap with arXiv:1604.0893

    Complexity Hierarchies and Higher-Order Cons-Free Rewriting

    Get PDF
    Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of constructor terms in the left-hand side; the computational intuition is that rules cannot build new data structures. It is well-known that cons-free programming languages can be used to characterize computational complexity classes, and that cons-free first-order term rewriting can be used to characterize the set of polynomial-time decidable sets. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the order of the types used in the systems. We prove that, for every k ≥\geq 1, left-linear cons-free systems with type order k characterize Ek^kTIME if arbitrary evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about reduction strategy, (ii) results for such term rewriting systems have previously only been obtained for k = 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity. Our results are apparently among the first implicit characterizations of the hierarchy E = E1^1TIME ⊆\subseteq E2^2TIME ⊆\subseteq .... Our work confirms prior results that having full non-determinism (via overlaps of rules) does not directly allow characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.Comment: Extended version (with appendices) of a paper published in FSCD 201

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    Polynomial Size Analysis of First-Order Shapely Functions

    Get PDF
    We present a size-aware type system for first-order shapely function definitions. Here, a function definition is called shapely when the size of the result is determined exactly by a polynomial in the sizes of the arguments. Examples of shapely function definitions may be implementations of matrix multiplication and the Cartesian product of two lists. The type system is proved to be sound w.r.t. the operational semantics of the language. The type checking problem is shown to be undecidable in general. We define a natural syntactic restriction such that the type checking becomes decidable, even though size polynomials are not necessarily linear or monotonic. Furthermore, we have shown that the type-inference problem is at least semi-decidable (under this restriction). We have implemented a procedure that combines run-time testing and type-checking to automatically obtain size dependencies. It terminates on total typable function definitions.Comment: 35 pages, 1 figur

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    The Power of Non-Determinism in Higher-Order Implicit Complexity

    Full text link
    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order 0. Previous work has shown that adding explicit non-determinism to cons-free programs taking data of order 0 does not increase expressivity; we prove that this - dramatically - is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows for a characterisation of the entire class of elementary-time decidable sets. Finally we show how, even with non-deterministic choice, the original hierarchy of characterisations is restored by imposing different restrictions.Comment: pre-edition version of a paper accepted for publication at ESOP'1
    • …
    corecore