89 research outputs found

    Interactive and non-interactive hybrid immigrants schemes for ant algorithms in dynamic environments

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic optimization problems (DOPs) have been a major challenge for ant colony optimization (ACO) algorithms. The integration of ACO algorithms with immigrants schemes showed promising results on different DOPs. Each type of immigrants scheme aims to address a DOP with specific characteristics. For example, random and elitism-based immigrants perform well on severely and slightly changing environments, respectively. In this paper, two hybrid immigrants, i.e., non-interactive and interactive, schemes are proposed to combine the merits of the aforementioned immigrants schemes. The experiments on a series of dynamic travelling salesman problems showed that the hybridization of immigrants further improves the performance of ACO algorithms

    A memetic ant colony optimization algorithm for the dynamic travelling salesman problem

    Get PDF
    Copyright @ Springer-Verlag 2010.Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    Ant colony optimization with immigrants schemes in dynamic environments

    Get PDF
    This is the post-print version of this article. The official published version can be accessed from the link below - Copyright @ 2010 Springer-VerlagIn recent years, there has been a growing interest in addressing dynamic optimization problems (DOPs) using evolutionary algorithms (EAs). Several approaches have been developed for EAs to increase the diversity of the population and enhance the performance of the algorithm for DOPs. Among these approaches, immigrants schemes have been found beneficial for EAs for DOPs. In this paper, random, elitismbased, and hybrid immigrants schemes are applied to ant colony optimization (ACO) for the dynamic travelling salesman problem (DTSP). The experimental results show that random immigrants are beneficial for ACO in fast changing environments, whereas elitism-based immigrants are beneficial for ACO in slowly changing environments. The ACO algorithm with hybrid immigrants scheme combines the merits of the random and elitism-based immigrants schemes. Moreover, the results show that the proposed algorithms outperform compared approaches in almost all dynamic test cases and that immigrant schemes efficiently improve the performance of ACO algorithms in DTSP.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Memory-based immigrants for ant colony optimization in changing environments

    Get PDF
    Copyright @ 2011 SpringerAnt colony optimization (ACO) algorithms have proved that they can adapt to dynamic optimization problems (DOPs) when they are enhanced to maintain diversity. DOPs are important due to their similarities to many real-world applications. Several approaches have been integrated with ACO to improve their performance in DOPs, where memory-based approaches and immigrants schemes have shown good results on different variations of the dynamic travelling salesman problem (DTSP). In this paper, we consider a novel variation of DTSP where traffic jams occur in a cyclic pattern. This means that old environments will re-appear in the future. A hybrid method that combines memory and immigrants schemes is proposed into ACO to address this kind of DTSPs. The memory-based approach is useful to directly move the population to promising areas in the new environment by using solutions stored in the memory. The immigrants scheme is useful to maintain the diversity within the population. The experimental results based on different test cases of the DTSP show that the memory based immigrants scheme enhances the performance of ACO in cyclic dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/2

    Dynamic railway junction rescheduling using population based ant colony optimisation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Efficient rescheduling after a perturbation is an important concern of the railway industry. Extreme delays can result in large fines for the train company as well as dissatisfied customers. The problem is exacerbated by the fact that it is a dynamic one; more timetabled trains may be arriving as the perturbed trains are waiting to be rescheduled. The new trains may have different priorities to the existing trains and thus the rescheduling problem is a dynamic one that changes over time. The aim of this research is to apply a population-based ant colony optimisation algorithm to address this dynamic railway junction rescheduling problem using a simulator modelled on a real-world junction in the UK railway network. The results are promising: the algorithm performs well, particularly when the dynamic changes are of a high magnitude and frequency

    GORTS: genetic algorithm based on one-by-one revision of two sides for dynamic travelling salesman problems

    Get PDF
    The dynamic travelling salesman problem (DTSP) is a natural extension of the standard travelling salesman problem, and it has attracted significant interest in recent years due to is practical applications. In this article, we propose an efficient solution for DTSP, based on a genetic algorithm (GA), and on the one-by-one revision of two sides (GORTS). More specifically, GORTS combines the global search ability of GA with the fast convergence feature of the method of one-by-one revision of two sides, in order to find the optimal solution in a short time. An experimental platform was designed to evaluate the performance of GORTS with TSPLIB. The experimental results show that the efficiency of GORTS compares favourably against other popular heuristic algorithms for DTSP. In particular, a prototype logistics system based on GORTS for a supermarket with an online map was designed and implemented. It was shown that this can provide optimised goods distribution routes for delivery staff, while considering real-time traffic information.This work was jointly sponsored by the National Natural Science Foundation of China under Grants 61472192 and 91646116, the Scientific and Technological Support Project (Society) of Jiangsu Province under Grant BE2016776, the Talent Project in Six Fields of Jiangsu Province under Grant 2015-JNHB-012, the “333” Scientific Research program of Jiangsu Province under Grant BRA2017228, and the Jiangsu Key Laboratory of Big Data Security and Intelligent Processing at NJUPT

    Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems

    Get PDF
    For a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms

    A survey of swarm intelligence for dynamic optimization: algorithms and applications

    Get PDF
    Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades, there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained, multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strategies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in SIDO. Finally, some considerations about future directions in the subject are given

    Ant colony optimization algorithms for dynamic optimization: A case study of the dynamic travelling salesperson problem

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Ant colony optimization is a swarm intelligence metaheuristic inspired by the foraging behavior of some ant species. Ant colony optimization has been successfully applied to challenging optimization problems. This article investigates existing ant colony optimization algorithms specifically designed for combinatorial optimization problems with a dynamic environment. The investigated algorithms are classified into two frameworks: evaporation-based and population-based. A case study of using these algorithms to solve the dynamic travelling salesperson problem is described. Experiments are systematically conducted using a proposed dynamic benchmark framework to analyze the effect of important ant colony optimization features on numerous test cases. Different performance measures are used to evaluate the adaptation capabilities of the investigated algorithms, indicating which features are the most important when designing ant colony optimization algorithms in dynamic environments
    corecore