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Abstract—Efficient rescheduling after a perturbation is an
important concern of the railway industry. Extreme delays can
result in large fines for the train company as well as dissatisfied
customers. The problem is exacerbated by the fact that it is a
dynamic one; more timetabled trains may be arriving as the
perturbed trains are waiting to be rescheduled. The new trains
may have different priorities to the existing trains and thus the
rescheduling problem is a dynamic one that changes over time.
The aim of this research is to apply a population-based ant
colony optimisation algorithm to address this dynamic railway
junction rescheduling problem using a simulator modelled on a
real-world junction in the UK railway network. The results are
promising: the algorithm performs well, particularly when the
dynamic changes are of a high magnitude and frequency.

I. INTRODUCTION

Train timetables are designed to ensure the conflict-free
running of the railway network; however, in the real world
delays may be caused by factors such as train failures, crew
shortages, excessive dwell time at the station and obstructions
on the line. A late arriving train may miss its scheduled time-
slot at a junction or station and will have an increased likeli-
hood of causing conflict with other trains and of propagating
its delay throughout the network.

The problem is further complicated by the fact that, while a
train controller is trying to minimise delay at a particular point
in time, more trains will be arriving at the affected area. These
trains may have different priorities to those already waiting to
be rescheduled, which makes the problem a dynamic one that
changes over time. The rescheduling of trains after a perturba-
tion is usually dealt with by human controllers [6], who often
use simple rules such as First Come First Served (FCFS) [4].
Although FCFS may resolve the immediate problem, it may
not be the optimal solution in terms of minimising the effect
of a train delay in a dynamically changing environment.

The aim of this paper is to investigate the application of Ant
Colony Optimisation (ACO) to the problem of rescheduling
trains at a junction after a perturbation in a dynamically
changing environment. This is referred to as the dynamic
railway junction rescheduling problem (DRJRP) in this paper.
In the DRJRP, the environmental change is a result of the
arrival of new timetabled trains while the original trains are

waiting to be rescheduled at the junction.

In the following sections, we first consider previous work
in the area of train scheduling and rescheduling using evo-
lutionary computation (EC) techniques. We follow this with
an explanation of the DRJRP followed by a description of
the simulator created to model the problem. We then consider
ACO algorithms and give details of the ACO algorithm used
in this research to solve the DRJRP. Finally, we describe
an experimental study carried out to test the ability of the
algorithm to solve the DRJRP. The results suggest that ACO
is a promising solution to this DRJRP.

II. RELATED WORK

EC techniques are a group of techniques inspired by nature,
which imitate evolution and natural self-organised systems.
They include, among others, genetic algorithms (GAs), Ant
Colony Optimisation (ACO), evolutionary strategies and par-
ticle swarm optimisation.

There has been previous promising work on both train
scheduling and train rescheduling using EC techniques. Gor-
man [7] combined a tabu-search with a GA to produce an
optimised schedule for a major US freight railroad with the ob-
jective of minimising operating costs. The schedule produced
had a potential cost saving of 4% and a reduction in service
delay of 6%.

Tormos et al. [17] addressed the difficult problem of adding
new trains to a train schedule without affecting the existing
trains. Their objective was to minimise overall delay. Using a
GA they produced a timetable solution in around 300 seconds
and their system outperformed comparison algorithms based
on random sampling and on Regret Biased Based Random
Sampling (RBRS). The GA created has been embedded into
a computer-aided tool that is being successfully used by the
Spanish Manager of Railway Infrastructure.

Qin et al. [16] used a Differential Evolution algorithm
to schedule a 185km double-track section of the Shenyang-
Siping railway corridor, while Abbas-Turki et al. [2] used a
GA to tackle the problem of scheduling high speed trains on
the Thameslink route in London.

In contrast to train scheduling, which involves creating a
fixed timetable of train times without conflict, rescheduling
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is concerned with recovering the railway timetable after a
disruption. There have been some interesting approaches to
solving the problem using EC techniques. Khan et al. [11]
used a GA to reschedule trains after a delay produced by
randomly varying the departure and arrival times for trains
on a simulated single track railway section. The GA produced
a solution that reduced the train delay at the destination station
from 35 minutes to 12 minutes.

A number of researchers have looked at the problem of
re-sequencing trains at a junction after a delay. Ho and Yeung
[10] encoded a GA to tackle the problem of creating a feasible
sequence of train to pass through a junction to minimise
conflict after a train delay. They found that their algorithm
could produce a solution within less than 5% of the optimal
and with a reduced computation time compared to a solution
produced using dynamic programming.

Fan et al. [6] also considered the problem of sequencing
trains through a junction after a delay. They applied both a
GA and an ACO algorithm and compared the results to FCFS
and a brute force algorithm. Brute force will always find a
solution as it involves enumerating all possible solutions. They
found both the GA and ACO performed well on the static
junction problem although ACO performed slightly better with
a smaller computation time

Chen et al. [3] used a modified Differential Evolution GA
to tackle the problem of rescheduling trains after a delay at the
St Pancras Midland Road Junction, which has 3 routes and 2
conflict points. The aim was to reschedule 24 trains in a one
hour time-window. They found that their algorithm performed
significantly better, in terms of minimising passenger delay,
than FCFS on both short and long delay test scenarios.

The above research shows the potential of EC techniques
for the scheduling and rescheduling of trains. However, in
every case, the problem considered is a static one. In the real
world, the rescheduling of trains after a perturbation does not
exist in an isolated bubble; while trains are waiting to be re-
scheduled at the junction more trains could be arriving, and
their arrival will change the nature of the problem over time.

III. THE DYNAMIC RAILWAY JUNCTION RESCHEDULING
PROBLEM

A. The Description of the Problem

The DRJRP under consideration is based on a static bench-
mark scenario created by Fan et al. [6]. It is concerned with
a section of track on the Derby to Birmingham line which
takes in the North Stafford and Stenson Junctions. Both the
junctions are ‘flat junctions’ in that the merging railroad tracks
require that other trains cross over in front of opposing trains
on the same level. Two trains can pass through the junction
at the same time as long as this does not cause conflict with
any other trains. In this paper, the benchmark scenario has
been extended to make it a dynamic rescheduling problem by
introducing more timetabled trains while the original trains
are waiting to be rescheduled at the junction. The perturbation
to the system is based on the second of Fan et al.’s delay
scenarios [6]. Figure 1 shows a diagram of the static junction
with the perturbation. In this scenario, the disruption is caused
by train 1 being delayed by 5 minutes, which means train 7
arrives before it on track A.

Fig. 1. The junction before a dynamic change.

Fig. 2. The junction after a dynamic change.

Figure 2 shows the junction after a dynamic change. Trains
7 and 8 have passed through the junction, but more timetabled
trains have arrived while the remainder of the trains are waiting
to be rescheduled. Train 13 has arrived on route A while train
14 has arrived on route C. The problem has changed as there
is now a different combination of trains to sequence through
the junction.

Each train has a delay penalty associated with it, which is
the cost in pounds sterling per minute that a train company
has to pay if the train is delayed. This is the same objective
used by Fan et al. [6]. The aim is to find the best order of
trains to pass through the junction that minimises the overall
cost of the delay.

B. The Stenson Junction Train Simulator

Any optimisation algorithm requires a means to test the
effectiveness of its solutions in terms of the problem objective.
In order to achieve this, a train simulator has been developed,
which allows the trains in each train sequencing solution to be
run through the simulator to obtain the total delay penalty for
that order of trains.

As in the original benchmark scenario used in [6], it is



assumed that the junction is clear at the start of the simulation
and that each train begins at set distance from the junction.
However, in contrast to Fan et al.’s simulator, which used a
moving block technology, this simulator uses an automatic
fixed block technology to prevent trains from overtaking or
running into each other. The moving block technology assumes
a safe distance is calculated around each moving train by an
area computer which knows the location of all other trains
in the area, whereas our automatic block technology works by
preventing trains from entering track sections already occupied
by other trains. Modelling the junctions using the automatic
block technology is an attempt to make the simulation of the
junctions as realistic as possible; the moving block technol-
ogy has limited implementation in the UK railway network
although it is in use on a few lines, such as the Docklands
Light Railway in London [1].

The resolution of conflict at each junction is modelled by
a simulated interlocking system. This prevents a train from
entering the junction unless it is safe to do so and is necessary
because trains on some routes cross the path of trains on other
routes. For example, an examination of Fig. 1 reveals that if
train 1 is moving through the junction from A to D it will
block all trains on tracks C and B. However, it has no effect
on trains travelling from D to A.

Two assumptions have been made when creating the sim-
ulator. The first is that trains are not allowed to enter the
junction unless both the whole junction and the track section
after the junction is clear. This prevents trains from sitting
on the track section between the two junctions and causing
gridlock. The second is that, to allow the trains to start at
the specified distances from the junction, some of the track
sections are very short. This means that in some cases the
track sections are too short for a train travelling at maximum
speed to have enough room to slow down in time if the next
track section is blocked. Therefore, maximum speed limits on
the short track sections are imposed which give enough time
for the train with the smallest braking force to slow down in
the distance available. The maximum speed limit through the
actual junction is restricted to 64km/h as specified in [6].

Each ‘tick’, or movement of trains in the simulator, repre-
sents one second of time. The speed of the train at each time
step is calculated using the Improved Euler Integration, also
called Heun’s Method. This allows the current acceleration
and an estimate of the future acceleration to be combined to
find the current speed of the train. Using this method allows
for non-constant acceleration. The acceleration of a train at
time t is calculated using Netwton’s Second Law of Motion
(F = ma) and the power and resistance tables supplied by
Kirkwood and Roberts [12], based on RailSys data. RailSys is
used by Network Rail as a simulation tool [19]. Deceleration
is a constant maximum brake force for each type of train as
in Fan et al. [6].

As each train moves along its current track, it checks the
status of its next track section. If the next track is occupied,
the train will start to slow down when it reaches its stopping
distance from the end of the track and will continue to slow
down until it stops. If the track ahead is clear, the train will
carry on, unless the track ahead has a lower speed limit than
the current speed of the train, in which case the train will slow
down until it reaches the required speed. If not slowing down

TABLE I. THE SCHEDULED TIMETABLE FOR EACH TRAIN WITH DELAY
PENALTIES (BASED ON [6])

Train
Num-

ber
Train Type Route

Delay
Penalty
(£/min)

Sched-
uled

Arrival
1 Class 150 A to D 20 12:10
2 Class 220 D to A 40 12:12
3 Freight B to C 10 12:19
4 Class 220 D to B 40 12:15
5 Freight B to D 10 12:20
6 Class 150 D to B 20 12:19
7 Freight A to C 10 12:28
8 Class 150 C to A 20 12:22
9 Class 220 C to A 40 12:27
10 Class 220 B to C 40 12:32
11 Freight C to B 10 12:39
12 Class 150 A to D 20 12:36

or speeding up, a train will travel at its maximum speed or
the maximum speed of its current track section, whichever is
lower.

Table I shows the trains used, their routes through the
junction, the penalty for delay and their scheduled arrival
times. The delay penalties are different for each type of
train and are taken from Fan et al. [6]. The timetable was
created by running all trains in numerical order through the
simulator and recording their arrival times. This gave a base
line measurement to be able to calculate the delay of the trains
after a perturbation. Each train is one of three types: a Class
150 with a maximum running speed of 120km/h, a Class 200
with a maximum running speed of 200km/h, or a F2-mixed
freight train with a maximum running speed of 110km/h [6].
Each type of train is of a different length, the Class 150 is
80.24m long, the Class 220 is 187.4m long and the F2-Freight
train is 355m long. The length of a train as well as its speed
affects how long the train takes to clear its previous track
section. This in turn determines how quickly the following
train can move into the train’s vacated track.

Dynamism was introduced to the simulator by adding a
specified number of trains (m) at a specified time interval
(f ). The number of trains added represents the magnitude
of change, and the time interval relates to the frequency of
change. The new trains are created from the first m trains in
the original timetable. The extra trains can be thought of as an
extended timetable for the train junction and each combination
of magnitude and frequency is run through the simulator in
order to obtain the conflict-free timetable. All new trains are
placed at the stations and are not allowed onto the track until
the track section leaving the station is clear. At the point of
change, any trains that are about to move into, or have moved
into, the junction are removed by the simulator from the set
of trains that need to be passed to the algorithm.

Figure 3 shows a screen shot of the simulator. The text in
the figure has been enlarged to make it easier to see. To be
able to observe the movement of trains through the junction,
the junction track sections are on a larger scale than the
surrounding railway lines. The simulator was constructed using
C++ Visual Studio 2012 with a graphical interface created
using OpenGL. On a desktop computer with a dual core



Fig. 3. The junction simulator.

3.2GHz processor and 6GB of RAM, it takes approximately 3
seconds to evaluate one sequencing solution.

IV. ACO FOR DYNAMIC OPTIMIZATION PROBLEMS

A. Basic ACO Algorithm

ACO is an optimisation algorithm inspired by the ability
of ants to follow pheromone trails laid down by other ants
to discover food [5]. As ants move backwards and forwards
from the nest to a food source they lay down pheromones on
the ground which can be sensed by other ants. Ants choosing
the shortest path to the food source will return quicker which
ensures that the shortest path accumulates more pheromone.
Ants tend to probabilistically choose paths with the strongest
pheromone concentration which means that a path with high
pheromone levels will attract more ants and accumulate even
more pheromone. In this way, the shortest path to a food source
is marked by the strongest pheromone trail. However, if this
trail were to persist after the food source was depleted, it would
seriously hamper the ants’ ability to find food. Therefore,
pheromone trails evaporate over time to allow old decisions
to be forgotten.

To apply this principle to an optimisation problem, it has
to first be decomposed into a fully connected weighted graph
G = (V,E) where V is a set of vertexes or nodes, and E is a
set of edges or connections between the nodes. The ants move
along the edges of the graph from node to node recording the
nodes visited. This list of visited nodes, sometimes called the
ant’s tour, is one possible solution to the optimisation problem.
Pheromones are deposited on the edges of the graph by the
ants according to how good an ant’s solution is in terms of
the optimisation objective. On the next iteration, the updated
pheromone levels help to guide the ants to choose better nodes.
Pheromones can be decreased as well as increased to model
the process of evaporation which allows previous bad decisions
to be forgotten. In addition to the pheromone the edges may
also be associated with a heuristic value, which is based on
problem specific knowledge and provides additional guidance
to the ants.

Ants choose the next node probabilistically as follows:

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk
i
[τil]α[ηil]β

if j ∈ Nk
i (1)

where τij is the pheromone information and ηij is the heuristic
information, α and β are constants which determine the
relative influence of the pheromone and the heuristic values
respectively. An ant chooses the next node in this way with a
probability of 1− q0; otherwise it chooses the next best node
in terms of the pheromone and heuristic values.

B. Population-Based ACO (P-ACO)

The above algorithm, however, does not provide any mech-
anism for allowing the ants to adapt to a change in the
environment. Once the ants have converged on a solution,
the resulting loss in diversity will make it difficult for them
to adapt to a change in the problem and, in addition, the
pheromone trails laid down for the previous environment
may not provide any useful guidance to the ants in the new
environment [14]. One option is to restart the algorithm after a
change but such an action is not only computationally wasteful
but also results in the loss of information that has the potential
to be useful in the new environment.

To address this problem, Guntsch and Middendorf [9]
introduced a Population based ACO (P-ACO) algorithm. In
this algorithm, the best ant found at each iteration is stored
in a memory, called the population-list, and only the ants in
this list are used to update the pheromone levels. When the
population-list reaches its designated limit, an ant is removed
and the pheromone trail for that ant is negatively updated. This
provides a mechanism for allowing previous bad decisions to
be forgotten. To prevent the pheromone levels from building
up to a level which means that all ants follow the same path,
the amount of pheromone on each edge is bounded between a
minimum and a maximum value.

This memory of best iteration ants means that solutions
made before the change can be retained to provide valuable
information for the new environment. However, to make the
ants suitable for the new environment, they may have to
undergo a repair operation. Once repaired, the pheromone
information for the new environment can be computed from the
tours of the fittest ants created before the change, thus ensuring
that information from the previous environment can be passed
over into the new environment. Guntsch and Middendorf [9]
found P-ACO to perform better than restarting the algorithm
when the environment change was small and frequent and
comparable with restart when the change was large and slow.

C. ACO for DTSPs

There has been little work on using ACO for dynamic train
rescheduling problems. As previously mentioned, Fan et al. [6]
used ACO for the Stenson Junction benchmark problem with
promising results. However, it was a static problem.

There is a similarity between this DRJRP and a Dynamic
Travelling Salesman Problem (DTSP). A static Travelling
Salesman Problem (TSP) involves finding the shortest route
for a salesman to visit a set of cities; it can be made dynamic
by changing the number of cities [8], [14], [13], or by changing



the distances between cities [15] over time. In both the DRJRP
under investigation and the DTSP, the objective is to find the
best sequence of nodes (trains or cities) that minimises an
objective.

Several researchers have applied ACO to DTSPs [8], [14],
[13], [15]. Here, one issue is that once the ants have converged
on a solution they will still follow the same pheromone
trails after a dynamic change unless the trails are updated in
some way to take into account the new environment. Guntsch
and Middendorf [8] tackled this problem by modifying the
pheromone trails after a change, either globally or local to
the city being removed or added. However, the study involved
only the insertion or deletion of one city at a time and they
acknowledge that the results may have been different with
multiple insertions or deletions. In addition, their solution
requires knowledge of where the change has taken place
in order to identify the pheromone trails in the local area.
Mavrovouniotis and Yang [14] also applied ACO to the DTSP,
where the dynamic environment was generated by removing
half of the cities from the problem and replacing existing
cities with the removed cities. Again the number of cities in
the problem does not change overall as the number of cities
removed is the same as the number of cities replaced. They
found that an ACO algorithm, modified with a local search
scheme, performed well on this problem. This previous work
on the DTSP suggests that ACO may be applicable to the
DRJRP.

V. PROPOSED P-ACO ALGORITHM FOR THE DRJRP

A. Framework of the Proposed Algorithm

It is apparent that P-ACO has the potential for solving the
DRJRP. In this case, nodes that the ants visit represent trains
that need to be rescheduled. The resulting ant tour is the list
of trains in the order they are allowed to pass through the
junction. The issue is how to represent the problem in a way
that makes it possible for the ants to create their solutions
while taking into account the fact that if the ants are allowed
to visit any node in any order there is nothing to prevent them
from creating infeasible solutions where a train is sequenced
before the train in front of it.

To resolve this the problem was decomposed into a fully
connected, partly one-directional, weighted graph which has
the ability to prevent an ant from making an infeasible tour
(see Fig. 4). It is based on the design used by Van Der Zwaan
and Marques [18] for the job-shop scheduling problem. At any
one time, an ant only has the choice of one of the four trains
sitting on the four access points into the junction. Each row in
the matrix represents one of the tracks that leads to the junction
and is one-directional. This prevents an ant from choosing an
infeasible train, for example, train 5 before train 3. For ease
of reference, this graph will be referred to as a node matrix in
the remainder of this paper.

Node 0 represents the start node. At the beginning of each
iteration, all ants are placed on this node. They then make a
choice about which train node to choose next. After selecting a
node, the next train on that train’s track becomes visible to the
ant and is included in its next decision. After all nodes have
been selected, the ant’s tour is complete and the ant solution
is evaluated by running it through the simulator. The best ant

Fig. 4. The initial node matrix.

of the iteration is stored in memory and the pheromone is
positively updated for that ant’s tour.

In this implementation, the ants rely only on the pheromone
values to guide them while making their choices and the value
of β is set to zero. A computationally efficient and effective
problem-specific heuristic is not available. The natural choice
for a heuristic would be the delay caused by sequencing each
train. However, the delay of each train is dependent on the
sequence of trains that went before it through the junction
and is extremely difficult to establish as it changes for each
ant’s tour. An attempt was made to create an adaptive heuristic
that builds the delay values as the ants sequence the trains,
but this is extremely computationally expensive and performs
worse than using the pheromone alone. The reason for the
deterioration in performance is because the ants are unable
to distinguish between the two types of delay present in the
problem: the delay caused by the perturbation and the delay
due to sequencing the trains in a particular order. An advantage
of using only the pheromone values to guide the ants is that
it reduces the amount of problem-specific knowledge needed
to run the algorithm.

B. Ant Removal Strategy

The fact that the algorithm has a memory raises the
question of which ant to remove from the memory once it
reaches its pre-set capacity. An experiment carried out to
establish whether to remove the oldest ant (Age Strategy) or
the worst ant (Quality Strategy) from the memory revealed that
removing the worst ant gave slightly better performance over
removing the oldest ant. Figure 5 shows the delay penalty for
both the Age and Quality strategies averaged over 10 runs of
the algorithm.

This is in accordance with the research carried out by
Guntsch and Middendorf [9], who found that, in a problem
where the ants rely purely on the pheromone to guide them,
removing the worst ant solution from the memory results in
a good performance; possibly because it provides strong and
fairly consistent guidance. This strategy also ensures that the
best ant of all the iterations is retained in the memory and
provides the elitism that Guntsch and Middendorf [9] found
beneficial when running P-ACO without a heuristic. They
suggested that the elitism goes some way to providing the
guidance that is missing due to the lack of a heuristic.
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C. Repairing Memory After a Dynamic Change

To make use of the information held by the ant solutions in
memory, the ants’ tours have to be repaired. This is achieved
by removing any train in an ant’s tour that has been removed
by the train simulator because it is about to pass into, or has
passed into, the junction, and adding the new trains to the end
of the solution in the order dictated by the train timetable.
This is similar to the KeepElitist strategy used by Guntsch
and Middendorf [8] for the DTSP, where cities that are no
longer present in the environment are removed and new cities
are placed where they cause minimum increase in the distance
between cities.

D. Dynamics Implementation

Even though the trains and junctions are simulated, this
is a real-world problem and requires consideration of how it
could be implemented in a real-world delayed-train scenario.
The supposition is that after a perturbation the algorithm is run
very quickly in parallel on several computers in order to find
a solution as near optimal as possible in the time available.
Ant algorithms are very suitable for running in parallel [5]
and doing so would allow a solution to be found in a realistic
time.

The sequence of trains in the best solution is then run
through the junction until the dynamic change occurs. This
change is triggered by the arrival of more timetabled trains.
At the point of change a ‘snapshot’ is taken of the junctions
by the simulator. This records the status of the trains, track and
junction at that moment in time. The snapshot, plus the new
trains, is passed to the P-ACO algorithm, and the algorithm is
run again to find the best solution for the new environment.
In this way, the algorithm and the simulator are very loosely
coupled. The algorithm only acts on the information given to
it and does not influence the simulator in any way. This has
the advantage that both the simulator and the algorithm can be
modified independently of each other.

When the algorithm receives the updated train information,
it reconstructs the node matrix to reflect the trains in the
simulator snapshot. Any trains that have been removed from
the snapshot are also removed from the node matrix and node 0

Fig. 6. The node matrix after a dynamic change.

is reconnected to the next four trains sitting at the junction. The
new trains are added to the matrix on the row that represents
their route into the junction. This means that the number of
nodes in the matrix varies dynamically over time.

An example of the node matrix after a change is shown
in Fig. 6. Trains 7 and 8 have been removed from the matrix
as they have passed through the junction but trains 13, 14
and 15 have been placed in the node matrix on the row that
corresponds to their route into the junction.

VI. EXPERIMENTAL STUDY

An experimental study is carried out to investigate the
ability of our proposed P-ACO algorithm to solve the DRJRP.

A. Experimental Setting

The following pheromone parameters were implemented,
as recommended by Guntsch and Middendorf [9]. The max-
imum pheromone value (τmax) was set to 1, the minimum
pheromone value (τinit) was set to 1/n, where n is the number
of nodes, and the pheromone update value to (τmax− τinit)/k,
where k is the size of the memory. All pheromone levels were
initialised to τinit.

The other parameters were established by preliminary
experimentation. The best combination was found to be 12
ants with a memory size of 6 and a q0 value of 0.1. After
150 iterations, very little improvement was found to occur in
the ants’ solutions. Therefore, the algorithm was run for 150
iterations before each dynamic change.

B. Performance Measure

In an ideal world, the optimal solution would be available
in advance to allow the effectiveness of the algorithm to be
evaluated. Establishing the optimum would involve some form
of brute force algorithm. There are 369,600 feasible sequences
of 12 trains, on four routes, that can be created as possible
solutions to the static problem [6]. Each solution takes approx-
imately 3 seconds to evaluate in the simulator which means the
static problem alone would take approximately 12.83 days to
evaluate all the possible solutions to find the optimal solution.
The additional trains added in the dynamic problem would
increase the number of possible feasible solutions and would
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Fig. 7. A comparison between the performance of FCFS and P-ACO on each of the dynamic rescheduling problems for Scenario 2

give an exponential increase in the time needed to find the
optimal solutions.

For this reason, the performance of the proposed algorithm
is instead evaluated against a FCFS algorithm where trains
are assigned to the junction in the order that they arrive at
the junction. This performance measure is commonly used by
railway controllers to reschedule trains after a perturbation [4]
and has previously been used by [6] and [3] to evaluate train
rescheduling algorithms.

C. Experimental Results

Nine different dynamic environments were investigated
involving all permutations of 3 different magnitudes of change
(2 trains, 5 trains, 8 trains) and 3 different change frequencies
(5 mins, 10 mins, 15 mins). For both the P-ACO and FCFS
algorithms the total delay penalty at the point of change was
recorded. After the last dynamic change, the algorithm was
run for a further 150 iterations and the delay penalty was

recorded at the end of the iteration period. The total delay
penalty recorded did not include the delay of any trains that
had been removed from the consideration by the algorithms
because they were about to pass through or had passed through
the junction.

Thirty runs were completed for each dynamic environment
and the results averaged. Figure 7 shows the outcome for
each of the nine combinations of magnitude and frequency.
The dashed line represents the delay penalty using FCFS
while the unbroken line represents the delay penalty using P-
ACO. The vertical lines indicate the maximum and minimum
delay penalties produced by the P-ACO algorithm to give an
indication of variance. The scale of the different graphs varies
to accommodate the maximum delay penalty.

It is apparent from the results that P-ACO outperforms
FCFS in all cases where the frequency of change is high,
irrespective of the magnitude of change. However, the largest
improvement in performance is seen when the dynamic change



is not only of a high frequency but also of a high magni-
tude. For example, when 8 trains are added every 5 minutes
(Fig. 7(g)), the average delay penalty is £277.99 for P-ACO
and £781.33 for FCFS after the first change, and is £203.37
for P-ACO and £1009.67 for FCFS after the second change.
In addition, after 20 minutes of changes, the effect of the
perturbation caused by train 7 arriving before train 1 has been
mitigated by P-ACO but persists for FCFS and continues to
increase. In the case of low frequency changes (Figs. 7(c), (f)
and (i)), the difference between P-ACO and FCFS is minimal
with FCFS even showing a small improvement over P-ACO.
This may be because of the occasional stagnation observed
in the ant solutions while running the experiments. On some
runs, the ants were unable to break free of a previously found
good solution even though the solution was inferior to solutions
found during other runs of the algorithm. This can be a side
effect of updating the memory using the Quality Strategy [9].
Addressing this issue may improve the performance of the
algorithm even further.

VII. CONCLUSIONS AND FUTURE WORK

Rescheduling trains after perturbations in dynamic envi-
ronments is a challenging task. This paper investigates the
train rescheduling problem at a railway junction in dynamic
environments, i.e., the DRJRP. A simulator is developed to
simulate the DRJSP based on a real-world junction in the
UK railway network. A population based ACO algorithm is
proposed to address this DRJRP. An experimental study was
conducted to investigate the performance of the proposed P-
ACO algorithm in comparison with a FCFS scheme on a
series of DRJRP instances. The experimental results show that
the proposed P-ACO algorithm seems to provide a promising
solution to the DRJRP, especially when the changes are of high
magnitude and high frequency.

The next stage in the investigation will involve research
into effective ways to limit the stagnation behaviour occasion-
ally displayed by the ants as a result of removing the worst
solutions from memory. A possible way forwards could be to
introduce random immigrants to increase the diversity of the
ants held in memory.

In addition, more work will be carried out to investigate
other delay scenarios. It is plausible that after a larger pertur-
bation involving several trains, P-ACO may be beneficial even
when low frequency, low magnitude dynamic changes occur.

Eventually the aim is to introduce a second objective into
the DRJRP: that of maximising fuel economy. This will make
it not just a dynamic problem but a dynamic multi-objective
problem and, as many real world problems are of this type, it
would be an important step forward in using ACO to address
real-world scheduling problems.
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