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COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE
TERM REWRITING
CYNTHIA KOP AND JAKOB GRUE SIMONSEN

Department of Computer Science, Copenhagen University
e-mail address: {kop,simonsen}@di.ku.dk

ABSTRACT. Constructor rewriting systems are said to be cons-free if, roughly, constructor
terms in the right-hand sides of rules are subterms of the left-hand sides; the computational
intuition is that rules cannot build new data structures. In programming language research,
cons-free languages have been used to characterize hierarchies of computational complexity
classes; in term rewriting, cons-free first-order TRSs have been used to characterize P.

We investigate cons-free higher-order term rewriting systems, the complexity classes
they characterize, and how these depend on the type order of the systems. We prove that,
for every K > 1, left-linear cons-free systems with type order K characterize EX TIME if
unrestricted evaluation is used (i.e., the system does not have a fixed reduction strategy).

The main difference with prior work in implicit complexity is that (i) our results hold
for non-orthogonal TRSs with no assumptions on reduction strategy, (ii) we consequently
obtain much larger classes for each type order (E¥ TIME versus EXPX~'TIME), and (iii)
results for cons-free term rewriting systems have previously only been obtained for K =1,
and with additional syntactic restrictions besides cons-freeness and left-linearity.

Our results are among the first implicit characterizations of the hierarchy E = E'TIME C
E2TIME C ---. Our work confirms prior results that having full non-determinism (via over-
lapping rules) does not directly allow for characterization of non-deterministic complexity
classes like NE. We also show that non-determinism makes the classes characterized highly
sensitive to minor syntactic changes like admitting product types or non-left-linear rules.

1. INTRODUCTION

In [15], Jones introduces cons-free programming: working with a small functional program-
ming language, cons-free programs are exactly those where function bodies cannot contain
use of data constructors (the “cons” operator on lists). Put differently, a cons-free program
is read-only: data structures cannot be created or altered, only read from the input; and any
data passed as arguments to recursive function calls must thus be part of the original input.

The interest in such programs lies in their applicability to computational complexity: by
imposing cons-freeness, the resulting programs can only decide the sets in a proper subclass
of the Turing-decidable sets; indeed are said to characterize the subclass. Jones shows that
adding further restrictions such as type order or enforcing tail recursion lowers the resulting
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expressiveness to known classes. For example, cons-free programs with data order 0 can
decide exactly the sets in PTIME, while tail-recursive cons-free programs with data order 1
can decide exactly the sets in PSPACE. The study of such restrictions and the complexity
classes characterized is a research area known as implicit complezity and has a long history
with many distinct approaches (see, e.g., [4, 5, 6, 7, 8, 13, 18]).

Rather than a toy language, it is tantalizing to consider term rewriting instead. Term
rewriting systems have no fixed evaluation order (so call-by-name or call-by-value can be
introduced as needed, but are not required); and term rewriting is natively non-deterministic,
allowing distinct rules to be applied (“functions to be invoked”) to the same piece of syntax,
hence could be useful for extensions towards non-deterministic complexity classes. Implicit
complexity using term rewriting has seen significant advances using a plethora of approaches
(e.g. [1, 2, 3]). Most of this research has, however, considered fixed evaluation orders (most
prominently innermost reduction), and if not, then systems which are either orthogonal, or
at least confluent (e.g. [2]). Almost all of the work considers only first-order rewriting.

The authors of [11] provide a first definition of cons-free term rewriting without con-
straints on evaluation order or confluence requirements, and prove that this class—limited to
first-order rewriting—characterizes PTIME. However, they impose a rather severe partial
linearity restriction on the programs. This paper seeks to answer two questions: (i) what
happens if no restrictions beyond left-linearity and cons-freeness are imposed? And (ii)
what if we consider higher-order term rewriting? We obtain that K*"-order cons-free term
rewriting exactly characterizes EX TIME. This is surprising because in Jones’ rewriting-like
language, K*-order programs characterize EXPX~ITIME: surrendering both determinism
and evaluation order thus significantly increases expressivity. Our results are comparable to
work in descriptive complexity theory (roughly, the study of logics characterizing complexity
classes) where the non-deterministic classes NEXPX~!TIME in the exponential hierarchy
are exactly the sets axiomatizable by ¥k formulas in appropriate query logics [19, 12].

2. PRELIMINARIES

2.1. Computational Complexity. We presuppose introductory working knowledge of
computability and complexity theory (see, e.g., [14]). Notation is fixed below.

Turing Machines (TMs) are tuples (I, A,S,T) where I D {0, 1} is a finite set of initial
symbols; A O I'U{_} is a finite set of tape symbols with _ ¢ I the special blank symbol,
S D {start,accept,reject} is a finite set of states; and T is a finite set of transitions
(i,r,w,d,j) with i € S\ {accept,reject} (the original state), r € A (the read symbol),

w € A (the written symbol), d € {L,R} (the direction), and j € S (the result state). We also

d
write this transition as ¢ i—w—> j. All machines in this paper are deterministic: every pair

(i,r) with i € S\ {accept,reject} is associated with exactly one transition (i,r, w,d, j).
Every Turing Machine in this paper has a single, right-infinite tape.

A walid tape is a right-infinite sequence of tape symbols with only finitely many not
—. A configuration of a TM is a triple (¢, p, s) with ¢ a valid tape, p € N and s € S. The
transitions 7" induce a binary relation = between configurations in the obvious way.

Definition 2.1. Let I D {0,1} be a set of symbols. A decision problem is a set X C I,

A TM with input alphabet I decides X C I if for any string = € I, we have z € X iff
(w1 ...Tpeo...,0,start) =% (t,4,accept) for some ¢,4, and (_z1...2po0...,0, start) =*
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(t,i,reject) otherwise (i.e., the machine halts on all inputs, ending in accept or reject
depending on whether x € X). If f : N — N is a function, a (deterministic) TM runs in time
M. f(n) if, for each n € N\ {0} and each = € I", we have (L. ..,0,start) =</ (¢ i)
for some s € {accept,reject}, where ==/(") denotes a sequence of at most f(n) transitions.

We categorize decision problems into classes based on the time needed to decide them.

Definition 2.2. Let f: N — N be a function. Then, TIME (f(n)) is the set of all S C I't
such that there exist a > 0 and a deterministic TM running in time An.a - f(n) that decides
S (i.e., S is decidable in time O(f(n))). Note that by design, TIME (-) is closed under O.

Definition 2.3. For K,n > 0, let exp(n) = n and exps ™ (n) = 2exp3 (1) — expk (21).
For K > 1 define: EX TIME £ J,.y TIME (exp& (an)).

Observe in particular that E'TIME = (J, .y TIME (exp(an)) = U ey TIME (277) = E
(where E is the usual complexity class of this name, see e.g., [20, Ch. 20]). Note also that
for any d, K > 1, we have (expi (z))? = gd-expy ' (z) < gexpy ' (dz) expX (dr). Hence, if P
is a polynomial with non-negative integer coefficients and the set S C {0,1}* is decided by
an algorithm running in TIME (P(expX (an))) for some a € N, then S € EX TIME.

By the Time Hierarchy Theorem [21], E = E'TIME € E*TIME C E3TIME C ---. The
union |J ey EXTIME is the set ELEMENTARY of elementary-time computable languages.

We will also sometimes refer to EXPXTIME £ Uapeny TIME (expZ (an)).

2.2. Applicative term rewriting systems. Unlike first-order term rewriting, there is no
single, unified approach to higher-order term rewriting, but rather a number of different
co-extensive systems with distinct syntax; for an overview of basic issues, see [22]. For
the present paper, we have chosen to employ applicative TRSs with simple types, as (a)
the applicative style and absence of explicitly bound variables allows us to present our
examples—in particular the “counting modules” of § 4—in the most intuitive way, and (b)
this particular variant of higher-order rewriting is syntactically similar to Jones’ original
definition using functional programming. However, our proofs do not use any features
of ATRS that preclude using different formalisms; for a presentation using simply-typed
rewriting with explicit binders, we refer to the conference version of this paper [16].

Definition 2.4 (Simple types). We assume given a non-empty set S of sorts. Every 1 € S
is a type of order 0. If 0,7 are types of order n and m respectively, then ¢ = 7 is a
type of order max(n 4+ 1, m). Here = is right-associative, so 0 = 7 = 7 should be read
o= (1r=mn).

We additionally assume given disjoint sets F of function symbols and V of variables,
each equipped with a type. This typing imposes a restriction on the formation of terms:

Definition 2.5 (Terms). The set 7 (F, V) of terms over F and V consists of those expressions
s such that s : o can be derived for some type o using the following clauses: (a) a : o for
(a:0)e FUV,and (b)st:7ifs:0=7andt:o.

Clearly, each term has a unique type. A term has base type if its type is in S, and has
functional type otherwise. We denote Var(s) for the set of variables occurring in a term
s and say s is ground if Var(s) = (). Application is left-associative, so every term may be
denoted a s1---s, with a € FU V. We call a the head of this term. We will sometimes
employ vector notation, denoting a si - - - s, simply as a § when no confusion can arise.



4 C. KOP AND J.G. SIMONSEN

Example 2.6. We will often use extensions of the signature Fiist, given by:
0 : symb 1 : symb [ : list ; : symb = list = list

Terms are for instance 1 : symb and ; 0 (; 1 []) : list, as well as (; 0) : list = list.
However, we will always denote ; in a right-associative infix way and only use it fully applied;
thus, the second of these terms will be denoted 0;1;[] and the third will not occur. Later
extensions of the signature will often use additional constants of type symb.

The notion of substitution from first-order rewriting extends in the obvious way to
applicative rewriting, but we must take special care when defining subterms.

Definition 2.7 (Substitution, subterms and contexts). A substitution is a type-preserving
map from V to 7 (F,V) that is the identity on all but finitely many variables. Substitutions
v are extended to arbitrary terms s, notation s, by replacing each variable = by y(x). The
domain of a substitution 7 is the set consisting of those variables x such that vy(x) # x.

We say t is a subterm of s, notation s > ¢, if (a) s = ¢, or (b) s> ¢, where s1 s >t if
s1 >t or so>t. In case (b), we say t is a strict subterm of s.

Note that s; is not considered a subterm of s; so; thus, in a term f x; - - - z,, the only
strict subterms are x1,...,x,; the term f x1 ---x,_1 (for instance) is not a subterm. The
reason for this arguably unusual definition is that the restrictions on rules we will employ do
not allow us to ever isolate the head of an application. Therefore, such “subterms” would
not be used, and are moreover problematic to consider due to their higher type order.

Example 2.8. Let succ : list = list be added to Fypits of Example 2.6. Then
succ (0;1;[]) > 1;[], but not succ (0;1;]]) > succ. An example substitution is v := [zs :=
y;1;2zs] (which is the identity on all variables but zs), and for s = succ (0;xs) we have
sy = succ (0;y;1;29).

At last we are prepared to define the reduction relation.

Definition 2.9 (Rules and rewriting). A rule is a pair £ — r of terms in 7 (F,V) with the
same type such that Var(r) C Var(f). A rule £ — r is left-linear if every variable occurs at
most once in £. Given a set R of rules, the reduction relation —% on 7 (F,V) is given by:

by —gr rv for any { — r € R and substitution v

st —r st ifs—ps

st —r st ift—)Rt/

Let —>7J5 denote the transitive closure of — and —7, the transitive-reflexive closure.
We say that s reduces to t if s =% t. A term s is in normal form if there is no ¢ such that
s =g t, and t is a normal form of s if s =%, t and t is in normal form. An applicative term
rewriting system, abbreviated ATRS is a pair (F,R) and its type order (or just order) is
the maximal order of any type declaration in F.

Example 2.10. Let Feount = Frist U {succ : 1list = list} be the signature from Exam-
ple 2.8. We consider the ATRS (Fcount, Reount) With the following rules:

(A) succ| — L[] (B) succ (0;zs) — 1Ls
(C) succ (1;2s) — 0;(succ xs)
This is a first-order ATRS, implementing the successor function on a binary number expressed

as a bit string with the least significant digit first. For example, 5 is represented by 1;0;1;]],
and indeed succ (1;0;1;[]) —x 0;(succ (0;1;]])) == 0;1;1;[], which represents 6.
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Example 2.11. We may also define counting as an operation on functions. We let Fuocount
contain a number of typed symbols, including 0,1 : symb, o : nat and s : nat = nat as well
as set : (nat = symb) = nat = symb = nat = symb. This is a second-order signature
with unary numbers o,s o,s (s 0),..., which allows us to represent the bit strings from
before as functions in nat = symb: a bit string by ... b,—1 corresponds to a function which
reduces s’ o to b; for 0 < i < n and to 0 for i > n. Let Runocount consist of the rules below;
types can be derived from context. The successor of a “bit string” F' is given by fsucc F o.

(D) ifeqooxzy — = (M) neg — 1
(E) ifeq(sn)ozy — y (N) negi — 0
(F) ifeqo(sm)zy — y (O) nuln — O
(G) ifeq(sn)(sm)zy — ifeqnmuay

(H) set Fnam — ifeqnmx (F m)

(1 flip Fn — set F n (neg (F n))

(J) fsucc F'n — fsucchelp (F n) (flip F n) n

(K) fsucchelp0 Fn — F

(L) fsucchelp 1l Fn — fsucc F (sn)

Rules (I)—(L) have a functional type nat = symb. The function nul represents bit strings
0...0, and if F represents bg...b,_1 then set F (si o) x represents by ...b;—1xbit1 ... by_1.
The number 5 is for instance represented by ¢ := set (set nul o 1) (s? o) 1. We easily see that
(**)to —% 1andt (s o) =} 0. Intuitively, fsucc operateson 1...10b;41 ...b,—1 by flipping
bits until some 0 is encountered, giving 0...01b;y1...b,—1. Using (**), fsucc t o =
fsucchelp (to) (flipt o) o =% fsucchelp 1 (setto (neg1)) o —% fsucc (setto0) (so)
—, fsucchelp 0 (set (set t00) (s o)1) (s o) »r set (set t 0 0) (s o) 1; writing u for
this term, we can confirm that u (s’ o) —% 1 if only if i = 1 or i = 2: u represents 6.

For the problems we will consider, a key notion is that of data terms.

Definition 2.12. We fix a partitioning of F into two disjoint sets, D of defined symbols
and C of constructor symbols, such that f € D for all f {—sreR. Aterm (s a pattern
if (a) ¢ is a variable, or (b) f =c #y--- 4y, withc:01 = ... = oy = 1 €C for t € S and
all ¢; patterns. A data term is a pattern without variables, and the set of all data terms is
denoted A. A term f ¢1 --- £, of base type, with f € D and all ¢; € TA data terms is called
a basic term. Note that all non-variable patterns—which includes all data terms—also have
base type.

We will particularly consider left-linear constructor rewriting systems.

Definition 2.13. A constructor rewriting system is an ATRS such that all rules have the
form f €1 ---€;, — r with f € D and all ¢; patterns. It is left-linear if all rules are left-linear.

Left-linear constructor rewriting systems are very common in the literature on term
rewriting. The higher-order extension of patterns where the first-order definition merely
requires constructor terms corresponds to the typical restrictions in functional programming
languages, where constructors must be fully applied. However, unlike functional programming
languages, we allow for overlapping rules, and do not impose an evaluation strategy.

Example 2.14. The ATRSs from Examples 2.10 and 2.11 are left-linear constructor rewrit-
ing systems. In Example 2.10, C = Fiis¢ and D = {succ}. If a rule 0;]] — [] were added to
R count, it would no longer be a constructor rewriting system as this would force ; to be in D,
conflicting with rules (B) and (C). A rule such as equal n n — 1 would break left-linearity.
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2.3. Deciding problems using rewriting. Like Turing Machines, an ATRS can decide a
set S C I'™ (where I is a finite set of symbols). Consider ATRSs with a signature F = C;UD
where C; = {[] : 1ist, ;: symb = list = list,true : bool,false : bool}U{a: symb|a €
I'}. There is an obvious correspondence between elements of It and data terms of sort 1ist;
if x € I'", we write X for the corresponding data term.

Definition 2.15. An ATRS accepts S C IT if there is a designated defined symbol decide :
list = bool such that, for every x € I'" we have decide X —% true iff z € S. The ATRS
decides S if moreover decide X —} false iff x ¢ S.

While Jones considered programs deciding decision problems, in this paper we will
consider acceptance—a property reminiscent of the acceptance criterion of non-deterministic
Turing machines—because term rewriting is inherently non-deterministic unless further
constraints (e.g., orthogonality) are imposed. Thus, an input x is “rejected” by a rewriting
system if there is no reduction to true from decide X. As evaluation is non-deterministic,
there may be many distinct reductions starting from decide X.

With an eye on future extensions in functional complexity—where the computational
complexity of functions, rather than sets, is considered—our definitions and lemmas will more
generally consider programs which reduce an arbitrary basic term to a data term. However,
our main theorems consider only programs with main symbol decide : 1ist = bool.

3. CONS-FREE REWRITING

As we aim to find groups of programs which can handle restricted classes of Turing-computable
problems, we will impose certain limitations. We limit interest to the left-linear constructor
TRSs from § 2.2, but impose the additional restriction that they must be cons-free.

Definition 3.1. A rule ¢ — r is cons-free if for all » > s: if s has the form ¢ s1--- s, with
ce(C, then s € A or £ 1> s. A left-linear constructor ATRS is cons-free if all its rules are.

Definition 3.1 corresponds largely to the definitions of cons-freeness in [11, 15]. In a
cons-free system, it is not possible to build new non-constant data, as we will see in § 3.1.

Example 3.2. The ATRSs from Examples 2.10 and 2.11 are not cons-free; in the first case
due to rules (B) and (C), in the second due to rule (F). To some extent, we can repair the
second case, however: by counting down rather than up. To be exact, we let n be a fized
number, assume that s™ 0 is given as input to the ATRS, and represent a number as a finite
bitstring bg . .. b,—1 with the most significant digit first—in contrast to Example 2.11, where
we used essentially infinite bitstrings bg . ..b,—1000... with the least significant digit first.
We can reuse most of the previous rules, but replace the (non-cons-free) rule (L) by:

(L.1) fsucchelpl Fo — F  (L.2) fsucchelpl F (sn) — fsucc Fn

Now a function F represents by . ..b,_; if F' reduces s’ o to b; for 0 < i < n; since we only
consider n bits, F' may reduce to anything given data not of this form. Then fsucc F' (s" o)
reduces to a function representing the successor of F', modulo 2" (1...1 is reduced to 0...0).

Remark 3.3. The limitation to left-linear constructor systems is standard, but also neces-
sary: if either restriction is dropped, our limitation to cons-free systems becomes meaningless,
and we retain a Turing-complete language. This will be discussed in detail in § 7.2.

As the first two restrictions are necessary to give meaning to the third, we will consider
the limitation to left-linear constructor ATRSs implicit in the notion “cons-free”.
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3.1. Properties of Cons-free Term Rewriting. As mentioned, cons-free term rewriting
cannot create new non-constant data terms. This means that the set of data terms that
might occur during a reduction starting in some basic term s are exactly the data terms
occurring in s, or those occurring in the right-hand side of some rule. Formally:

Definition 3.4. Let (F,R) be a fixed constructor ATRS. For a given term s, the set B;
contains all data terms ¢ such that (i) s> ¢, or (ii) r > ¢ for some rule £ — r € R.

Bs is a set of data terms, is closed under subterms and, since we have assumed R to be
fixed, has a linear number of elements in the size of s. The property that no new data is
generated by reducing s is formally expressed by the following result:

Definition 3.5 (B-safety). Let B C DA be a set which (i) is closed under taking subterms,
and (ii) contains all data terms occurring as a subterm of the right-hand side of a rule in R.
A term s is B-safe if for all ¢t with s > ¢: if ¢ has the form c t; - - - t,, with c € C, then t € B.

Lemma 3.6. If s is B-safe and s —x t, then t is B-safe.

Proof. By induction on the form of s; the result follows trivially by the induction hypothesis
if the reduction does not take place at the head of s, leaving only the base case s =
f(l1y) - (bgy) $1++Sn =R 17y S1- - Sy = t for some rule f 41 --- £ — r € R, substitution
~v and n > 0. All subterms u of ¢ are (a) subterms of some s;, (b) subterms of ry or (c) the
term t itself, so suppose u = c t1 - - - t;;, with ¢ € C and consider the three possible situations.

In case (a), u € B by B-safety of s.

In case (b), either y(z) > u for some x, or u = r'~y for some r > 1’ ¢ V. In the first
case, ¢ € Var(¢;) for some i and—since ¢; is a pattern—a trivial induction on the form
of ¢; shows that ¢y > v(z) > u, so again u € B by B-safety of s = ¢v. In the second case,
if ' =27 --ry with z € V and n > 0 then s> v(x) as before, so v(x) € DA (because
v(z) must have a constructor as its head), which imposes n = 0; contradiction. Otherwise
r" =cry---ry, so by definition of cons-freeness, either u =1" € B or s > {;v > 'y = u.

In case (c), n = 0 because, following the analysis above, ry € B. ]

Thus, if we start with a basic term f sy - - - s,, any data terms occurring in a reduction
f § =% t (directly or as subterms) are in Bf g. This insight will be instrumental in § 5.

Example 3.7. By Lemma 3.6, functions in a cons-free ATRS cannot build recursive
data. Therefore it is often necessary to “code around” a problem. Consider the task of
finding the most common bit in a given bit string. A typical solution employs a rule
like majority ¢s — cmp (countO cs) (countl cs). Now, however, we cannot define count
functions which may return arbitrary terms of the form s’ o. Instead we use subterms of
the input as a measure of size, representing a number 4 by a list of length i.

majority ¢s — count cs cs cs

count (0;zs) ys (b;zs) — count xs ys zs cmp [ zs — 1
count (1;zs) (bjys) zs — count xs ys zs cmp (y;ys) [| — O
count [ ys zs — cmp ys zs cmp (y;ys) (z;28) —  cmp ys zs

(The signature extends Fiist, but is otherwise omitted as types can easily be derived.)

Through cons-freeness, we obtain another useful property: we do not have to consider
constructors which take functional arguments.
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Lemma 3.8. Given a cons-free ATRS (F,R) with F = DUC, let Y = {c:0 € C |
order(o) > 1}. Define F' := F\Y, and let R' consist of those rules in R not using any
element of Y in either left- or right-hand side. Then (a) all data terms and B-safe terms
are in T(F',0), and (b) if s is a basic term and s =5 t, then t € T(F',0) and s =%, t.

Proof. Since data terms have base type, and the subterms of data terms are data terms, we
have (a). Thus B-safe terms can only be matched by rules in R’, so Lemma 3.6 gives (b).[]

3.2. A larger example. So far, all our examples have been deterministic. To show the
possibilities, we consider a first-order cons-free ATRS that solves the Boolean satisfiability
problem (SAT). This is striking because, in Jones’ language in [15], first-order programs
cannot do this unless P = NP, even if a non-deterministic choose operator is added [10].
The crucial difference is that we, unlike Jones, do not employ a call-by-value strategy.
Given n boolean variables x1,...,z, and a boolean formula ¥ ::= @1 A -+ A @, the
satisfiability problem considers whether there is an assignment of each x; to T or L such that
1 evaluates to T. Here, each clause ¢; has the form a; 1 V- - -V a; 1,, where each literal a; ; is
either some x,, or —z,. We represent this decision problem as a string over I := {0, 1, #,?}:
the formula 1) is represented by E ::= b1 1...b1 n#b21 20 # ... #bm.1 ... by n#, where for
each i, 7: b; ; is 1 if x; is a literal in ;, b; j is 0 if —x; is a literal in ;, and b; ; is 7 otherwise.

Example 3.9. The satisfiability problem for (z; V —z2) A (z2 V —23) is encoded as E :=
1074#710#. Encoding this string as a data term, we obtain E = 1;0;7;#;7;1;0;4;]].

Defining C; as done in § 2.3 and assuming other declarations clear from context, we
claim that the system in Figure 1 can reduce decide E to true if and only if 1) is satisfiable.

// Rules using a,b stand for several rules once: a,b range over {0,1,7} (but not #).

equal (#;zs) (#;ys) — true equal (#;xs) (a;ys) — false
equal [ ys — false equal (a;zs) (#;ys) — false
equal (a;zs) (bjys) — equal xs ys
either zs yss — xs skip (#; :1:5) — xs
either zs yss — yss skip (a;xzs) — skip zs
decide c¢s — assignes || || cs
assign (#;xs) yss zss ¢s — main yss zSs cs
assign (a;xs) yss zss ¢s — assign xs (either xs yss) zss cs
assign (a;xs) yss zss ¢s — assign xs yss (either xs zss) cs
main yss zss (7;x8) — main yss zss xs
main yss zss (0;xs) — membtest yss zss xs (equal zss xs) (equal yss xs)
main yss zss (1;xs) — membtest yss zss xs (equal yss xs) (equal zss xs)
main yss zss (#;xs) — false
main yss zss ] — true
membtest yss zss xs true b — main yss zss (skip xs)
membtest yss zss xs b true — main yss zss s

Figure 1: A cons-free first-order ATRS solving the satisfiability problem.

In this system, we follow some of the same ideas as in Example 3.7. In particular, any list
of the form b;i1;...;bp;# ... with each b; € {0,1,7} is considered to represent the number ¢
(with #; ... representing n). The rules for equal are defined so that equal s ¢ tests equality
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of these numbers, not the full lists. The key idea new to this example is that we use terms
not in normal form to represent a set of numbers. Fixing n, a set X C {1,...,n} is encoded
as a pair (yss, zss) of terms such that, for i € {1,...,n}: yss =% xs for a representation
xs of ¢ if and only if i € X, and zss —% xs for a representation xs of 4 if and only if i ¢ X.

These pairs (yss,zss) are constructed using the symbol either, which is defined by a
pair of overlapping rules: either s; (either sy (... (either s,_; sp)...)) reduces to each
s;. We can use such terms as we do—copying and passing them around without reducing to
normal form—because we do not use call-by-value or similar strategies: the ATRS may be
evaluated using, e.g., outermost reduction. While we can use other strategies, any evaluation
which reduces yss or zss too eagerly just ends in an irreducible, non-data state.

Now, an evaluation starting in decide E first non-deterministically constructs a “set” X—
represented as (yss, zss)—containing those boolean variables assigned true: decide E =%
main yss zss E. Then, the main function goes through E, finding for each clause a literal that
is satisfied by the assignment. Encountering b; ; # 7, we determine if j € X by comparing
both a reduct of yss and of zss to j. If yss =% “j” then j € X, if zss =% “j” then j ¢ X;
in either case, we continue accordingly. If the evaluation state is incorrect, or if yss or zss
are both reduced to some other term, the evaluation gets stuck in a non-data normal form.

Note: variable namings are indicative of their use: in an evaluation starting in decide E,
the variables xs and ys are always instantiated by data term lists, and cs by E; variables
yss and zss are instantiated by terms of type list which do not need to be in normal form.

Example 3.10. To determine satisfiability of (z1 V —z2) A (z2 V —x3), we reduce decide E,
where E' = 107#710#. First, we build a valuation. The assign rules are non-deterministic,
but a possible reduction is decide E —} main s ¢t E, where s = either 07#710# [| and
t = either #710# (either 7#710# [|). Since n = 3, 07#710# represents 1 while #710#
and 7#7104# represent 3 and 2 respectively. Thus, we have [z := T, 29 := L, 23 := 1].

Then the main loop recurses over the problem. Since s reduces to a term 074 ... and ¢ to
both # ... and 7# ... we havemain s t E = main s ¢ 107#710# — main s t (skip 10#710#)
—% main s ¢t 7104£: the first clause is confirmed since x1 := T, so it is removed and the loop
continues with the second clause. Next, the loop passes over those variables whose assignment
does not contribute to the clause, until the clause is confirmed due to x3: main s t 701# —g
main s ¢t 01# —% main s ¢ 1# —% main s ¢ (skip #) —g main s ¢t [| =g true.

Due to non-determinism, the term in Example 3.10 could also have been reduced to
false, by selecting a different valuation. This is not problematic: by definition, the ATRS
accepts the set of satisfiable formulas if: decide E =% true iff F is a satisfiable formula.

4. SIMULATING EFTIME TURING MACHINES

We now show how to simulate Turing Machines by cons-free rewriting. For this, we use
an approach very similar to that by Jones [15]. Fixing a machine (I, A,S,T), we let
C:=CaU{s :state | s € S} U {fail : state, L : direction, R : direction, action :
symb = direction = state = trans}; we denote B for the symbol corresponding to .. € A.
We will introduce defined symbols and rules such that, for any string £ =¢j...¢, € I™:

e decide E =}, true iff (u¢1...cpon. .., 0, start) =* (¢,4,accept) for some t, ;

e decide E =} false iff (o¢;...cpom...,0,start) =* (t,i,reject) for some t, 1.

While decide E may have other normal forms, only one normal form will be a data term.
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4.1. Core simulation. The idea of the simulation is to represent non-negative integers as
terms and let tape n p reduce to the symbol at position p on the tape at the start of the n'h
step, while state n p returns the state of the machine at time n, provided the tape reading
head is at position p. If the reading head is not at position p at time n, then state n p should
return fail instead; this allows us to test the position of the reading head. As the machine
is deterministic, we can devise rules to compute these terms from earlier configurations.
Finding a suitable representation of integers is the most intricate part of this simulation,
where we may need higher-order functions and non-deterministic rules. Therefore, let us
first assume that this can be done. Then, for a Turing machine which is known to run in
time bounded above by An.P(n), we define the ATRS in Figure 2 (further elaboration is
given as “comments” in the ATRS). As before, the rules are constructed such that, in an
evaluation of decide E, the variable cs can always be assumed to be instantiated by E.

4.2. Counting. The goal, then, is to represent numbers and define rules to do four things:

calculate [P(|cs|)] or an overestimation (as the TM cannot move from its final state);
test whether a “number” represents 0;

given [n], calculate [n — 1], provided n > 0—so it suffices to determine [max(n — 1,0)];
given [p], calculate [p + 1], provided p+1 < P(|cs|) as transition cs [n] [p] = NA when
n < p and [n] never increases—so it suffices to determine [min(p + 1, P(|cs|))].

These calculations all occur in the right-hand side of a rule containing the initial input list
cs on the left, which they can therefore use (for instance to recompute P(|cs|)).

Rather than representing a number by a single term, we will use tuples of terms (which
are not terms themselves, as ATRSs do not admit pair types). To illustrate this, suppose we
represent each number n by a pair (n1,n2). Then the predecessor and successor function
must also be split, e.g. pred! cs ny ng —% n) and pred? cs ny ng =% nj for (nf,n}) some
tuple representing n — 1. Thus, for instance the last get rule becomes:

get cs (x;xs) i1 92 — ifelsegym, (zero iy io) = (get xs (pred1 cs i1 12) (pred2 cs i1 i2)

Following Jones [15], we use the notion of a counting module which provides an ATRS
with a representation of a counting function and a means of computing. Counting modules
can be composed, making it possible to count to greater numbers. Due to the laxity of term
rewriting, our constructions are technically quite different from those of [15].

Definition 4.1 (Counting Module). Write F = C U D for the signature in Figure 2. For P
a function from N to N, a P-counting module of order K is a tuple Cy ::= (&, X, R, A, (-))—
where 7 is the name we use to refer to the counting module—such that:

e J is a sequence of types 01 ® - - - ® o, where each o; has order at most K — 1;

e ¥ is a K*™-order signature disjoint from F, which contains designated symbols zero, :
list = 01 = ... = 0, = bool and, for 1 < i < a, symbols pred’ , succt : list = o1 =
... = 04 = 0; and seed’. : 1ist = 0; (and may contain others);

e R is a set of cons-free (left-linear constructor-)rules f ¢;---¢; — r with f € 3, each
;e T(C,V)and r e T(CUX,V);

e for every string cs C I't, Acs C {(51,...,84) € T(CUX)* | s;:0; for 1 <j<a};

e for every string cs, (-)¢s is a surjective mapping from A.s to {0,..., P(|es|) — 1};
e the following properties on A.s and (-).s are satisfied:
— (seedl cs,...,seed? cs) € Aqs and ((seedl cs,...,seed? cs))es = P(|cs|) — 1;

and for all (sy,...,8,) € Acs with ((s1,...,84))cs = M
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— (predl cs &,...,pred? cs §) and (succl cs 5,...,succ? cs §) are in Acs;
<(pred1 cs S, .. .,predfr cs 8))es = max(m — 1,0);
((succl cs 5,...,succ? ¢s §))es = min(m + 1, P(|es|) — 1);

zero; cs § —>R true iff m = 0 and zero, cs § =} false iff m > 0;
if each s; =% t; and (t1,...,tq) € Acs, then also ((t1,...,t0))es = m.

// Determine the transition taken at time [n] given input cs, provided the tape
// reading head is at position [p] at time [n]; if not, reduce to NA instead.

transition cs [n] [p] — transitionhelp (state cs [n] [p]) (tape cs [n] [p])
transitionhelp failx — NA

d
transitionhelpsr — actionwdt [for all s % teT]
transitionhelpsx — ends [for s € {accept,reject}]

// Determine the state at time [n] given input cs, provided the tape reading head
// is at position [p] at time [n] (which happens if it is at position [p — 1], [p] or
// [p+ 1] at time [n — 1] and the right action is taken); if not, reduce to fail.
state cs [n] [p] — ifelsegtate 7 = 0] (stateO cs [p]) (statex cs [n— 1] [p])
stateO cs [p] — ifelsegtate [p = 0] start fail
statex c¢s [n| [p] — statey (transition cs [n] [p— 1]) (transition cs [n] [p])
(transition cs [n] [p+ 1))

statey (actionzR¢q)ae — ¢ statey NA (actionz d ¢) e — fail
statey (actionx L ¢)ae — fail statey NANA (actionzLgq) — ¢
statey (end ¢) a ¢ — fail statey NANA (actionxz Rgq) — fail
statey NA (end ¢) e — ¢ statey NA NA (end q¢) — fail
// Determine the tape symbol at position [p] at time [n] given input cs, which is
// tape ¢s [n — 1] [p] unless the transition at time [n — 1] occurred at position [p].
tape c¢s [n] [p] — ifelsegymp [n = 0] (inputtape cs [p])
(sapex cs [n— 1] [p])

tapex ¢s [n] [p] — tapey cs [n] [p] (transition cs [n] [p])
tapey cs [n] [p] (actionz d q) — =
tapey cs [n] [p] NA — tape cs [n] [p]
tapey cs [n] [p] (end ¢) — tape cs [n] [p]
inputtape cs [p] — ifelsegym, [p = 0] B (get cs cs [p—1])
getes[[i] — B
get cs (vyws) [i) — ifelsegym |1 = 0] = (get cs xs [i — 1])

// We simulate the TM’s outcome by testing whether the state at time [P(|cs|)] is
// accept or reject, allowing for any reader head position in {[P(|cs|)],...,[0]}.
decide ¢s — findanswer cs fail [P(|cs|)] [P(|es|)]
findanswer cs fail [n| [p] — findanswer cs (state cs [n] [p]) [n] [p — 1]
findanswer cs accept [n]| [p] — true
teststate cs reject [n] [p] — false

// Rules for an if-then-else statement (which is not included by default).

ifelse, truey z — y [for all » € {state, symb}]

ifelse, falsey z — =z [for all » € {state, symb}]

Figure 2: Simulating a deterministic Turing Machine running in A\z.P(x) time.
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It is not hard to see how we would use a P-counting module in the ATRS of Figure 2;
this results in a K*-order system for a K* -order module. Note that number representations
(s1,...,54) are not required to be in normal form: even if we reduce § to some tuple £, the
result of the zero test cannot change from true to false or vice versa. As the algorithm
relies heavily on these tests, we may safely assume that terms representing numbers are
reduced in a lazy way—as we did in § 3.2 for the arguments s and ¢ of main.

To simplify the creation of counting modules, we start by observing that succ, can be
expressed in terms of seed,, pred, and zero,, as demonstrated in Figure 3 (which also
introduces an equality test, which will turn out to be useful in Lemma 4.5). In practice,
succ, cs [n] counts down from [P(|es|) — 1] to some [m] with n =m — 1.

equal, ¢S ny...Ng Mi...Mmg — ifelsepoo (zeroy cs i) (zero, cs M)
( ifelsepoo1 (zero, cs m) false
( equal_ cs (predl csi)...(pred? cs i)
redl cs m)...(pred® cs m
(pred; predy
))

succ2t cs ny...n, (seed! cs)...(seed® cs)
ifelse,, (zero, cs m) (seed’ cs) ( succ3l
cs @ m; (predk cs mi)...(pred® cs m) )
o — ifelse,, (equal, csmy...ng mj...mg) m;
(succ2h esny...ngmhy...ml )

i
A succy; €S ny...Ng
3
succ2l csny...Ng M1... My

U

3 /
succ3) s Ny ...Ng M My ... M

ifelser trueyz — vy
- f 1 .
ifelse, falsey z — =z [for 7. € {bool, o1, ..., 0a}]

Figure 3: Expressing succ, in terms of seed,, pred_ and zero;.

Remark 4.2. Observant readers may notice that the rule for equal  is non-terminating:
equal_ cs [0] [0] can be reduced to a term containing equal_ cs [0] [0] as a subterm, as
the ifelse rules are not prioritised over other rules. Following Definition 2.15, this is
unproblematic: it suffices if there is a terminating evaluation from decide X to true if
x € S; it is not necessary for all evaluations to terminate.

Example 4.3. We design a (An.n 4 1)-counting module that represents numbers as (terms
reducing to) subterms of the input list ¢s. Formally, we let Cyip := (1ist, X, R, A, (-)) where
Acs ={s€T(XUC) | s:1list A s has a unique normal form, which is a subterm of ¢s} and
(s)es = the number of ; operators in the normal form of s. R consists of the rules below
along with the rules in in Figure 3, and X consists of the defined symbols in R.
seedi;, cs — cs predi, cs[] — | zeroj;, cs[] — true
predl. cs (z;jzs) — xs  zeroi;, cs (v;xs) — false
The counting module of Example 4.3 is very simple, but does not count very high: using

it with Figure 2, we can simulate only machines operating in n — 1 steps or fewer. However,
having the linear module as a basis, we can define composite modules to count higher:

Lemma 4.4. If there exist a P-counting module Cr and a QQ-counting module C,, both of
order at most K, then there is a (An.P(n) - Q(n))-counting module Cr., of order at most K.
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Proof. Fixing cs and writing N := P(|cs|) and M = Q(|cs|), anumber iin {0,...,N-M —1}
can be seen as a unique pair (n, m) with 0 <n < N and 0 < m < M, such that i = n-M +m.
Then seed, pred and zero can be expressed using the same functions on n and m. Write
Cri=(01® - ®0, X", RT, A", ()™) and C) == (11 ® - - - @ 73, X, R?, AP, (-)P); we assume
Y™ and X are disjoint (wlog by renaming). Then numbers in n € {0, ..., N} are represented
in Cr by tuples (uq,...,uq) of length a, and numbers in m € {0,..., M} are represented in
C, by tuples (v1,...,vp) of length b. We will represent n - M + m by (uy, ..., Uq,v1,...,0).
Formally, Cr., == (01® - ®0, QT ® - @7, L"UXPUX, RTURPUR, A™P (-)™P), where:
o A™P ={(uy,...,Uq, V1., 0p) | (U1,...,uq) € A A (v1,...,0p) € AP},

® <(u17 <oy Uay U1y e ey Ub)>2;p = <(U1, s aua)>7crs ’ Q(|CS|) + <(Ulv ce 7vb)>gsa
e Y consists of the defined symbols in R™ U R” U R, where R is given by Figure 4. []
// N-M—-1=(N—-1)-M+ (M — 1), which corresponds to the pair (N —1, M — 1);
// that is, the tuple (seed’ cs,...,seed? cs, seedll) cs, ..., seedg cs).
seedﬁr,p cs — seed. cs [for 1 < i < d]

seed, ,cs — seed, “cs [fora+1<i<a+b]
// (n,m) represents 0 iff both n and m are 0.

Z€rOg., CS Ul ... Uqg V1 ...V — 1ifelsepoor (Ze€ror cs uy...uy) (z€ro, cs vi...vp)
false

// (n,m)—1results in (n,m — 1) if m > 0, otherwise in (n — 1, M —1).

predir,p CSUL...Ug V] ... Vp —> ptestfr,p cSs (zerop vl...vb) Ul -.. Ug V1...Vp
[for 1 <i<a+10]

ptesth_p cs false U U — wy [for 1 < i < a]
ptestjrp cs false v — pred;)_“ cs T [fora+1<i<a+1]
ptesti., cs true v = pred; cs U ) [for 1 <i<ad]
ptest; , cs true U v — seed, * cs U [fora+1<i<a+1?]

Figure 4: Rules for the product counting module Cr., (Lemma 4.4)

Lemma 4.4 is powerful because it can be used iteratively. Starting from the counting
module from Example 4.3, we can thus define a first-order (An.(n + 1)%)-counting module
Chin..1in for any a. To reach yet higher numbers, we follow the ideas from Example 2.11
and define counting rules on binary numbers represented as functional terms F' : ¢ = bool.

Lemma 4.5. If there is a P-counting module C; of order K, then there is a ()\n.QP("))—
counting module Cpr of order K + 1.

Proof. Write N := P(les|) and let Cr = (01 ® -+ ® 04, %, R, A, (-)7). We define the 2-

counting module Cyjr as (01 = ... = 0, = bool, spll ReIT 3¢ (VP where:

e H.s contains terms q : & = bool representing a bitstring by ...bxy_1 as follows: ¢ s1--- s,
reduces to true if (sq,...,s,) represents a number ¢ in C such that b; = 1 and to false
if it represents i with b; = 0. Formally, H.s is the set of all ¢ € T(ZPM UC,0) of type
01 = ... = 0, = bool, where:

— for all (s1,...,84) € Acs: q S1-- -84 reduces to true or false, but not both;
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— for all (s1,...,54), (t1,- .. ta) € Aes: if ((8))7, = ((t))7,—s0 they represent the same
number i—then ¢ s1---s, and ¢ 1 - - - t, reduce to the same boolean value.

For ¢ € H.s and i < N, we can thus say either ¢ - [i] — el tTUE OT G- [i] — ol

o Let (q>§£ﬂ = Zi\ial{yv_i_l | ¢ 515, =} true for some (s1,...,54) with ((s1,...,54))0s =
i}. That is, g represents the number given by the bitstring by ...by with by the least
significant digit (where b; = 1 if and only if ¢ - [i] =7, true).

e YPM = S UY and RPI"l = RU R', where ¥ contains all new symbols in R, and R’
contains the rules below along with rules for equal, and succy, following Figure 3.

] false.

// seed cs results in a bitstring that is 1 at all bits. We let seedp; ¢s be a normal form:
// a term of type o1 = ... = 0, = bool which maps all [i| to true.

seed . cs ki...kg — true

p[~]
// A bitstring represents 0 if all its bits are set to 0. To test this, we count down in C; and
// evaluate F' [N — 1], F [N —2], ..., F [0] to see whether any results in false.

zeroyj cs F'' —  zero/y cs (seed; cs)...(seed? cs) F
csky...kg F'o— ifelsepoor (F ki---kg) false
( ifelsepoo1 (zeror cs ky...ky) true

/
Zero’ i,

( zero'yiy cs (pred) cs k)... (pred? cs k) F)

// The predecessor function follows a similar approach to Examples 2.11 and 3.2: we flip b;
//fori=N—-1 N—2,... until b; = 1 (thusreplacing by ...b;—110...0by by ...b;—101...1).

pred, . cs ' — predtest, cs (zeroy I) cs F
predtest, . cs true ¥ —
predtest, cs false I' — predhelp cs I (seedl cs)...(seed? cs)
predhelp, cs I Eo— checkbityy cs (F k) (flipypy cs F k) k
checkbit;) s true F k — F
checkbity, cs false I’ Eo— predhelp, cs F (pred! cs k)... (predy cs k)
flip, cs F ki — ifelsepcol (equal, cs k ) (not (F 1)) (F 7)
not true — false
not false — true [

Combining Example 4.3 with Lemmas 4.4 and 4.5, we can define a (An. expy ! ((n+1)))-
counting module Cy[ p1in--1in))...] Of type order K for any K,b > 1. As the ATRSs of Figure 2
and the modules are all non-overlapping, we thus recover one side of Jones’ result: any
problem in EXPX~ITIME is decided using a deterministic K *"-order cons-free ATRS.

Remark 4.6. The construction used here largely follows the one in [15]. Differences mostly
center around the different formalisms: on the one hand Jones’ language did not support
pattern matching or constructors like action; on the other, we had to code around the lack
of pairs. Our notion of a counting module is more complex—restricting the way tuples of
terms may be reduced—to support the non-deterministic modules we will consider below.
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4.3. Counting higher. In ATRSs, we can do better than merely translating Jones’ result.
By exploiting non-determinism much like we did in § 3.2, we can count up to 2"+ — 1 using
only a first-order ATRS, and obtain the jump in expressivity promised in the introduction.

Lemma 4.7. There is a first-order (An.2"1 )-counting module.

Proof. Intuitively, we represent a bitstring by...by by a pair of non-normalized terms
(yss, zss), such that yss —* [a list of length ] iff b; = 1 and zss —* [a list of length 4] iff
b; = 0. Formally, we let Ce := (1list ® list, X, R, A, (-)), where:

o A, contains all pairs (yss, zss) such that (a) all normal forms of yss or zss are subterms
of ¢s, and (b) for each u < cs either yss =7 u or zss =7 u, but not both.

o Writing ¢s = ¢n;...;c15]], we let ¢s; = ¢;...c5]] for 1 < i < N. Let ((yss, 255))es =
Z£0{2N_i | yss —} csi}; then ((yss, 25s))cs is the number with bit representation
bo...by (most significant digit first) where b; = 1 iff yss =7, cs;, iff zss A7 cs;.

e Y consists of the defined symbols introduced in R, which we construct below.

We include the rules from Figure 3, the rules for seedi;,, predi, and zeroi,, from

Example 4.3—to handle the data lists—and ifte;;g¢ defined similar to other ifte rules.

As in § 3.2, we use non-deterministic selection functions to construct (yss, zss):

either n xss — n either n xss — zss 1l — 1L

The symbol L will be used for terms which do not reduce to any data (the L — L rule
serves to force L € D). As discussed in Remark 4.2, non-termination by itself is not an issue.
For the remaining functions, we consider bitstring arithmetic. First, 2V — 1 corresponds
to the bitstring where each b; = 1, so yss reduces to all subterms of cs:

seedi cs — allecs (seediin cs) L
seed?cs — L
all csn xss — ifteyss (zeroi;, cs n) (either n wss)
(all cs (predi;, cs n) (either n xss))

(The use of seedi; cs where simply cs would have sufficed may seem overly verbose, but is
deliberate because it will make the results of § 6 easier to present.)

In order to define zero., we must test the value of all bits in the bitstring. This is done
by forcing an evaluation from yss or zss to some data term. This test is constructed in
such a way that both true and false results necessarily reflect the state of yss and zss;
any undesirable non-deterministic choices lead to the evaluation getting stuck.

eqlen [| [| — true eqlen [] (y;ys) — false
eqlen (z;xs) (y;ys) — eqlenxsys  eqlen (z;xs)[] — false

bitset n yss zss — checkreducts (eqlen n yss) (eqlen n zss)
checkreducts true b — true
checkreducts b true — false

Then zero, cs yss zss simply tests whether the bit is unset for each sublist of cs.

Zero, cs yss 288 — zo cs (seedi,, cs) yss zss
Z0 ¢S N YSS 2SS — iftepeo1 (bitset n yss zss) false

( iftepoor (zeroi;, cs n) true (zo cs (predi

lin CS M) YSS 2SS) )
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For the predecessor function, we again replace by ...b;—1010...0 by by...b;—101...1. To do
so, we fully rebuild yss and zss. We first define a helper function copy to copy bg...b;—1:
copy cs n yss zss false — addif (bitset n yss zss) n
( copy cs (predi;, cs n) yss zss (zeroyin cs n) )
copy ¢s m yss zss true — L
addif true n xss — either n xss

addif falsen rss — xss

Then, for all i, copy s Spax(i—1,0) YSS 285 [i = 0] reduces to those cs; with 0 < j < i where
bj = 1, and copy ¢S CSmax(i—1,0) 255 Yss [i = 0] reduces to those with b; = 0. This works
because yss and zss are complements. To define pred, we first handle the zero case:

redl CS YSS 28§ —» iftelist Z€rO0g CS YSS zZS8S SS I‘1 CS seedl- CS SS ZS8S
1% e Yy Yy Yy P lin Y

red2 CS YSS 28§ —» iftelist ZeTYX0g CS YSS Z8S) ZSS I‘2 CS seedl- CS SS Z2S8S
1% e Yy Yy p 1lin Yy

Then pr cs csy yss zss flips the bits by,by_1,... until an index is encountered where
b; = 1; this last bit is flipped, and the remaining bits are copied:
prl cs n yss zss — ifteyis: (bitset n yss zss)
( copy c¢s (predl. csn) yss zss (zeroyi, cs n))
( either n (pr' cs (predi; csn) yss zss) )
pr? cs m yss zss — ifteyis: (bitset n yss zss)
( either n (copy cs (predl, csn) zss yss (zeroyi, cs n)) )
(pr? cs (predi,. csn) yss zss) [

Note that, unlike Lemma 4.5, Lemma 4.7 cannot be used directly to define composite
modules: the rules for eqLen rely on the specific choice of the underlying counting module
Chin. They cannot be replaced by an equals,;, check, because the crucial property is
that—Ilike in § 3.2—the bitset functionality relies on evaluating yss and zss to some
normal form. Nevertheless, even without composing we obtain additional power:

Theorem 4.8. Any decision problem in EX TIME is accepted by a K"-order cons-free
ATRS.

Proof. Following the construction in Figure 2, it suffices to find a K*"-order counting module
counting up to expX (a - n) where n is the size of the input and a a fixed positive integer.
Lemma 4.7 gives a first-order An.2" ! -counting module, and by iteratively using Lemma 4.4
we obtain An.(2"1)* = An.2¢("+t1) for any a. Iteratively applying Lemma 4.5 on the result
gives a K'"-order An.expf(a - (n + 1))-counting module. O

5. FINDING NORMAL FORMS

In the previous section we have seen that every function in EX TIME can be implemented
by a cons-free K*-order ATRS. Towards a characterization result, we must therefore show
the converse: that every function accepted by a cons-free K*-order ATRS is in EX TIME.

To achieve this goal, we will now give an algorithm running in TIME (expg{ (a- n)) that,
on input any basic term in a fixed ATRS of order K, outputs its set of data normal forms.
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A key idea is to associate terms of higher-order type to functions. For a given set B of
data terms (a shorthand for a set B, following Definition 3.4), we let:

Itlls = P({s|seB As:}) forreS (so[¢]p is a set of subsets of B)
[ec=r7lg = [[7-]]2[;]]5 (so the set of functions from [o]z to [7]B)

We will refer to the elements of each [o]g as term representations. Intuitively, an
element of [i]p represents a set of possible reducts of a term s : ¢, while an element of
[c = 7]B represents the function defined by a functional term s : ¢ = 7. Since each
[o]B is finite, we can enumerate its elements. In Algorithm 5.2 below, we build functions
Confirmed?, Confirmed!, ..., each mapping statements f A - - - A,, ~ t to a value in {T,L}.
Intuitively, Confirmed®[f A; --- A,, ~» t] denotes whether, in step i in the algorithm, we have
confirmed that f s; --- s, has normal form ¢, where each A; represents the corresponding s;.

To achieve this, we will use two helper definitions. First:

Definition 5.1. For a defined symbol f: 01 = ... =0, =€ D, rule p: f by - -l —>1r €
R, variables Zj41 : Okt1, ..., Tm : Om Dot occurring in p and Ay € [o1]B, ..., Am € [om]s,
let the mapping associated to p, T and f A be the function 1 on domain {; |1 <5<
kAt € VEU{xgt1,...,on} such that n(¢;) = A; for j < k with ¢; € V, and n(z;) = A;
for j > k.

Second, the algorithm employs a function NF? for all 4, mapping a term s : ¢ and a

mapping 7 as above to an element of [o]g (which depends on'Confirmedi). Intuitively, if 0
is a substitution such that each 7(z) represents §(x), then NF*(s,n) represents the term sd.

Algorithm 5.2.

Input: A basic term s =g s1---Su.

Output: The set of data normal forms of s. Note that this set may be empty.

Set B:=Bs. Forallf:01= ... =0, =>1€Dwitht €S, all A € [o1]B,...,Am €
[om]s, all t € [d]5, let Confirmed®[f A;--- Ay, ~» t] := L. For all such f, A, ¢ and all i € N:
o if Confirmed’[f A~»t] = T, then Confirmed![f A~ ] :=T;

e otherwise, for all p: f ¢1--- ¢ — r € R and fresh variables xx11 : 0g11, ..., %Tm : O, all
substitutions 4 on domain Var(f £) \ {¢} such that ljy € Aj whenever {; ¢ V, let 1) be
the mapping associated to p, ¥ and f A. Test whether ¢ € NFH(r Tpq1- Tm)y,n). Let
Confirmed"t'[f A ~» t] be T if there are p,y where this test succeeds, L otherwise.

Here, NF(t,n) € [7]5 is defined recursively for B-safe terms ¢ : 7 and functions 7 mapping

all variables = : ¢ in Var(t) to an element of [o]g, as follows:

e if ¢t is a data term, then NFi(t,n) := {t};

o ift="ft; -ty withf:o1=...= 0, =1 €D (for . €8), then NF'(t,n) is the set of
all u € B such that Confirmed'[f NF(t1,n) - NF(tm,n) ~ u] = T;

eift =fty---ty, withf:o0= ... =0y, =16€D (forr €8)and n < m, then
NFi(t,n) := the function mapping A,i1,..., A, to the set of all u € B such that
Confirmed’[f NF(t1,n) - NF (tn,n) Apy1-- Am~ u] = T;

eift = x t;---t, with n > 0 and x a variable, then NF!(t,n) = n(z)(NF'(t1,n), ..,
NF(tn,m)); so also NFi(t) = n(t) if t is a variable.

When Confirmed*t![f A~ t] = Confirmed[f A ~» ] for all statements, the algorithm ends;

we let I := i+ 1 and return {t € B | Confirmed’[g {s1}---{spr} ~t] = T}.
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This is well-defined because a non-variable pattern ¢; necessarily has base type, which
means A; is a set. As D, B and all [o;]5 are all finite, and the number of positions at which
Confirmed® is T increases in every step, the algorithm always terminates. The intention is that
Confirmed’ reflects rewriting for basic terms. This result is stated formally in Lemma 5.5.

Example 5.3. Consider the majority ATRS of Example 3.7, with starting term s =
majority (1;0;[]). Then Bs = {1,0,1;0;[],0;]],[]}. We have [symb]s = {0,{0},{1},{0,1}}
and [list]p is the set containing all eight subsets of {1;0;[], 0;[], []}. Thus, there are 8 - 2
statements of the form majority A~ t, 8 - 2 statements of the form count A; Ay A3 ~» ¢
and 82 - 2 of the form cmp A; As ~+ t; in total, 1168 statements are considered in each step.

We consider one statement in the first step, determining Confirmed! [cmp {0;[]} {0;[], [|} ~
0]. There are two viable combinations of a rule and a substitution: cmp (y;ys) (z;2s) —
cmp ys zs with substitution v = [y := 0,ys := [],z := 0,zs := [|] and cmp (y;ys) [] = O
with substitution v = [y := 0,ys := []]. Consider the first. As there are no functional
variables, 1 is empty and we need to determine whether 0 € NF!(cmp [] [],?). This fails,
because Confirmed®[¢] = L for all statements ¢&. However, the check for the second rule,
0 € NFY(0,0), succeeds. Thus, we mark Confirmed![cmp {0;]]} {0;]], []} ~ 0] = T.

Before showing correctness of Algorithm 5.2, we see that it has the expected complexity.

Lemma 5.4. If (F,R) has type order K, then Algorithm 5.2 runs in TIME (expg(a . n))
for some a.

Proof. Write N := |B|; N is linear in the size of the only input, s (R and F are not considered
input). We claim: if K,d € N are such that o has at most order K, and the longest sequence
01 = ... = 0, = ¢ occurring in o has length n+ 1 < d, then card([o]s) < exphs T (d¥ - N).

(Proof of claim.) Proceed by induction on the form of o. Observe that P(B)
has cardinality 2V, so for ¢ € S also card([i]g) < 2V = expl(d’ - N). For
the induction step, write o0 = 01 = ... = 0, = ¢ with n < d and each o;
having order at most K — 1. We have:

card([o]s) = card((: - ([[L]]g[;nﬂﬁ)[[an_l]]s R CAED
Card(HL]]B)card([o'”]]g)-ncard(ﬂal]]g)

2°(N - card([o,]B) - - - card([o1]5))

2°(N - expi (a5~ N) - -expf(d¥~1 - N))

2°(N - expX(d¥—1. N)™)

2" (expX (d¥—1- N -n+ N)) (by induction on K > 1)
expy Tt (n-d5=1. N + N)

expXt(d-d¥-1. N)

expX AR - N) (n+1<d)

(End of proof of claim.)

A I IA T IAIA

Since, in a K'™-order ATRS, all arguments types have order at most K — 1, we thus
find d (depending solely on F) such that all sets [o]z in the algorithm have cardinality
< expi(df~1. N). Writing a for the maximal arity in F, there are therefore at most
ID| - expX (d5—1. N)* . N < |D| - expX((d5~1-a+1) - N) distinct statements f A ~» ¢.
Writing m := d¥~!-a+ 1 and X := |D| - expX(m - N), we thus find: the algorithm has
at most I < X + 2 steps, and in each step ¢ we consider at most X statements ¢ where
Confirmed‘[p] = L. For every applicable rule, there are at most (2V)® different substitutions
7, so we have to test a statement ¢t € NF!((r £)7y,n) at most X - (X +2)-|R|-2%" times. The
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exact cost of calculating NF*((r Z)7,n) is implementation-specific, but is certainly bounded
by some polynomial P(X) (which depends on the form of ). This leaves the total time cost
of the algorithm at O(X - (X +1)-2*N . P(X)) = P'(exp (m - N)) for some polynomial P’
and constant m. As EXTIME is robust under taking polynomials, the result follows. [

5.1. Algorithm correctness. The one remaining question is whether our algorithm accu-
rately simulates rewriting. This is set out in Lemma 5.5.

Lemma 5.5. Letg: 11 = ...= iy =t €D and s1 : t1,...,8m : Ly, t L be data terms.
Then Confirmed”[g {s1}---{sy} ~ t| = T if and only if g s1--- sy —% t. (Here, T is the
point at which the algorithm stops progressing, as defined in the last line of Algorithm 5.2.)

A key understanding for Lemma 5.5 is that algorithm 5.2 traces semi-outermost reduc-
tions:

Definition 5.6. A reduction s —7, t is semi-outermost if either s = ¢, or it has the form
s=Ffs1- sy 2R () (lkY) Skg1- - Sm =R (1Y) Sk41 - - Sm —> t, the sub-reductions
s; = Ly and (1Y) Sg41 -+ S —5 t are semi-outermost, and s; = ;7 whenever £; € V.

Proof Idea of Lemma 5.5. By postponing reductions at argument positions until needed, we

can safely assume that any reduction in a cons-free ATRS is semi-outermost. Then, writing

s = A to indicate that s is “represented” by A, we prove by induction:

o if s, ® Aj for 1 < j <m, then Conﬁrmedl[f Ay Ap ~ t]iff f s -5 =R 6

e if § and 7 have the same domain, and both §(x) = n(z) for all z and t; = A; for 1 < j < n,
then t € NFI(s,n) (A1, ..., Ap) iff (s6) t1 -+ t, =% t.

Lemma 5.5 is then obtained as an instance of the former statement. ]

To translate this intuition to a formal proof we must overcome three difficulties: to
translate an arbitrary reduction into a semi-outermost one, to associate terms to term
representations, and to find an ordering to do induction on (as, in practice, neither induction
on the algorithm nor on reduction lengths works very well with the definition of NF?). The
first challenge would be easily handled by an induction on terms if —% were terminating, but
that is not guaranteed. To solve this issue, we will define a terminating relation corresponding
to —g. This will also be very useful for the latter two challenges.

Definition 5.7 (Labeled system). Let Fiap := CU{f; : 0 | f: 0 € DAi € N}. For
s € T(F,V)and i € N, let label;(s) be s with all instances of any defined symbol f replaced
by f;. For t € T(Fiap, V), let ||t]| be t with all symbols f; replaced by f. Then, let

Rlab:{fprl—)fi|f€D/\iEN}U{f¢+1 51-'-£k*>|abe|i(’l“)|ffl'-'£k—)T€R/\iEN}

Note that constructor terms are unaffected by label; and || - ||. The ATRS (Fiap, Riap) is
both non-deterministic and infinite in its signature and rules, but can be used as a reasoning
tool because data normal forms correspond between the labeled and unlabeled system:

Lemma 5.8. For allf:o01 = ... = o, = ¢ €D and data terms s1,...,8m,t:
fs1---8m —ptif and only if f; s1--- 8 =3, t for some i

Proof. The if direction is trivial, as u —g,,, v clearly implies that ||u|| —x ||v|| or |Ju|| = ||v]|.
For the only if direction, note that u —x v implies label;1(u) —%,  label;(v) for any i, by
using the labeled rule f;11 ¢1 - - ¢ — label;(r) if the step u —x v uses rule f ¢1 -l — r
and using the labeled rules g;11 — g; to lower the labels of all other symbols in w. []
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Despite the label decrease, termination of —,,. is non-obvious due to variable copying.
For example, a pair of rules £1 (¢ F') — F, go * — £1 x x with the constructor c : (¢t = ¢) =
is non-terminating through the term f; (c g2) (¢ g2). In our setting, such rules can be
assumed not to occur by Lemma 3.8, however. Thus, we indeed obtain:

Lemma 5.9. There is no infinite =% reduction.

Proof. We use a computability argument reminiscent of the one used for the computability
path ordering [9] (CPO does not apply directly due to our applicative term structure). First,
we define computability by induction on types: (a) s :¢ € S is computable if s is terminating:
there is no infinite —% -reduction starting in s; (b) s : ¢ = 7 is computable if s ¢ is
computable for all computable ¢ : 0. Note that (I) every computable term is terminating and
(IT) if s is computable and s —g,,, ¢, then ¢ is computable. Also, (III), if ¢ is computable
for a pattern ¢, then «(x) is computable for all x € Var(¢): if x has base type then y(z) is a
subterm of a terminating term by (I), otherwise (by Lemma 3.8) ¢ = x and ~(z) = ¢.

We first observe: every variable, constructor symbol and defined symbol fy is computable:
leta: oy = ... = omy = ¢ besuch asymbol; computability follows if a s1 - - - 5y, is terminating
for all computable s1 : 01,..., 8y : 0p. We use induction on (s1,....5y,) (using the product
extension of —g,,,, which is well-founded on computable terms by (I)) and conclude with
(IT) and the induction hypothesis since a si - - - s,, can only be reduced by reducing some s;.

Next we see: every defined symbol f; is computable, by induction on i. For fy we are done;
for f;41: 01 = ... == ¢ we must show termination of f;1; s;--- s, for computable s. We
are done if every reduct is terminating. By induction on § by —g,,, as before, we are done
for reduction steps inside any s;. Also f; s1 - - s,, is computable as @ < i+ 1. This leaves only
head reductions ;11 s1 -+ Sy =Ry, (labeli(r)y) Sky1 -+ sy, for some f ¢1 - - £, — r € R with
each s; = ¢;7. Certainly (label;(r)y) sky1---sp is terminating if label;(7)y is computable.
We prove this by a third induction on r, observing that each ~(x) is computable by (III):

Write r =a 71 -1y, with € VU F. Then label;(r)y = u (label;(r1)y) - - - (label;(ry)7)
with uw = y(a) or u € C or u = g;; using the observations above and the first induction
hypothesis, u is computable in all cases. By the third induction hypothesis, also each
label; ()7 is computable, so label;(r)~ is a base-type application of computable terms. []

Thus we obtain (a slight variation of) the first step of the proof intuition:

Lemma 5.10. If s =% t € DA and s is B-safe, then s —% t by a semi-oulermost
reduction.

Proof. By induction on s using —g,,, U >. If s = ¢ we are done, otherwise (by B-safety) s =
fi s1--- s, with f; not occurring in ¢. Thus, a head step must be done: s =f; s1--- s, _>;2lab
fi (€17) - (Lk) Spyq = S = Raw (1Y) Skg1/ -+ - 8y, for some rule f; €1 --- £ € R, substitution
vy and 8} ..., s, such that s; =% iy for 1 <i <k and s; =% s for k <i<n.

Now let § := [z := y(x) | x occurs as a strict subterm of some ¢;]U[(; :=s; | 1 < j < kAL
is a variable]. Since all variables occurring in a pattern ¢; are subterms of ¢;, clearly s —%
fi (€10) -+ (Ck0) Spt1 -+ Sp = Rawy (10) Sp1 -+ S0 =Ry, Fi (7) - (UeY) Spyy o+ 8h 2Ry T
Then s; = ¢;0 if ¢; is a variable, and by Lemma 3.6 and the induction hypothesis (> part
for each s; and —x,,, part otherwise), all relevant sub-reductions are semi-outermost. []

The second difficulty of the proof idea is in the way terms are associated with term
representations. Within the algorithm, a single term can have multiple representations; for
example, a term s which reduces to true and false is represented both by {false} and
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{true, false}. This is necessary, because different normal forms are derived at different times,
and may depend on each other; for example, in an ATRS {or true x — true, or false z —
x, f — false, f — or f true, g — h}, we need to use that NF!(f) = {false} to obtain
NF?(£f) = {true, false}. To reflect these levels, we will continue to use labeled terms:

Definition 5.11. Let &~ be the smallest relation such that s & A if we can write s = label;(t)d
and A = NF'(t,n) for some i,t,d,n such that § and 7 have the same domain and each
§(z) =~ n(x). Here, NF' := NFLif i > 1.

The final challenge of the proof idea, the induction, can be handled in the same way: we
will use induction on labeled terms using —%. . Thus, we are ready for the formal proof:

Proof of Lemma 5.5. Writing Confirmed’ := Confirmed! for all i > I, we will see, for all

relevant i € N,f € D,u, 5 € T (Fiap, V),t € B, and term representations A, D:

(A) if s; = Aj for 1 < j < m, then Confirmed'[f A;---A,, ~ t] if and only if ¢ :=
f; s1---8m _ﬁhab t by a semi-outermost reduction;

(B) if s; = Aj for 1 < j < mand u = D, then t € D(Ay,...,Ap) if and only if
q:=uUSL " Sm _>j;zlab t by a semi-outermost reduction.

This proves the lemma because, for data terms s;, a trivial induction on the definition of ~

shows that s; = Aj; iff Aj = {s;}. Thus: g s1---sy =5 tif and only if g; s1---sp7 =%, ¢

for some i (Lemma 5.8), if and only if the same holds with a semi-outermost reduction

(Lemma 5.10), if and only if Confirmed‘[g {s1}---{sap} ~ t] = T for some i (A). Since

Confirmed?[¢] implies Confirmed?[¢] for all 4, we have the required equivalence.

We prove (A) and (B) together by a mutual induction on g, oriented with —x, U .
(A), only if case. Suppose Confirmed‘[f A;---A,, ~ t] = T, and each sj = Aj. Then
i > 0, and if Confirmed® }[f A;---A,, ~» t] = T, then the induction hypothesis yields
q >Ry fic1 S1°+-Sm H%lab t by the rule f, — f;_1, so we are done.

Otherwise, there exist a rule f ¢;--- 0, — r € R, variables xg41,...,2T, and a substi-
tution y on domain Var(f £) \ {¢} such that (a) £;4 € A; for all non-variable ¢; and (b)
t € NFY(r @pgq1 -+ @m)y,n) where n maps each variable ¢; to A;, and z; to A; for j > k.

By part (B) of the induction hypothesis—since ¢ > s;—(a) implies that (c) s; =% £
by a semi-outermost reduction for all non-variable ¢;. Now, if we let 0 :=[(; :=s; |1 <j <
kNl e V]U[z; =5 |k <j<m]wehave §(x) = n(z) for all z. This gives:

q="fis1-sm =%, (fily- Ly Tpy1-- 7m)y6  (by (c) and definition of §)
— Ry (label;i_1(7) xpiq - xm)y0 (by the labeled rule for f ¢1 -4 — 7)
= label;—1 ((r Zg+1 - xTm)7y)d
Since at least one step is done and label; _1(v)é ~ NF~!(v,n) for the B-safe term v =
(r ki1 xm)y, we can use induction hypothesis (B) on observation (b) to derive that
q =g, 1abeli1((r Tpi1 - 2)7)0 =%  t. This reduction is semi-outermost.

(A), if case. Suppose ¢ =f; 51+ Sm, — R, b DY @ semi-outermost reduction. Since ¢ cannot
still contain f;, this is not the empty reduction, so either

q= fz 81 Sm 7R fi—l 81 Sm _>%lab ¢
in which case induction hypothesis (A) gives Confirmed }[f A;--- A, ~t] =T, or

q="Fi s1-sm =g, Fili b 2ppr - Ty)y =Ry labeli 1 (7 Tpgr - 2)y =R, T
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for some rule f ¢;--- 0, — r € R, substitution v and fresh variables xg1,...,%;,. Here,
v(z;) = s; for all j > k and (¢;) = s; for those ¢; which are variables. By induction
hypothesis (B), £;7 € Aj whenever ¢; is not a variable. Splitting v := 71 & yo—where 7, has
domain {z | z occurs in some non-variable £;} and 72 has the remainder—and writing 7, :=
[lj:=A;|1<j<EkAl;isavariable]U[z; := A; | k < j < m]|, we have y5(z) = n2(z) for all
x in the shared domain. Therefore label;_1 (7 Zg41 - - @)y = (labeli_1 (7 kg1 - Tm) Y1) 72 =
NF=Y((r xpa1 - 2m)v1,m2), and we obtain t € NFL((r g1+ 2m)y1,m2) by TH (B).
Thus, in either case, Confirmed'[f Ay ---A,, ~ t] = T follows immediately.

(B), both cases. We prove (B) by an additional induction on the definition of u ~ D.
Observe that u ~ D implies that u = label;(v)§ and D = NF*(v,n) for some v, i, 6,1 such
that each d(z) = n(x). Consider the form of the B-safe term v.

o If v € DA, then m =0 and t € D = NF'(v,n) iff t = v = label;(v) = u.

o If v = f vy v, with f € D, then denote C; := NF'(v;,n) for 1 < j < n; we have
t € D(Ay,...,Ay) iff Confirmed'[f Cy---C,, Ay--- A, ~»t] = T. By case (A), this holds
iff ¢ = (label;(v)d) s1-++spm = f; (label;(v1)d) - - - (label;(vn)d) s1- -+ 8m =%, T

o If v =1 vy v, with z € V, then denote C; := NF'(v;,n) for 1 < j < n; then clearly
label;(v;)d = C;. We observe that, on the one hand,

D(Ay, ..., An) = NF(v,n)(A1,...,4n) = ) (C1,...,C))(AL,...,An)
= U($)(C1,...,Cn,A1,...

And on the other hand,
q = (label;(v)0) s1 -+ sm = 0(x) (label;(v1)d) - - - (label;(vy,)d) s1 -+ 5,

As §(x) = n(x) is used in the derivation of u = D, the second induction hypothesis gives
the desired equivalence. 0]

And from Lemmas 5.4 and 5.5 together we obtain:

Theorem 5.12. Any decision problem accepted by a cons-free K"-order ATRS is in
EX TIME.

Proof. By Lemma 5.5, decision problems accepted by a cons-free K*"-order ATRS are decided

by Algorithm 5.2; by Lemma 5.4, this algorithm operates within (J .y TIME (expg(an)) .

5.2. Characterization result. Combining Theorems 4.8 and 5.12 we thus find:

Corollary 5.13. A decision problem X is in EX TIME iff there is a K"-order cons-free
ATRS which accepts X : the class of cons-free ATRSs with order K characterizes EX TIME.

Remark 5.14. There are many similarities between the algorithm and correctness proof
presented here and those in Jones’ work, most pertinently the use of memoization. We have
chosen to use a methodology which suits better with the semantics of term rewriting than
the derivation trees of [15], for example by enumerating all possible reductions beforehand
rather than using caching, but this makes little practical difference. We have also had to
make several changes for the non-determinism and different evaluation strategy. For example
the step to semi-outermost reductions is unique to this setting, and the term representations
are different than they must be in the deterministic (or call-by-value) cases.
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6. PAIRING

Unlike our applicative term rewriting systems, Jones’ minimal language in [15] includes
pairing. While not standard in term rewriting, some styles of higher-order rewriting also
admit pairs. We consider whether this feature affects expressivity of the considered systems.

Definition 6.1. An Applicative Pairing Term Rewriting System (APTRS) is defined fol-
lowing the definitions for ATRSs in § 2.2, with the following changes:

e In Definition 2.4 (simple types): if o, 7 are types of order n, m, then also o x 7 is a type
of order max(n, m); the pairing constructor x is considered right-associative.

e In Definition 2.5 (terms): terms are expressions typable by clauses (a), (b), (c), where (c)
is: (s,t):0 x 7 if s: 0 and t: 7. Pairing is right-associative, so (s,t,u) = (s, (t,u)).

e In Definition 2.12 (patterns, data and basic terms): a term £ is a pattern if (a), (b) or (c)
holds, where (c) is £ = (¢1,¢2) with ¢; and ¢, both patterns.

The last item is used to define constructor APTRSs as before.

Cons-freeness for left-linear constructor APTRSs is unaltered from Definition 3.1;
however, pairing is not a constructor, so may occur freely in both sides of rules. Lemmas 3.6
and 3.8 go through unmodified, but constructors can have a product type of order 0 as
argument type.

In a deterministic setting, pairing makes no difference: a function f : (o X 7) = 7 can be
replaced by a function f : ¢ = 7 = 7 with two arguments, and a function f : 7 = (o x 7) by
two functions f! : 7 = ¢ and f2 : 7 = 7. We exploited this when defining counting modules
(in [15], a number is represented by a single term, which may have product type). However,
when allowing non-deterministic choice, pairing does increase expressivity—alarmingly so.

Lemma 6.2. Suppose counting modules are defined over APTRSs. If there is a first-order
P-counting module Cr = (0 @ 7,57, R™, A™, (-)™), then there is a first-order (An.2PM)—1).
counting module Cirry = ((0 X 7) ® (00 X T), »n(m) R Alrm) ()77,

Proof. By using pairing, the ideas of Lemma 4.7 can be used to create a composite module.
We will use almost the same rules, but replace the underlying module Ci, by C,. We say
s — 1 if there is (t,u) € A7, such that s =% (¢,u) and ((¢,u))], = i. A bitstring by ...by is
represented by a pair (yss, zss) such that yss — ¢ iff b; = 1 and zss +— i iff b; = 0.

o AT™ contains all pairs (yss, zss) where
— for all 0 <1i < P(n): either yss — i or zss — 4, but not both;
— if yss =7} (u, v) then there is (v/,v’) € A7, such that yss =} (v/,v") =} (u,v)
(thus, any pair which yss reduces to is a number in Cy, or a reduct thereof);
— if zss =7} (u,v) then there is (v/,v') € A7, such that zss =} (v/,v") =% (u,v).
. ((s,t)>g7r) = Zf:(gcsl)_l{ﬂ“'_i | s — i}. So ((s,t)>£§7r) is the number with bitstring
bo - - bp(es)—1 Where b; = 1 iff s — 4, iff ¢ /> i (with by the most significant digit).
e X(™™) consists of the defined symbols introduced in R(™™, which we construct below.

The rules for the module closely follow those in Lemma 4.7, except that:

e calls to seedi;,, zeroyi, and pred},_  are replaced by seed,, zero, and pred_ respectively,

where these symbols are supported by rules such as zero, cs (s,t) — zero, c¢s s t and
pred_ cs (s,t) — (predl cs s t,pred? cs s t);

e calls eqlLen n ¢ are replaced by eqBase c¢s n ¢, and the rules for eqlen replaced by
eqBase c¢s (n1,n2) (mi,m2) — equal_ cs ny ny my mo. Just like a call to eqlen n ¢
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forces a reduction from ¢ to a data term, a call to eqBase cs n ¢ forces ¢ to be reduced to
a pair—but not necessarily to normal form.

With these rules, indeed seed%m) cs is in AE}T“), as is pred%m) cs n if n € A7.. Moreover,

we can check that the requirements on reduction are satisfied. ]

Thus, by starting with C, and repeatedly using Lemma 6.2, we can reach arbitrarily
high exponential bounds (since 22" ~! > 2"). Following the reasoning of § 4, we thus have:

Corollary 6.3. Every set in ELEMENTARY is accepted by a cons-free first-order APTRS.

The key reason for this explosion in expressivity is that, by matching on a pattern
(x,y), a rule forces a partial evaluation. Recall that, in a cons-free ATRS (without pairing),
we can limit interest to semi-outermost reductions, where sub-reductions f s1---s, =%
fuy- - u, =¥fy —>g ry have s; = u; or u; € TA for all i: we can postpone an evaluation at
an argument position if it is not to a data term. By allowing a wider range of terms than
just the elements of B to carry testable information, expressivity increases accordingly.

We strongly conjecture that it is not possible to accept sets not in ELEMENTARY,
however. A proof might use a variation of Algorithm 5.2, where [o x 7[|p = {(A,B) | A €
[o]ls A B € [t]g}: the size of this set is exponential in the sizes of [o]p and [7] 3, leading to
a limit of the form exp%‘"b depending on the types used. However, we do not have the space
to prove this properly, and the result does not seem interesting enough to warrant the effort.

Yet, product types are potentially useful. We can retain them while suitably constraining
expressivity, by imposing a new restriction.

Definition 6.4. An APTRS is product-cons-free if it is cons-free and for all rules f £ - - - £}, —
r and subterms r > (r1,79): each r; has a form (a) (s,t), (b) ¢ s;---s, with c € C, or (c)
x € V such that x # ¢; for any j (so x occurs below a constructor or pair on the left).

In a product-cons-free APTRS, any pair which is created is necessarily a data term.
Lemma 6.2 does not go through in a product-cons-free APTRS (due to the rules for pred, and
seed, ), but we do obtain a milder increase in expressivity: from EXTIME to EXPXTIME.

Lemma 6.5. Suppose counting modules are defined over product-cons-free APTRSs. Then
for all a > 0,b > 0, there is a first-order ()\n.2a'("+1)b)-counting module Coyp(a,p)-

Proof. As in C, from Lemma 4.7, we will represent a number with bitstring bg . ..bx by two
terms yss and zss, such that yss +— ¢ iff b; = 1 and zss +— ¢ iff b; = 0. However, where in
Lemma 4.7 we say s — ¢ if s reduces to a data term list of length ¢, here we say s+ ¢ if s
reduces to a data term of type 1ist®*! which represents i as in Lemma 4.4.

Formally: Write |zs| for the length of a data term list xs, so the number of ; symbols
occurring in it. Let Base be the set of all data terms (ug, ..., up) : 1ist®™! such that (a)
|lug| < a and (b) for 0 < i < b: |u;| < |es|. We say that (ug,...,uy) € Base base-represents
keNif k= Z?:o |ug| - (|es| +1)°=%. (This follows the same idea as Lemma 4.4.) For a term
s, we say s — k if s reduces by — g to an element of Base which base-represents k.

Now let Coxpap) := (1istbt?, pexp(ab) Rexplab) gexplab) (\exp(ab)) where:

o AP contains all (yss, zss) such that (a) all normal forms of yss or zss are in Base,

and (b) for all 0 <4 < a - (|es| + 1)b: either yss + i or zss + i, but not both.
o ((5,8)2®lb) — N (ON=i | 51y i}, where N =a- (|cs| +1)" — 1.
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o NexP(ab) consists of the defined symbols introduced in R which are those in
Lemma 4.7 with seed:1‘Lin,zerolin,pred:1Lin and eqLen replaced by seedpase,Z€TOpase,
pred and eqBase respectively, along with the following supporting rules:

base
seedpase €5 — (0;...;05[],¢s,...,cs)
[with |0;...;0;[]| = a — 1]
Zeropase ¢S ([],...,[]) — true
Z€TOpase CS (TS0,...,TSi—1,Y:ys, [],...,[]) — false [for 0 <i <]
predbase cs ([]77[]) - ([]77[])
pred. . (¢;2s) (zso, ..., xsi—1,y5y8,[],---»[]) — (xs0,...,28-1,ys,¢28,...,¢;28)
[for 0 <i <]
eqBase ([] S, ) — true
eqBase (zsg,...,28i—1,Y;yS, [, -+, []) (zso, yz28i-1, [, 1, -+, ]]) — false
eqBase (xso,...,xsz_l, 0,1, --- []) (280, -+, 28i-1, 4398, [],.-.,[]) — false
eqBase (x50,...,28i—1, 498, [],---,[]) (zs0,...,2zsi—1,n5ms,[],...,[]) —
eqBase (zs0,...,28i—1,YS,[]s---»[]) (2s0,...,2si—1,m8,[],...,]])

This module functions as the ones from Lemmas 4.7 and 6.2. Note that in the rules for
pred, .., we expanded the variable cs representing the input list to keep these rules product-
cons-free. By using c;zs, the list is guaranteed to be normalized (and non-empty). ]

Thus, combining Lemmas 6.5 and 4.5 with the rules of Figure 2, we obtain:

Corollary 6.6. Any decision problem in EXPX TIME is accepted by a K™-order product-
cons-free APTRS.

By standard results, EXTIME C EXPXTIME for all K > 1, hence the addition of
pairing materially increases expressivity. Conversely, we have:

Theorem 6.7. Any set accepted by a K" -order product-cons-free APTRS is in EXPX TIME.

Proof. Following the proof of Lemma 5.4, the complexity of Algorithm 5.2 is polynomial in
the cardinality of the largest [o]p used. The result follows by letting o1 X - -+ X ¢,,] 5 contain
subsets of B"—which we can do because the only pairs occurring in a reduction are data.

Formally, let (F,R) be a product-cons-free APTRS. We first prove that any pair
occurring in a reduction s —% ¢ with s basic, is a data term. Let a term s be product-B-safe
if s is B-safe and s > (s1,s2) implies (s1,s2) € TA for all s1,s2. We observe: (**) if s is
product-B-safe and s = t, then t is product-B-safe. B-safety of ¢ follows by Lemma 3.6
and for any t > (t1,t2): if not s (¢1,t2), then there are £ — r € R, substitution v and 71,7
such that s> ¢~ and r > (r1,72) and (¢1,t2) = (r1,72)7y. By definition of product-cons-free,
each r; is a pair—so ;7 is data by induction on the size of r—or has the form ¢ §—so r;v is
a data term by B-safety of t—or is a variable = such that v(z) € DA by product-B-safety of
s. Thus, (r1,72) is a pair of two data terms, and therefore data itself.

Thus, we can safely assume that the only product types that occur have type order 0,
and remove constructors or defined symbols using higher order product types.

Next, we adapt Algorithm 5.2. We denote all types of order 0 as ¢; X -+ X ¢, (ignoring
bracketing) and let Jeq X -+ X e =P({(s1,...,8n) | 5i € BAF s :¢; for all i}). Otherwise,
the algorithm is unaltered. Let b be the longest length of any product type occurring in F. As

P(B) has cardinality 2", the reasoning in Lemma 5.4 gives card([o]5) < expXTL(dX - N
for a type of order k, Wthh results in TIME (exp2 (a-n )) for the algorithm. Lemma 5.8
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goes through unmodified, Lemma 5.9 goes through if we define (s,t) to be computable if
both s and t are, and Lemma 5.5 by using product-B-safety instead of B-safety in case (B).[]

Thus we obtain:

Corollary 6.8. A decision problem X is in EXPX TIME if and only if there is a K"-order
product-cons-free APTRS which accepts X.

7. ALTERING ATRSS

As demonstrated in § 6, the expressivity of cons-free term rewriting is highly sensitive in the
presence of non-determinism: minor syntactical changes have the potential to significantly
affect expressivity. In this section, we briefly discuss three other groups of changes.

7.1. Strategy. In moving from functional programs to term rewriting, we diverge from
Jones’ work in two major ways: by allowing non-deterministic choice, and by not imposing a
reduction strategy. Jones’ language in [15] employs call-by-value reduction. A close parallel
in term rewriting is to consider innermost reductions, where a step ¢y —x v may only
be taken if all strict subterms of ¢+ are in normal form. Based on results by Jones and
Bonfante, and our own work on call-by-value programs, we conjecture the following claims:

(1) confluent cons-free ATRSs of order K, with innermost reduction, characterize
EXPX~ITIME; here, EXP'TIME = P, the sets decidable in polynomial time

(2) cons-free ATRSs of order 1, with innermost reduction, characterize P

(3) cons-free ATRSs of order > 1, with innermost reduction, characterize ELEMENTARY

(1) is a direct translation of Jones’ result on time complexity from [15] to innermost
rewriting. (2) translates Bonfante’s result [10], which states that adding a non-deterministic
choice operator to Jones’ language does not increase expressivity in the first-order case.
(3) is our own result, presented (again for call-by-value programs) in [17]. The reason for
the explosion is that we can define a similar counting module as the one for pairing in
Lemma 6.2.

Each result can be proved with an argument similar to the one in this paper: for one
direction, a TM simulation with counting modules; for the other, an algorithm to evaluate
the cons-free program. While the original results admit pairing, this adds no expressivity as
the simulations can be specified without pairs. We believe that the proof is easily changed
to accommodate innermost over call-by-value reduction, but have not done this formally.

Alternatively, we may consider outermost reductions steps, where rules are always
applied at the highest possible position in a term. Outermost reductions are semi-outermost,
but may behave differently in the presence of overlapping rules; for example, given rules
f 0 — true and f = — false, an outermost evaluation would have to reduce £ (0 + 0) to
false, while in a semi-outermost evaluation we could also have £ (0 +0) —g £ 0 =5 true.
We note that the ATRS from Figure 2 and all counting modules evaluate as expected using
outermost reduction and that Theorem 5.12 does not consider evaluation strategy. This
gives:

Corollary 7.1. A decision problem X is in EX TIME if and only if there is a K"-order
cons-free ATRS with outermost reduction which accepts X .
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7.2. Constructor ATRSs and left-linearity. Recall that we have exclusively considered
left-linear constructor ATRSs. One may wonder whether these restrictions can be dropped.

The answer, however, is no. In the case of constructor ATRSs, this is easy to see: if we
do not limit interest to constructor ATRSs—so if, in a rule f #; --- £, — r the terms ¢; are
not required to be patterns—then “cons-free” becomes meaningless, as we could simply let
D := F. Thus, we would obtain a Turing-complete language already for first-order ATRSs.

Removing the requirement of left-linearity similarly provides full Turing-completeness.
This is demonstrated by the first-order cons-free ATRS in Figure 5 which simulates an
arbitrary TM on input alphabet I = {0,1}. A tape zg...2Zp—... with the reading head at
position ¢ is represented by three parameters: x;_j::...::xg and z; and x;41:: ... :x,. Here,
the “list constructor” :: is a defined symbol, ensured by a rule which never fires. To split a
“list” into a head and tail, the ATRS non-deterministically generates a new head and tail
using two calls to rndtape (whose only shared reducts are fully evaluated “lists”), and uses
a non-left-linear rule to compare their combination to the original “list”.

rndtape r — | rnd — O
rndtape x — rnd: rndtape z rnd — 1
Lot — ¢ rnd — B

translate (0;zs) —
translate (1;28) —
translate || —
translate || —
equal zl I — true

:: (translate zs)
:: (translate zs)
:: (translate [])

— W= O

start cs

run s zl r yl

shift szl cyl d
shift; szlcyldbitt
shifto szl cylR z t
shiftoszlcylL 2zt
shifts s zl ¢ yl true

run start [| B (translate cs)

. s r/wd
shift t xl w yl d) [for every transition s t]
shift; s zl ¢ yl d rnd (rndtape 0) (rndtape 1)
shifty salcyldbt [for every b € {0,I,B}]
shiftg s (¢ = xl) z t (equal yl (z :: t))
shifts st z (c:: yl) (equal xl (z :: t))
run s xl c yl

Lidldildd

Figure 5: A first-order non-left-linear ATRS that simulates a given Turing machine

7.3. Variable binders. A feature present in many styles of higher-order term rewriting
is A-abstraction; e.g., a construction such as Az.f z. Depending on the implementation,
admitting A-abstraction in cons-free ATRSs may blow up expressivity, or not affect it at all.

First, consider ATRSs with A-abstractions used only in the right-hand sides of rules.
Then all abstractions can be removed by introducing fresh function symbols, e.g., by replacing
arule f (c y) = g (Az.h 2 y) by the two rules £ (¢ y) = g (fre1p ¥) and freip y z - h z y
(where fpe1p is a fresh symbol). Since the normal forms of basic terms are not affected by
this change, this feature adds no expressivity.

Second, some variations of higher-order term rewriting require that function symbols
are always assigned to as many arguments as possible; abstractions are the only terms of
functional type. Clearly, this does not increase expressivity as it merely limits the number of
programs (with A-abstraction) that we can specify. Nor does it lower expressivity: the results
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in this paper go through in such a formalism, as demonstrated in [16]. It does, however,
require some changes to the definition of a counting module.

Finally, if abstractions are allowed in the left-hand sides of rules, then the same problem
arises as in Lemma 6.2: we can force a partial evaluation, and use this to define (An. exp& (n))-
counting modules for arbitrarily high K without increasing type orders. This is because a
rule such as f (Az.Z) matches a term f (Az.0), but does not match f (Az.g z 0) because
of how substitution works in the presence of binders. A full exposition of this issue would
require a more complete definition of higher-order term rewriting with A-abstraction, so is
left as an exercise to interested readers. A restriction such as fully extended rules may be
used to bypass this issue; we leave this question to future work.

8. CONCLUSIONS

We have studied the expressive power of cons-free higher-order term rewriting, and seen that
restricting data order results in characterizations of different classes. We have shown that
pairing dramatically increases this expressive power—and how this can be avoided by using
additional restrictions—and we have briefly discussed the effect of other syntactical changes.
The main results are displayed in Figure 6.

P C
confluent cons-free ATRSs K—1
with call-by-value reduction EXPETIME (translated from [15])
cons-free ATRSs EXTIME (Corollary 5.13)
product-cons-free APTRSs EXPETIME (Corollary 7.1)

cons-free APTRSs (so with pairing) > ELEMENTARY  (Corollary 6.3)

Figure 6: Overview: systems P with type order K characterize the class C.

8.1. Future work. We see two major, natural lines of further inquiry, that we believe will
also be of significant interest in the general—non-rewriting related—area of implicit complex-
ity. Namely (I), the imposition of further restrictions, either on rule formation, reduction
strategy or both that, combined with higher-order rewriting will yield characterization of
non-deterministic classes such as NP, or of sub-linear time classes like LOGTIME. And (II),
additions of output. While cons-freeness does not naturally lend itself to producing output,
it is common in implicit complexity to investigate characterizations of sets of computable
functions, e.g. the polytime-computable functions on integers, rather than decidable sets.
This could for instance be done by allowing the production of constructors of specific types.
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