108,400 research outputs found

    The General Motor Ability Hypothesis: An old idea revisited

    Get PDF
    While specific motor abilities have become a popular explanation for motor performance, the older, alternate notion of a general motor ability should be revisited. Current theories lack consensus, and most motor assessment tools continue to derive a single composite score to represent motor capacity. In addition, results from elegant statistical procedures such as higher order factor analyses, cluster analyses, and Item Response Theory support a more global motor ability. We propose a contemporary model of general motor ability as a unidimensional construct that is emergent and fluid over an individual’s lifespan, influenced by both biological and environmental factors. In this article, we address the implications of this model for theory, practice, assessment, and research. Based on our hypothesis and Item Response Theory, our Lifespan Motor Ability Scale can identify motor assessment tasks that are relevant and important across varied phases of lifespan development

    Attention, effort, and fatigue: Neuropsychological perspectives

    Get PDF
    Models of attention, effort, and fatigue are reviewed. Methods are discussed for measuring these phenomena from a neuropsychological and psychophysiological perspective. The following methodologies are included: (1) the autonomic measurement of cognitive effort and quality of encoding; (2) serial assessment approaches to neurophysiological assessment; and (3) the assessment of subjective reports of fatigue using multidimensional ratings and their relationship to neurobehavioral measures

    A situated cognition perspective on presence

    Get PDF
    During interaction with computer-based 3-D simulations like virtual reality, users may experience a sense of involvement called presence. Presence is commonly defined as the subjective feeling of "being there". We discuss the state of the art in this inno vative research area and introduce a situated cognition perspective on presence. We argue that presence depends on the proper integration of aspects relevant to an agent's movement and perception, to her actions, and to her conception of the overall situ a tion in which she finds herself, as well as on how these aspects mesh with the possibilities for action afforded in the interaction with the artifact. We also aim at showing that studies of presence offer a test-bed for different theories of situated co gnition.

    Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring

    Get PDF
    Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity

    The ITALK project : A developmental robotics approach to the study of individual, social, and linguistic learning

    Get PDF
    This is the peer reviewed version of the following article: Frank Broz et al, “The ITALK Project: A Developmental Robotics Approach to the Study of Individual, Social, and Linguistic Learning”, Topics in Cognitive Science, Vol 6(3): 534-544, June 2014, which has been published in final form at doi: http://dx.doi.org/10.1111/tops.12099 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." Copyright © 2014 Cognitive Science Society, Inc.This article presents results from a multidisciplinary research project on the integration and transfer of language knowledge into robots as an empirical paradigm for the study of language development in both humans and humanoid robots. Within the framework of human linguistic and cognitive development, we focus on how three central types of learning interact and co-develop: individual learning about one's own embodiment and the environment, social learning (learning from others), and learning of linguistic capability. Our primary concern is how these capabilities can scaffold each other's development in a continuous feedback cycle as their interactions yield increasingly sophisticated competencies in the agent's capacity to interact with others and manipulate its world. Experimental results are summarized in relation to milestones in human linguistic and cognitive development and show that the mutual scaffolding of social learning, individual learning, and linguistic capabilities creates the context, conditions, and requisites for learning in each domain. Challenges and insights identified as a result of this research program are discussed with regard to possible and actual contributions to cognitive science and language ontogeny. In conclusion, directions for future work are suggested that continue to develop this approach toward an integrated framework for understanding these mutually scaffolding processes as a basis for language development in humans and robots.Peer reviewe

    Measuring cognitive load and cognition: metrics for technology-enhanced learning

    Get PDF
    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive load theory has become established as one of the most successful and influential theoretical explanations of cognitive processing during learning. Despite this success, attempts to obtain direct objective measures of the theory's central theoretical construct – cognitive load – have proved elusive. This obstacle represents the most significant outstanding challenge for successfully embedding the theoretical and experimental work on cognitive load in empirical data from authentic learning situations. Progress to date on the theoretical and practical approaches to cognitive load are discussed along with the influences of individual differences on cognitive load in order to assess the prospects for the development and application of direct empirical measures of cognitive load especially in technology-rich contexts

    A Systematic Review of International Clinical Guidelines for Rehabilitation of People With Neurological Conditions: What Recommendations Are Made for Upper Limb Assessment?

    Get PDF
    Conclusions: We present a comprehensive, critical, and original summary of current recommendations. Defining a core set of measures and agreed protocols requires international consensus between experts representing the diverse and multi-disciplinary field of neurorehabilitation including clinical researchers and practitioners, rehabilitation technology researchers, and commercial developers. Current lack of guidance may hold-back progress in understanding function and recovery. Together with a Delphi consensus study and an overview of systematic reviews of outcome measures it will contribute to the development of international guidelines for upper limb assessment in neurological conditions.This review formed part of the COST Action TD 1006A European Network on Robotics for Neurorehabilitation. It was an interdisciplinary EU-funded research network concentrating on the coordination of European research in the area of rehabilitation robotics

    Controlling a mobile robot with a biological brain

    Get PDF
    The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots
    corecore