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Abstract. The dynamic travelling salesman problem (DTSP) is a nat-
ural extension of the standard travelling salesman problem (TSP), and it
has attracted significant interest in recent years due to is practical appli-
cations. In this article we propose an efficient solution for DTSP, based
on a genetic algorithm (GA), and on the one-by-one revision of two sides
(GORTS). More specifically, GORTS combines the global search ability
of GA with the fast convergence feature of the method of one-by-one
revision of two sides, in order to find the optimal solution in a short
time. An experimental platform was designed to evaluate the perfor-
mance of GORTS with TSPLIB. The experimental results show that the
efficiency of GORTS compares favourably against other popular heuristic
algorithms for DTSP. In particular, a prototype logistics system based on
GORTS for a supermarket with an online map was designed and imple-
mented. It was shown that this can provide optimised goods distribution
routes for delivery staff, while considering real-time traffic information.

Keywords: DTSP · Path Optimisation · One-by-one Revision of two
slides · Genetic Algorithm.

1 Introduction

The Travelling Salesman Problem (TSP), a classical example of NP (non-deterministic
polynomial) problem,was first investigated in more detail in the 1950s [8]. The
classic TSP aims to determine the shortest path across a set of randomly located
cities (each city is visited once and only once, except for the starting point). In
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other words, TSP is a shortest route planning, whose solution is a minimum
Hamiltonian circuit. However, many practical applications exhibit a dynamic
behaviour, such as transportation planning [22] [23], communication design [4],
and workload distribution [20], etc. Hence, such TSP models need to be adap-
tive, and often real-time, in order to obtain the most appropriate description.
The Dynamic Travelling Salesman Problem (DTSP) is an extension of TSP,
which has the following supplementary features [13], [14]:

– Real-time. The weights of the links between nodes may change probabilisti-
cally with time;

– Robustness. Allows for unexpected situations which require timely response
(e.g., nodes may randomly join or quit the system);

– Efficiency. DSTP requires an optimal or sub-optimum solution in a finite
time.

Typical algorithms for solving DTSP mainly include ant colony algorithms
(ACA) [20] [21] and genetic algorithms (GA) [7], which generally make appropri-
ate adjustments based on changes in the environment, such as varying travelling
cost between cities. However, in this case it is often computationally expensive
to identify the optimal solution in a short time, due to the numerous sudden
changes in parameter values.

In this article, we propose a new algorithm named GORTS, which is based
on the integration of DTSP with a genetic algorithm defined by a one-by-one
revision of two sides. Combining the global search ability of the GA and the fast
convergence of the method of one-by-one revision of two sides, we show that this
method can achieve accurate solutions in shorter time.

In particular, the method of one-by-one revision of two sides is adopted to
modify the multiple chromosomes initialised by the genetic algorithm, and the
elitist strategy is used to select the optimal solution. Subsequently, the crossover
and mutation operations identifies the optimal solution.

The rest of the article is organised as follows. In Section 2, we discuss the
current state-of-the-art approaches and methods for solving TSP and DTSP.
Section 3 presents the details of the mathematical DTSP model. In Sections 4
and 5, we introduce and discuss the GORTS algorithm, and in Sections 6 and 7,
the experimental results and the prototype logistics system for supermarket with
GORTS are presented. Finally, Section 8 concludes the paper by summarising
the main contributions of this work and commenting on future directions of
investigation.

2 Related Work

Significant research on the classical TSP model and versions with different con-
straint conditions has been carried out. This includes TSP models with time
windows [16] and the minimum ratio TSP [6], which mainly focus on determin-
ing the minimal Hamiltonian circuit for a single travelling salesman. On the
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other hand, within the DTSP, the parameters related to each node may change
dynamically and it can be seen as a combined series of TSPs [15].

2.1 TSP Algorithms

Currently, the algorithms for solving TSP can be divided into accurate and ap-
proximate algorithms. The former mainly include the dynamic programming
algorithm [18], the branch and bound [10], and integer linear programming al-
gorithm [24]. However, these algorithms can only address small-scale TSP, as
their complexity increases exponentially with the number of nodes. The lat-
ter include heuristic algorithms such as the ant colony optimisation algorithm
(ACO) [1], the particle swarm optimisation algorithm (PSO) [2], the genetic
algorithm(GA) [29], which have been widely accepted for their suitability at
identifying better solutions in a reasonable time. However, their efficiency tends
not to match up with the abrupt rates of change present in the DTSP system
parameters. Therefore, a variety of fusion algorithms have been proposed.

2.2 DTSP Algorithms

Following the introduction of the DTSP with a single objective in 1988 [19],
most of the research has mainly focused on the definition of the problem, algo-
rithm design, performance measurement, or on the test platform construction.
Michalis et al. [21] attempted to address the DTSP via the ant colony optimi-
sation algorithm. This type of algorithm tends to quickly converge to obtain
the optimal solution based on the pheromone produced by ants, where previous
pheromone trajectories can accelerate the optimisation process. However, this
scheme is only suitable for DTSP with small environmental changes.

If the number of nodes varies significantly, the optimisation process needs
to be recalculated. Cheng et al. [5] proposed a genetic algorithm based on the
elite immigration strategy. The best population in the previous generation pro-
duce individuals through mutation operations, who will replace the least suitable
ones. in the current generation. Compared with the original GA, it has bet-
ter adaptability and can optimise the quality of the solution. However, if there
are large-scale nodes, the algorithm often needs to iterate several times to con-
verge, and cannot meet the real-time requirement. Farhad et al. [11] proposed
to combine ACO with GA to find the optimal solution, more suitable for severe
variations. Nonetheless, its computational overhead is relatively high. Blackwell
et al. [3] proposed a new mutant PSO approach, specifically designed for dy-
namic environments. This algorithm extends the diversity of particle swarm in
a single population and can find a better solution in the case of environmental
change. However, the diversity increases the cost of the algorithm and affects
the usability in contexts involving real-time processes.
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3 DTSP Modelling

The objective of TSP is to find the shortest path across a set of randomly located
cities, or in other words, to obtain the minimum Hamiltonian circuit. Regard-
ing their different constraints and limitations, TSP models can be extended to
include specific features of practical interest, such as the TSP versions with mul-
tiple salesmen, or TSP models with multiple objectives, DTSP, etc.

Let G = G(V,E) be a graph, where V = {v1, . . . , vn} represents the set of
vertices and denote the set of edges by E = {di,j : di,j > 0, di,i = 0, i, j ∈ N}. In
the TSP model, i ∈ N ⊂ {1, . . . , n} represents the city number, and d(vi, vj) the
distance between cities i and j. If TSP is symmetric, then we have d(vi, vj) =
d(vj , vi).
The optimal solution of TSP comes in the form of a path V = (v1, v2, . . . , vn),
minimising the value of the following objective function:

f(V ) =

n−1∑
i=1

d(vi, vi+1) + d(vn, v1). (1)

The decision variables are defined as

xi,j =

{
1 if (i, j) ∈ L
0 if (i, j) 6∈ L (2)

where L is the solution sequence. The model of TSP can be formulated as a
linear programming in the form given below

minD(L) =
∑
i 6=j

di,jxi,j (3)

∑
i∈V,i6=j

xi,j = 1 (4)

∑
j∈V,i6=j

xi,j = 1 (5)

∑
i,j∈V

xi,j = |L|, L ⊂ E (6)

The objective of Equation 3 is to minimise the total distance. Equations 4
and 5 ensure that all the salesmen’s itineraries must begin and end at the same
point. Equation 6 ensures that the Hamilton circuit does not have any sub loop.

The main feature of DTSP is the time-varying matrix of road distance, which
can be defined as:

D(t) = {dij(t)}n(t)×n(t), (7)

where t is the period of a dynamic change, dij(t) is the distance between cities
i and j, and n(t) is number of cities at moment t.
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The difficulty of solving DTSP is proportional to the changes of n(t) andD(t),
and inversely proportional to the time interval ∆t of environmental change. The
more significantly n(t) changes, the weaker the inter-connection between TSPs
in each time interval is; the higher performance of algorithm we require, and the
greater the difficulty of solving the problem becomes.

A natural question arises. How can we deal with the information changing
continuously? This is addressed by defining a suitable sampling. Figure 1 shows
a simple network with 3 nodes, as well as the cost of each directed edge. From the
graph, we can easily get the initial optimal access order, i.e., 0− c1− c2− c3− 0,
and the initial travel time is 38 min. If a salesman arrives at c1 and a traffic
congestion occurs on the way from c1 to c2, this may increase the travelling
time cost by 30 minutes, if the route is not changed. However, if the route gets
real-time updates, the travelling time cost can be reduced significantly.

Fig. 1. Fig. 1 simple network

Suppose that: 1) the traffic information between cities can be known in ad-
vance, and 2) the scale of the city, the distance between cities and other param-
eters are fixed during the sampling period. We define DTSP as a combination
of different TSP in different sampling period, where

– TSP (t) is used to represent TSP at different times;

– dij(t) represents the distance between city i and city j;

– n(t) is the scale of TSP at time t;

– H(i) is the serial number of city;

– ∆t is the sampling period;

– ∆dij is the variation of dij(t) in ∆t, and ∆n is the change of city number in
∆t;

– T is the time period, and

– N is the sampling times in each ∆t.

The objective value of DTSP is the sum of objective values of all TSP within
period T . Therefore, DTSP can be defined as
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TSP (t) =


TSP1 0 ≤ t ≤ ∆t
TSP2 ∆t < t ≤ 2∆t
· · ·

TSPN (N − 1)∆t < t ≤ N∆t

(8)

min d(T ) =

N∑
i=1

n(i∆t)∑
j=1

dH(j)H(j+1)(i∆t) (9)

∆t =
T

N
(10)

∆dij
∆t

= 0 (11)

∆n

∆t
= 0 (12)

4 Description of the GORTS Algorithm

4.1 Basic idea

The dynamics of DTSP is defined by the scale of the problem and the time vari-
ation of the cost matrix change. This dynamical aspect affects the performance
and effectiveness of the algorithm and determines how to choose the appropriate
algorithm. If the system exhibits a stable behaviour, a local optimisation algo-
rithm is used to obtain an acceptable approximate solution. Otherwise, a global
optimisation algorithm is necessary.

The application of a GA often requires to iterate several times to converge
to get the satisfactory solution for TSP. However, in DTSP it is generally re-
quired that the algorithm can converge to reach the optimal solution with fewer
iterations. The method of one-by-one revision of two sides [29] aims to contin-
uously optimise the solution via several iterations. Its process of calculation is
fast. However, the algorithm is greatly affected by the initial solution, and may
fall easily into a local optimum.

In this article, we combine the method of one-by-one revision of two sides
with GA to introduce the new GORTS algorithm. This algorithm inherits the
global search ability of GA, and uses the method of one-by-one revision of two
sides to correct chromosomes, which speeds up the process of convergence to
meet the real-time requirements.
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4.2 The Method of One-by-One Revision of Two Sides

The method of one-by-one revision of two sides is an approximate algorithm
for obtaining the optimal Hamiltonian circuit, suitable for the case with a large
number of vertices.

Suppose that G = (V,E) is a connected undirected graph. The cycle, which
joins each vertex of G exactly once, is called a Hamiltonian circuit of G (H
circuit for short). Suppose that W (vi, vj) is the weight of the link between the
vertices vi and vj , then

D(T ) = {dij(t)}n(t)·n(t) (13)

dij = dji =

{
W (vi, vj) if (vi, vj) ∈ E

0 if i = j
(14)

The optimum Hamiltonian circuit is the cycle on G with the smallest total
weight. The workflow of finding the optimum Hamiltonian circuit is as follows:

Fig. 2. (a) Initial Hamilton circuit (b) New Hamilton circuit

Step 1. Draw the initial H cycle randomly, as shown in Figure 2,

C0 = v1, v2, . . . , vi, . . . , vj , . . . , vn, v1; (15)

Step 2. For all i, j, 1 < i+ 1 < j < n, if

W (vi, vj) +W (vi+1, vj+1) < W (vi, vj+1) +W (vj , vj+1), (16)

delete edges (vi, vj+1) and (vj , vj+1) in C0, and add edge (vi, vj) andW (vi+1, vj+1)
to form a new Hamiltonian cycle, that is,

C = v1, v2, . . . , vi, vj , vj−1 . . . , vi+1, vj+1, . . . , vn, v1, (17)

as shown in Figure 2.
Step 3. Repeat the above steps until the best Hamilton circuit is achieved.

Consider the complete graph as is shown in Figure 2. Suppose that the weight of
the initial circle C0 = v1, v2, . . . , v6, v1 is 237, and w(1, 4) + w(2, 5) < w(1, 2) +
w(4, 5), edges (v1, v2) and (v4, v5) need to be deleted to obtain a better Hamil-
tonian circuit C, that is, C = v1, v4, v3, v2, v5, v6, v1.
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Fig. 3. (a)Complete graph (b)Updated initial circle (c)Better Hamilton circuit

5 Genetic Algorithm Improvement

The Genetic Algorithm (GA) is known for its good global search ability, high
efficiency and good scalability in solving TSP. However, GA needs many itera-
tions to obtain the optimal solution in high-dynamic systems. The integration
of the GA with the method of one-by-one revision of two sides can accelerate
the speed of finding the ideal solution, based on the following workflow:

Step 1: Generate the initial population;

Step 2: Optimise each chromosome by the method of one-by-one revision of
two sides, and use the optimised individual to replace the original one;

Step 3: Execute operations of selection, crossover and mutation on individuals
in the population;

Step 4: Select the best individual in each generation.

Unsuitable implementations and various operations of encoding, crossover
or mutation may lead to different precision values, as well as the failure of the
iterative process. Therefore, it is necessary to redesign the above operations.

5.1 Initial Chromosome Encoding

Suppose X = (x1, x2, . . . , xi, . . . , xn), 1 ≤ xi ≤ xni where ni is the maximum of
gene i. This requires genes to be encoded with different values at different bits.
The length of chromosome is determined by the scale of the DTSP. The initiali-
sation of chromosome is automatically generated with some heuristic algorithm
and the encoding method is to directly arrange nodes randomly.

5.2 Fitness Function

The fitness function is used to differentiate the individuals in a group. High value
of the fitness evaluation implies that an individual has a high probability of being
chosen. The selection operation based on the fitness value is important to GA,
which means that the fitness function determines the performance of GA. The
fitness function is defined as

F (x) = 1/D(x), (18)
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where x represents an individual of a population, and D(x) is the evaluation
value of x. Here, D(x) is defined as the distance travelled by individual. In this
article, we use the reciprocal of D(x) as the fitness function.

5.3 Crossover Operation

Two parent chromosomes, parent 1 and parent 2 are selected according to the
crossover probability pc, which generates two intersection points. The segments
∆p1 and ∆p2 are subsequently selected according to the two intersection points.
Child 1 assigns ∆p1 as the initial gene, whilst the same parts of parent 2 ’s
chromosome are ignored. Finally, the remaining component is added to child 1.
Likewise, child 2 is similarly generated. In this way, even if the two parents are
identical, the new offspring can be generated iteratively to overcome the disad-
vantages of local optimisation and premature convergence. As shown in Figure

Fig. 4. Implementation process of crossover operation

4, assuming there are 8 cities, the integers {0, 1, 2, 3, 4, 5, 6, 7} are randomly se-
lected to represent the two parents chromosomes. The randomly selected gene
segment (e.g. 4, 6, 2, 3) of parent 1 is adopted as the initial gene of child 1, and
the identical parts of parent 2 ’s chromosome are ignored. Finally, the remaining
parts are added to child 1. Child 2 is generated in a similar manner.

5.4 Mutation Operation

The mutation operation plays an important role in improving local search abil-
ity, maintaining variability of the population, and preventing the premature
convergence of GA. The swapping mutation operation is based on the muta-
tion probability. This will identify a mutated chromosome and subsequently,
two crossing points are randomly selected and swapped As shown in Figure 5,

Fig. 5. Mutation operation
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assuming again there are 8 cities, the sequence of integers corresponding to cities
(1, 5, 4, 6, 2, 3, 0, 7) may represent a route scheme. Two selected swapping gene
points are node pairs (3, 6), and (3, 5), which are exchanged to generate the
offspring.

5.5 Selection strategy

A new selection strategy is adopted and after cross-over and mutation, the new
individuals are put together with the original population. Subsequently, all the
chromosomes are arranged from good to bad according to fitness values. The
chromosomes, whose number is equal to the population size, are selected to the
next iteration.
GORTS is designed as a global optimisation algorithm, suitable for dynamical
environments with global changes, such as the change of distance between cities
and the change of number of cities. In this article, DTSP is abstracted into a
series of TSPs. This requires that GORTS has the strong convergence ability to
get the better solution during the sampling period. The workflow of GORTS is
shown in Figure 6.

Fig. 6. The workflow of GORTS
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6 Experiments and Protosystems

6.1 Performance Criteria

According to Equation 19, assume that the distance matrix of DTSP is a function
of time. Therefore, a test case of the dynamical properties of DTSP can be
generated by modifying the value of distance between two nodes

d
′

ij ← dij × tij (19)

where tij represents the change on the edge between vi and vj .

tij =

{
tij ← 1 + r ∈ [FL, FU ], if q ≤ m

tij ← 1, otherwise
(20)

where r is a random variable uniformly distributed in [FL, FU ], q is a random
variable uniformly distributed in [0,1], and m for 0 < m ≤ 1 defines the mag-
nitude of the change. For every arc, a different r value is generated to embed
real-world characteristics in the constructed DTSP. The offline performance [28]
is generally used as an important criteria in solving dynamic optimisation prob-
lems

POFF =
1

I

I∑
i=1

(
1

E

E∑
j=1

P ∗ij) (21)

where I is the total number of iterations, E is the number of independent exe-
cutions, and P ∗ij is the best-so-far solution.

6.2 Experiments

We selected four representative datasets from TSPLIB [9] with different scales of
cities, ranging from 52 to 318. The value of m is defined within [0, 0.25], [0, 0.5]
or [0, 1], to create different dynamic changes of the environment. Subsequently,
GORTS is compared with typical heuristic algorithms, including the MAX-MIN
ant system (MMAS) [25], the population based on ACO (PACO) [12], the elitism
based immigrants ACO (EIACO) [20], and EIGA-GAPX [26]. The experimental
parameter values are set as follows: FL = 0 and FU = 2, G = 2000, Psize =
500, Pc = 0.80, and pm = 0.1. As shown in Table I, only MMAS has slightly
better performance than GORTS with changes of distance between cities.

In the rest of the section, the performance of GORTS compared with algo-
rithms with changes in the number of cities will be discussed. We selected four
representative datasets from TSPLIB, including Eil51, Eil101, St70, Eil76, and
defined DTSP(t) as fol-lows:

DTSP(t) =


Eil51 0 ≤ t ≤ ∆t
Eil101 ∆t < t ≤ 2∆t
St70 2∆t < t ≤ 3∆t
Eil76 3∆t < t ≤ 4∆t

(22)

We tested GORTS in different sample periods. Specific parameters are set as the
following two groups:
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Problem instance GORTS MMAS PACO EIACO EIGA-GAPX
m ∈ [0, 0.25], f = 15s]

Berlin52.tsp 8012.5 7923.2 8055.6 7916.0 8347.5

eil101.tsp 667.6 655.7 671.4 663.2 703.4

d198.tsp 17087.7 16932.0 17679.6 17106.9 18203.2

lin318.tsp 46625.4 45182.1 48588.1 46426.1 52737.9
m ∈ [0, 0.25] with f = 15s]

Berlin52.tsp 8470.8 8313.2 8506.4 8327.6 8715.8

eil101.tsp 725.6 701.5 724.8 716.1 783.7

d198.tsp 18160.5 17783.6 18707.5 18134.6 19588.6

lin318.tsp 49618.4 47779.3 51670.3 48981.4 56478.4
m ∈ [0, 0.25] with f = 15s]

Berlin52.tsp 8806.2 8603.8 8856.4 8634.5 9144.2

eil101.tsp 781.3 755.2 784.8 768.1 843.2

d198.tsp 19234.6 18727.1 19774.5 19086.8 21127.5

lin318.tsp 52742.6 50976.1 54641.3 51141.6 61448.2
Table 1. Table 1 Performance of GORTS and other algorithms with changes of distance
between cities

1. If ∆t = 1s,G = 5, Psize = 10, pc = 0.80, and pm = 0.05.

2. If ∆t = 2s,G = 10, Psize = 10, pc = 0.80, and pm = 0.05.

As shown in Figure 7, there is no cross in any routes, which indicates that
the solution quality of GORTS is good. With the increase of the number of
iterations, we can find that the quality of the solution is improved, as shown
in Figure 8. However, with respect to DTSP, it is necessary to find the optimal
solution in a short time, which means reducing the number of iterations.

Furthermore, we compared the length of route planned with GORTS, the
adaptive ACO algorithm (AACO) [17] and the nearest neighbour method (NN)
[27]. As shown in Figure 9, the length of route planned with GORTS is shorter
than the length of route planned with NN but slightly longer than the length of
route planned with AACO.

The dynamic properties of DTSP require the algorithm to quickly obtain
the optimal solution. GORTS can reach this after 10 iterations in 2s, while the
length of route planned by AACO with 10 iterations is much longer.

As shown in Figure 10, it can be seen that GORTS only needs 5 or 6 iterations
to converge to satisfying results, while AACO needs to iterate 150 times to con-
verge to satisfying results. The computation time increases with the increasing
number of iterations.

7 Prototype Implementation and Testing

We applied GORTS to the logistics distribution planning system for large super-
market chains with distribution centre. Low efficiency in the logistics distribution
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planning system is likely to cause a waste of transport capacity and the high dis-
tribution costs. We implemented the logistics distribution planning system with
the Baidu Map SDK based on the Android 4.2 platform. We selected ten super-
market stores at the Gulou District. The detailed locations of these ten stores
are shown in Figure 11 and Table 7. The distribution centre of the supermarket
at the Hehui road(Sm-HH) is the starting point of distribution.

No. Name of Stores Abbreviation Latitude and Longitude

1 JinYan Store Sm-TY (118.768708, 32.110693)

2 Gulou Community Store Sm-CS (118.733738, 32.023282)

3 Chunjiang Store Sm-CJ (118.763309, 31.968957)

4 Yongle Store Sm-YL (118.804406, 32.004606)

5 Hongyun Store Sm-HY (118.835017, 31.970562)

6 Xinfen Store Sm-XF (118.840049, 32.092209)

7 Guanhua Store Sm-GH (118.861029, 32.023088)

8 Maqun Store Sm-MQ (118.901653, 32.056732)

9 Xueheng Store Sm-XH (118.921983, 32.100508)

10 Xuzhuang Store Sm-XZ (118.889726, 32.088439)

Note that 0 represents the distribution centre. The initial logistics distribu-
tion route is: 0 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 10 → 6 → 1 → 0.
As shown in Figure 12(a). The delivery of the goods depends on specific initial
arrangement and the delivery route will be adjusted according to the real-time
traffic. As shown in Figure 12(c), there is a traffic congestion along the route to
Sm-YL. Therefore, the rest route is recalculated, which is 3 → 5 → 4 → 7 →
8→ 9→ 10→ 1.

Finally, on the way to Sm-XH, the route is adjusted as: 8→ 10→ 9→ 6→ 1,
as shown in Figure 12(g). Compared with the initial route, the route planned
with GORTS can be adaptive to to condition of traffic and save the cost of time.

8 Conclusion

TSP is an NP combinatorial optimisation problem, with important theoretical
value and many applications. DTSP is an adaptation with usability in a realis-
tic dynamic environment. GA is an intelligent search algorithm for simulating
biological evolution, which is widely used in solving TSP. In this article, based
on the analysis of DTSP theory and mathematical model, a genetic algorithm
based on the method of one-by-one revision of two sides (GORTS) is introduced.

This method integrates the better global search ability of genetic algorithm,
while improving the convergence speed of the algorithm by adding the method
of one-by-one revision of two sides to correct the chromosome. Finally, GORTS
was compared with other algorithms and the experimental results showed it can
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provide accurate solutions, while the reduced computational time ensures the
algorithm is suitable for use for models involving dynamic environments.
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(a) G=5, Eil51 (b) G=10, Eil51

(c) G=5, Eil101 (d) G=10, Eil101

(e) G=5, St70 (f) G=10, St70

(g) G=5, Eil76 (h) G=10, Eil76

Fig. 7. Routes planned by GORTS with G = 5 or G=10.
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Fig. 8. Experimental results with G=5 and G=10

Fig. 9. Length of route planned with different algorithms
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(a) Eil101, with GORTS

(b) Eil101, with AACO

Fig. 10. Iteration times
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Fig. 11. The geographical sites of ten stores at the Gulou District



GORTS 21

(a) Initial Route (b) Route 1

(c) Route 2 (d) Route 3

(e) Route 4 (f) Route 5

Fig. 12. The process of route adjusted
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(a) Route 6 (b) Route 7

(c) Route 8

Fig. 13. The process of route adjusted


