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Abstract. In recent years, there has been a growing interest in ad-
dressing dynamic optimization problems (DOPs) using evolutionary al-
gorithms (EAs). Several approaches have been developed for EAs to in-
crease the diversity of the population and enhance the performance of the
algorithm for DOPs. Among these approaches, immigrants schemes have
been found beneficial for EAs in DOPs. In this paper, random, elitism-
based, and hybrid immigrants schemes are applied to ant colony opti-
mization (ACO) for the dynamic travelling salesman problem (DTSP).
The experimental results show that random immigrants are beneficial for
ACO in fast changing environments, whereas elitism-based immigrants
are beneficial for ACO in slowly changing environments. The ACO algo-
rithm with hybrid immigrants scheme combines the merits of the random
and elitism-based immigrants schemes. Moreover, the results show that
the proposed algorithms outperform compared approaches in almost all
dynamic test cases and that immigrant schemes efficiently improve the
performance of ACO algorithms in DTSP.
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1 Introduction

Ant colony optimization (ACO) algorithms emulate the behaviour of real ant
colonies when they search for food from their nest to food sources. Ants commu-
nicate using their pheromone trails in order to complete this task as efficiently as
possible. ACO algorithms have proved to be able to solve different optimization
problems in real-world applications [2, 3]. Traditionally, researchers have been
focused on stationary optimization problems, where their environment remains
fixed during the execution of the algorithm. However, many real-world applica-
tions have dynamic environments. The problem then becomes more challenging
since the optimum needs to be tracked when dynamic changes occur [12].

Traditional ACO algorithms have been designed for stationary optimization
problems [3], and may not be sufficient anymore for DOPs. This is due to the fact
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that the pheromone trails of the previous environment will not make sense for a
new environment, after a change occurs. A simple way to address this problem
is to re-initialize the pheromone trails and consider every change as the arrival
of a new problem instance which needs to be solved from scratch. Unfortunately,
this restart strategy is computationally expensive and usually not efficient.

Recently, developing ACO algorithms for DOPs has attracted a lot of atten-
tion since they can be useful for real-world applications. Thus, more specialized
strategies have been proposed to maintain the high quality of output efficiently,
which include local and global restart strategies [8], pheromone manipulation
schemes to maintain or increase diversity [4], and memory-based approaches [6,
9]. These methods have been applied on the dynamic travelling salesman prob-
lem (DTSP) due to its importance for many real-world applications. One of the
most efficient and well-studied methods is the memory-based version of ACO,
known as the population-based ACO (P-ACO) algorithm [7]. It has a different
framework from a traditional ACO algorithm since it maintains a population list
(memory), which stores the best ant of every iteration, and is used to generate
the pheromone trails. Taking a closer look at P-ACO, we see that it has the
characteristics of a genetic algorithm (GA) [11] because of the memory. Thus,
it inherits the disadvantage of a GA when a dynamic change may affect the
individual on the genotypic level, which needs to be repaired. Often, the repair
procedure is computationally expensive.

As we have seen on many GAs, immigrants schemes are advantageous when
applied to DOPs [14, 15, 17]. Immigrants schemes enable the algorithm to main-
tain the diversity of the population to a certain level, by introducing new indi-
viduals into the current population. In this paper, we apply immigrants schemes
into P-ACO. However, instead of using a long-term memory as in P-ACO, we
use a short-term memory, where all the new ants replace the old ones to form a
new population. Later on, a percentage of the worst ants are replaced by immi-
grants. We introduce three types of immigrants, which are traditional random,
elitism-based, and hybrid immigrants. The experimental results show that immi-
grant schemes enhance the performance of ACO into DOPs. However, different
immigrants schemes are advantageous under different environmental conditions.

The rest of the paper is organized as follows. Section 2 describes the standard
ACO and P-ACO algorithms. Moreover, it describes how they are applied to the
DTSP. Section 3 describes our proposed approaches where we apply immigrants
schemes into P-ACO. Section 4 describes the experiments carried out by com-
paring our proposed approaches with P-ACO. Finally, Section 5 concludes this
paper with directions for future work.

2 ACO for Dynamic Environments

2.1 Standard ACO

The traditional ACO algorithm consists of a population of µ ants, where each ant
consists of two modes, the forward mode and the backward mode. Initially, all
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ants are placed on a randomly selected city for a TSP and all pheromone trails
are initialized with an equal amount of pheromone. All ants on their forward
mode choose the next city based on pheromones and some heuristic information
using a probabilistic decision rule, which is defined as follows:

pkij =
[τij ]

α
[ηij ]

β

∑
l∈Nk

i

[τil]
α
[ηil]

β
, if j ∈ Nk

i (1)

where τij is the existing pheromone trail between city i and city j, ηij is the
heuristic information available a priory, which is defined as 1/dij and dij is
the distance between the cities. Nk

i denotes the neighbourhood of cities of ant k
when being on city i. α and β are the two parameters that determine the relative
influence of pheromone trail and heuristic information, respectively.

Later on, all ants proceed to their backward mode by retracing their solutions
and deposit pheromone according to their solution quality on the corresponding
trails. However, before adding any pheromone, a constant amount of pheromone
is deduced from all trails due to the pheromone evaporation, which is defined as:

τij ← (1− ρ) τij , ∀ (i, j), (2)

where 0 < ρ ≤ 1 is the rate of evaporation. Reducing the pheromone values
enables the algorithm to forget bad decisions made in previous iterations [3].
After evaporation, all ants deposit pheromone to the corresponding trails of
their tour as follows:

τij ← τij +∆τkij , ∀ (i, j) ∈ T k, (3)

where ∆τkij = 1/Ck is the amount of pheromone that ant k deposits and Ck is

the cost of the tour T k.

2.2 Population-Based ACO

The P-ACO algorithm is the memory-based version of an ACO algorithm, which
was first applied on the stationary TSP [7]. It differs from the standard ACO al-
gorithm described above since it follows a different framework. Generally, the al-
gorithm maintains a population of solutions, which is used to update pheromone
trails without any evaporation.

The initial phase and the first iterations of the P-ACO algorithm work in
the same way as with the standard ACO algorithm. The pheromone trails are
initialized with an equal amount of pheromone and the population list of a size
K is empty. For the first K iterations, the iteration best ant deposits a constant
amount of pheromone using Eq. (3) where ∆τkij = (τmax − τinit)/K. Here, τmax

and τinit denote the maximum and initial pheromone amount, respectively. This
positive update procedure is performed whenever an ant enters the population
list. On iteration K+1, the ant that has entered the population list first needs to
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be removed in order to make room for the new one, and thus, a negative update
to its pheromone trails is done, as follows:

τij ← τij −∆τkij , ∀ (i, j) ∈ T k, (4)

where ∆τkij is defined as in the positive update above.
This strategy is based on the Age of ants. However, other strategies have also

been proposed by researchers, such as Quality and Prob [6]. From the experi-
mental results in [6], the default Age strategy is more consistent and performs
better than the others, since the other strategies have more chances to maintain
identical ants into the population list, which leads the algorithm to the stag-
nation behaviour. This is due to the fact that high levels of pheromone will be
generated into a single trail and dominates the search space. Moreover, we have
seen the importance of keeping the pheromone trails into a certain level from the
Max-Min Ant System (MMAS) [13], which is one of the state-of-the-art ACO
algorithms on stationary problems.

2.3 Response to Dynamic Changes

Theoretically, ACO algorithms can adapt to dynamic changes since they are in-
spired from nature, which is a continuous changing environment [12]. In practice,
they can adapt by transferring knowledge from past environments [1]. So far, the
description of ACO algorithms above has been made assuming stationary envi-
ronments. Considering the DTSP, ACO needs to be modified in order to adapt
to environmental changes efficiently.

The dynamics of adding/deleting a city affects both the genotypic and, usu-
ally, the phenotypic level of the ant. Therefore, considering that the solutions are
affected by the change in iteration n, the pheromone trails will not make sense in
iteration n+1. For the ACO algorithms that follow the traditional framework, it
is vital to re-initialize the pheromone trails after a dynamic change, which acts
as a restart of the algorithm.

For the P-ACO approach, the solutions stored in the population list are
repaired and the pheromone trails are re-generated accordingly. This strategy is
called KeepElitst [9] and uses two greedy heuristics to repair the genotype of the
population: 1) the offended cities are removed from the solutions; and 2) the new
cities are placed individually in a greedy fashion where they cause the minimum
increase on the phenotype.

3 Incorporating Immigrants Schemes to ACO Algorithms

When addressing DOPs, traditional ACO algorithms cannot adapt well to the
environmental changes once the ants reach the stagnation behaviour, where they
follow the same path. The algorithm loses its adaption capability since it does
not maintain diversity within the population. A good start has been made with
the P-ACO algorithm with the use of memory, which maintains a certain level of
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diversity and enables ACO algorithms to be more efficient for DOPs. However,
it is a long-term memory and the solutions need to be repaired once a city is
added or removed. Usually, the repair procedures requires prior knowledge of
the problem and is computationally expensive.

As mentioned above, the application of immigrants schemes has been found
efficient for GAs for DOPs. The principle is to introduce new individuals into
the current population by replacing a percentage of individuals in the population
[5]. The percentage should be relatively small because a high percentage may
lead the algorithm into a too high level of diversity. High diversity does not
always mean good performance on DOPs, because it may lead the algorithm
into randomization [15, 17].

In this paper, we apply immigrants schemes into the P-ACO algorithm to
maintain a certain level of diversity in the population and enhance its dynamic
performance. However, we use a short-term memory where the ants of the cur-
rent iteration replace the ants of the old iteration. Moreover, a percentage of
immigrants replace the worst ants of the current population.

The advantages of using a short-term memory are closely related to the
survival of ants in a dynamic environment, where no ant can survive in more than
one iteration. This way, there is no need to use any repair algorithm (apart from
the best ant of the previous iteration for the elitism-based immigrant scheme)
because the changes do not affect the ants stored. Furthermore, there is one main
concern that involves immigrants schemes, i.e., how to generate immigrants.

3.1 Random Immigrants ACO

The random immigrants ACO (RIACO) algorithm uses an immigrants scheme
where ants are generated randomly, and replace the worst ones of the current
population stored in the short-term memory every iteration. It is believed that
“the continuous adaption of such algorithms makes sense only when the environ-
mental changes of a problem are small to medium” [12]. This is due to the fact
that the old environment has more chance to be similar with the new one. After
a change occurs, transferring knowledge from the old environment may provide
a good solution efficiently.

Considering this argument, RIACO may be suitable when changes are not
slight since it provides diversity without considering any knowledge from the old
environment. Moreover, it may be suitable in fast changing environments where
information from the past may not be useful, since the algorithm does not have
sufficient time to converge onto a good solution in order to gain knowledge.

3.2 Elitism-Based Immigrants ACO

The elitism-based immigrants ACO (EIACO) algorithm uses an immigrants
scheme where ants are generated by mutating the best ant of the previous iter-
ation. These immigrants also replace the worst ones in the short-term memory
every iteration as in RIACO. This immigrants scheme transfers knowledge from
old environments and, thus, may be advantageous when changes are small to
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medium. Furthermore, it may be suitable in slowly changing environments since
it needs sufficient time to locate a good optimum which can be useful to the new
environment since the global optimum may be similar.

The mutation of the best ant is carried out using the inversion operator, where
two cities are randomly selected and the sub-tour between them is reversed.
However, there are two types of inversion: 1) the simple one is as explained above;
and 2) the adaptive one is based on the inver-over operator [10]. The adaptive
inversion is much more efficient than the simple one, since inversions are carried
out under some criteria. This type of inversion has adaptive characteristics which
may be more suitable for DOPs.

3.3 Hybrid Immigrants ACO

The hybrid immigrant ACO (HIACO) algorithm uses an immigrants scheme that
combines both random and elitism-based immigrants. The replacing policy is the
same as in RIACO and EIACO algorithms. However, half of the immigrants are
randomly generated and the other half are generated by mutating the best ant.
HIACO attempts to combine the merits of both RIACO and EIACO, where one
is good on slowly and slightly changing environments and the other on fast and
significantly changing environments. Therefore, HIACO may possibly be suitable
under all environmental conditions.

4 Simulation Experiments

4.1 Experimental Setup

In the experiments, we compare RIACO, EIACO, and HIACO with P-ACO
with its best population update policy, that is, Age. All the algorithms have
been applied on the kroA200 problem instance, obtained from TSPLIB3, which
consists of 200 cities. The dynamic environment was generated by taking away
half of its cities and constructing a “spare pool” of cities before running the
algorithms. Every f iterations, a percentage of m cities were randomly chosen
from the spare pool and exchanged with a percentage of m random ones from
the actual instance (the other half cities). This way, the size C of the problem
instance remains the same through the whole run.

The parameters f and m indicate the frequency and magnitude of dynamic
changes, respectively. The f parameter is defined as the number of iterations be-
tween two environmental changes. The m parameter is defined as the percentage
of selected cities from the spare pool that replaces other cities from the actual
instance. The common parameters used for the algorithms were set according
to the guidelines in [3, pp. 71] as follows: α = 1 and β = 2 for Eq. (1), and
τinit = 1/(C − 1). For P-ACO, K was set to 3 and τmax was set to 1.0 as in
[6, 7]. For all three proposed algorithms, K was set to 25, in which we replace
6 ants with immigrants (≈ 25% of K). Moreover, µ was set to 25 ants for all

3 Available on http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 1. In the first section, values in bold indicate the best results of the overall offline
performance. In the second section, “s−” or “s+” means that the first algorithm is
significant better or significantly worse than the second algorithm, respectively, whereas
“∼” indicates no significant difference between algorithms

Algorithms & Instances kroA200

f = 20, m ⇒ 10% 25% 50% 75%
P-ACO 27339.89 28497.20 29072.95 29290.05
RIACO 25798.46 26016.24 26029.56 25975.49
EIACO 25822.68 26001.00 26018.47 25996.12
HIACO 25752.20 25985.19 25961.28 25907.79

f = 100, m ⇒ 10% 25% 50% 75%
P-ACO 24284.40 25010.38 25359.90 25394.80
RIACO 24513.54 24799.98 24903.43 24852.92
EIACO 24455.14 24688.14 24749.48 24682.73

HIACO 24421.26 24604.94 24784.14 24683.38

t-Test Results

f = 20, m ⇒ 10% 25% 50% 75%
P-ACO⇔RIACO s+ s+ s+ s+
P-ACO⇔EIACO s+ s+ s+ s+
P-ACO⇔HIACO s+ s+ s+ s+
RIACO⇔EIACO ∼ ∼ ∼ ∼

RIACO⇔HIACO ∼ ∼ s+ s+
EIACO⇔HIACO s+ ∼ s+ s+
f = 100, m ⇒ 10% 25% 50% 75%
P-ACO⇔RIACO s− s+ s+ s+
P-ACO⇔EIACO s− s+ s+ s+
P-ACO⇔HIACO s− s+ s+ s+
RIACO⇔EIACO ∼ ∼ s+ s+
RIACO⇔HIACO ∼ ∼ s+ s+
EIACO⇔HIACO ∼ ∼ ∼ ∼

algorithms in order to have the same number of evaluations in each iteration,
that is, 25 evaluations per iteration.

For each algorithm on a DTSP instance, N = 30 independent runs were
executed on the same random environmental changes. The algorithms were ex-
ecuted for G = 1000 iterations and the overall offline performance is calculated
as follows:

P offline =
1

G

G∑

i=1

(
1

N

N∑

j=1

P ∗

ij) (5)

where P ∗

ij defines the best ant after a change of iteration i of run j [12]. Our

implementation closely follows the guidelines of the ACOTSP4 framework.
The value of f was set to 20 and 100, indicating environmental changes

of high and low frequencies, respectively. The percentage of m was set to 10,

4 Available on http://www.aco-metaheuristic.org/aco-code
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Fig. 1. Overall offline performance for different dynamic test problems.

25, 50, and 75, indicating the degree of environmental changes from small, to
medium, to large, respectively. As a result, eight dynamic environments, i.e., 2
values of f × 4 values of m, were generated from the stationary TSP instance to
systematically analyze the adaption and searching capability of each algorithm
on the DTSP.

4.2 Experimental Results

The experimental results regarding the offline performance of the algorithms
with the corresponding statistical results of two-tailed t -test with 58 degrees
of freedom at a 0.05 level of significance are presented in Table 1. Moreover,
to better understand the dynamic behaviour of the algorithm, the results are
plotted in Fig. 1 for the first 500 iterations with f = 20, m = 10 and m = 75,
and f = 100, m = 10 and m = 75. From the experimental results, several
observations can be made by comparing the behaviour of the algorithms.

First, RIACO, EIACO, and HIACO significantly outperform the P-ACO al-
gorithm in almost all test cases. On cases where the frequency is short the P-ACO
algorithm is not able to maintain a population list of useful solutions because
it has slow convergence. This can be observed from Fig. 1, where under large
frequencies P-ACO converges slowly to a better optimum than other algorithms.
However, when the magnitude of changes is small with a large frequency, it is
significant better than the other algorithms. On the other hand, RIACO, EIACO
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and HIACO are able to provide a good solution faster after a change since they
gain more diversity by incorporating immigrants to the population.

Second, RIACO performs slightly better than EIACO on cases where the
frequency is small, as expected. This is because EIACO needs to converge to
a good optimum in order to be effective. This task needs sufficient time as
with the P-ACO algorithm. Recall that in EIACO we use an adaptive inversion,
which provides more exploration than the simple inversion. On the other hand,
EIACO performs significant better than RIACO in almost all slowly changing
environments since it has sufficient time to locate a good solution.

Third, HIACO improves the performance of EIACO and RIACO on cases
where the frequency is small. Incorporating random and elitism-based immi-
grants, diversity is achieved with random ones and the guidance on promising
areas in the search space is achieved by the elitism-based ones. As a result, di-
versity is controlled more since RIACO may generate high levels of diversity and
become ineffective due to the lose of useful solutions found during past itera-
tions. However, HIACO is not improving on cases where the change frequency is
large, but it keeps the merits of EIACO since they are not significant different.

5 Conclusions

Different types of immigrants schemes have been successfully applied to EAs
to address DOPs efficiently. In this paper, we apply random, elitism-based, and
hybrid immigrants schemes into ACO for the DTSP, resulting in the RIACO,
EIACO, and HIACO algorithm, respectively. The difference of these algorithms
lies in the way immigrant ants are generated. The immigrant ants are generated
randomly for RIACO and are generated by mutating the best ant of the previ-
ous iteration for EIACO, respectively. For HIACO, half of the immigrant ants
are generated randomly and the other half are generated using the elitism-based
scheme. All immigrants replace the worst ants of the population on every iter-
ation in order to gain sufficient diversity within the population, which can be
useful for the DTSP.

Comparing with P-ACO, an existing ACO framework developed for DOPs,
on different cases of dynamic environments, the following concluding remarks
can be drawn. First, immigrants schemes are advantageous for ACO algorithms.
Second, the performance of EIACO is significant better than RIACO in slowly
changing environments. Third, the performance of RIACO is slightly better than
EIACO on most fast changing environments, while the performance of HIACO
is significant better than both of them. Forth, the performance of HIACO on
slowly changing environments is competitive with EIACO. Finally, P-ACO may
be a sufficient choice in very slowly and slightly changing environments, or in
cyclic environments since it is a memory-based approach [16].

For further work, it would be interesting to compare the algorithms on other
dynamic environmental cases, i.e., cyclic environments where past environments
reappear, and investigate the effect of other parameters or strategies within the
proposed algorithms, i.e., which ants should immigrants replace.
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