
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

11

Adapting Genetic Algorithms for
Combinatorial Optimization Problems in

Dynamic Environments

Abdunnaser Younes, Shawki Areibi*, Paul Calamai and Otman Basir
University of Waterloo, *University of Guelph

Canada

1. Introduction

Combinatorial optimization problems (COPs) have a wide range of applications in
engineering, operation research, and social sciences. Moreover, as real-time information and
communication systems become increasingly available and the processing of real-time data
becomes increasingly affordable, new versions of highly dynamic real-world applications
are created. In such applications, information on the problem is not completely known a
priori, but instead is revealed to the decision maker progressively with time. Consequently,
solutions to different instances of a typical dynamic problem have to be found as time
proceeds, concurrently with the incoming information.
Given that the overwhelming majority of COPs are NP-hard, the presence of time and the
associated uncertainty in their dynamic versions increases their complexity, making their
dynamic versions even harder to solve than its static counterpart. However, environmental
changes in real life typically do not alter the problem completely but affect only some part of
the problem at a time. For example, not all vehicles break down at once, not all pre-made
assignments are cancelled, weather changes affect only parts of roads, any other events like
sickness of employees and machine breakdown do not happen concurrently. Thus, after an
environmental change, there remains some information from the past that can be used for
the future. Such problems call for a methodology to track their optimal solutions through
time. The required algorithm should not only be capable of tackling combinatorial problems
but should also be adaptive to changes in the environment.
Evolutionary Algorithms (EAs) have been successfully applied to most COPs. Moreover, the
ability of EAs to sample the search space, their ability to simultaneously manipulate a group
of solutions, and their potential for adaptability increase their potential for dynamic
problems. However, their tendency to converge prematurely in static problems and their
lack of diversity in tracking optima that shift in dynamic environments are deficiencies that
need to be addressed.
Although many real world problems can be viewed as dynamic we are interested only in
those problems where the decision maker does not have prior knowledge of the complete
problem, and hence the problem can not be solved in advance. This article presents
strategies to improve the ability of an algorithm to adapt to environmental changes, and
more importantly to improve its efficiency at finding quality solutions. The first constructed

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008,
I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

 Advances in Evolutionary Algorithms

208

model controls genetic parameters during static and dynamic phases of the environment;
and a second model uses multiple populations to improve the performance of the first
model and increases its potential for parallel implementation. Experimental results on
dynamic versions of flexible manufacturing systems (FMS) and the travelling salesman problem
(TSP) are presented to demonstrate the effectiveness of these models in improving solution
quality with limited increase in computation time.
The remainder of this article is organized as follows: Section 2 defines the dynamic problems
of interest, and gives the mathematical formulation of the TSP and FMS problems. Section 3
contains a survey of how dynamic environments are tackled by EAs. Section 4 presents
adaptive dynamic solvers that include a diversity controlling EA model and an island-based
model. The main goal of Section 5 is to demonstrate that the adaptive models presented in
this article can be applied to realistic problems by comparing the developed dynamic
solvers on the TSP and FMS benchmarks respectively.

2. Background

Dynamism in real-world problems can be attributed to several factors: Some are natural like
wear and weather conditions; some can be related to human behaviour like variation in
aptitude of different individuals, inefficiency, absence and sickness; and others are business
related, such as the addition of new orders and the cancellation of old ones.
However, the mere existence of a time dimension in a problem does not mean that the
problem is dynamic. Problems that can be solved in advance are not dynamic and not
considered in this article even though they might be time dependent.
If future demands are either known in advance or predictable with sufficient accuracy, then
the whole problem can be solved in advance.
According to Psaraftis (1995), Bianchi (1990), and Branke (2001), the following features can
be found in most real-world dynamic problems:

• Time dependency: the problem can change with time in such a way that future
instances are not completely known, yet the problem is completely known up to the
current moment without any ambiguity about past information.

• A solution that is optimal or near optimal at a certain instance may lose its quality in the
next instance, or may even become infeasible.

• The goal of the optimization algorithm is to track the shifting optima through time as
closely as possible.

• Solutions cannot be determined in advance but should be computed to the incoming
information.

• Solving the problem entails setting up a strategy that specifies how the algorithm
should react to environmental changes, e.g. to resolve the problem from scratch at every
change or to adapt some parameters of the algorithm to the changes.

• The problem is often associated with advances in information systems and
communication technologies which enable the processing of information as soon as
received. In fact, many dynamic problems have come to exist as a direct result of
advances in communication and real-time systems.

Techniques that work for static problems may therefore not be effective for dynamic
problems which require algorithms that make use of old information to find new optima
quickly.

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

209

2.1 Representative dynamic combinatorial problems
Combinatorial problems typically assume distinct structures (for example vehicle routing
versus job shop scheduling). Consequently, benchmark problems for COPs tend to be very
specific to the application at hand. The test problems used for dynamic scheduling and
sequencing with evolutionary algorithms are typical examples (Bierwirth & Kopfer 1994;
Bierwirth et al. 1995; Bierwirth & Mattfeld 1999; Lin et al. 1997; Reeves & Karatza 1993).
However, the travelling salesman problem has often been considered representative of various
combinatorial problems. In this article, we use the dynamic TSP and a dynamic FMS to
compare the performance of several dynamic solvers.

2.2 Travelling salesman problem
Although the TSP problem finds applications in science and engineering, its real importance
stems from the fact that it is typical of many COPs. Furthermore, it has often been the case
that progress on the TSP has led to progress on other COPs. The TSP is modelled to answer
the following question: if a travelling salesman wishes to visit exactly once each of a list of
cities and then return to the city from which he started his tour, what is the shortest route
the travelling salesman should take?
As an easy to describe but a hard to solve problem, the TSP has fascinated many researchers,
and some have developed time-dependent variants as dynamic benchmarks. For example,
Guntsch et al. (2001) introduced a dynamic TSP where environmental change takes place by
exchanging a number of cities from the actual problem with the same number from a spare
pool of cities. They use this problem to test an adaptive ant colony algorithm. Eyckelhof and
Snoek (2002) tested a new ants system approach on another version of the dynamic problem.
In their benchmark, they vary edge length by a constant increment/decrement to imitate the
appearance and the removal of traffic jams on roads. Younes et al. (2005) introduced a
scheme to generate a dynamic TSP in a more comprehensive way. In their benchmarks,
environmental changes take place in the form of variations in the edge length, number of
cities, and city-swap changes.

2.2.1 Mathematical formulation
There are many different formulations for the travelling salesman problem. One common
formulation is the integer programming formulation, which is given in (Rardin 1998) as
follows:

(1)

where xij= 1 if link (i; j) is part of the solution, and dij

is the distance from point i to point j.

The first set of constraints ensures that each city is visited once, and the second set of
constraints ensures that no sub-tours are formed.

www.intechopen.com

 Advances in Evolutionary Algorithms

210

2.2.2 Solution representation
In this article a possible TSP solution is represented in a straight forward manner by a
chromosome; where values of the genes are the city numbers, and the relative position of
the genes represent city order in the tour. An example of a chromosome that represents a 10
city tour is shown in Figure 1. With this simple representation, however, individuals cannot
undergo standard mutation and crossover operators.

(a) (b)

Fig. 1. Chromosome representation (a) of a 10 city tour (b) that starts and ends at city 5.

2.3 Flexible manufacturing systems
The large number of combinatorial problems associated with manufacturing optimization
(Dimopoulos & Zalzala 2000) is behind the growth in the use of intelligent techniques, such
as flexible manufacturing systems (FMS), in the manufacturing field during the last decade.
An FMS produces a variety of part types that are flexibly routed through machines instead
of the conventional straight assembly-line routing (Chen & Ho 2002). The flexibility
associated with this system enables it to cope with unforeseen events such as machine
failures, erratic demands, and changes in product mix.
A typical FMS is a production system that consists of a heterogeneous group of numerically
controlled machines (machines, robots, and computers) connected through an automated
guided vehicle system. Each machine can perform a specific set of operations that may
intersect with operation sets of the other machines. Production planning and scheduling is
more complicated in an FMS than it is in traditional manufacturing (Wang et al. 2005). One
source of additional complexity is associated with machine-operation versatility, since each
machine can perform different operations and an operation can be performed on different
alternative machines. Another source of complexity is associated with unexpected events,
such as machine breakdown, change of demand, or introduction of new products. A
fundamental goal that is gaining importance is the ability to handle such unforeseen events.
To illustrate the kind of FMS we are focusing on, we give the following example.

2.3.1 Example
A simple flexible manufacturing system consists of three machines, M1, M2 and M3. The
three respective sets of operations for these machines are {O1, O6}, {O1, O2, O5}, and {O4,O6},
where Oi denotes operation i. This system is to be used to process three part types P1, P2, and
P3, each of which requires a set of operations, respectively, given as {O1, O4, O6}, {O1, O2, O5,
O6}, and {O4, O6}. There are several processing choices for this setting; here are two of them:
Choice (a) For part P1: (O1 →M2; O4 →M3; O6 →M3); i.e, assign machine M2 to perform
operation O1, and assign M3 to process O4 and O6. For part P2: (O1 →M1; O2 →M2; O5 →M2; O6

→M1). For part P3: (O4 →M3; O6 →M3).
Choice (b) For part P1: (O1 →M2; O4 →M3; O6 →M1). For part P2: (O1 →M1; O2 →M2; O5 →M2;
O6 →M3). For part P3: (O4 →M3; O6 →M1).

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

211

By comparing both choices, one notices that the first solution tends to minimize the transfer

of parts between machines. On the other hand the second solution is biased towards

balancing the operations on the machines. However, we need to consider both objectives at

the same time, which may not be easy since the objectives are conflicting.

2.3.2 Mathematical formulation
The assignment problem considered in this section is given in Younes et al. (2002) using the
following notations:
i,l are machine indices (i,l = 1,2,3,...,nm);
j is part index (j = 1,2,3,...,np);

k̂ j is processing choice for part j (j = 1,2,3,....,np);

kj is the number of processing choices of Pj ;

n i j ˆ
j

k is the number of necessary operations required by Pj on Mi in processing choice k̂ j,

1 ≤ k̂ j ≤ kj

t i j ˆ
j

k is the work-load of machine Mi to process part Pj in processing choice k̂ j;

Using this notation, the three objective functions of the problem (f1, f2, and f3) are given as
follows:
1. Minimization of part transfer (by minimizing the number of machines required to

process each part):

(2)

2. Load Balancing by minimizing the cardinality distance (measured in number of
operations) between the workload of any pair of machines:

(3)

3. Minimization of the number of necessary operations required from each machine over
the possible processing choices:

(4)

An overall multi-objective mathematical model of FMS can then be formulated as follows:

Optimize(f1, f2, f3)

www.intechopen.com

 Advances in Evolutionary Algorithms

212

s.t.

The first set of constraints ensures that only one processing choice can be selected for each
part. The complexity and the specifics of the problem require revising several components
of the conventional evolutionary algorithm to obtain an effective implementation on the
FMS problem. In particular, we need to devise problem-oriented methods for encoding
solutions, crossover, fitness assignment, and constraint handling.

2.3.3 Solution representation
An individual solution is represented by a series of operations for all parts involved. Each
gene in the chromosome represents a machine type that can possibly process a specific
operation. Figure 2 illustrates a chromosome representation of a possible solution to the
example given in Section 2.3.1. The advantages of this representation scheme are the
simplicity and the capability of undergoing standard operators without producing infeasible
solutions (as long as parent solutions are feasible).

(a) (b)

Fig. 2. Chromosome representation. A schematic diagram of the possible choice of part
routing in (a) is represented by the chromosome in (b)

3. Techniques for dynamic environments

The limitation on computation time imposed on dynamic problems calls for algorithms that
adapt quickly to environmental changes. We discuss some of the techniques that have been
used to enhance the performance of the standard genetic algorithm (GA) in dynamic
environments in the following paragraphs (we direct the interested reader to Jin and Branke
(2005) for an extensive survey).

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

213

3.1 Restart
The most straightforward approach to increase diversity of a GA search is to restart the
algorithm completely by reinitializing the population after each environmental change.
However, any information gained in the past search will be discarded with the old
population after every environmental change. Thus, if changes in the problem are frequent,
this time consuming method will likely produce results of low quality. Furthermore,
successive instances in the typical dynamic problem do not differ completely from each
other. Hence, some researchers use partial restart: Rather than reinitializing the entire
population randomly, a fraction of the new population is seeded with old solutions (Louis
and Xu 1996; Louis and Johnson 1997). It should be noted here that for environmental
changes that affect the problem constraints, old solutions may become infeasible and hence
not be directly reusable. However, repairing infeasible solutions can be an effective
approach that leads to suboptimal solutions.

3.2 Adapting genetic parameters
Many researchers have explored the use of adaptive genetic operators in stationary
environments (see Eiben et al. (1999) for an extensive survey of parameter control in
evolutionary algorithms). In fact, the general view today is that there is no fixed set of
parameters that remain optimal throughout the search process even for a static problem.
With variable parameters (self adapting or otherwise) finding some success on static
problems, it would be natural to investigate them on dynamic problems.
Cobb (1990) proposed hyper-mutation to track optima in continuously-changing
environments, by increasing the mutation rate drastically when the quality of the best
individuals deteriorates. Grefenstette (1992) proposed random immigrants to increase the
population diversity by replacing a fraction of the population at every generation.
Grefenstette (1999) compared genetically-controlled mutation with fixed mutation and hyper-
mutation, and reported that genetically controlled mutation performed slightly worse than
the hypermutation whereas fixed mutation produced the worst results.

3.3 Memory
When the problem exhibits periodic behaviour, old solutions might be used to bias the
search in their vicinity and reduce computational time. Ng & Wong (1995) and Lewis et al.
(1998) are among the first who used memory-based approaches in dynamic problems.
However, if used at all, memory should be used with care as it may have the negative effect
of misleading the GA and preventing it from exploring new promising regions (Branke
1999). This should be expected in dynamic environments where information stored in
memory becomes more and more obsolete as time proceeds.

3.4 Multiple population genetic algorithms
The inherent parallel structure of GAs makes them ideal candidates for parallelization. Since
the GA modules work on the individuals of the population independently, it is
straightforward to parallelize several aspects of a GA including the creation of initial
populations, individual evaluation, crossover, and mutation. Communication between the
processors will be needed only in the selection module since individuals are selected
according to global information distributed among all the processors.
Island genetic algorithms (IGA) (Tanese 1989; Whitley & Starkweather 1990) alleviate the
communication load, and lead to better solution quality at the expense of slightly slower

www.intechopen.com

 Advances in Evolutionary Algorithms

214

convergence. They have showed a speedup in computation time. Even when an IGA was
implemented in a serial manner (i.e., using a single processor), it was faster than the
standard GA in reaching the same solutions.
Several multi-population implementations were specifically developed for dynamic
environments, for example the shifting balance genetic algorithm (SBGA) by Wineberg and
Oppacher (2000); the multinational genetic algorithm (MGA) by Ursem (2000); and the self-
organizing scouts (SOS) by Branke et al. (2000).
In SBGA there is a single large core population that contains the best found individual, and
several small colony populations that keep searching for new optima. The main function of
the core population is to track the shifting optimal solution. The colonies update the core
population by sending immigrants from time to time.
The SOS approach adopts an opposite approach to SBGA by allocating the task of searching
for new optima to the base (main) population and the tracking to the scout (satellite)
populations. The idea in SOS is that once a peak is discovered there is no need to have many
individuals around it; a fraction of the base population is sufficient to perform the task of
tracking that particular peak over time. By keeping one large base population, SOS behaves
more like a standard GA—rather than an IGA—since the main search is allocated to one
population. This suggests that the method will be more effective when the environment is
dynamic (many different optima arise through time) and hence the use of scouts will be
warranted. SOS is more adaptive than SBGA, which basically maintains only one good
solution in its base.
MGA uses several populations of comparable sizes, each containing one good individual
(the peak of the neighbourhood). MGA is also self-organizing since it structures the
population into subpopulations using an interesting procedure called hill-valley detection,
which causes the immigration of an individual that is not located on the same peak with the
rest of its population and the merging of two populations that represent the same peak. The
main disadvantage of MGA is the frequent evaluations done for valley detection.

3.5 Adapting search to population diversity
There is a growing trend of using population diversity to guide evolutionary algorithms.
Zhu (2003) presents a diversity-controlling adaptive genetic algorithm (DCAGA) for the vehicle
routing problem. In this model, the population diversity is maintained at pre-defined levels
by adapting rates of GA operators to the problem dynamics. However, it may be difficult to
set a single value as a target as there is no agreed upon accurate measure for diversity
(Burke et al. 2004). Moreover, the contemporary notion that the best set of genetic
parameters changes during the run can be used to reason that the value of the best (target)
diversity also changes during the run.
Ursem (2002) proposes diversity-guided evolutionary algorithms (DGEA) which measures
population diversity as the sum of distances to an average point and uses it to alter the
search between an exploration phase and an exploitation phase. Riget & Vesterstroem (2002)
use a similar approach but with particle swarm optimization. However, the limitation on
runtime in dynamic problems may not permit alternate phases.

4. Efficient solvers for dynamic COPs

From the foregoing discussion, techniques based on parameter adaptation and multiple
populations seem to be the most promising for tackling dynamic optimization problems.

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

215

These techniques, however, were designed for either static problems or dynamic continuous
optimization problems, thus none can be used without modification for dynamic COPs. This
section introduces two models that are specifically designed for dynamic COPs: the first
model uses measured population diversity to control the search process, and the second
model extends the first model using multiple populations.

4.1 Adaptive diversity model
The adaptive diversity model (ADM) is comparable in many ways to other diversity controlled
models. ADM, like DCAGA, controls the genetic parameters. However, unlike DCAGA
ADM controls the parameter during environmental changes, and without specifying a
single target for diversity. ADM, like DGEA, uses two diversity limits to control the search
process, however, it does not reduce the search to the distinct pure exploitation and pure
exploration phases, and it does not rely on the continuity of chromosome representation.
In deciding on the best measure for population diversity, it is important to keep in mind that
the purpose of measuring diversity is to assess the explorative state of the search process to
update the algorithm parameters, rather than precisely determining variety in the
population as a goal in itself. For this goal, diversity measures that are based on genotopic
distances are convenient since genetic operators act directly on genotype.
Costs of computing diversity of a population of size n can be reduced by a factor of n by
using an average point to represent the whole population. However, arithmetic averages
can be used only with real-valued representations. Moreover, an arithmetic average does
not reflect the convergence point of a population, since evolutionary algorithms are
designed to converge around the population-best. Hence, it is more appropriate to measure
the population diversity in terms of distances from the population-best rather than distances
from an average point. By reserving individual vn for the population-best, the aggregated
genotypic measure (d) of the population can be expressed as

(5)

Considering the mutation operator for a start, ADM can be described as follows. When an
environmental change is detected (at t = tm), the mutation rate is set to an upper limit μ .

While the environment is static (tm ≤ t < tm+1), population diversity d(t) is continually
measured and compared to two reference values, an upper limit dh and a lower limit dl, and

the mutation rate μ (t) is adjusted using the following scheme:

(6)

The formula for adaptive crossover rate Â(t) is similar to that of mutation. However, since
high selection pressures reduce population diversity the selection probability s(t) is adapted
in an opposite manner to that used for mutation in Equation 6, as follows:

www.intechopen.com

 Advances in Evolutionary Algorithms

216

(7)

where s and s are the lower and the upper limits of selection probability respectively; and

Zl, and Zh are as given earlier in the mutation formula 6.
Figure 3 illustrates the general principle of the ADM, and how it drives genetic parameters
toward exploration or exploiting in response to measured diversity. In this figure, P can be

the value of any of the controlled genetic parameters μ, χ or s. Pr corresponds to maximum

exploration values; i.e., μ , χ or s, whereas Pt corresponds to maximum exploitation values

(μ , χ , or s).

The pseudo code for a dynamic solver using ADM can be obtained from Figure 5, by setting
the number of islands to one and cancelling the call to PerformMigration().

Fig. 3. Diversity range is divided into five regions.

Low diversity maps the genetic parameter into a more explorative value (e.g., P1) and high
diversity maps it into a less explorative value (e.g., P2). Diversity values between dl and dh do
not change the current values of the genetic parameters (the parameter is mapped into its
original value P0). The farther the diversity is from the unbiased range, the more change to
the genetic parameter. Diversity in the asymptotic regions maps the parameter into one of
its extreme values (Pmax.exploration or Pmax.exploitation) .

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

217

4.2 Adaptive island model
The adaptive island model (AIM) shares many features with other multiple population
evolutionary algorithms that have been mentioned previously. However, unlike SBGA and
SOS, AIM uses a fixed number of equal-size islands. In addition, no specific island is given
the role of base or core island in AIM: the island that contains population-best is considered
the current base island. AIM maintains several good solutions at any time, each of which is
the center of an island. Accordingly, all islands participate in exploring the search space and
at the same time exploit good individuals. AIM is more like MGA, but still does not rely on
the continuity nature of the variables to guide the search process. As well, AIM uses
diversity-controlled genetic operators, in a way similar to that of ADM.
AIM extends the function of ADM to control a number of islands. Thus, two measures of
diversity are used to guide the search: an island diversity measure and a population
diversity measure. Island diversity is measured as the sum of distances from individuals in
the island to the island-best, and population diversity is measured as the sum of the
distances from each island best to the best individual in all islands.
Each island is basically a small population of individuals close to each other. It evolves
under the control of its own diversity independently from other islands. The best individual
in the island is used as an aggregate point for measuring island diversity and as a
representative of the island in measuring inter-island diversity (or simply population
diversity).
With the islands charged with maintaining population diversity, the algorithm becomes less
reliant on the usual (destructive) high rates of mutation. Furthermore, mutation now is
required to maintain diversity within individual islands (not within entire population), thus
lower rates of mutation are needed. Therefore, mutation rate in AIM, though still diversity
dependent, has a lower upper limit.
In order to avoid premature convergence due to islands being isolated from each other,
individuals are forced to migrate from one island to another at pre-defined intervals in a
ring-like scheme, as illustrated in Figure 4. This scheme helps impart new genetic material to
destination islands and increase survival probability of high fitness individuals.

Fig. 4. Ring migration scheme, with the best individuals migrating among islands

On the global level, AIM is required to keep islands in different parts of the search space.
This requirement is achieved by measuring inter-island diversity before migration and by
mutating duplicate islands. If two islands are found very close to each other, one of them is

www.intechopen.com

 Advances in Evolutionary Algorithms

218

considered a duplicate, and consequently its individuals are mutated to cover a different
region of the search space. Elite solutions consisting of the best individual from each island
are retained throughout the isolation period. During migration, elite solutions are not lost
since best individuals are forced to migrate to new islands.
At environmental changes, each island is re-evaluated and its genetic parameters are reset to
their respective maximum exploration limits. During quiescent phases of the environment,
genetic parameters are changed in response to individual island diversity measures. A
pseudo code for AIM is given in Figure 5.

Fig. 5. Pseudo code for AIM. The model can be reduced to ADM by setting the number of
islands to one, and cancelling the call to PerformMigration().

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

219

5. Empirical study and analysis

The main purpose of this section is to demonstrate the applicability of the adaptive models
to realistic problems. First, this section describes the performance measure and the strategies
under comparison. Benchmarks and modes of dynamics are then given for each problem
together with the results of comparison. Statistical analysis of the significance of the
comparisons is given in an appendix at the end of this article.

5.1 Standard strategies and measures of performance
The dynamic test problems are used to compare the proposed techniques against three
standard models: a fixed model (FM) that uses a GA with fixed operator rates and does not
apply any specific measures to tackle dynamism in the problem, a restart model (RM) that
randomly re-generates the population at each environmental change, and a random
immigrants model (RIM) that replaces a fraction (10%) of the population with random
immigrants (randomly generated individuals) at each environmental change.
Since the problems considered in this article are minimization of cost functions, the related
performance measures are directly based on the solution cost rather than on the fitness.
First, a mean best of generation (MBG) is defined after G generations of the rth run as:

(8)

where e θ
r is the cost associated with the individual evaluated at time step θ and run r, tg is

the time step at which generation g started, and ˆ
g
c is the optimal cost (or the best known

cost) to the problem instance at generation g. The algorithm’s performance on the
benchmark over R runs can then be abstracted as

(9)

With these definitions, smaller values of the performance measure indicate improved
performance. Moreover, since MBG is measured relative to the value of the best solutions
found during benchmark construction, it will in general exceed unity. Less than unity
values, if encountered, indicate superior performance of the corresponding model in that the
dynamic solver with limited (time per instance) budget outperforms a static solver with
virtually unlimited budget.

5.2 Algorithm parameter settings
In all tested models, the underlying GA is generational with tournament selection in which
selection pressure can be altered by changing a selection probability parameter. A
population of fifty individuals is used throughout. The population is divided into five
islands in the AIM model (i.e., ten individuals per island).
The FM, RM and RIM models use a crossover rate of 0.9 and a selection probability of 1.0.
The mutation rate is set to the inverse of the chromosome length (Reeves & Rowe 2002). For
the ADM and AIM models, the previous values represent the exploitation limits of their

www.intechopen.com

 Advances in Evolutionary Algorithms

220

corresponding operators, with the exploration limits being 1.0 for crossover, 0.9 for
selection, and twice the exploitation limit for mutation.
For TSP, edge crossover (Whitley et al. 1991) and pair-wise node swap mutation are used

throughout. The mutation operator sweeps down the list of bits in the chromosome,

swapping each with a randomly selected bit if a probability test is passed.

For FMS, a simple single-point crossover operator and a standard mutation operator are

used throughout (Younes et al. 2002).

5.3 TSP experimentation
5.3.1 TSP benchmark problems
Static problems of sizes comparable to those reported in the literature (Guntsch et al. 2001;

Eyckelhof & Snoek 2002) are used in the comparative experiments of this section. These

problems are given in the TSP library (Reinelt 1991) as berlin52, kroA100, and pcb442. In this

article they are referred to as be52, k100, and p442 respectively. Dynamic versions are

constructed from these problems in three ways (modes): an edge change mode (ECM), an

insert/delete mode (IDM) and a vertex swap mode (VSM).

Edge change mode The ECM mode reflects one of the real-world scenarios, a traffic jam.
Here, the distance between the cities is viewed as a time period or cost that may
change over time, hence the introduction and the removal of a traffic jam,
respectively, can be simulated by the increase or decrease in the distance between
cities. The change step of the traffic jam is the increase in the cost of a single edge.
The strategy is as follows: If the edge cost is to be increased then that edge should
be selected from the best tour. However, if the cost were to be reduced then the
selected edge should not be part of the best tour.
The BG starts from one known instance and solves it to find the best or the near
best tour. An edge is then selected randomly from the best tour, and its cost is
increased by a user defined factor creating a new instance which will likely have a
different best tour.

Insert/delete mode The IDM mode reflects the addition and deletion of new assignments
(cities). This mode works in a manner similar to the ECM mode. The step of the
change in this mode is the addition or the deletion of a single city. This mode
generates the most difficult problems to solve dynamically since they require
variable chromosome length to reflect the increase or decrease in the number of
cities from one instance to the next.

Vertex swap mode The VSM mode is another way to create a dynamic TSP by
interchanging city locations. This mode offers a simple, quick and easy way to test
and analyze the dynamic algorithm. The locations of two randomly selected cities
are interchanged; this does not change the length of the optimal tour but does
change the solution (this is analogous to shifting the independent variable(s) of a
continuous function by a predetermined amount). The change step (the smallest
possible change) in this mode is an interchange of costs between a pair of cities; this
can be very large in comparison with the change steps of the previous two modes.

In the experiments conducted, each benchmark problem is created from an initial sequence

of 1000 static problems inter-separated by single elementary steps. Depending on the

specified severity, a number of intermediate static problems will be skipped to construct one

test problem.

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

221

Each sequence of static problems is translated into 21 dynamic test problems by combining
seven degrees of severity (1, 5, 10, 15, 20, 25 steps per shift, and random) and three periods
of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100
generations per shift based on a population of 50 individuals).

5.3.2 TSP results
Experimental results on the dynamic k100 problem in the VSM mode under three different
periods of change are given in Figure 6, where the mean best of generation (averaged over
ten runs) is plotted against severity of change. The ADM and AIM models outperform the
other models in almost all cases. The other three models give comparable results to each
other in general, with differences in solution quality tending to decrease as the severity of
change increases. Only when the change severity is 10 steps per shift or more, may the other
models give slightly better performance than ADM and AIM. Keep in mind that in this 100
vertex problem, a severity of 10 in the VSM mode amounts to changing (4 × 10) edges; that
is, about 40% of the edges in an individual are replaced, which constitutes a substantial
amount of change. As we are interested in small environmental changes (which are the
norm in practice), we can safely conclude that the experiments attest to the superiority of the
ADM and AIM over the other three models in the range of change of interest.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 6. Comparison of evolutionary models (k100 VSM)

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 7. Comparison of evolutionary models (k100 ECM)

Running the benchmark generator in either the ECM mode or the IDM mode gives similar
results as illustrated in Figure 7 and Figure 8 respectively. It can be seen that ADM and AIM
outperform the other models in most considered dynamics.
The RM model produces the worst results in all conducted experiments (even though this
model has been modified to retain the best solution in the hope of obtaining better results
than those obtainable using a conventional restart).

www.intechopen.com

 Advances in Evolutionary Algorithms

222

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 8. Comparison of evolutionary models (k100 IDM)

It is not easy to conclude from previous results the superiority of either model (ADM or
AIM), since both give very comparable results in almost all cases. However, when more
than one processor can be used, AIM is the best of the two models since it can be easily
parallelized by allocating different islands to different processors and consequently reduce
computation time drastically.

5.4 FMS experimentation
5.4.1 FMS benchmark problems
Four instances of sizes comparable to those used in the literature (Younes et al. 2002) are
used in the comparative experiments of this section.
Three of these instances (20 agents, 200 jobs), (20 agents, 100 jobs) and (10 agents, 100 jobs)
were used in Chu and Beasley (1997). The data describing these problems can be found in
the gapd file in the OR-library (Beasley 1990). In this article they are referred to as gap1, gap2,
and gap3 respectively. As described in Chen & Ho (2002), agents are considered as
machines, jobs are considered as operations, and each part is assumed to consist of five
operations. In these instances, a machine is assumed capable of performing all the required
operations. However, in general machines may have limited capabilities; that is, each
machine can perform a specific set of operations that may or may not overlap with those of
the other machines. To enable this feature, a machine-operation incidence matrix is
generated for each instance as follows: If the cost of allocating a job to an agent is below a
certain level, the corresponding entry in the new incidence matrix is equal to one to indicate
that the machine is capable of performing the corresponding operation. Alternatively, if the
cost is above this level, the corresponding entry in the incidence matrix is zero to indicate
that the job is not applicable to the machine. The final lists that associate parts with
operations and machines with operations are used to construct the dynamic problems.
The fourth problem instance is randomly generated. It was specifically designed and used to
test FMS systems with overlapping capabilities in Younes et al. (2002). This instance consists
of 11 machines, 20 parts, and 9 operations. In this article, it is referred to as rnd1.
In terms of the number of part operations (chromosome length) and the number of machines
(alleles), the dimensions of these problems are 200×20, 100×20, 100×10,and 62×11 for gap1,
gap2, gap3, and rnd1 respectively.
Dynamic problems are constructed from these instances in three ways (modes): a machine
delete mode (MDM), a part add mode (PAM), and a machine swap mode (MSM).
Machine delete mode The MDM mode reflects the real-world scenarios in which a machine

suddenly breaks down. The change step of this mode is the deletion of a single
machine.

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

223

Part add mode The PAM mode reflects the addition and deletion of new assignments
(parts). The step of change in this mode is the addition or the deletion of a single
part. This mode requires variable representation to reflect the increase or decrease
in the number of operations associated with the changing parts.

Machine swap mode The MSM mode is a direct application of the mapping-based

benchmark generation scheme (Younes et al. 2005). By interchanging machine
labels, a dynamic FMS can be generated easily and quickly. The change step in this
mode is an interchange of a single pair of machines. As a mapping change scheme,
this mode does not require computing a new solution after each change. We only
need to swap the machines of the current optimal solution to determine the
optimum of the next instance.

In the current experimentation, each benchmark problem is created from an initial sequence
of 100 static problems inter-separated by single elementary steps. Depending on the
specified severity, a number of intermediate static problems will be skipped to construct one
test problem.
Each sequence of static problems is translated into 18 dynamic test problems by combining
seven degrees of severity (1, 2, 3, 5, 10 steps per shift, and random) and three periods of
change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50, and 100
generations per shift based on a population of 50 individuals).

5.4.2 FMS results
Experiments were conducted on the rnd1, gap1, gap2, and gap3 problems in the three

modes of environmental change. In this section, we focus on the gap1 problem, the largest

and presumably the hardest, and on the rnd1 problem, the most distinct. Results of

comparisons in the MSM mode are shown in Figure 9, where the average MBG (over ten

runs) is plotted against different values of severity. First, we notice that results of the RM

model are inferior to those of the other models when the change severity is small. As

severity increases, RM results become comparatively better, and at extreme severities RM

outperforms the other models. This trend is consistent over different periods of

environmental change confirming our notion that restart strategies are best used when the

problem changes completely; i.e., when no benefits are expected from re-using old

information.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 9. Comparison of evolutionary models (rnd1 MSM)

Starting with the ten generation period, we notice that models that reuse old information (all

models except for RM) give comparable performance. However, as the period of change

www.intechopen.com

 Advances in Evolutionary Algorithms

224

increases, differences between their performance become more apparent. This trend can be

explained as follows: when the environmental change is fast, the models do not have

sufficient time to converge, and hence they give nearly the same results. When allowed

more time, the models start to converge, and those using the best approach to persevere

after obsolete convergence produce the best results. The AIM model clearly stands out as the

best model.

Comparing the five models on the PAM and MDM modes confirms the results obtained on

the MSM mode. The inferiority of the RM model and the superiority of the AIM model

persist, as can be seen in Figure 10 and Figure 11.

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 10. Comparison of evolutionary models (rnd1 PAM)

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 11. Comparison of evolutionary models (rnd1 MDM)

The inferior performance of the RM model is more apparent in the other, large, test

problems: the performance of the RM model is consistently poor across the problem

dynamics whereas the performance of the other models deteriorates as the severity of

environmental change increases. Figure 12 shows the case of gap1 in the MSM mode (other

modes show similar behaviour). Comparing the gap1 results to those of rnd1, the apparent

deterioration of RM (relative to the other models) in the case of gap1 can be explained by

examining change severity. Although values of severity are numerically the same in both

cases, relative to problem size they are different, since gap1 is larger than rnd1. In other

words, the severity range used in the experiments on gap1 is virtually less than that used on

rnd1.

In summary, we can conclude that AIM is the best of the five models, as illustrated clearly in

the rnd1 experiments. For other problems in which AIM seems to produce comparable

results to those of the other models, we can still opt for the AIM model as it offers the

additional advantage of being easy to parallelize, as mentioned in the TSP results section.

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

225

Period = 10 generations Period = 50 generations Period = 100 generations

Fig. 12. Comparison of evolutionary models (gap1 MSM)

6. Conclusions and future work

The island based model proves to be effective under different dynamics. Although statistical
analysis suggest that these benefits are not significant under some problem dynamics, this
model can be more rewarding if several processors are employed. With each island
allocated to a different processor, the per processor computational costs are reduced
significantly.
The problem of parameter tuning is aggravated with dynamic environments, as a result of
the increased problem complexity and the increased number of algorithm parameters;
however, by using diversity to control the EA parameters, the models developed in this
article had significantly reduced tuning efforts.
There are several ways in which the developed models can be applied and improved:

• The effectiveness of the developed methods on the TSP and FMS problems encourages
their application to other problems, such as intelligent transportation systems, engine
parameter control, scheduling of airline maintenance, and dynamic network routing.

• Diversity controlled models can use operator-specific diversity measures so that each
operator is controlled by its respective diversity measure, i.e., based on algorithmic
distance. Future work that is worth exploring involves using adaptive limits of
diversity for the models presented in this article.

7. Appendix. Statistical analysis

Statistical t-tests that are used to compare the means of two samples can be used to compare

the performance of two algorithms. The typical t-test is performed to build a confidence

interval that is used to either accept or reject a null hypothesis that both sample means are

equal. In applying this test to compare the performance of two algorithms, the measures of

performance are treated as sample means, the required replicates of each sample mean are

obtained by performing several independent runs of each algorithm, and the null

hypothesis is that there is no significant difference in the performance of both algorithms.

However, when more than two samples are compared, the probability of multiple t-tests

incorrectly finding a significant difference between a pair of samples increases with the

number of comparisons. Analysis of variance (ANOVA) overcomes this problem by testing

the samples as a whole for significant differences. Therefore, in this article, ANOVA is

performed to test the hypothesis that measures of performance of all the models under

considerations are equal. Then, a multiple post ANOVA comparison test, known as Tukey’s

www.intechopen.com

 Advances in Evolutionary Algorithms

226

test, is carried out to produce 95% confidence intervals for the difference in the mean best of

generation of each pair of models.

Statistical results reported here are obtained using a significance level of 5% to construct
95% confidence intervals on the difference in the mean best of generation. Tables in this
section summarize the statistical computations of the results reported in Section 5: Table 1,
Table 2, and Table 3 are for TSP K100 problem in the three modes of change (respectively,
ECM, IDM, and VSM); Table 4 and Table 5 are for the FMS rnd1 and gap1 problems in the
MSM mode.

Table 1. Multiple comparison test of evolutionary models (k100-VSM)

Table 2. Multiple comparison test of evolutionary models (k100-ECM)

Table 3. Multiple comparison test of evolutionary models (k100-IDM)

Each table covers the combinations of problem dynamics (periods of change and levels of

severity of change) described earlier, and an additional column for a random severity) The

entries in these tables are interpreted as follows. An entry of 1 signifies that the confidence

interval for the difference in performance measures of the corresponding pair consists

entirely of positive values, which indicates that the first model is inferior to the second

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

227

model. Conversely, an entry of -1 signifies that the confidence interval for the corresponding

pair consists entirely of negative values, which indicates that the first model is superior to

the second one. An entry of 0 indicates that there is no significant difference between the

two models.

Table 4. Multiple comparison test of evolutionary models (rnd1-MSM)

Statistical analysis confirms the arguments made on the graphical comparisons in the
previous section. As can be seen in Table 1, 2, and 3, there are significant differences
between the performance of the adaptive models (ADM and AIM) and the other three
models (FM, RM, and RIM), while there is no significant difference between ADM and AIM.
Collectively, the statistical tables confirm the graphical comparisons presented in the
previous section. As can be seen in Table 4, and 5, there are significant differences between
the performance of the RM model and all others.

Table 5. Multiple comparison test of evolutionary models (gap1-MSM)

8. References

Beasley, J. E. 1990. Or-library: distributing test problems by electronic mail. Journal of the
Operational Research Society 41(11), 1069–1072.

Bianchi, L. 1990. Notes on dynamic vehicle routing - the state of the art. Tech. Rep. idsia 05-
01, Italy.

Bierwirth, C. and Kopfer, H. 1994. Dynamic task scheduling with genetic algorithms in
manufacturing systems. Tech. rep., Department of Economics, University of
Bremen, Germany.

Bierwirth, C., Kopfer, H., Mattfeld, D. C., and Rixen, I. 1995. Genetic algorithm based
scheduling in a dynamic manufacturing environment. In Proc. of IEEE Conference on
Evolutionary Computation. IEEE Press.

www.intechopen.com

 Advances in Evolutionary Algorithms

228

Bierwirth, C. and Mattfeld, D. C. 1999. Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation 7, 1, 1–18.

Branke, J. 1999. Memory enhanced evolutionary algorithms for changing optimization
problems. In 1999 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, NJ, 1875–1882.

Branke, J. 2001. Evolutionary Optimization in Dynamic Environments. Environments. Kluwer
Academic Publishers.

Branke, J., Kaussler, T., Schmidt, C., and Schmeck, H. 2000. A multi-population approach to
dynamic optimization problaqw2 nh ems. In Adaptive Computing in Design and
Manufacturing 2000. Springer.

Burke, E. K., Gustafson, S., and Kendall, G. 2004. Diversity in genetic programming: An
analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary
Computation 8, 1, 47–62.

Chen, J.-H. and Ho, S.-Y. 2002. Multi-objective evolutionary optimization of flexible
manufacturing systems. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO2002). Morgan Koffman, New York, New York, 1260–1267.

Chu, P. C. and Beasley, J. E. 1997. A genetic algorithm for the generalised assignment
problem. Computers and Operations Research 24, 17–23.

Cobb, H. G. 1990. An investigation into the use of hypermutation as an adaptive operator in
genetic algorithms having continuous, time-dependent nonstationary
environments. Tech. Rep. 6760 (NLR Memorandum), Navy Center for Applied
Research in Artificial Intelligence,Washington, D.C.

Dimopoulos, C. and Zalzala, A. 2000. Recent developments in evolutionary computation for
manufacturing optimization: Problems, solutions, and comparisons. IEE
Transactions on Evolutionary Computation 4, 2, 93–113.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. 1999. Parameter control in evolutionary
algorithms. IEEE Trans. on Evolutionary Computation 3, 2, 124–141.

Eyckelhof, C. J. and Snoek, M. 2002. Ant systems for a dynamic tsp. In ANTS ’02: Proceedings
of the Third InternationalWorkshop on Ant Algorithms. Springer Verlag, London, UK,
88–99.

Grefenstette, J. J. 1992. Genetic algorithms for changing environments. In Parallel Problem
Solving from Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature,
Brussels 1992), R. M¨anner and B. Manderick, Eds. Elsevier, Amsterdam, 137–144.

Grefenstette, J. J. 1999. Evolvability in dynamic fitness landscapes: a genetic algorithm
approach. In 1999 Congress on Evolutionary Computation. IEEE Service Center,
Piscataway, NJ, 2031–2038.

Guntsch, M., Middendorf, M., and Schmeck, H. 2001. An ant colony optimization approach
to dynamic tsp. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), L. Spector, E. D. Goodman, A.Wu,W. Langdon, H.-M. Voigt, M.
Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds. Morgan
Kaufmann, San Francisco, California, USA, 860–867.

Jin, Y. and Branke, J. 2005. Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evolutionary Computation 9, 3, 303–317.

Lewis, J., Hart, E., and Ritchie, G. 1998. A comparison of dominance mechanisms and simple
mutation on non-stationary problems. In Parallel Problem Solving from Nature –

www.intechopen.com

Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments

229

PPSN V, A. E. Eiben, T. B¨ack, M. Schoenauer, and H.-P. Schwefel, Eds. Springer,
Berlin, 139–148. Lecture Notes in Computer Science 1498.

Lin, S.-C., Goodman, E. D., and Punch, W. F. 1997. A genetic algorithm approach to dynamic
job shop scheduling problems. In Seventh International Conference on Genetic
Algorithms, T. B¨ack, Ed. Morgan Kaufmann, 481–488.

Louis, S. J. and Johnson, J. 1997. Solving similar problems using genetic algorithms and case-
based memory. In Proc. of The Seventh Int. Conf. on Genetic Algorithms. Morgan
Kaufmann, San Mateo, CA, 283–290.

Louis, S. J. and Xu, Z. 1996. Genetic algorithms for open shop scheduling and rescheduling.
In ISCA 11th Int. Conf. on Computers and their Applications, M. E. Cohen and D. L.
Hudson, Eds. 99–102.

Ng, K. P. and Wong, K. C. 1995. A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In Sixth International Conference on Genetic
Algorithms. Morgan Kaufmann, 159–166.

Psaraftis, H. 1995. Dynamic vehicle routing: Status and prospects. Annals Operations Research
61, 143–164.

Rardin, R. 1998. Optimization In Operation Research. Prentice-Hall, Inc.
Reeves, C. and Karatza, H. 1993. Dynamic sequencing of a multi-processor system: a genetic

algorithm approach. In Artificial Neural Nets and Genetic Algorithms, R. F. Albrecht,
C. R. Reeves, and N. C. Steele, Eds. Springer, 491–495.

Reeves, C. R. and Rowe, J. E. 2002. Genetic Algorithms: Principles and Perspectives: A Guide to
GA Theory. Kluwer Academic Publishers, Norwell, MA, USA.

Reinelt, G. 1991. TSPLIB — a traveling salesman problem library. ORSA Journal on
Computing 3, 376 – 384.

Riget, J. and Vesterstroem, J. 2002. A diversity-guided particle swarm optimizer – the arpso.
Tanese, R. 1989. Distributed genetic algorithm. In Proc. of the Third Int. Conf. on Genetic

Algorithms, J. D. Schaffer, Ed. Morgan Kaufmann, San Mateo, CA, 434–439.
Ursem, R. K. 2000. Multinational GAs: Multimodal optimization techniques in dynamic

environments. In Proc. of the Genetic and Evolutionary Computation Conf. (GECCO-00),
D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, Eds.
Morga Kaufmann, San Francisco, CA, 19–26.

Ursem, R. K. 2002. Diversity-guided evolutionary algorithms. In Proceedings of Paralle
Problem Solving from Nature VII (PPSN-2002). Springer Verlag, 462–471.

Wang, C., Ghenniwa, H., and Shen, W. 2005. Heuristic scheduling algorithm for flexibl
manufacturing systems with partially overlapping machine capabilities. In Proc. Of
2005 IEEE International Conference on Mechatronics and Automation, IEEE Press,
Niagara Falls, Canada, 1139 1144.

Whitley, D. and Starkweather, T. 1990. Genitor ii.: a distributed geneti algorithm. J. Exp.
Theor. Artif. Intell. 2, 3, 189–214.

Whitley, D., Starkweather, T., and Shaner, D. 1991. The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In Handbook o
Genetic Algorithms, L. Davis, Ed. Van Nostrand Reinhold, New York, 350–372.

Wineberg, M. and Oppacher, F. 2000. Enhancing the ga’s ability to cope with dynamic
environments. In GECCO. 3–10.

www.intechopen.com

 Advances in Evolutionary Algorithms

230

Younes, A., Calamai, P., and Basir, O. 2005. Generalized benchmark generation for dynamic
combinatorial problems. In Genetic and Evolutionary Computation Conference
(GECCO2005) workshop program. ACM Press,Washington, D.C., USA, 25–31.

Younes, A., Ghenniwa, H., and Areibi, S. 2002. An adaptive genetic algorithm for multi
objective flexible manufacturing systems. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2002). Morgan Koffman, New York,
New York, 1241–1249.

Zhu, K. Q. 2003. A diversity-controlling adaptive genetic algorithm for the vehicle routing
problem with time windows. In ICTAI. 176–183.

www.intechopen.com

Advances in Evolutionary Algorithms

Edited by Xiong Zhihui

ISBN 978-953-7619-11-4

Hard cover, 284 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the recent trends towards massive data sets and significant computational power, combined with

evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim

of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Abdunnaser Younes, Shawki Areibi, Paul Calamai and Otman Basir (2008). Adapting Genetic Algorithms for

Combinatorial Optimization Problems in Dynamic Environments, Advances in Evolutionary Algorithms, Xiong

Zhihui (Ed.), ISBN: 978-953-7619-11-4, InTech, Available from:

http://www.intechopen.com/books/advances_in_evolutionary_algorithms/adapting_genetic_algorithms_for__co

mbinatorial_optimization_problems_in_dynamic_environments

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

