
5th International Workshop on
Proof, Computation, Complexity

PCC '06

The aim of PCC is to stimulate research in proof theory, computation, and
complexity, focusing on issues which combine logical and computational aspects.
Topics may include applications of formal inference systems in computer science, as
well as new developments in proof theory motivated by computer science demands.
Specific areas of interest are (non-exhaustively listed) foundations for specification
and programming languages, logical methods in specification and program
development, new developments in structural proof theory, and implicit
computational complexity.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224763087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5th International Workshop on
Proof, Computation, Complexity

PCC '06

Ilmenau, July 24 - 25, 2006

Edited by

Karl-Heinz Niggl
TU Ilmenau, Germany

Reinhard Kahle
Universidade de Coimbra e CENTRIA, UNL, Portugal

Birgit Elbl
UniBw München, Germany

Universitätsverlag Ilmenau
2006

Impressum

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliographie; detaillierte bibliographische Angaben sind im Internet
über http://dnb.ddb.de abrufbar.

Technische Universität Ilmenau/Universitätsbibliothek
Universitätsverlag Ilmenau
Postfach 10 05 65
98684 Ilmenau

Herstellung und Auslieferung
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster

ISBN 3-939473-01-4

http://dnb.ddb.de

Abstracts

Mathias Barra
On some small subrecursive hierarchies 7

Ulrich Berger
Strong normalisation via domain-theoretic computability predicates 9

Guillaume Bonfante
Life after “life without cons” . 10

Michael Brinkmeier
Terms and Operads . 15

Folke Eisterlehner
An alternative correctness proof of a certification method for fptime 18

Marco Gaboardi
λ-Calculus and Soft Linear Logic 20

Lew Gordeev
Strong WQO phase transitions . 24

Lars Kristiansen
T

−-Hierarchies and the Trade-off Theorem 28

Oliver Kullmann
Sign-sensitive Graph Representations of CNFs: Conflict graphs and

resolution graphs . 30

Jean-Yves Marion
Interpretations methods for proving complexity upper bounds . . . 33

Jean-Yves Moyen
Resources Control Graphs . 37

Gerard Renardel de Lavalette
Interpolation in Horn logic . 42

Henning Wunderlich
Implicit characterizations of FPTIME and NC revisited 47

Ernst Zimmermann
Substructural Logics in Natural Deduction 52

Preliminary Program 56

Proof, Computation, Complexity 06

On some small subrecursive hierarchies

Mathias Barra

Department of Mathematics, University of Oslo
Postboks 1053, Blindern, N-0316 Oslo, Norway
georgba@math.uio.no

http://www.math.uio.no/~georgba

Abstract.

This talk is to report on joint work with Lars Kristiansen [3], The Small
Grzegorczyk Classes and the Typed λ-Calculus, and some related ideas. The
article was presented at the CiE conference in Amsterdam 2005.
The class ∆N

0 of rudimentary relations and the small relational Grzegorczyk
classes E0

? , E1
? , E2

? attracted fairly much attention during the second half of
the previous century, yet, the open problems imposed by these classes are still
there for new generations to ponder on. It is well-known, and rather obvious,
that ∆N

0 ⊆ E
0
? ⊆ E

1
? ⊆ E

2
? , but it is not known if any of the inclusions are

strict, indeed it is open if the inclusion ∆N
0 ⊆ E

2
? is strict.1 Bel’tyukov [1]

proved that E1
? = E2

? implies E0
? = E2

? . Furthermore, we know that ∆N
0 = E0

?

implies ∆N
0 = E2

? . We do not know if this is proved anywhere else in the
literature, but this is a straightforward corollary of some of the theorems
in [3].
The open problems can be traced back to Grzegorczyk’s seminal paper [2]
from 1953, and it is fair to say that the problems belong to subrecursion the-
ory, but they are closely related to those of complexity theory and computer
science. Recalling that linspace is the class of number-theoretic relations de-
cidable by a deterministic Turing machine working in linear space, Ritchie [5]
proved in 1963 that linspace = E2

? . Many of the other standard complexity
classes, e.g. p and logspace, have since been characterised by subrecursive
classes.
In [3] we introduce the L-hierarchy:

L0 ⊆ L1 ⊆ L2 ⊆ · · · L =
⋃

i<ω

Li

1For any set X of functions, X? denotes the set of relations whose characteristic function
belong to X .

7

Mathias Barra

which might shed some new light on the open problems described above.
A class in the L-hierarchy is defined by a certain fragment of the T−-calculus.
Here T− is itself a fragment of the typed λ-calculus extended with zero-,
recursor- and successor constants and appropriate reduction rules (Gödel’s
T). Full T− may be informally described as T without the successor, and
variations over this theme within various computational models have been
the focus of research for Kristiansen and me for the last years. We have:

• ∆N
0 ⊆ L

0
? ⊆ E

0
? ⊆ E

1
? ⊆ L

1
? ⊆ · · · ⊆ L? = E2

?

• ∀i, j ∈ N
(
Li = Lj ⇐⇒ Li

? = Lj
?

)

Hence E0
? 6= E

2
? if Li 6= Lj for some i, j > 0, and ∆N

0 6= E
2
? if L0 6= Lj for some

j > 0. No explicit bounds are embodied in the definition. Thus, we have a
so-called implicit characterisation of E2

? (linspace).
The proof relating the classes Li

? to the Grzegorczyk classes goes via a second
hierarchy; the subrecursive Grzegorczyk-like G. The classes G i

? are easily
related to the E i

? classes, and the equality Li
? = Gi

? is then proved.
In [4] Kristiansen and Voda show that many well-known deterministic com-
plexity classes can be characterised by fragments of T−. Furthermore, a proof
sketch based on Turing machines is given, showing that the type 0 fragment
defining L captures linspace, and thus E2

? . In [3] we make no detours via
Turing machines and give a more direct proof of the equality L? = E2

? .
Further ideas include extending and modifying the subrecursive hierarchy G
to capture more complexity classes (also time classes), and to further analyse
what happens at the bottom of the hierarchy, i.e. between ∆N

0 and E0
? .

[1] A. P. Bel’tyukov. A machine description and the hierarchy of initial Grzegor-
czyk classes. Zap. Naucn. Sem. Leninigrad. Otdel. May. Inst. Steklov. (LOMI)
88 (1979): 30–46, J. Soviet Math. 20

[2] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Mat., 4
(1953):1–45

[3] L. Kristiansen and M. Barra. The small Grzegorczyk classes and the typed λ-
calculus. New Computational Paradigms, Vol 3526 of LNCS, Springer Verlag,
(2005):252–262

[4] L. Kristiansen and P.J. Voda. Typed λ-calculi and computational complexity.
(Submitted.)

[5] R. W. Ritchie (1963). Classes of predictably computable functions. Trans. Am.
Math. Soc. 106, (1963):139–173

8

Proof, Computation, Complexity 06

Strong normalisation via domain-theoretic

computability predicates

Ulrich Berger

University of Wales, Swansea, UK
u.berger@swansea.ac.uk

Abstract.

It is well-known that intersection types on the one hand characterise the
strongly normalisable lambda terms, and on the other hand give rise to
a syntactically defined domain model for the lambda calculus. Recently,
Coquand and Spiwack have combined and extended these facts to give a
domain-theoretic criteria for strong normalisability for the lambda-calculus
with recursively defined constants.
In the talk, I will show that their normalisation proof can also be carried
out in an abstract axiomatic setting where the computability predicates are
indexed by the elements of a (not syntactically presented) domain. The
more abstract setting simplifies the proof considerably without sacrificing
constructivity.

9

Guillaume Bonfante

Life after “life without cons”

Guillaume Bonfante

Loria, Calligramme project,
B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France, and

École Nationale Supérieure des Mines de Nancy, INPL, France.
Guillaume.Bonfante@loria.fr

Abstract.

We propose two characterizations of complexity classes by means of pro-
gramming languages. The first concerns Logspace while the second leads
to Ptime. The latter characterization shows that adding a choice command
to a Ptime language (the language WHILE of Jones [6]) may not necessarily
provide NPtime computations. The result is close to Cook in [4] who used
“auxiliary push-down automata”. Logspace is obtained through a decid-
able mechanism of tiering. It is based on an analysis of deforestation due to
Wadler in [13]. We get also a characterization of NLogspace.

The present work arises as a side effect of the much long-term research on
quasi-interpretation analysis. Take a first order program. For instance,

Example.The following program computes “log2(x+ 1)”:

log(x) = case x of
0 → 0

s(x′) → incr(log(half(x)))

where incr corresponds to incrementation by one, and half to the “divide
by two” function.

These rules are perfectly natural and we are looking for an ICC’like framework
that fits with that kind of recursion. Coming back to the quasi-interpretation
method, there is (at first sight) no hope, since the schema does not verify the
subterm property (the redex is a subterm of the reduct).
The point is that we “have” to say at one point that half is a function whose
results are sub-terms of the inputs. In that case, the analysis of [10,2,3] can

10

Proof, Computation, Complexity 06

be carried on. So, the main purpose of the contribution is an ICC analysis
of functions whose results are sub-terms of the inputs.

A major contribution in the area is due to Jones [6]. He considers programs
where it is precluded to build intermediate data which would not be sub-
term of the input. To do that, he considers a (imperative) programming
language where the instruction Z := cons(E1, . . . , Ek) is not authorized. Ac-
cording to whether we allow or not recursive calls, he gets a characterization
of Logspace or of Ptime. On the functional programming side, there is
a strong link between the former analysis and the one of Wadler, known as
“deforestation techniques”, see [13]. The present contribution sheds some
new light on the subject.

So, we propose a characterization of Logspace. It is obtained with respect
to a kind of tiering technique. This fruitful approach has been initially con-
sidered by Bellantoni and Cook in [1] and Leivant and Marion [7] who charac-
terized Ptime. Leivant and Marion showed that such a stratification could
be used for other complexity classes, see [8,9]. Following Bellantoni-Cook,
Mairson and Neergaard [11] have shown what restrictions on the language
B lead to Logspace. Niggl and Wunderlich consider the crucial question of
imperative programming [12].

The second characterization we propose deals with nondeterminism. We
show, and the result is surprising, that adding some choice command in the
language WHILE of Jones does not change the class of computed functions.
Naively, one would have expected to characterize NPtime. Indeed, if one con-
siders — as does Jones — the class of functions computed in polynomial time
in WHILE, one gets Ptime. Adding the choice command, one gets NPtime.
Since WHILE-cons-free programs characterize Ptime, adding the choice com-
mand “should” have resulted in NPtime. It is not the case, and we show
that such a system characterize Ptime. The result is all the more surprising
as for the corresponding space characterization, that is of Logspace, adding
the choice command leads to the corresponding non-deterministic complexity
class NLogspace. We mention here the work of Cook [4] whose characteri-
zation of Ptime by means of auxiliary pushdown automata is in essence close
to us. The main difference lies in the fact that we have an implicit call stack
(for recursion) where Cook has an explicit one.

FOFP

We define a generic first order functional programming language. The vocab-
ulary Σ = 〈Cns,Op,Fct〉 is composed of three disjoint domains of symbols.

11

Guillaume Bonfante

The set of programs is defined by the following grammar.

Programs 3p ::= d1, · · · , dm

Definitions 3 d ::= f(x1, · · · , xn) = ef

Expression 3 e ::= x | op(e1, · · · , en) | f(e1, · · · , en)
| c(e1, · · · , en)
| if e1 then e2 else e3
| let x = e1 in e2
| case x1, · · · , xn of p1 → e1 . . . p` → e`

Patterns 3 p ::= x | c(p1, · · · , pn)

where x ∈ Var is a variable, c ∈ Cns is a constructor, op ∈ Op is an operator,
f ∈ Fct is a function symbol, and pi is a set of patterns.

Definition.We say that a program p is cons-free if the definitions do not use
the rule c(e1, · · · , en) of the grammar. In other words, constructors occur
only in patterns. The set of such cons-free programs is denoted FOFPcons-free.

Definition. A definition f(x1, · · · , xn) = ef induces a relation on function
symbols. Say that f calls g, denoted f → g, if g appears in the body of f.
The reflexive-transitive closure of→ induces a pre-order on function symbols,
denoted

∗
→. The corresponding equivalence relation ' is defined by f ' g⇔

(f
∗
→g∧ g

∗
→f). The corresponding strict partial order is denoted ≺. We have

g ≺ f⇔ (f
∗
→g ∧ ¬(f

∗
→g)).

Definition.(Linear programs) Given a function symbol f, the level of an
expression is given by the inductive rules:

• lvlf(x) = 0,

• lvlf(g(e1, · · · , en)) = 1 +
∑

k≤n lvlf(ek) where g ' f,

• lvlf(g(e1, · · · , en)) =
∑

k≤n lvlf(ek) where g ≺ f,

• lvlf(let x = e1 in e2) = lvlf(e1) + lvlf(e2),

• lvlf(if e1 then e2 else e3) = lvlf(e1) + max(lvlf(e2), lvlf(e3)),

• lvlf(case x of p1 → e1, . . . , p` → e`) = max(lvlf(e1), . . . , lvlf(ek)).

12

Proof, Computation, Complexity 06

We say that a definition f(x) = ef is linear if lvlf(e
f) = 1. A program

is linear if any definition has level 1. The set of such programs is denoted
FOFPlin.

Theorem. Decision problems decided by linear cons-free programs are ex-
actly Logspace decision problems.

Non-determinism

To WHILE, we add a new command choose. We propose non-confluence as a
functional correspondence of this instruction.
We consider here some FOFP programs without the confluence property, that
is, patterns may overlap each other. A normal form is one possible result
of the computation. Following Grädel and Gurevich [5], the value of any
term is the maximal normal form of the term (for a given order on terms).
Notice that this includes the usual definition for decision problem by choosing
true > false. We add the superscript n to denote the fact that we include
non-deterministic programs.

Theorem.

1. WHILEn−cons−free = FOFPn−lin−cons−free = NLogspace

2. WHILEn−rec−cons−free = FOFPn-cons-free = Ptime

The latter is surprising as it breaks a similarity (that holds for logspace):

WHILEn−rec−cons−free

=

��

6= WHILEn−ptime =

��

NPtime

��

WHILErec−cons−free = WHILEptime = Ptime

This result is analogous to that of Cook [4] Th.2 p7. He gives a charac-
terization of Ptime by means of auxiliary pushdown automata working in
logspace, that is, a Turing Machine working in logspace plus an extra (un-
bounded) stack. It is also the case that the result holds whether or not the
auxiliary pushdown automata is deterministic.

[1] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
poly-time functions. Computational Complexity, 2:97–110, 1992.

13

Guillaume Bonfante

[2] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On lexicographic termination
ordering with space bound certifications. In PSI 2001, Ershov Memorial Con-
ference, volume 2244 of Lecture Notes in Computer Science. Springer, Jul 2001.

[3] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-Interpretations and Small
Space Bounds. In J. Giesl, editor, Rewrite Techniques and Applications, volume
3467 of Lecture Notes in Computer Science, pages 150–164. Springer, Apr.
2005.

[4] S. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the ACM, 18(1):4–18, January 1971.

[5] E. Grädel and Y. Gurevich. Tailoring recursion for complexity. Journal of
Symbolic Logic, 60(3):952–969, Sept. 1995.

[6] N. D. Jones. LOGSPACE and PTIME characterized by programming lan-
guages. Theoretical Computer Science, 228:151–174, 1999.

[7] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time.
Fundamenta Informaticae, 19(1,2):167,184, September 1993.

[8] D. Leivant and J.-Y. Marion. Predicative functional recurrence and poly-space.
In M. Bidoit and M. Dauchet, editors, TAPSOFT’97, Theory and Practice of
Software Development, volume 1214 of Lecture Notes in Computer Science,
pages 369–380. Springer, Apr 1997.

[9] D. Leivant and J.-Y. Marion. A characterization of alternating log time by
ramified recurrence. Theoretical Computer Science, 236(1-2):192–208, Apr
2000.

[10] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program inter-
preter with time bound certifications. In LPAR 2000, volume 1955 of Lecture
Notes in Computer Science, pages 25–42. Springer, Nov 2000.

[11] P. Neergaard. A functional language for logarithmic space. In L. Springer-
Verlag, editor, In Proc. 2nd Asian Symp. on Prog. Lang. and Systems (APLAS
2004), November 2004.

[12] K.-H. Niggl and H. Wunderlich. Certifying polynomial time and linear /
polynomial space for imperative programs. SIAM J. Computing, 35(5):1122–
1147, 2006. published electronically.

[13] P. Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP
’88. European Symposium on Programming, Nancy, France, 1988 (Lecture
Notes in Computer Science, vol. 300), pages 344–358. Berlin: Springer-Verlag,
1988.

14

Proof, Computation, Complexity 06

Terms and Operads

Michael Brinkmeier

Institute for Theoretical Computer Science
Technical University Ilmenau
mbrinkme@tu-ilmenau.de

http://www.tu-ilmenau.de/fakia/mbrinkme.html

Abstract.

The talk gives an outline of [2] in which a strong connection between λ-terms
and operads is proved.
In short, an operad describes a family of composable operations with multiple
inputs and one output, satisfying several intuitive properties like associativity
of composition and permutability of the inputs. Speaking more algebraic,
operads are a generalization of categories, allowing morphisms with multiple
inputs.
If one compares the definition of operads with inductive definitions of terms
over a signature, the parallels become apparent. Hence one may ask, whether
these two formalisms are related with each other. The aim of [2] is to give an
answer to this question. In fact, there it is proved that terms are isomorphic
to free algebras over free operads, and that term graphs play a vital role in
this relation.
In a second step, in [2] we extend the approach to simply typed λ-terms.
We achieve this goal by adding function-types and adjunctions, inspired by
the adjunctions of cartesian closed categories. One important (proposed)
consequence is hidden behind the presented results. The rewriting of λ-terms
and their term graphs can be realized as rewriting of “standard” terms and
term graphs. This again would imply that all techniques and results about
standard terms can be extended to λ-terms. Due to the length of the paper,
we do not give a precise formal formulation of this “result” there. But the
following survey may make the proposition more plausible.
The talk starts with a definition of operads and related concepts, like algebras
and morphisms of operads and algebras. Basically, an operad is a family
of (typed) composable operations. It describes the basic properties of the

15

Michael Brinkmeier

composition and - in combination with algebras - allows a computational
semantics. To model the use of variables, our notion of (extended) operads
differs slightly from that introduced in [3] (and the related notion of PROPs
in [1]). Firstly, we use types or colors, restricting the possible compositions.
Secondly, we extend the permutation of inputs to arbitrary assignments, i.e.
assigning an output to one or more inputs, or even none. These changes
require adaptions of the notions of homomorphisms and algebras to the new
kind of structure. Nonetheless, the basic approach and intuition behind our
operads coincides with that of “classical” operads.

Rooted, directed, acyclic graphs (RDAGs) are used to describe the free op-
erad generated by a (typed) signature. Since RDAGs are also used as term
graphs, the connection between both approaches becomes apparent. In fact,
the relations applied to the RDAGs to obtain the free operad correspond to
sharing and garbage collection in the context of term graphs.

The connection is even stronger, since we can prove that the typed terms
over a signature Σ on a set X of typed variables is an algebra over the free
operad FΣ generated by Σ. It is even isomorphic (as an algebra) to the free
algebra FΣX . Furthermore, we prove that the term substitution translates
to the composition of operations in the operad.

The concept of relations on operads and the resulting quotient operads pro-
vide useful tools, which allow us to describe operads in terms of generators
(operations of a signature) and relations (equations of terms). Again the
connection to term graphs is apparent. The identification via an equiva-
lence relation is comparable to rewrite rules for term graphs and the known
computational and formal techniques may be applied.

Up to this point, nothing really new is presented. We just transfer the known
concepts of signatures, terms, term graphs, rewriting (i.e. relations) etc. into
the (more general) world of operads. But the introduction of an additional
structure on operads, leads to λ-operads. These are operads with two ad-
ditional features. They contain the operad of operads, providing us with
types of functions, operations for the composition and evaluation of these
and “reassignments” of their inputs/arguments. In addition they allow us to
interpret terms as functions, making variables into inputs. This is done via a
map λ, called adjunction1. Obviously, this resembles the λ-abstraction, but
instead of binding only one variable, all free variables are bound at the same
time. But our approach resembles the definition of functions in functional
programming, where a term is simply reinterpreted as a function. Further-

1The name adjunction indicates, that it is a transfer of the concept of adjunction in
categories to operads.

16

Proof, Computation, Complexity 06

more, we describe the free λ-operad FλΣ generated by a typed signature Σ
as a quotient of the free operad FΣ.
We prove that the set λTermsΣ,X of λ-terms over a signature Σ on a set X of
variables is an algebra of the free λ-operad FλΣ generated by Σ. Furthermore
we prove, completely along the line of standard terms, that λTermsΣ,X as an
algebra is isomorphic to the free algebra FλΣX generated by X . Moreover,
we give a direct representation of the binding of one variable in the world of
operads and prove its direct connection with the usual λ-abstraction.
As already mentioned, this approach allows λ-terms to be represented by
standard term graphs over an enriched signature. This is implied by the fact
that the free λ-operad can be represented as a quotient of the free operad
generated by the induced λ-signature. Since the relations correspond to rules
for term rewriting, this implies that the β- and η-reductions of λ-calculus
correspond to (sequences of) “standard” rewrite rules. This is caused by the
fact that it is not necessary to differentiate between free and bound variables,
since only the free ones occur explicitly. The bound variables are completely
contained in the types.
The motivation for this paper was the author’s observation, that the formal-
ism of simply typed terms can easily be embedded into the world of operads.
As the work on this “translation” proceeded, more and more ideas of exten-
sions evolved. The results of one of them, the extension of the formalism
to λ-terms and the λ-calculus, is presented here. Others, like the incorpora-
tion of recursion as an operation on function types, the usage of polymorphic
types via an additional “operad of types” may be worked out in detail in the
future.

[1] J.M. Boardman and R.M.Vogt. Homotopy invariant algebraic structures on
topological spaces, volume 347 of Lecture Notes in Mathematics. Springer,
1973.

[2] Michael Brinkmeier. Operads and terms. Technical report, Technical Univer-
sity Ilmenau, 2003.
http://www.tu-ilmenau.de/fakia/mbrinkmepubs.html.

[3] J.P. May. The geometry of iterated loop spaces, volume 271 of Lecture Notes
in Mathematics. Springer, 1972.

[4] Martin Markl, Steve Shnider, and Jim Stasheff. Operads in Algebra, Topology
and Physics, volume 96 of Mathematical Surveys and Monographs. AMS, 2002.

17

Folke Eisterlehner

An alternative correctness proof of a certification

method for fptime

Folke Eisterlehner

(joint work with Karl-Heinz Niggl)
TU Ilmenau
eisfol@web.de

niggl@tu-ilmenau.de

Abstract.

Extensive research on implicit characterization of complexity classes has been
done since Bellantoni and Cook investigated the concept of normal and safe
variables in the context of function algebras [1]. In earlier work of Kris-
tiansen and Niggl [2,3], a measure µ on imperative programs is defined that
in particular certifies programs which run in polynomial time. However, that
measure is not applicable to programs with “arbitrary” basic instructions,
such as size-increasing instructions other than e.g. push in the context of
stack programs, or assignment statements.
Recent work of Niggl and Wunderlich [4] extends these ideas to programs with
arbitrary basic instructions. The pivot is a matrix calculus M for certifying
“polynomial size-boundedness” that reflects the way program variables may
interact during the execution of a program.
A similar approach by Jones and Kristiansen [5] aims at “a better under-
standing of the relationship between syntactical constructions in natural pro-
gramming languages and the computational resources required to execute the
programs” by introducing a proof calculus with an adequate imperative pro-
gramming language for certifying polynomial size-boundedness of programs.
For a given program C, the proof calculus tries to keep track of how the
variables used in C influence each other by stepwise constructing certificates,
which mainly represent labeled, directed graphs built up from the program’s
variable identifiers.
For those certificates, restrictions are formulated which ensure polynomial
size-boundedness for all variables used in the program.
Like the measure µ or the method M, the proof calculus identifies control
circles between variables as potential cause for super-polynomial growth.

18

Proof, Computation, Complexity 06

An essential achievement, however, is the distinction between different types
of control circles, one of which is admissible for polynomial-size bounded
programs. These control-circles correspond to circles in the graph represented
by a program’s certificate, and lead to difficulties in proving soundness of the
calculus.
In our alternative correctness proof for loop statements, assuming program
variables among X1 ,. . . ,Xn , we identify all variables lying on such a control-
circle by defining an equivalence relation for all i, j ∈ {1, . . . , n}:

Xi
α
= Xj ⇐⇒ i=j or Xi and Xj are lying on a circle,

labeled with kind α only.

Thus, the control graph is partitioned into it’s strong components with re-
spect to label α.
We show that if the body of a loop statement has a certificate and satisfies
the criteria formulated by the proof calculus, then every variable in the com-
ponent [Xi]α can be bounded by a single polynomial W[i]α . By defining a
partial ordering “�” over the strong components [X1]α, . . . , [Xn]α, soundness
follows by induction.
Based on that simplified proof, the calculus is implemented such that both
bounding polynomials are extracted and graphs representing certificates can
be displayed.

[1] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of poly-
nomial time. In Proceedings of the 24th Annual ACM Symposium on the Theory
of Computing, May 1992.

[2] L. Kristiansen and K.-H. Niggl. On the computational complexity of imperative
programming languages. Theor. Comput. Sci., 318(1-2):139–161, 2004.

[3] K.-H. Niggl. Control structures in programs and computational complexity.
Habilitation Thesis, 2001, Ilmenau.
Available at http://eiche.theoinf.tu-ilmenau.de/~niggl.

[4] K.-H. Niggl and H. Wunderlich. Certifying polynomial time and linear /
polynomial space for imperative programs. SIAM Journal on Computing,
35(5):1122–1147, March 2006.

[5] L. Kristiansen and N. D. Jones. The flow of data and the complexity of algo-
rithms. In New Computational Paradigms: First Conference on Computability
in Europe, CiE 2005, volume 3526 of Lecture Notes in Computer Science, pages
263–274, Amsterdam, The Netherlands, jun 8–12 2005. Springer-Verlag.

19

Marco Gaboardi

λ-Calculus and Soft Linear Logic

Marco Gaboardi

(joint work with Simona Ronchi Della Rocca)
Dipartimento di Informatica, Università di Torino
gaboardi@di.unito.it

ronchi@di.unito.it

Abstract.

Soft Linear Logic (SLL) [2] is a subsystem of second-order linear logic with
restricted rules for exponentials, which is complete for polynomial time algo-
rithms, if cut elimination is the computation model.
A term calculus for SLL was proposed in [1]. We study instead the problem
of assigning formulas of this logic to terms of pure lambda calculus, in such
a way that the good computational properties of type assignment and the
good complexity properties of SLL are preserved.
A standard assignment like the following1, which we call SLLλ,

x : U `L x : U
(Id)

Γ, x : U `L M : V

Γ `L λx.M : U (V
((R)

Γ `L M : U ∆, x : U `L N : V Γ#∆

Γ,∆ `L N [M/x] : V
(cut)

Γ `L M : U x : V,∆ `L N : Z Γ#∆ y fresh

Γ, y : U (V,∆ `L N [yM/x] : Z
((L)

Γ `L M : U

!Γ `L M :!U
(sp)

Γ, x0 : U, ..., xn : U `L M : V

Γ, x :!U `L M [x/x0, ..., x/xn] : V
(m)

Γ, x : U [V/α] `M : Z

Γ, x : ∀α.U `M : Z
(∀L) Γ `M : U

Γ `M : ∀α.U
(∀R) α not free in Γ

1Γ#∆ denotes dom(Γ) ∩ dom(∆) = ∅, α is not free in Γ in rule (∀R).

20

Proof, Computation, Complexity 06

gives rise to some problems, in particular to the failure of subject-reduction.
This means that there exists a term M and a derivation Π with conclusion
Γ `L M : A such that M →β M

′ but we have no derivation with conclusion
Γ `L M ′ : A. For example, consider the term M ≡ y((λz.sz)w)((λz.sz)w)
and a derivation Π in SLLλ ending as follows:

s : B (!A,w : B `L (λz.sz)w :!A

y : A (A (B, r : A,m : A `L yrm : B

y : A (A (B, x :!A `L yxx : B

y : A (A (B, s : B (!A,w : B `L y((λz.sz)w)((λz.sz)w) : B

Clearly

y((λz.sz)w)((λz.sz)w)→β y(sw)((λz.sz)w)

but unfortunately, there exists no derivation in SLLλ with conclusion:

y : A (A (B, s : B (!A,w : B `L y(sw)((λz.sz)w) : B

The problem is that if ! modality represents both a possible duplication
and a performed duplication, then types like B (!A take something non-
duplicated and return something which could be duplicated. In fact, for the
term (λz.sz)w we deduce in Π the type !A, and so we substitute it for the two
occurrences of variable x in the term yxx. Now what we expect is that we
have performed a duplication, but instead we have performed sharing opera-
tion. Indeed the variables in the context of s : B (!A,w : B `L (λz.sz)w :!A
are not duplicated in the substitution.

To overcome the above problem, we propose a type system STA, inspired
by the strict type assignment of intersection types, which preserves both
the good properties of typed lambda calculus, such as subject reduction and
normalization, and correctness and completeness for polynomial time com-
putation.

The Soft Type Assignment System (STA) is obtained by restricting the set
of formulas of SLL to the set T of soft types :

A ::= a | σ (A (Linear Types)
σ ::= A | !σ | ∀α.σ

and by restricting the rules of SLLλ:

21

Marco Gaboardi

x : A ` x : A
(Id)

Γ, x : σ `M : A

Γ ` λx.M : σ (A
((R) Γ `M : σ

!Γ `M :!σ
(sp)

Γ `M : A ∆, x : A ` N : σ Γ#∆

Γ,∆ ` N [M/x] : σ
(cut)

Γ `M : τ x : A,∆ ` N : ρ Γ#∆ y fresh

Γ, y : τ (A,∆ ` N [yM/x] : ρ
((L)

Γ, x1 : τ, ..., xn : τ `M : σ

Γ, x :!τ `M [x/x1, ..., x/xn] : σ
(m) Γ `M : σ

Γ, x : A `M : σ
(w)

Γ, x : σ[ρ/α] `M : µ

Γ, x : ∀α.σ `M : µ
(∀L) Γ `M : σ

Γ `M : ∀α.σ
(∀R) α not free in Γ

For the above system, Subject Reduction Property holds, so for each term M
such that Γ `M : µ and M →β M

′, there exists a derivation for Γ `M ′ : µ.
STA could seem weaker than SLL, in fact (cut) rule and ((L) rule in
STA can be viewed as restrictions to linear formulas of the ones in SLLλ.
Nevertheless, we have a generalized (cut) rule of the shape:

Γ `M : σ x : σ,∆ ` N : µ Γ#∆

Γ,∆ ` N [M/x] : µ
(G− cut)

and furthermore, it can be shown that typability power of STA is equivalent
to that one of SLLλ.
SLL enjoys the good property that its proofs correspond to polynomial time
algorithms, and that polynomial time algorithms can be represented by SLL
proofs. The same can already be shown for STA. In particular, as in Lafont
[2], we have that each term typable in STA is reducible to its normal form
with a number of steps bounded by a measure which is exponential in the
degree of the type derivation. So computing with input of fixed degree is
polynomial in the dimension of the input.
Furthermore, as in Mairson and Terui [3], we have that STA with the only
connective (and the quantifier ∀, and maintaining Lafont distinction be-
tween program as term typable with generic derivations (derivations where
the rule (m) is not used) and data as term typable with homogeneous deriva-
tions (derivations where the rule (m) is used each time with the same rank),
is complete for polynomial time algorithms.

22

Proof, Computation, Complexity 06

Let as in [2] N〈P 〉 = ∀α.(α (α)P (α (α. Due to non-uniformity of soft
types, to show completeness, we need to assign to the term λcp.λcq .λs.cp(cqs)
representing multiplication the type N〈P 〉 ((N〈Q〉)P (N〈PQ〉. This
fact imposes a slight modification of the notion of representable function by
allowing the possibility of defining functions from nonlinear types. Based on
that modification, completeness is established.
So we have that STA is a type assignment system for pure lambda calculus
with good computational and complexity properties.

[1] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: A language for
polynomial time computation. In FoSSaCS, volume 2987 of Lecture Notes in
Computer Science, pages 27–41. Springer, 2004.

[2] Yves Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci,
318(1-2):163–180, 2004.

[3] Harry G. Mairson and Kazushige Terui. On the computational complexity of
cut-elimination in linear logic. In ICTCS, pages 23–36, 2003.

23

Lew Gordeev

Strong WQO phase transitions1

Lew Gordeev

(joint work with A. Weiermann)
Tübingen-Utrecht
gordeew@informatik.uni-tuebingen.de

weierman@math.uu.nl

Abstract.

Summary. We elaborate phase transitions for Gordeev’s well-quasi-ordering
(called well-partial-ordering below, abbr.: wpo) results with respect to nested
finite sequences and nested finite trees under the homeomorphic embedding
with symmetrical gap condition. For every nested partial ordering in ques-
tion, E, we fix a natural extension of Peano Arithmetic, T, that proves
the corresponding 2-order sentence SPQ (E). Furthermore, we consider
the appropriate parameterized 1-order slow well-partial-ordering sentence
SWPO (E, r) with r ranging over computable reals and show that for some
computable real α, the following holds.

1. If r < α then SWPO (E, r) is provable in PA.

2. If r > α then SWPO (E, r) is not provable in T.

In the limit cases we replace computable reals r by computable functions
f : N→ R and prove analogous theorems.
These results strengthen both Kruskal-Friedman-Kriz wqo theorems and Wei-
ermann’s phase transition elaboration of basic Kruskal-Friedman-Schütte-
Simpson cases.

Preliminaries (1-D case)

Partial and linear well orderings

• By E and ≤ we denote partial and linear countable well orderings
(abbr.: wpo and wo), respectively. A wo O = (W,≤) is called a lin-
earization of a wpo W = (W,E) iff (∀x, y ∈W) (x E y → x ≤ y). A

1Research supported by NWO grant 03-721.

24

Proof, Computation, Complexity 06

wpo W = (W,E) is called enumerated iff it is supplied with a bijec-
tion, also called enumeration, ν : N → W . For any enumerated wpo
W = (W, ν,E), we fix its lexicographical linearization Wν = (W,≤ν)
that is defined as follows 2

W ×W 3 x ≤ν y :⇔ (∀i ∈ N) (ν (i) E x←→ ν (i) E y) ∨ (∃i ∈ N)
(ν (i) 5 x ∧ ν (i) E y ∧ (∀j < i) (ν (j) E x←→ ν (j) E y))

• Let Seq(X) := X<ω := X∪X2∪· · ·∪Xm∪· · · =
∞⋃

m=1
X × · · · ×X
︸ ︷︷ ︸

m

and

for any k > 0 let Seqk (X) := X≤k := X ∪X2 ∪ · · · ∪ Xk ⊂ Seq(X).
Let

Seq0 := {•} , Seq1 := Seq
(
Seq0

)
∼= {•, ••, • • •, · · · } ,

Seq1
k := Seqk

(
Seq0

)
∼=

•, ••, • • •, · · ·
︸ ︷︷ ︸

k

⊂ Seq1, · · · ,

Seqd+1 := Seq
(
Seqd

)
,

Seqd+1
k := Seq

(
Seqd

k

)
⊂ Seqd+1, · · · .

For any x ∈ Seqd, we let %d (x) := min
{
k | x ∈ Seqd

k

}
.

• We define norm functions #d : Seqd → N by recursion on d via

#d+1 (〈x1, · · · , xm〉) :=
m∑

i=1

#d (xi)

where #0 (•) := 1.

• For every d, k > 0, we fix an arbitrary primitive recursive enumeration
νd,k : N → Seqd

k (it might just as well be the corresponding nested
lexicographical tuple-ordering).

Basic definition

For every d > 0, define a wpo
(
Seqd,Ed

)
and the corresponding wo

(
Seqd,≤d

)

by recursion as follows.

2For any wpo W = (W,E) denote by o (W) the supremum of order types, i.e. set the-
oretical ordinals, of all linearizations of W . For all enumerated W = (W,ν, E) considered
below, Wν = (W,≤ν) has the order type o (W). This conclusion fails for just arbitrary
enumerated wpo; in general maximal linearizations don’t admit explicit arithmetical defi-
nitions.

25

Lew Gordeev

Case d = 1. Let ≤1:=E1 where

Seq1 × Seq1 3 x E1 x
′ :⇔ #1 (x) ≤ #1 (x′)

Case d = 2.

1. Define E2 by

Seq2 × Seq2 3 〈x1, · · · , xm〉 E2 〈x
′
1, · · · , x

′
m′〉 :⇔

(∃1 ≤ ξ (1) < · · · < ξ (m) ≤ m) (∀1 ≤ i < m)

xi E1 x
′
ξ(i) ∧ xm E1 x

′
ξ(m) ∧min

≤1

{xi, xi+1}

≤1 min
≤1

{

x′
ξ(i), · · · , x

′
ξ(i+1)

}

2. For every k > 0 take the enumeration ν2,k : N → Seq2
k and

consider the corresponding “local” linearization
(
Seq2

k,≤ν2,k

)
of

(
Seq2

k,E2

)
.

3. Define the desired “global” linearization ≤2 by

Seq2 × Seq2 3 x ≤2 x
′ :⇔

%2 (x) < %2 (x′) ∨
(
%2 (x) = %2 (x′) ∧ x ≤ν2,k

x′
)

Case d 7→ d+ 1. Define Ed+1,≤d+1⊂ Seqd+1 × Seqd+1 analogously.

Remark. Note that all relations Ed,≤d are definable in the language of PA.

Basic results (1-D case)

For any wpo W = (W,E), let WPO (W) be an abbreviation of “W is a wpo”
in the form (∀f : N→W) (∃i < j ∈ N) (f (i) E f (j))

Theorem.

1. WPO
(
Seq2,E2

)
is not provable in ACA0.

2. WPO
(
Seq3,E3

)
is not provable in ∆1

1CA.

3. (∀d > 0) WPO
(
Seqd,Ed

)
is provable in ATR, but not in ATR0.

26

Proof, Computation, Complexity 06

Definition. For any wpoW = (W,E), norm function # : W → N, 0 < d ∈ N
and 0 ≤ r ∈ Q, let SWP (W,E,#, d, r) be the corresponding first order
refinement of WPO (W)

(∀K ∈ N) (∃M ∈ N) (∀x0, · · · , xM ∈W)

((∀i ≤M) (# (xi) ≤ K + r · dlogd (i+ 1)e)→ (∃i < j ≤M) (xi E xj))

dlogd (i+ 1)e is also referred to as the d-adic length of i. In the sequel we
often abbreviate dlogd (i+ 1)e by |i|d.

Theorem.

1. If r < 1 then PA ` SWP
(
Seq2,E2,#2, 2, r

)
.

2. If r > 1 then PA 0 SWP
(
Seq2,E2,#2, 2, r

)
.

Theorem.

1. If r < 1 then PA ` SWP
(
Seq3,E3,#3, 3, r

)
.

2. If r > 1 then ∆1
1CA 0 SWP

(
Seq3,E3,#3, 3, r

)
.

Definition. For any f, g : N→ Q, let I (x) := x and

f ≺∞ g :⇔ |{x ∈ N | f (x) < g (x)}| =∞

Theorem. For any computable function f : N→ Q the following holds.

1. If f ≺∞ I then ∀k (∃d > k) PA ` SWP
(
Seqd,Ed,#d, d, f (d)

)
.

2. If I ≺∞ f then:

(a) (∃k) ATR0 0 (∀d > k) SWP
(
Seqd,Ed,#d, d, f (d)

)
,

(b) ATR ` (∀d > 0)SWP
(
Seqd,Ed,#d, d, f (d)

)
.

27

Lars Kristiansen

T
−-Hierarchies and the Trade-off Theorem

Lars Kristiansen

Oslo University College, Faculty of Engineering,
PO Box 4, St. Olavs plass, NO-0130 Oslo, Norway, and

Department of Mathematics, University of Oslo

larskri@iu.hio.no

http://www.iu.hio.no/~larskri

Abstract.

I will discuss two hierarchies of unknown ordinal height. Many well-known
deterministic complexity classes, e.g. logspace, p, pspace, linspace and
exp, can be found in the hierarchies. These classes are defined by imposing
explicit resource bounds on Turing machines, but note that the classes are
not uniformly defined as some are defined by imposing time bounds, whereas
others are defined by imposing space bounds. Small subrecursive classes can
also be found in our hierarchies, e.g. the relational Grzegorczyk classes E0

∗ , E1
∗

and E2
∗ . In contrast to a complexity class, a subrecursive class is defined as

the least class containing some initial functions and closed under certain com-
position and recursion schemes. Some of the schemes might contain explicit
bounds, but no machine models are involved.
The two hierarchies are induced by neat and natural fragments of a calculus
based on finite types and Gödel’s T , and all the classes in the hierarchies
are uniformly defined without referring to explicit bounds. Thus, one should
not expect the hierarchies to capture such a wide variety of classes, that
is, both time classes, space classes and subrecursive classes. This indicates
that a further investigation of the hierarchies might be rewarding, and per-
haps shed light upon some of the notoriously hard open problems involving
the classes captured by the hierarchies, e.g. maybe some of these problems
turn out to be related in some unexpected way. Moreover, the ingredients of
the theoretic framework nourishing the hierarchies are well-known and thor-
oughly studied in the literature, e.g. the ordinal numbers, the typed λ-calculi,
cut-elimination, rewriting systems and Gödel’s T . Advanced and well-proven
techniques of mathematical logic and computability theory will thus be avail-
able facilitating the investigations.

28

Proof, Computation, Complexity 06

I aim at a fairly nontechnical talk, and I will survey the research that led
up to the hierarchies ([1,2,3,4,5]). Furthermore, I will discuss our trade-
off theorem recently published in [7]. The theorem being an adaption of
Schwichtenberg’s well-known trade-off theorem to the setting of computa-
tional complexity, sheds light upon the hierarchies and makes them better
understood. (Schwichtenberg shows how to eliminate higher type levels in
definitions of primitive recursive functionals by means of transfinite recursion,
see e.g. [8])

[1] L. Kristiansen. Neat function algebraic characterizations of logspace and
linspace. Computational Complexity 14(1) (2005) 72–88

[2] L. Kristiansen. Complexity-Theoretic Hierarchies. In: CiE 2006: Logical Ap-
proaches to Computational Barriers. Volume 3988 of LNCS., Springer-Verlag
(2006) 279-288

[3] L. Kristiansen, G. Barra. The small Grzegorczyk classes and the typed λ-
calculus. In: CiE 2005: New Computational Paradigms. Volume 3526 of
LNCS., Springer-Verlag (2005) 252–262

[4] L. Kristiansen, P. Voda. Complexity classes and fragments of C. Information
Processing Letters 88 (2003) 213–218

[5] L. Kristiansen, P. Voda. The surprising power of restricted programs and
Gödel’s functionals. In CSL 2003: Computer Science Logic. Volume 2803 of
LNCS., Springer (2003) 345–358

[6] L. Kristiansen, P. Voda. Programming languages capturing complexity classes.
Nordic Journal of Computing 12 (2005) 1–27. (Special issue for NWPT’04.)

[7] L. Kristiansen, P. Voda. The trade-off theorem and fragments of Gödel’s t.
In: TAMC’06: Theory and Applications of Models of Computation. Volume
3959 of LNCS., Springer-Verlag (2006) 655–674

[8] H. Schwichtenberg. Classifying recursive functions. In Griffor, E., ed.: Hand-
book of computability theory. Elsevier (1996) 533–586

29

Oliver Kullmann

Sign-sensitive Graph Representations of CNFs: Conflict

graphs and resolution graphs

Oliver Kullmann1

Computer Science Department
University of Wales Swansea
Swansea, SA2 8PP, UK
O.Kullmann@Swansea.ac.uk

http://cs.swan.ac.uk/~csoliver

Abstract.

Graph representations of propositional formulas and constraint satisfaction
problems have been investigated quite intensively over the last two decades
(see [4,3] and Chapter 9 in [1]), but it seems that only the variable interaction
graphs (or Gaifman graphs ; the variables of the structure are the vertices,
joined by an edge if occurring together in the same clause/constraint) and
its relatives have been investigated. These graphs do not take the signs of
the literals of clause-sets into account, but they consider only the variable
structure. The basis of their exploitation is the trivial fact that if we have two
variable-disjoint formulas F1, F2, then the satisfying assignments for F1 ∧ F2

are the compositions of the satisfying assignments for F1 and F2.
The basic graph representation of clause-sets taking signs into account is the
conflict graph, which has the clauses as vertices, joined by an edge if there
exists a clashing literal pair. This graph structure has been investigated in
the context of satisfiability decision in [6,2]; different from the above exploita-
tions, here linear algebra and not graph connectedness lies at the bottom (and
actually the conflict multigraph is basic, taking into account the number of
conflicts).
Now in [4] investigations have begun into the exploitation of the conflict
graph and refinements for SAT decision in the same vein as for the variable
interaction graph, namely by splitting graphs into connected components.

1Supported by EPSRC Grant GR/S58393/01

30

Proof, Computation, Complexity 06

The resolution graph

Modulo pure literals (literals occurring in only one sign), the conflict graph of-
fers the same splitting opportunities as the variable interaction graph
(whether nevertheless the conflict graphs offer better algorithmic possibili-
ties has to be investigated). Stronger splitting opportunities are given by the
resolution graph, which eliminates all edges from the conflict graph where
the corresponding resolvent would be tautological (i.e., where at least two
conflicts exist). Here already the proof, that the connected components of
the resolution graph can be treated independently for SAT solving, is not
completely trivial (the proof was given in [5]).

In my talk I want to give an introduction to the subject, and report on
progress (and difficulties encountered) regarding the following problems:

1. A clause-set is satisfiable if and only if every connected component
of the resolution graph is satisfiable; however, given satisfying assign-
ments for the components, we do not know how to compute efficiently
a satisfying assignment for the whole clause-set.

2. How do resolution trees interact with the components of the resolution
graph? We know that if a resolution refutation of the whole clause-
set exists, then there is one which uses only the clauses of one single
component — how to find such single-component refutations efficiently?

3. The variable interaction graph has a compact representation by the
variable hypergraph (and its dual). Can we find similar (generalised)
compact representations, which can be exploited by graph-theoretical
algorithms, for the conflict graph and the resolution graph?

4. For bounded clause-length and bounded treewidth of the resolution
graph, the satisfiability problem is decidable in polynomial time (and
via self-reduction then we can also find a satisfying assignment in
polynomial time). What about fixed parameter-tractability? Is the
bounded clause-length necessary? What about hypertree decomposi-
tions, or other forms of decompositions? What about harder problems
like counting satisfying assignments, or solving MAXSAT?

[1] Rina Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, 2003.
ISBN 1-55860-890-7; QA76.612.D43 2003.

31

Oliver Kullmann

[2] Nicola Galesi and Oliver Kullmann. Polynomial time SAT decision, hypergraph
transversals and the hermitian rank. In Holger H. Hoos and David G. Mitchell,
editors, Theory and Applications of Satisfiability Testing 2004, volume 3542
of Lecture Notes in Computer Science, pages 89–104, Berlin, 2005. Springer.
ISBN 3-540-27829-X.

[3] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and Francesco
Scarcello. Hypertree decompositions: Structure, algorithms, and applications.
In Dieter Kratsch, editor, Graph-Theoretic Concepts in Computer Science: 31st
International Workshop (WG 2005), volume 3787 of Lecture Notes in Computer
Science (LNCS), pages 1–15. Springer, 2005. ISBN 3-540-31000-2.

[4] Marijn Heule and Oliver Kullmann. Decomposing clause-sets: Integrating
DLL algorithms, tree decompositions and hypergraph cuts for variable- and
clause-based graph representations of CNF’s. Technical Report CSR 2-2006,
University of Wales Swansea, Computer Science Report Series, March 2006
(http://www-compsci.swan.ac.uk/reports/2006.html).

[5] Oliver Kullmann. Obere und untere Schranken für die Komplexität von aus-
sagenlogischen Resolutionsbeweisen und Klassen von SAT-Algorithmen. Mas-
ter’s thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main, April
1992. (Upper and lower bounds for the complexity of propositional resolution
proofs and classes of SAT algorithms (in German); Diplomarbeit am Fachbere-
ich Mathematik).

[6] Oliver Kullmann. The combinatorics of conflicts between clauses. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of Sat-
isfiability Testing 2003, volume 2919 of Lecture Notes in Computer Science,
pages 426–440, Berlin, 2004. Springer. ISBN 3-540-20851-8.

32

Proof, Computation, Complexity 06

Interpretations methods for proving complexity upper

bounds

Jean-Yves Marion

Loria, Carte project, and
Ecole Nationale Supérieure des Mines de Nancy, INPL,
B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
Jean-Yves.Marion@loria.de

www.loria.fr/~marionjy

Abstract.

Interpretation methods of proving complexity upper bounds provide a static
analysis of first order functional program resources. It gives a way to de-
termine a bound on the running time or space usage of programs or yet the
number of processors in a parallel computation. Those methods give rise
to characterizations of many complexity classes, however, they are designed
so as to identify a broad class of algorithms computing functions in a cer-
tain complexity class, in particular algorithms using design principles such
as greedy, divide and conquer, and dynamic programming. Interpretation
methods also provide complexity proof certificates. The talk will focus on
two methods. The first one is based on Quasi-interpretations, and the sec-
ond one on Sup-interpretations, which refines the first one.
The overall objective is to provide machine independent characterizations of
functional complexity classes. This line of research was initiated by Cob-
ham [11]. One major motivation of this research line is to provide a static
analysis of the computational resources needed to run a program. Such anal-
ysis should guarantee the amount of memory, time or processors, which are
necessary to execute a program on all inputs.
Implicit computational complexity (ICC) proposes syntactic characterizations
of complexity classes which lean on data ramification principles like safe re-
cursion [5], lambda-calculus [20] or data tiering [19]. It is worthwhile to
discuss the two main difficulties we have to face in order to provide a com-
pelling resource static analysis. The first is that the method should capture
a broad class of programs in order to be useful. From a theoretical per-
spective, this means that we are trying to identify a large class of programs

33

Jean-Yves Marion

computing functions in certain complexity classes. Unlike the traditional ap-
proach, which is extensional in that the focus is on capturing all functions of
a complexity class, our approach is rather intentional. This change of view
is difficult because we have to keep in mind that the set of polynomial time
programs is Σ2-complete. The second difficulty is related to the complexity
of the static analysis suggested. The resource analysis procedure should be
decidable and easily checkable. But inversely, a too “easy” resource analysis
procedure won’t, certainly, delineate a meaningful class of programs.
There are at least four directions inspired by ICC approaches which are re-
lated to our topic and that we briefly review. The first direction deals with
linear type systems in order to restrict computational time, and began with
seminal work of Girard [14] which defined Light Linear Logic. We men-
tion here some recent works of Baillot-Terui [4], Lafont[18], or yet Coppola-
Ronchi [12]. The second direction is due to Hofmann, e.g. see [15], and
independently [6], who introduced a resource atomic type, the diamond type,
into the linear type system for higher order functional programming. Unlike
the two former approaches, the third one considers imperative programming
languages, and is developed by Kristiansen-Niggl [17], Kristiansen-Jones [16],
or Niggl-Wunderlich [26], and Marion-Moyen[25,23].
Lastly, the fourth approach is the one on which we focus on in this talk.
That approach is concerned with term rewriting systems and interpretation
methods of proving complexity bounds based on [21]. Those methods con-
sist in giving an interpretation to computed functions, which provides an
upper bound on function output size, and analyse the program data flow in
order to measure the program complexity. We have developed two kinds of
interpretation methods of proving complexity. The first direction concerns
Quasi-interpretations, which is surveyed in [7]. The second direction is the
sup-interpretation method introduced in [24].
The main features of interpretation methods of proving complexity bounds
are the following.

1. Interpretation methods are applicable to broad classes of algorithms,
like greedy algorithms, dynamic programming [22,8,9], and are capable
of dealing with nonterminating programs [24].

2. Resource verification of bytecode programs is obtained by compiling
first order functional and reactive programs. See for example [3,2,13].

3. There are heuristics to determine program complexity. See [1,10]

34

Proof, Computation, Complexity 06

[1] R. Amadio. Max-plus quasi-interpretations. In Martin Hofmann, editor, Typed
Lambda Calculi and Applications, 6th International Conference, TLCA 2003,
Valencia, Spain, June 10-12, 2003, Proceedings, volume 2701 of Lecture Notes
in Computer Science, pages 31–45. Springer, 2003.

[2] R. Amadio and S. Dal-Zilio. Resource control for synchronous cooperative
threads. In Concur, pages 68–82, 2004.

[3] R.M. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jakubiec. A functional
scenario for bytecode verification of resource bounds. In CSL, 2004. to appear.

[4] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine
logic. In Springer, editor, TLCA, volume 3461 of LNCS, pages 55–70, 2005.

[5] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
poly-time functions. Computational Complexity, 2:97–110, 1992.

[6] S. Bellantoni, K-H Niggl, and H. Schwichtenberg. Higher type recursion, ramifi-
cation and polynomial time. Annals of Pure and Applied Logic, 104(1-3):17–30,
2000.

[7] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretation: a way to
control ressources. survey submitted, revision. http://www.loria/~marionjy.

[8] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On lexicographic termination
ordering with space bound certifications. In PSI 2001, Akademgorodok, Novosi-
birsk, Russia, Ershov Memorial Conference, volume 2244 of LNCS. Springer,
Jul 2001.

[9] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations and small
space bounds. In Jürgen Giesl, editor, Term Rewriting and Applications,
16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005,
Proceedings, volume 3467 of Lecture Notes in Computer Science, pages 150–
164. Springer, 2005.

[10] G. Bonfante, J.-Y. Marion, J.-Y. Moyen, and R. Péchoux. Synthesis of quasi-
interpretations. Workshop on Logic and Complexity in Computer Science,
LCC2005, Chicago, 2005. http://www.loria/~pechoux.

[11] A. Cobham. The intrinsic computational difficulty of functions. In Conf. on
Logic, Methodology, and Philosophy of Science, pages 24–30. North-Holland,
1962.

[12] P. Coppola and S. Ronchi Della Rocca. Principal typing for lambda calculus
in elementary affine logic. Fundamenta Informaticae, 65(1-2):87–112, 2005.

[13] S. Dal-Zilio and R. Gascon. Resource bound certification for a tail-recursive
virtual machine. In APLAS 2005, volume 3780 of LNCS, pages 247–263, 2005.

[14] J.-Y. Girard. Light linear logic. Inf. and Comp., 143(2):175–204, 1998.
pésenté à LCC’94, LNCS 960.

[15] M. Hofmann. The strength of Non-Size Increasing computation. In Proceed-
ings of POPL’02, pages 260–269, 2002.

35

Jean-Yves Marion

[16] L. Kristiansen and N.D. Jones. The flow of data and the complexity of
algorithms. In New Computational Paradigms, number 3526 in LNCS, pages
263–274, 2005.

[17] L. Kristiansen and K.-H. Niggl. On the computational complexity of impera-
tive programming languages. TCS, 318(1–2):139–161, 2004.

[18] Y. Lafont. Soft linear logic and polynomial time. TCS, 318:163–180, 2004.

[19] D. Leivant. Predicative recurrence and computational complexity I: Word re-
currence and poly-time. In Feasible Mathematics II, pages 320–343. Birkhäuser,
1994.

[20] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time.
Fundamenta Informaticae, 19(1,2):167,184, September 1993.

[21] J.-Y. Marion. Analysing the implicit complexity of programs. Inf. and Comp.,
183:2–18, 2003.

[22] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program inter-
preter with time bound certifications. In Michel Parigot and Andrei Voronkov,
editors, Logic for Programming and Automated Reasoning, 7th International
Conference, LPAR 2000, Reunion Island, France, volume 1955 of LNCS, pages
25–42. Springer, Nov 2000.

[23] J.-Y. Marion and J.-Y. Moyen. Heap analysis for assembly programs. Tech-
nical report, Loria, 2006.

[24] J.-Y. Marion and R. Pechoux. Resource analysis by sup-interpretation. In
FLOPS 2006, volume 3945 of LNCS, pages 163–176, 2006.

[25] J.-Y. Moyen. Analyse de la complexité et transformation de programmes.
Thèse d’université, Nancy 2, Dec 2003.

[26] K.-H. Niggl and H. Wunderlich. Certifying polynomial time and linear / poly-
nomial space for imperative programs. SIAM J. on Computing, 35(5):1122–
1147, 2006.

36

Proof, Computation, Complexity 06

Resources Control Graphs

Jean-Yves Moyen

LIPN-CNRS – université Paris 13
99 avenue J.-B. Clément
F-93430 Villetaneuse
Jean-Yves.Moyen@lipn.univ-paris13.fr

Abstract.

Resources Control Graphs are a tool to perform some kind of abstract inter-
pretation of programs in order to study their properties such as termination
or complexity. The key idea is to work over the Control Flow Graph of a
program and add some kind of dynamic information to it that can be seen
as a way to approximate the different configurations reached during com-
putation. Thus, any actual computation can be followed on the Resources
Control Graph, and studying properties of the Resources Control Graph gives
information about the properties of the program itself.
Let us consider a program in some kind of imperative language that we won’t
need to describe in details here. In order to build its Control Flow Graph
(CFG), we start by finding some control points in the program. Then, the
CFG is a directed graph with one vertex per control point and one edge
between a and b if there exists a computation of the program where the
control flow goes between the control point corresponding to a to the control
point corresponding to b. In most cases, that simply means that each control
point is linked to the following one, except for tests where control can go to
either branch.
In order to illustrate this, let us consider as a toy example the following
program, computing addition of two unary numbers and quite similar to
what can be done with a counter machine:

0 : if x = 0 jmp 4;
1 : x−− ; 2 : y + +;
3 : jmp 0 ; 4 : end;

Its CFG is displayed on Figure 1. Here, the control points correspond to the
labels of the program. The useful property of CFG is that any execution of

37

Jean-Yves Moyen

0

1

2

3

end

x = 0 x 6= 0

x−−

y + +

jmp 0

0

1

2

3

end

0 0

1

−1

0

0

1

2

3

end

(0,+1)

(−1, 0)

0

1

2

3

end
x x
y y

x x
y y

Figure 1: Control Flow Graph and Resources Control Graphs of the addition.

the program can be mapped onto a path of the CFG. The converse, however,
is not true because paths of the CFG are somewhat non-deterministic in
the sense that any branch of the test can be followed without taking into
account the actual value of variables. For example, the computation of 3 + 5
corresponds to the path 0123012301230end.

Any execution of the program can be seen as a sequence of states, each
state containing both the current label and the current memory. A path in
the CFG, on the other hand, only contains the sequences of vertexes, that
is labels. Thus, the memory of the machine is completely forgotten in the
CFG. Now, in order to study more precisely properties of programs, we want
to add (part of) the forgotten information into the CFG, thus turning it into
a Resources Control Graph (RCG).

So, instead of considering simply vertexes, we will now consider configura-
tions. A configuration is a couple (v, x) where v is a vertex and x ranges over
a (potentially infinite) set called the set of valuations. On the more general
case, valuations represent exactly the current memory, but depending on the
property under consideration, it is possible to restrict the set of valuations.

Now, the notion of path in the graph turns into a notion of walks. A walk is a
sequence of configurations (v1, x1), . . . , (vn, xn). The corresponding sequence
of vertexes v1, . . . , vn forms a path. Each new valuation xi+1 is computed
from the preceding one and the edge followed by the walk.

So, to each edge of the RCG, that is to each instruction of the program, we
need to define a function for computing new valuations when going through
that edge. Here, again, depending on the approximation of memory chosen
for the valuations, we may have different functions.

Let us illustrate this by considering only the total space usage of the program.
Since our toy example works with unary numbers, the size needed to store a
value n is n itself. So, at each state, the total space usage is x+ y, the sum

38

Proof, Computation, Complexity 06

of the values of both registers. Since we chose this as an approximation of
memory, valuations will be integers.

Now, we need to have functions associated to each edge that mimic, on the
level of the approximation, the behaviour of the corresponding instruction.
Both branches of the test, as well as the jump, keep the memory in the same
state. Hence, the corresponding function is the identity. The y++ instruction
increases the total space usage by one. Hence the corresponding function is
λx.x+1. The x−− instruction decreases the total space usage by one only
if x 6= 0 and causes an error otherwise. However, it is more convenient to
consider that the decrease always occurs, that is associate to it the function
λx.x − 1, and carry the error on the level of the RCG.

Now, we can notice that all the functions associated to edges have the form
λx.x + α where α is some constant. Hence, it is more convenient to only
represent them by the constant α. The corresponding RCG is thus a classical
weighted graph as displayed on Figure 1.

Again, we have the same simulation property. That is, any execution of the
program corresponds to a walk in the RCG. For example, the execution of
3 + 5 corresponds to the walk (0, 8), (1, 8), (2, 7), (3, 8), (0, 8), . . . , (0, 8),
(end, 8).

But now, problems may occur because we’ve chosen to carry the errors of
the subtraction on the RCG. Consider the following: (0, 0), (1, 0), (2,−1). It
is a walk that obviously cannot correspond to any execution because space
usage cannot be negative. At this point, we would like the valuation to be
restricted to only positive integers. However, this is not really satisfactory
from a theoretical point of view, since it is more convenient to have the set
of valuations closed by the functions associated to each edge.

So, in order to circumvent this problem, we split the set of valuations and
only consider some of them to be admissible. Similarly, a configuration will
be admissible only if its valuation is admissible and a walk is admissible
if all configurations in it are. Admissible valuations are those who really
correspond to an approximation of the memory, not those added by the
closure. Now, the previously mentioned walk is not admissible and can thus
be banned.

The important point is that executions of the program are now mapped
onto admissible walks only. So by only considering admissible walks, we do
not miss anything. Of course, there is still the problem of detecting non-
admissible walks.

Let us have a more closer look at the set of admissible walks in our case.
Since the RCG does not contain any cycle of strictly positive weight (this is

39

Jean-Yves Moyen

decidable in polynomial time via Bellman-Ford algorithm), any configuration
(v, x) reached in a walk starting from (v0, x0) will have x ≤ x0. We say
that the RCG is resource aware. Since, when mapping an execution of the
program onto a walk of the RCG, the valuation corresponds to the total
space usage, this means that when executing the program, one will never
need more space than what is initially allocated. That is, the program is
Non-Size Increasing [2].

Of course, only considering the total space usage is a big approximation
performed on memory. One may want to do something closer to the actual
memory. Typically, one may want to consider the space usage of each variable
independently. In this case, instead of a single integer, the valuations will
range over vectors of integers with as many components as the number of
variables, given a suitable enumeration of the variables. In our case, there
are two variables and we will consider the vector (|x|, |y|).

What will be the weight corresponding to the instructions in this case? Again,
both branches of the test and the jump do not change the variables and
hence have the identity as a weight. The x−− instruction decreases the size
(value) of the first component without changing the size of the second com-
ponent, hence its weight is λx.x+(−1, 0) (where vector-addition is performed
component-wise). Similarly, the y++ instruction has weight λx.x + (0,+1).
Again, since weights all have the form λx.x+ α for some constant α, we can
identify them with α, and the resulting RCG is a Vector Addition System
with States (VASS) [5]. The VASS for the addition is displayed on Figure 1.

Once more, every execution of the program can be mapped onto an admissible
walk of the VASS. Here, the set of admissible valuations is exactly Nn. For
example, the execution of 3 + 5 corresponds to the walk (0, (3, 5)), (1, (3,
5)), (2, (2, 5)), (3, (2, 6)), (0, (2, 6)), . . . , (2, (0, 7)), (3, (0, 8)), (0, (0, 8)),
(end, (0, 8)).

But now, if we look at the VASS, we can see that it admits no infinite
admissible walk. The existence of an infinite admissible walk for a VASS is
a decidable property. Since every execution is mapped onto an admissible
walk, the absence of infinite admissible walk means that there are no infinite
executions of the program, that is, it is uniformly terminating.

However, using VASS as RCG to model programs is still not very convenient
because one cannot model that way several useful instructions. Among other
things, a usual copy instruction like x := y cannot be represented that way.
However, keeping the idea of having vectors representing the size of each
variable as valuations, it then becomes quite easy to perform such copies by
a matrix multiplication.

40

Proof, Computation, Complexity 06

This is a rather appealing direction since matrices multiplications have al-
ready been used to study termination by Abel and Altenkirch [1] in their
re-reading of the Size Change Principle [3]. And actually, it turns out that
the SCP can indeed be expressed in terms of RCG where the weights are
the size change graphs. The corresponding RCG for our addition program
is depicted on Figure 1. The resulting termination criterion is equivalent to
the so called “graph algorithm” of Lee, Jones and Ben Amram.
Using Abel and Altenkirch ideas, one can also express each size change graph
(in the RCG) by a matrix. This leads to some kind of Matrices Multiplication
Systems with States. But matrices multiplication has already been used by
Niggl and Wunderlich [4] in order to detect polynomial time computations.
Apparently, Niggl and Wunderlich criterion should also be expressible in
terms of RCG.
So, the main interest of RCG is to be able to express within the same for-
malism several different existing program analysis. Moreover, some program
transformation techniques such as the deforestation also seem to be easy to
represent using Resource Control Graphs. This might lead to the building of
some kind of global tool to perform program analysis.

[1] A. Abel and T. Altenkirch. A Predicative Analysis of Structural Recursion.
Journal of Functional Programming, 12(1):1–41, January 2002.

[2] M. Hofmann. Linear types and Non-Size Increasing polynomial time computa-
tion. In Proceedings of the Fourteenth IEEE Symposium on Logic in Computer
Science (LICS’99), pages 464–473, 1999.

[3] C. S. Lee, N. D. Jones, and A. Ben-Amram. The Size-Change Principle for
Program Termination. In POPL’01, volume 28, pages 81–92. ACM press,
January 2001.

[4] K.-H. Niggl and H. Wunderlich. Certifying polynomial time and linear /
polynomial space for imperative programs. SIAM Journal on Computing,
35(5):1122–1147, March 2006. published electronically.

[5] C. Reutenauer. Aspects mathématiques des réseaux de Petri. Masson, 1989.

41

Gerard Renardel de Lavalette

Interpolation in Horn logic

Gerard Renardel de Lavalette

Gerard R. Renardel de Lavalette
Department of Mathematics and Computing Science
University of Groningen, the Netherlands
g.r.renardel.de.lavalette@rug.nl

Abstract.

In this note, we investigate interpolation in the Horn fragment of proposi-
tional infinitary logic, where conjunctions of arbitrary size are allowed. We
use abstract derivations that are related to the derivations for equational
logic we introduced in [2] to prove interpolation for equational logic. In the
future, we intend to combine the methods of [2] and this note in a proof of
interpolation for conditional equational logic and other logics.

1. Horn formulae and interpolation. Let PR be a collection of propo-
sitional atoms, denoted by p, q, r, We consider the collection Horn of
formulae ϕ = ϕI defined by

ϕI =
∧

i∈I

(
∧

Pi → pi)

where I is some index set with pi ∈ PR and Pi ⊆ PR for every i ∈ I . The
subformulae

∧
Pi → pi are called the rules of ϕ: if Pi = ∅, then pi is called

a fact of ϕ, otherwise
∧
Pi → pi is a proper rule. Observe that, in general,

we do not require I and the Pi to be finite. We identify ϕ∅ with T. atom(ϕ)
denotes the collection of atoms occurring in ϕ.
Horn satisfies (polynomial) interpolation if, for every ϕ1, ϕ2, ϕ3 ∈ Horn with
ϕ1, ϕ2 ` ϕ3, there is an interpolant ψ ∈ Horn (with size polynomial in
ϕ1, ϕ2, ϕ3), i.e.

ϕ1 ` ψ ψ, ϕ2 ` ϕ3 atom(ψ) ⊆ atom(ϕ1) ∩ (atom(ϕ2) ∪ atom(ϕ3))

It is an easy exercise to show that this is equivalent to the apparently weaker
version where ϕ3 is an atom (use that Horn is closed under conjunction and

42

Proof, Computation, Complexity 06

under taking subformulae). Since Horn is not closed under →, the present
formulation of interpolation is stronger than the version without ϕ2. ψ is
called a uniform interpolant if it does not depend on ϕ2 and ϕ3, but only on
ϕ1 and the set of atoms allowed in ψ. In the sequel, we sketch a proof that

Horn satisfies polynomial interpolation.

2. Two unsuccessful attempts. The first idea that comes to mind for
proving interpolation is the Maehara-Schütte method (after [5], [6]) that ex-
tracts an interpolant from a cut-free derivation in a sequent calculus. Unfor-
tunately, this does not work for Horn: there is e.g. a cut-free derivation of
p ∧ (q → r), p → q ` r that yields the interpolant (p → q) → r which is not
in Horn.

A second attempt starts with F. Ville’s observation (see [3](Ch. 1, exercise
2)) that, in classical propositional logic, uniform interpolation can be proved
using the fact that

ϕ(p) ` ϕ(ϕ(T))

(all occurrences of p are shown in ϕ(p)). An interpolant ψ for ϕ1, ϕ2, ϕ3

is obtained as follows: start with ϕ1 and eliminate one by one all atoms
that occur in ϕ1 but not in ϕ2 or ϕ3. It is not evident that this will work
for Horn, since it is not closed under substitution, but it turns out that
the uniform interpolant obtained this way is logically equivalent to a Horn
formula. However, the size of a uniform interpolant is not polynomial in the
size of ϕ1. This is shown in the following example. Let

ϕn = (
∧

i<n

pi → p) ∧
∧

i<n

(qi → pi) ∧
∧

i<n

(ri → pi)

then the uniform interpolant ψn for ϕn with

atom(ψn) ⊆ {p, q0, . . . , qn−1, r0, . . . , rn−1}

is

ψn =
∧

I⊆{0,...,n−1}

((
∧

i∈I

qi ∧
∧

i<n,i6∈I

ri)→ p)

It is evident that the size of ϕn is linear in n, while the size of ψn is expo-
nential.

43

Gerard Renardel de Lavalette

3. Abstract derivations. An (abstract) derivation is a structure D =
〈K,B,R, σ〉 with K 6= ∅, B ⊆ K, R ⊆ K2 is a wellfounded relation, and
σ : K → PR. B,R represent the Horn formula ϕB,R defined by

ϕB,R =
∧

k∈B

σ(k) ∧
∧

k∈rg(R)

(
∧

lRk

σ(l)→ σ(k))

Given L ⊆ K, the collection cons(L) of direct consequences of L in D is
defined as cons(L) = {k ∈ rg(R) | Rk ⊆ L} (Rk is shorthand for {l | lRk}).
The collection of nodes that are derivable in D from L is defined by der(L) =
µM.L∪B ∪ cons(M). We say that D represents a derivation of ϕB,R ` ϕI if
the following holds:

∀i ∈ I∃k ∈ K∃L ⊆ K(σ(k) = pi & σ[L] = Pi & k ∈ der(L))

i.e. for every rule
∧
Pi → pi in ϕI there are a node k representing pi and a

set of nodes L representing Pi such that k ∈ der(L).
Now let ϕ1, ϕ2, ϕI ∈ Horn satisfy ϕ1, ϕ2 ` ϕI , and let D = 〈K,B,R, σ〉 be
a derivation representing this. So there are B1, B2, R1, R2 satisfying B =
B1 ∪ B2, R = R1 ∪ R2, rg(R1) ∩ rg(R2) = ∅, ϕ1 = ϕB1,R1

, ϕ2 = ϕB2,R2
, and

for every i ∈ I there are ki ∈ K and Li ⊆ K with σ(ki) = pi, σ[Li] = Pi and
ki ∈ der(Li). We indicate how an interpolant for ϕ1, ϕ2 ` ϕI can be found.
Define C ⊆ K and S ⊆ K2 by

C = B1 ∩ dom(R2)
S = R+

1 ∩ (B2 ∪ rg(R2))× (dom(R2) ∪ {ki | i ∈ I})

where R+
1 denotes the transitive closure of R1. We claim that ϕC,S is an

interpolant for ϕ1, ϕ2 ` ϕI (ϕ1 ` ϕC,S follows from ϕ1 = ϕC1,R1
` ϕC1,R

+

1

;

the proof of ϕC,R, ϕ2 ` ϕI is more involved). However, we know nothing
about the size of ϕC,S , only that it is polynomial (in fact at most quadratic)
in the size of the derivation D. So the question is: what can we say about
the size of D?

4. Minimal derivations. A minimal derivation is a derivation where σ is
injective, i.e. different nodes represent different atoms. So we may identify
K with a subset of PR, and we can skip σ. The size of a minimal derivation
representing ϕ1, ϕ2 ` ϕ3 with K = atom(ϕ1, ϕ2, ϕ3) is linear in the size of
ϕ1, ϕ2 ` ϕ3. We claim that any derivation D = 〈K,B,R, σ〉 representing
ϕ1, ϕ2 ` p can be transformed in a minimal derivation D′ = 〈σ[K], σ[B], R′〉

44

Proof, Computation, Complexity 06

that satisfies

∀q ∈ rg(R′)∃k ∈ K(q = σ(k) & R′q = σ[Rk])

and hence represents ϕ1, ϕ2 ` p, too. R′ is obtained as
⋃

α≤κR
′
α where α

runs over the ordinals and κ is the cardinality of PR; we use that der(∅) =
⋃

α≤κ consα(∅) (approximation of least fixpoint from below). For the defini-
tion of R′

α+1, we need a choice function λ for the fact that

∀α ≤ κ ∀p ∈ σ[consα+1(∅)]− σ[consα(∅)] ∃k ∈ rg(R)
(σ(k) = p & Rk ⊆ consα(∅))

so λ(α, p) ∈ rg(R) & σ(λ(p, α)) = p & Rλ(p, α) ⊆ consα(P). Now R′
α+1 is

defined by

R′
α+1 = {(q, p) | p ∈ σ[consα+1(∅)]− σ[consα(∅)], q ∈ λ(α, p)}

Using minimal derivations, we can obtain polynomial interpolation: if
ϕ1, ϕ2 ` ϕI then ϕ1, ϕ2 ∧

∧
Pi ` pi for all i ∈ I ; via minimal derivations

we obtain polynomial interpolants ψi, and their conjunction
∧

i∈I ψi is a
polynomial interpolant for ϕ1, ϕ2 ` ϕI .
This ends our proof sketch. Our interpolation theorem generalizes Theorem
10 in [1]. Moreover, the interpolant we found satisfies the Lyndon conditions
(after [4])

atom+(ψ) ⊆ atom+(ϕ1) ∩ (atom−(ϕ2) ∪ atom+(ϕ3))
atom−(ψ) ⊆ atom−(ϕ1) ∩ (atom+(ϕ2) ∪ atom−(ϕ3))

where atom+(ϕI) = {pi | i ∈ I}, atom−(ϕI) =
⋃
{Pi | i ∈ I}.

[1] E. Dahlhaus, A. Israeli, and J.A. Makowsky. On the existence of polynomial
time algorithms for interpolation problems in propositional logic. Notre Dame
Journal of Formal Logic, 29:497–509, 1988.

[2] Gerard R. Renardel de Lavalette. Abstract derivations, equational logic and
interpolation (extended abstract). In Paola Bruscoli, François Lamarche, and
Charles Stewart, editors, Structures and Deduction — the Quest for the Essence
of Proofs, pages 173–188. Technische Universität Dresden, Fakultät Informatik,
2005. (see also http://www.cs.rug.nl/~grl/pub/lisbon2005full.pdf).

[3] G. Kreisel and J.-L. Krivine. Elements of Mathematical Logic (Model Theory).
North-Holland, Amsterdam, 1967.

[4] R.C. Lyndon. An interpolation theorem in the predicate calculus. Pacific
Journal of Mathematics, 9:129–142, 1959.

45

Gerard Renardel de Lavalette

[5] S. Maehara. On the interpolation theorem of Craig. Sugaku, 12:235–237, 1960.
(Japanese).

[6] Kurt Schütte. Der Interpolationssatz der intuitionistischen Prädikatenlogik.
Mathematische Annalen, 148:192–200, 1962.

46

Proof, Computation, Complexity 06

Implicit characterizations of FPTIME and NC revisited

Henning Wunderlich

(joint work with Karl-Heinz Niggl)
Technische Universität Ilmenau,
Institut für Theoretische Informatik,
Helmholtzplatz 1, 98684 Ilmenau,
henning.wunderlich@tu-ilmenau.de

Abstract.

In implicit computational complexity, much attention has been payed to the
complexity classes FPTIME and NC, e.g. see [3,5,2]. This talk presents
simplified or improved, and partly corrected well-known implicit characteri-
zations of the complexity classes FPTIME and NC. The core of the present
research is to simplify the required simulations of various bounded recursion
schemes in the corresponding implicit framework, and moreover, to develop
those simulations in a more uniform way. Furthermore, we establish a new
ground type function algebraic characterization of NC, which might be of
help to resolve the open problem of characterizing NC through higher types.
The starting point is a simplified proof that Cobham’s class Cob [7] charac-
terizing FPTIME is contained in the function algebra BC of Bellantoni and
Cook [3]. That every function in Cob can be simulated in BC essentially
rests on two findings:

(S1) For every function f ∈ Cob one can construct a function f ′ ∈ BC,
called simulation of f , and a polynomial pf we call witness for f such
that

f(~x) = f ′(w; ~x) whenever |w| ≥ pf (|~x|).

(S2) Every polynomial p can be length-bounded by a function Wp ∈ BC,
that is, |Wp(~x)| ≥ p(|~x|).

The proof that every f ∈ Cob can be simulated in BC is then concluded as
follows: The safe-to-normal property built into the class BC allows one to
write both f ′ and Wp as functions SN(f ′)(w, ~x;) and SN(Wp)(~x;) of normal

47

Henning Wunderlich

variables only. Therefore, (S1) and (S2) imply that f can be defined in BC

by safe composition:

f(~x) = SN(f ′)(SN(Wp)(~x;), ~x;)

In each simulation, we will concentrate on the crucial statement correspond-
ing to (S1). As for (S1), all cases are obvious, except for the case f =
BRN(g, h0, h1, j), where a difficult simulation and proof was given in [3].
The difficulty mainly arises because of an unnatural choice of a case function
defined as

case(;x, even, odd) :=

{
even x is even
odd x is odd.

When replacing function case by the function bcase (for binary case) which
naturally springs from (bounded) recursion on notation, that is,

bcase(;x, zero, even, odd) :=

zero x = 0
even x > 0 and x is even
odd x > 0 and x is odd

then a simulation f ′ can be constructed, the correctness of which is imme-
diate from its definition. To see this, let g′, h′0, h

′
1 ∈ BC be given by the

induction hypothesis. For legibility, given an input y = (bl−1 · · · b0)2, with
bl−1 · · · b0 being the binary representation of y, we write y{i} for the y-section
(bl−1 · · · bi)2. Thus, on input y = (bl−1 · · · b0)2 we want to simulate

f(y,~a) = f(y{0},~a)
= hb0(y{1},~a, step 1

. . .
...

hbi−1
(y{i},~a, step i
. . .

...
hbl−1

(0,~a, step l
g(~a)) · · ·) · · ·) step l+1

step by step via f ′, where f ′ should be of the form f ′(w; y,~a) := f̂(w,w; y,~a).

The function f̂(ŵ, w; y,~a) is defined by safe recursion on notation (srn) on

ŵ, being of the form f̂ := srn(0, ĥ, ĥ). The new recursion parameter ŵ must
be introduced because y, being the recursion parameter of f , must be in a
safe position in f ′. Inspecting the required step by step simulation, we see

48

Proof, Computation, Complexity 06

that ĥ(ŵ, w; y,~a, v) must simulate step s(ŵ, w) := |w|
.
− |ŵ| in the recursion

of f(y,~a). Using the given simulations g′, h′0, h
′
1 we conclude that

ĥ(ŵ, w; y,~a, v) =

{
h′

y{s(ŵ,w)
.
−1}

(w; y{s(ŵ, w)},~a, v) if 1 ≤ s(ŵ, w) ≤ |y|

g′(w; ~a) if s(ŵ, w) > |y|.

Defining 	(u; v) := p|u|(v) by srn on u, we obtain the BC function

Y (ŵ, w; y) := 	((ŵ; w); y) = p|w|
.
−|ŵ|(y) = ps(ŵ,w)(y) = y{s(ŵ, w)}.

Now, observing that for y = (bl−1 · · · b0)2,

bs(ŵ,w)
.
−1 = 0 ⇐⇒ Y (s1(ŵ), w; y) is even

the required function ĥ can be defined as follows

ĥ(ŵ, w; y,~a, v) := bcase(; Y (s1(ŵ), w; y),
g′(w,~a),
h′0(w; Y (ŵ, w; y),~a, v),
h′1(w; Y (ŵ, w; y),~a, v))

As mentioned above, correctness of this simulation follows immediately from
its definition, leading to the following variant of the Bellantoni/Cook theo-
rem:

FPTIME = [0, sb, p, π
m,n
i , bcase; scomp, srn]

Now we consider characterizations of the complexity class NC. In [5] Clote
established NC = CLO for the function algebra

CLO := [0, Sb,Π
m
i ,LEN,BIT,#; COMP,CRN,WBRN].

In [4], Bellantoni noticed that CLO = CLO
′ for the function algebra

CLO
′ := [0, Sb,Π

m
i ,LEN,BIT,#; COMP,CRN,WBRN′],

where WBRN′ is WBRN but based on Bellantoni’s half function H , and
sketched the proof in a footnote. As the proof sketch does not give the
desired result, we give a corrected proof of CLO = CLO

′. Furthermore, we
consider the following function algebras:

2CLO := [0, sb, π
m,n
i , len, bit,#Bel, case; scomp, scrn, slr]

2NC := [0, sb, π
m,n
i , len, bit,#Bel, case, half, drop;

scomp, scrnAJST, slr]
2NC

′ := [0, sb, π
m,n
i , len, bit, sm,#AJST, case, half , drop;

scomp, scrnAJST, slr]
NC

′ := [0, sb, π
m,n
i , len, bit, sm,#AJST, case,msp;

scomp, scrn′, slr]

49

Henning Wunderlich

2CLO was defined in [4], 2NC was implicitly defined in [1]. The idea to
split the smash function #Bel into two parts can be found in [2]. We call this
algebra 2NC

′. The class NC
′, treated in [10], contains fewer base functions,

and uses the following variant of concatenation recursion on notation f =
scrn′(h0, h1):

f(0, ~x; ~y) = 0
f(sb(; y), ~x; ~y) = sh(~x; sb(;y),~y)mod 2(f(y, ~x; ~y))

Unlike the scheme in [2], sb(; y) appears in a safe position in h, which
is more restrictive. Again, replacing function case by its natural variant
bcase, and proceeding as in the above described alternative characterization
of FPTIME, we show that all these function algebras characterize NC. For
this, we embed NC = CLO

′ in a uniform way into 2CLO, . . . ,NC
′ (now

with bcase) using simplified simulations. As above, correctness of those sim-
ulations can be seen right from their definitions.

[1] K. Aehlig, J. Johannsen, H. Schwichtenberg, and S. Terwijn. Linear ramified
higher type recursion and parallel complexity. Technical Report 17, Mittag-
Leffler-Institut, 2000/2001.

[2] K. Aehlig, J. Johannsen, H. Schwichtenberg, and S. Terwijn. Linear ramified
higher type recursion and parallel complexity. In Kahle et al. [8], pages 1–21.

[3] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
polytime functions. Computational Complexity, 2:97–110, 1992.

[4] S. J. Bellantoni. Predicative Recursion and Computational Complexity. PhD
thesis, Graduate Department of Computer Science, University of Toronto, 1992.

[5] P. Clote. Sequential, machine-independent characterizations of the parallel
complexity classes alogtime, ack, nck and nc. In MSI Workshop on Feasible
Mathematics. Birkhäuser, 1989.

[6] P. Clote. Computational models and function algebras. In Leivant [9], pages
98–130.

[7] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-
Hillel, editor, Proc. of the 1964 International Congress for Logic, Methodology,
and the Philosophy of Science, pages 24–30. North Holland, 1964.

[8] R. Kahle, P. Schroeder-Heister, and R. F. Stärk, editors. Proof Theory in Com-
puter Science, International Seminar, PTCS 2001, Dagstuhl Castle, Germany,
October 7-12, 2001, Proceedings, volume 2183 of Lecture Notes in Computer
Science. Springer, 2001.

50

Proof, Computation, Complexity 06

[9] D. Leivant, editor. Logical and Computational Complexity. Selected Papers.
Logic and Computational Complexity, International Workshop LCC ’94, Indi-
anapolis, Indiana, USA, 13-16 October 1994, volume 960 of Lecture Notes in
Computer Science. Springer, 1995.

[10] H. Wunderlich. Syntaktische Charakterisierungen effizient berechenbarer
Funktionen, 2003. Diploma thesis.

51

Ernst Zimmermann

Substructural Logics in Natural Deduction

Ernst Zimmermann

ernstzimmermann@de.ibm.com

Abstract.

Substructures in Sequents and Deductions

From the beginning, substructural logics were almost exclusively devoted
to proof theoretic structures of the calculus of sequents. Structural rules
like weakening and contraction are intimately linked to sequents, and so
it was to be expected that investigations from various directions and with
various motivations would undertake the task to define logics below the use
of structural rules in the calculus of sequents.
The use and the importance of calculi of sequents in the realm of substructural
logic contrast with the weight which the founder of the subject gave to it as
a whole. Gentzen spoke about deductions as the form of natural logical and
mathematical reasoning, and about sequents only as a form of a heuristic
metamathematical means.
Disregarding any attitude towards the one or the other type of logical rea-
soning, one decisive difference should be apparent when the two types of
calculi are compared. Sequents allow proof theoretic interpretations of intu-
itionistic logic and of classical logic in a simple form and to full generality,
whereas deductions seem to be restricted in a certain sense to intuitionistic
logic. Clearly, deductions allow interpretations of classical logic too, but only
with a loss of some highly desired proof theoretic properties like subformula
property.
Against the background of the situation sketched, the present talk does the
following. Since structural rules like weakening and contraction are easily de-
ducible in the natural deduction of intuitionistic logic, the talk explores what
natural deduction without weakening and contraction looks like. This explo-
ration leads to a certain fragment of linear logic, which can be extended either
by an explicit contraction rule to relevant logic or by an explicit weakening
rule to BCK logic.

52

Proof, Computation, Complexity 06

Nevertheless, the present investigations are limited to substructural logics of
intuitionistic logic, since in the opinion of the author this is the realm of logic
described by means of natural deduction. But in this realm it is shown that
the well-known normalisation methods and normalisation results of Prawitz
for intuitionistic predicate logic can be fully generalised to fragments of in-
tuitionistic linear, relevant and BCK predicate logic. These fragments in-
clude usual implication and falsum and additive connectives conjunction and
disjunction, which obey contexts of assumptions. Given these connectives,
extensions to quantifiers are trivial. To make conversions work for conjunc-
tion and disjunction, completely symmetric rules are defined: the well-known
pairs of symmetric rules for conjunction elimination and disjunction intro-
duction, but even pairs of symmetric rules for conjunction introduction and
disjunction elimination, where equal contexts of assumptions are explicitely
mentioned and partially discharged. As a consequence, normalisation pro-
cedures like conversions and permutations have to be worked out in more
detail, i.e. usual conversions and permutations have to be refined. The pairs
of symmetric rules for context sharing connectives presented in this talk devi-
ate from other rules already present in the literature (Negri, 2002, Martins /
Martins, 2004). These symmetric rules for connectives which share contexts
of assumptions and the explicit rules for weakening and contraction show that
substructural logics are a subject not reserved for the calculus of sequents.

Rules and Calculi

The language of propositional logic. There are propositional variables Pk

for k ∈ ω. ⊥ is a constant; →,∧,∨ are binary connectives; (,), the parenthe-
ses, are auxiliary symbols.
The formulas: Pk are formulas; ⊥ is a formula; (A→ B), (A ∧ B), (A ∨ B)
are formulas, if A and B are formulas.

An Intuitionistic Linear Logic ILL

A BR

Au

...
...

...
A A→ B B

B
→ E

A→ B
→ Iu

...
...

A ∧ B A ∧ B
A

∧E
B

∧E

53

Ernst Zimmermann

Γ [Γ]v [Γ]v Γ
...

...
...

...
A B A B
A ∧ B

∧Iv
A ∧ B

∧Iv

...
...

A B
A ∨ B

∨I
A ∨B

∨I

Au [Γ]w Bv Γ
...

...
...

A ∨ B C C
C

∨Euvw

Au Γ Bv [Γ]w

...
...

...
A ∨ B C C

C
∨Euvw

...
...

...
⊥ ⊥ A
A
⊥R

⊥
W⊥

Γ are multisets, Aw singletons.

An Intuitionistic Relevant Logic IRL

ILL Rules in the following interpretation: Γ, Aw are sets, Aw 6= ∅.

An Intuitionistic Relevant Logic IRLC

ILL Rules and Contraction Rule:

Au A
...
B
B

Cu

54

Proof, Computation, Complexity 06

An Intuitionistic BCK Logic IBL

ILL Rules in the following interpretation: Γ are multisets, Aw singletons or
Aw = ∅.

An Intuitionistic BCK Logic IBLW

ILL Rules and Weakening Rule:

...
...

B A
B

W

[1] K. Dosen, P. Schroeder-Heister (Eds.), 1993, Substructural Logics. Clarendon
Press, Oxford.

[2] G. Gentzen, 1934/35, Untersuchungen ueber das logische Schliessen I, II. In:
Mathematische Zeitschrift, 39. 176-210, 405-431.

[3] J.-Y. Girard, 1987, Linear Logic. In: Theoretical Computer Science, 50, 1-102.

[4] L.R. Martins, A.T. Martins, 2004, Natural Deduction and Weak Normalisation
of Full Linear Logic. In: Logic Journal of IGPL, 12, 601-625.

[5] S. Negri, 2002, A normalizing system of natural deduction for intuitionistic
linear logic. In: AML, 41, 789-810.

[6] H. Ono, Y. Komori, 1985, Logics without Contraction Rule. In: JSL. 169-201.

[7] D. Prawitz, 1965, Natural Deduction. A Proof-Theoretical Study. Almquist and
Wiksell, Stockholm.

[8] D. Prawitz, 1971, Ideas and Results in Proof Theory. In: J.E. Fenstad (Ed.),
Proc. of 2-nd Scand. Logic Symposium. Amsterdam. 235-307.

[9] N. Tennant, 2004, Relevance in Reasoning. In: S. Shapiro (Ed.), Handbook of
the Philosophy of Logic and Mathematics, Oxford.

[10] A.S. Troelstra, 1992, Lectures on linear logic. CSLI Lecture Notes 29. Stan-
ford, California.

[11] A.S. Troelstra, 1995, Natural deduction for intuitionistic linear logic. In:
APAL.

[12] A.S. Troelstra, H. Schwichtenberg, 1996, Basic Proof Theory. Cambridge Uni-
versity Press, Cambridge.

55

Preliminary Program

Monday, July 24th

9:15 Registration & Opening

Jean-Yves Marion
Interpretations methods for proving complexity upper bounds

Coffee Break

10:45 Guillaume Bonfante
Life after “life without cons”

Jean-Yves Moyen
Resources Control Graphs

Lunch Break

13:45 Ernst Zimmermann
Substructural Logics in Natural Deduction

Marco Gaboardi
λ-Calculus and Soft Linear Logic

Coffee Break

15:45 Oliver Kullmann
Sign-sensitive Graph Representations of CNFs:
Conflict graphs and resolution graphs

Michael Brinkmeier
Terms and Operads

56

Proof, Computation, Complexity 06

Tuesday, July 25th

9:30 Ulrich Berger
Strong normalisation via domain-theoretic
computability predicates

Coffee Break

10:45 Lew Gordeev
Strong WQO phase transitions

Gerard Renardel de Lavalette
Interpolation in Horn logic

Lunch Break

13:45 Henning Wunderlich
Implicit characterizations of fptime and nc revisited

Folke Eisterlehner
An alternative correctness proof of a certification method
for fptime

Coffee Break

15:45 Mathias Barra
On some small subrecursive hierarchies

Lars Kristiansen
T

−-Hierarchies and the Trade-off Theorem

17:15 Closing

57

	pcc06titelei.pdf
	pcc06text.pdf

