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Abstract

Throughout the history, the evolutions of the requirements for manufacturing equipments have depended 

on  the  changes  in  the  customers'  demands.  Among  the  present  trends  in  the  requirements  for  new 

manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those 

requirements, this paper proposes a control and monitoring framework for machine tools based on smart 

sensor,  on  smart  actuator  and  on  agent  concepts.  The  proposed  control  and  monitoring  framework 

achieves machine monitoring, process monitoring and adapting functions that are not usually provided by 

machine tool control systems. The proposed control and monitoring framework has been evaluated by the 

means  of  a  simulated  operative  part  of  a  machine  tool.  The  communication  between  the  agents  is 

achieved  thanks  to  an  Ethernet  network  and  CORBA protocol.  The  experiments  (with  and  without 

cooperation between agents for accommodating) give encouraging results for implementing the proposed 

control  framework to operational  machines.  Also,  the cooperation between the agents of control  and 

monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the 

machine and process states and to increase productivity.
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1. Introduction

The evolutions of the requirements for manufacturing equipments have always been consequences of the 

changes in the customers' demands. Today markets increasingly demand more customized high quality 
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products with shorter life cycles. In such a context, the requirements for new manufacturing equipments 

deal  with  the  improvement  of  flexibility,  reconfigurability  and  reactivity.  The  concept  of  'reactivity' 

becomes relevant because of the need to maintain the productivity of the manufacturing operations with 

minimum downtime (Molina et al., 2005).

The flexibility has been improved thanks to programmable numerically controlled machine tools. The 

ability to be programmed has contributed to increase the number of the types of processes that can be 

achieved  by  a  machine  tool  and  to  increase  the  geometry  complexity  of  the  products  that  can  be 

manufactured. 

The productivity,  in terms of  rapidity,  has  been improved thanks to the developments  of  high-speed 

machining processes. The machine tools that are able to achieve those processes have specific mechanical 

structures. New functions with adjustable parameters are implemented in their control systems in order to 

calculate tool trajectories that reduce the effects of undesirable but predictable phenomena that can appear 

during machining (Renton and Elbestawi, 2000).

The reconfigurability is one of the major concerns in the design of machine tools. Modular structural 

designs are a way to meet this requirement. Indeed, they enable to provide the needed combination of 

processes and independent axis control and motion. The modularity is also a concept that is considered 

for  the  design of  control  and  monitoring  systems  of  the  machine  tools  which  expected  features  are 

extendibility, scalability, interoperability and portability  (Pritschow  et al.,  1993; Altintas  et al.,  1996; 

Schofield  and  Wright,  1998,  Mehrabi  et  al.,  2002).  Object-oriented  modelling  and  programming 

languages ease the generation of software units of such controllers because they enable the encapsulation, 

the specialization and the reuse of functionalities (Blaha and Rumbaugh, 2005; Molina et al., 2005).

For  machine  tools,  the  reactivity  mainly  consists  in  maintaining  the  productive  operation  and/or  in 

contributing  to  reduce  downtime  when a  problem is  detected.  In  order  to  improve  the  reactivity  of 

machine  tools,  many functions  have  been  developed  for  monitoring and/or  diagnosing  the  machines 

(Harris  et al.,  1989; Isermann, 1993) and the productive processes (Dan and Mathew, 1990), and for 

accommodating or adapting (Carrillo and Rotella, 1997; Liu et al., 2001). Diagnostic functions contribute 

to reduce downtime by identifying faults without requiring maintenance operators. The implementations 

of monitoring functions often lead to stop the productive processes when problems occur in order to avoid 

more damages. Adaptive control functions produce data for their own needs. Those data can be the same 

as the ones produced by monitoring functions and this may lead to redundancies. The implementations of 
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such  functions  often  require  specific  sensors,  specific  software  modules,  dedicated  treatment  units, 

interfaces with the numerical  controllers… Therefore,  they are inherently costly. They are also costly 

because the control systems proposed by manufacturers are still  centralized and are not open enough 

notwithstanding  the  numerous  research  developments  in  the  field  (Molina  et  al.,  2005).  Under  such 

circumstances, those three types of functions are rarely implemented together in the same machine.

The purpose of the paper is to present an alternative control and monitoring framework for machine tools 

aiming at tackling those limitations. The proposed control and monitoring framework is based on smart 

sensors/actuators and on a numerical controller with agent abilities that require a new decision level. The 

proposed system achieves  monitoring, diagnosis and adaptive control tasks and aims at satisfying the 

expectations  in  terms  of  flexibility,  reconfigurability  and  reactivity.  Before  presenting  the  proposed 

system and its components, the paper briefly presents smart sensor and actuator concept and its extension 

according to the notion of agent. Then, it shows how the new decision level is integrated to the control 

and monitoring structure, what the roles of the different agents are and how the three types of functions 

can be achieved. The last part presents the experimental platform and the experimental results that are 

discussed.

2. Extension of the smart sensor and actuator concept to the notion of agent

The smart or intelligent sensor and actuator concept was defined in the 1980s to tackle a lack of reliability 

in complex systems inherent to numerous sensors and actuators needed for their control and monitoring. 

The  proposal  defined  in  the  concept  consists  in  adding  information  processing  and  bi-directional 

communication abilities to the main service functions of sensors and actuators (Isermann, 1993; Robert et  

al., 1993). This proposal leads to the physical structures of Smart Sensors and Actuators (SSAs) presented 

on figure 1. The information processing ability is mainly used for the implementation of functions dealing 

with:

− measuring, 

− monitoring and diagnosing, 

− acting safely (adaptive control, accommodation…)

− communicating,

− managing the activity of the instrument,
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− managing the internal database.

Those functions are designed to improve (Taner and White, 1996):

− the  metrological  quality  of  the  provided  measures  and/or  their  certainty  thanks  to  validation 

treatments,

− the reliability of the system by providing reliable information,

− the reliability of the sensor or actuator itself thanks to self-monitoring and self-diagnosis functions.

In most  cases,  the studies  carried  out  in  the field  of  SSAs are led to develop sensors  and actuators 

dedicated to the achievement of a specific function of a given kind of system (Sente and Buyse, 1995; Xie 

et al.,  1998; Lee  et al., 2001). However,  the use of SSAs is not entirely satisfying especially for the 

reaction  to  disturbances  that  perturb  the  nominal  functioning  of  the  production  system  since  their 

behaviors are strongly predetermined. 

A way to improve this situation is to give freedom degrees at the SSA level. The management of those 

freedom degrees requires decision-making abilities carried out by the SSAs. In that way, those SSAs are 

able to react  rapidly when they detect a disturbance by making the appropriate decision according to 

defined goals and boundaries. The detection of disturbances or of situations that do not satisfy the defined 

goals requires cooperation between the SSAs as they operate on different parts of the process. 

SSAs  with  decision-making  abilities  can  be  considered  as  agents  according  to  the  definition  of  a 

computational  agent  given in (Jennings and Wooldridge,  1995) where  an agent  is  defined  as a  self-

contained problem-solving computational  entity able,  at least, to perform most of its problem-solving 

tasks, to interact with its environment, to perceive its environment and to respond within a given time, to 

take initiatives when it is appropriate. Indeed, measuring and acting are the main solving-problem tasks; 

measuring, cooperating and communicating are the perception and interaction abilities; making decisions 

can be considered as a way of taking initiatives.

3. Proposal of a framework for integration 

The SSA concept and the agent technology require distributed structures to be brought into operation. A 

control and monitoring framework must be defined for machine tools because their traditional control 

structures are centralized.
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3.1. Control structure of traditional machine tools

A machine tool is defined to achieve a task or a group of tasks that drive machining processes.  It is 

generally divided in two parts: the control part and the operative part. The operative part of the machine 

receives orders from the control part. These orders are applied to the actuators and the measurements are 

sent back by sensors to ensure regulations tasks. The operative part does not have any decision-making 

ability. The control part should be able:

− to receive, to identify and to process information from the environment,

− to store the information and the results of the process,

− to monitor and to dispatch information to the environment.

The processed information belongs to two different categories: 

− the orders received from other intelligent devices (cell pilots, human operators…), 

− the information about the state of machine. 

The treatments generally correspond to the execution of algorithms. In the case of traditional numerically 

controlled machine tools, the control system is centralized as shown in figure 2. 

In such an organization, there is a single decision center represented by the numerical controller. It gives 

to  the  other  instruments  the  instructions  (spindle  speed  reference  to  the  spindle  regulator,  position 

references to the axis cards…) according to the work-piece program and parameters that can be changed 

thanks to the man/machine interface or sent by the cell pilot. The other devices do not have any decisional 

ability.  Indeed,  the PLC does not make any decision. It  controls the auxiliary systems (tool changer, 

automated protection gates, lubricating system…) from the orders that the numerical controller sends. It 

also provides some binary indicators that denote failures and often lead the numerical controller to stop 

the machining operation or not to start it. 

One  major  drawback  of  this  centralized  control  system is  that  it  can  hardly  be  enlarged  with  new 

functions without the help of the manufacturer. Indeed, numerical control systems are often offered as 

closed manufacturer-specific solutions (Pritschow et al., 1993). This situation has led to a demand for the 

development  of  open  and  modular  control  systems  expected  by  the  users  of  flexible  manufacturing 

systems (Mehrabi  et al., 2002; Molina et al., 2005). The modularity enables the users to implement the 

devices and the functions they really need. Many studies contribute to define such structures (Altintas et  

al.,  1996;  Pritschow  et  al.,  1993;  Schofield  &  Wright  1998).  Although  the  proposed  structures  are 

modular  and  open,  they  are  still  centralized.  Indeed,  the  different  modules  do  not  really  cooperate 
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between each other to achieve their functions. The numerical controller directly computes them or they 

mainly exchange data with it. The implementation of different modules that achieve different functions 

often leads to redundant data processes.  Under such circumstances,  we consider they are not relevant 

enough regarding the objective of reactivity of the machine tools. 

3.2 Integration of the additional decision level

Our  proposal  consists  in  integrating  a  new  decision  level  at  SSA level.  Such  a  proposal  has  been 

developed and presented in (Desforges  et al., 2004). This integration is based on SSAs that realize the 

interface between the control part and the operative part. The SSAs are extended with a decision-making 

ability. The SSAs involved in the structure behave as smart sensors as well as smart actuators. Indeed, 

they are able:

− to correct measurements and to isolate faulty sensors,

− to achieve the monitoring of the actuator,

− to estimate process state (tool wear) thanks to the estimation of cutting forces from the actuator state,

− to accommodate the feed speed to keep the cutting force constant thanks to the cooperation between 

the SSAs and the numerical controller.

This proposal naturally leads to the physical structure presented on figure 3. 

The additional decision level is at the interface between the numerical controller and the SSAs as shown 

on figure 4.

Although this structure is already an alternative to the traditional ones, bringing it into operation seems to 

be  complex  and expensive  as  it  requires  to  define  an interface  with the  operative  part  (sensors  and 

actuators)  for  each  SSA  whereas  an  interface  with  the  numerical  controller  unit  already  exists  in 

traditional numerically controlled machine tools made of a numerical bus and axis control cards.

The framework presented in this paper  considers those facilities.  Therefore,  the operative part  of the 

machine with its sensors and its actuators is considered as a whole as shown on figure 5. The smart 

sensors/actuators are only computational agents that we then call Computational Smart Sensors/Actuators 

(CSSAs). The man/machine interface is not represented because it is not considered in the simulation 

platform but it should belong to the machine level. The auxiliary systems controlled by the PLC are not 

considered  either  because  they are  not  directly  involved in  the machining process  which is  the only 

productive task. The framework that we propose is more similar to the traditional machine organization 
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than the one proposed in figure 3. Indeed, the numerical controller (NC) unit of the traditional machine 

tool is achieved thanks to a computer, which can easily be connected to a numerical bus to exchange data 

with  the  CSSAs.  Thus,  this  structure  may  ease  the  implementation  of  the  control  and  monitoring 

framework we then propose. 

The  distributed  structure  of  the  additional  decisional  level  is  relevant  to  materialize  the  cooperation 

between the CSSAs. In this framework, the cooperation between the CSSAs and the NC unit carries on 

the decision  making process.  The  reactivity  of  the system is  improved because  only the events  that 

require to accommodate or to stop the machining process are transmitted to the machine level. The NC 

unit does not carry out any regulation tasks.

4. Application of the proposed structure to the control and monitoring of machine tools 

The control system is based on CSSAs and on a NC unit agent that have to drive a real-time metal cutting 

process thanks to an operative part made of the axis feed-drives and of the spindle. The NC unit agent and 

the CSSAs control and monitor the machining process as well as the machine itself according to defined 

goals. 

4.1. Machining processes goals

Considering metal cutting processes (turning, milling, drilling), the main objective is to machine good 

quality parts with the highest possible productivity.  The quality of parts is  often defined in terms of 

geometry, dimension and surface roughness. The machined part is of a good quality if its dimensions, its 

geometry and the roughness of its surface are obtained within a given allowance.

Once the cutting process and the tool are chosen, the quality of the part mainly depends on:

− the mechanical structure of the machine, of the fixture and of the tool (elasticity of the mechanical 

structure and of the tool, backlashes between moving parts…), 

− the dynamic behaviors of its servo-drives (feed-drives and spindle),

− the cutting parameters (cutting speed, feed speed, depth of cut),

− the way the trajectories are calculated by the NC unit from the work piece program describing the 

tool path.
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The second main objective is to be productive. This means to produce as many parts as possible at the 

lowest cost. Therefore, the feed must be as rapid as possible with respect to the specified allowance of the 

cutting parameters, which are chosen from an abacus, and within the machine capacity. Increasing the 

tool life saves time and money. Indeed, the costs relative to tools are reduced as tools can be used for 

more parts; it also reduces the number of tool exchanges that are non-productive operations.

These both objectives are then taken into account to specify the functions achieved by the agents involved 

in the control and monitoring framework that are the NC unit and the CSSAs.

4.2. Roles and goals of the agents

In the proposed control and monitoring framework, there are two kinds of agents: the NC unit agent and 

the CSSAs among which we distinguish the axis agents from the spindle agent. Each kind of agent has its 

own role and its own goals.

The NC unit agent, which main role states to supervise the machining operations and to maintain them as 

long as possible according to the machine and the process states:

− defines the tool path and the spindle speed reference from the work piece program, 

− contains the geometry of the raw part that can be programmed or provided by a CAD-CAM 

system to compute the depth of cut,

− provides the position references to the axis agents and the spindle speed reference to the spindle 

agent,

− makes decision about the continuation of the machining operation according the information 

received from the axis agents and from the spindle agent (estimated tool  wear,  states of the 

drives, feed speed or cutting speed out of programmed boundaries).

At the additional decision level, the axis agents and the spindle agent manage two degrees of freedom. 

They consist in the ability to modify the feed speed and the cutting speed within boundaries that are 

verified by the NC unit agent. The feed speed and the cutting speed are managed according to the states 

and the capacities of the spindle and of the feed-drives. The management of those degrees of freedom 

achieves the ability of adapting or accommodating the machining process to the machine tool state and 

the process that is here represented by the cutting force. Indeed, assuming steady cutting conditions, the 

cutting force increases as the cutting edge of tool gets worn (Koren et al, 1991; Ravindar et al., 1993).

The axis agents and the spindle agent:
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− monitor their own states, diagnose them, store the results and provide them to the NC unit agent 

if faults are detected,

− check if  their maximum capacities  have been reached  and, according to the test,  propose to 

increase the feed speed and the cutting speed or to decrease them.

− ask the position or the spindle speed reference to the NC unit agent,

− estimate the cutting force components applied on them and request from the other CSSAs and 

the NC unit the data they need to estimate the tool wear from the downloaded or programmed 

cutting process model and provide this estimation to the NC unit agent,

− increase  or  decrease  their  speeds  according  to  the  abilities  of  the  other  CSSAs  and  the 

boundaries programmed in the NC unit agent.

4.3. Specification of the functions achieved by the agents

One of the goals, presented the introduction of this paper which leads to the definition of the proposed 

control and monitoring framework consists in the integrated implementation of functions for monitoring, 

diagnosing and accommodating in order to avoid the implementation of task dedicated modules that often 

require  specific  sensors,  specific  treatment  units,  specific  interfaces  and  may lead  to  redundant  data 

processes or measurements.  All pieces of information that are computed in the proposed structure are 

based on the measurements of current, tension, speed and position for each drive. The additional devices 

that are necessary for the implementation of the proposed structure are redundant current  and tension 

sensors and treatment units dedicated to the agents according to figure 5.

The purpose of this section is to present  the methodology we followed to integrate  the functions for 

monitoring, diagnosing and accommodating and how they are implemented in the experimental platform. 

Here,  we also give  examples  of  techniques  that  enable  to  provide  the  expected  information  without 

intending to compare them and without being exhaustive.

The functions achieved by the NC unit agent are not detailed because they mainly consist of checking 

boundaries and of providing the references and the depth of cut to the other agents.

The monitoring functions give information to the system about the machine state  and the machining 

process. 

The  CSSA  agents  that  estimate  the  physical  parameters  of  their  own  drives  achieve  the  machine 

monitoring. Considering DC motor drives with permanent magnets,  the estimated parameters are,  the 
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inductance L, the resistance R, the torque or counter electromotive force constant K, the total moment of 

inertia on the motor shaft J, the viscous friction coefficient considered on the motor shaft V and the dry 

friction  torque  on the  motor  shaft  D.  A behavioral  model  of  such  drives  is  given by  the  following 

equations:

i̇ +Ri

u−Kw=L 
(1)

ẇ +Vw+Dsignw 

Ki−l=J 
(2)

where u is the tension, i the induced current, w the motor shaft angular speed and l the load torque on the 

motor  shaft  that  depends  on  the  cutting  force.  Several  methods  can  be  implemented  to  estimate  of 

physical parameters of continuous models like the one made of the relationships (1) and (2). In the field, 

Söderström et al. (1997) propose a method based on approximation of the derivative operator. Another 

method based on pattern recognition ability of artificial neural networks is presented in (Desforges and 

Habbadi, 1997) that provides the estimations of the physical parameters of DC motor drives. The method 

implemented in the experimental platform consists in using a same first order low pass filtering described 

for a signal x by equation (3).

x f=
1

1+Ts
x (3)

where s is the Laplace operator and xf the filtered signal. The signals u, i and w are filtered. In equation 

(1) and (2), the filtered signals uf, if and wf replace the non filtered ones and ẋ f is replaced by:

ẋ f =
x−x f

T
(4)

The implemented estimator is the recursive least squares algorithm. The parameters of the equation (1) 

are estimated before the one of equation (2).

The interest  in estimating the physical  parameters  of the drives is  the possibility to set  relationships 

between them and faults (see table 1). Those parameters may then be used for diagnostic purpose. The 

estimation of the parameters is processed while there is no machining process (l=0) to avoid estimation 

errors. For a feed-drive, this estimation may be processed during high-speed motions. For a spindle, this 

estimation may be processed during the start period. Here, the monitoring of the power converter is not 
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considered because it requires rapid data processing to observe the behaviors of the switches even if u, i 

and w are usually measured for regulation and power conversion. The numerical regulation is assumed to 

be perfect. The estimated parameters may be stored in the historical database of the CSSA agents and 

may be sent  to remote units  for  diagnosis,  predictive or  proactive maintenance  purposes  (Léger  and 

Morel, 2001; Iung, 2003). This estimation brings into operation the self-monitoring function of a smart 

actuator.

The estimation of tool wear is useful to avoid tool breakages that often definitely damage the part. It may 

also be used to  correct  on line the tool  path to take into account  the changes of  the tool  geometry. 

Although this correction is not implemented at this stage of the study, we present a tool wear monitoring 

method that corresponds to the process monitoring function of a smart actuator. The proposed monitoring 

of the machining process is achieved from the estimation of the cutting forces. Indeed, the load torque l 

on a motor shaft is a function of the cutting force generated by the machining process. l can be estimated 

from the equation (2). Knowing  l and the reduction ratios of the gears and of the ball screw and nut 

system, the cutting force component applied on the drive can be estimated. This estimation needs the 

measurements of i and w and the more recent estimated values for the parameters K, J, V and D (Stein and 

Shin, 1986; Stein et al., 1986; Altintas, 1992). The force component estimation accuracy mainly depends 

on the accuracy of the estimated parameters whose values are supposed to be steady enough during a 

cutting operation. This can be considered as true for short cutting operations (few minutes) compared to 

the dynamic  of  the wear  of  the  mechanical  parts,  of  heating in  the electromechanical  structure.  For 

example,  the  thermal  time  constant  of  5  kW  DC  motor  is  about  1  hour  whereas  the  wear  of  the 

mechanical parts, degradation of lubricating oil can take months to impact relevantly the values of the 

physical parameters. The cutting force depends on the cutting parameters (cutting speed, feed speed and 

depth of cut and, for milling operations, the number of cutting edges in the part) but also on the wear of 

the cutting edge(s) (Koren et al, 1991; Ravindar et al., 1993). Two models are therefore necessary:

− one model that put into relation the cutting force components and the cutting parameters,

− one model that put into relation the variation of cutting force components and wear under given 

cutting parameters.

To  achieve  the  tool  wear  monitoring,  the  cutting  parameters  must  be  known.  This  is  achieved  by 

cooperation between the CSSA agents and the NC unit agent. The feed speed must be computed from the 

different speed measurements sent by the operative part to the CSSA axis agents. The cutting speed is 
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provided by CSSA spindle agent (knowing the tool diameter for milling and drilling processes) and from 

the  position  of  the  X-axis  feed-drive  (for  turning  process).  The  depth  of  cut  requires  a  theoretical 

geometrical model of the raw part. This model is implemented in the NC unit agent. To compute the 

depth of cut the NC unit agent needs the positions of the axes. The tool wear is then estimated by each 

CSSA agent from the cutting force component it estimates, the depth of cut provided by the NC unit 

agent, the feed speed computed from the speeds of the axes and the cutting speed provided by the CSSA 

spindle agent and, for turning process, the position of the X-axis provided by CSSA X-axis agent.

The presented monitoring activities are mainly based on estimations using measurements of u, i and w for 

the feed drives and the spindle. Those measurements must be as accurate as possible. That is why each 

CSSA agent  processes  a  validation  treatment  for  the  measured  signals.  The  validation  treatment  is 

described in (Habbadi  et al.,  1999). It is based on material and analytical redundancies involving the 

equation  (1).  So,  it  also  exploits  the  most  recent  estimated  physical  parameters  of  the  drive.  The 

validation treatment also corrects the measurements and isolates faulty sensors. This method only requires 

the use of two current sensors and two tension sensors to correct the measurements of u, i and w. A faulty 

sensor event can be stored in the historical database of the CSSA agent and reported to the maintenance 

management  system. This  validation treatment  corresponds  to  the  self-diagnosis  function  of  a  smart 

sensor and contributes to improve the metrological quality of the measurements. 

The CSSA agents and the NC unit agent according to the description given in section 4.2 achieve the 

function for accommodating to the cutting process and to machine state. The control system, made of 

CSSA agents and the NC unit  agent,  is aiming at  working at the maximum metal  removal speed,  to 

increase productivity, within the following boundaries:

− under the maximum power or induced current that can be consumed by the motors (the cutting force 

is generally increasing as the tool is getting worn), 

− within  the  limits  of  the  cutting  parameters  (cutting  speed  and  feed  speed)  given  by  the  tool 

manufacturer abacus (the depth of cut depending on the raw part and the expected geometries and 

dimensions after the machining operation) and knowing that the surface roughness is also a function 

of the cutting speed and the feed speed.

However, the control system is also aiming at increasing the cutting tool life. 

According to both those goals, the control system is modifying the cutting speed and/or the feed speed. 

The events that lead to stop the machining process are:
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− a detected worn tool,

− a drive fault detected from the estimated physical parameters,

− the inability to maintain the machining operation without exceeding the boundaries of the cutting 

parameters or without reaching the machine maximum capacity (maximum current or power of one 

of the motors).

According  to  the  presented  decisional  entities,  the  system works  with  objectives  that  are  not  really 

opposed. Thus, the agents do not need to negotiate this is a research theme used in the field of multi-agent 

systems for the control real-time processes (Kraus et al., 1995; Kraus, 1997). They just need to consult 

each other before making decision about the modification of the cutting speed and the feed speed. 

For example, if one CSSA proposes to increase both feed speed and cutting speed and if another CSSA is 

already working at its maximum power, the speeds will not be increased and, at least one speed may be 

decreased according to the accommodating strategy.

The following section presents the developed platform that brings into operation the proposed control and 

monitoring framework. 

5. Experimental platform and simulation results

The object-oriented approach is trend in the development of SSAs (Luttenbacher et al., 1996). It is also 

highly  used  the  field  of  multi-agent  systems  (Velasco et  al.,  1996).  This  approach  presents  many 

advantages:  it  allows  the  definition  of  a  system  as  a  set  of  reusable  objects;  it  enables  the 

generalization/specialization and encapsulation principles (Blaha and Rumbaugh, 2005) and also satisfies 

expectations in terms of open controllers.

The platform, developed in C++, brings into operation the proposed control and monitoring framework. It 

drives a simulated operative part of a NC lathe for a simulated turning process with a tool which is getting 

worn. In the control and monitoring structure, we consider four agent entities:

− the NC unit agent (NCU),

− the CSSA X-axis feed-drive agent (CSSAX) and CSSA Z-axis feed-drive agent (CSSAZ),

− the CSSA spindle agent (CSSAS).

The Operative Part of the machine (OP) is an entity that simulates the machine behavior and the turning 

process. 
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The  communication  between  the  five  entities  is  achieved  thanks  to  Ethernet  network  and  CORBA 

protocol, which provides facilities for the communication between distributed entities. CORBA is based 

on  client/server  approach.  This  offers  a  standard  and  open  communication  system  (Meo,  2005). 

According to CORBA protocol, a client, which does not compute a method, sends data to a server. The 

server computes the method and sends the produced results to the client. 

A method is a function which belongs to entities of a same class. To compute the requested method the 

server can become a client if the method it computes needs results of methods computed by other entities. 

The computational entities (agents and operative part) are distributed on computers that communicate 

thanks to an Ethernet network. The class diagram of the distributed entities is presented in figure 6. In this 

class  diagram,  the  attributes  and  methods  are  not  presented.  The  CSSA  class  does  not  have  any 

instantiation. 

5.1 Behavioral description of the experimental platform

In  order  to  describe  the  behavior  of  the  whole  platform,  we detail  the  behavior  of  entities  of  each 

instantiated class.

The NCU is beginning by reading, in a file, the speed and position references and a value that indicates if 

it is a motion in which there is a cutting operation or not. Then, it verifies if the machine can work (no 

worn tool detection, no spindle or feed drive fault). If there is a cutting operation, it verifies if the cutting 

speed and the feed speed are within the programmed boundaries. Eventually, it sends to the CSSAs on 

their requests the new references read in the file while the defined number of parts to machine is not 

reached. If the process must be stopped, the previous references are sent to the CSSAs. Therefore, the 

spindle keeps the same angular speed and the axis feed-drives stay at the same position. 

The CSSAX, the CSSAZ and the CSSAS send to the OP the references they received from the NCU. 

Then, the OP requests them to process monitoring from the measurements of  u,  i and  w it sends. The 

CSSAs process the received measurements by a low pass filter and stored the filtered and raw values. The 

CSSA then ask the NCU if there is a cutting operation or not. 

If there is no cutting operation, the CSSAs estimate the physical parameters of their drives. Once the 

high-speed motion of the feed-drive or once the spindle start period is finished, the estimation algorithm 

stops. The estimated parameters are then compared to thresholds and if any of them are not within the 
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boundaries a variable that denotes diagnosed fault is sent to the NCU. This leads the NCU to stop the 

process.

If there is a cutting process, the CSSAs estimate their load torques l from equation (2). The magnitude of 

cutting force component fe is estimated from l and from the position of the X-axis feed-drive and from the 

spindle speed. fe is then compared to the theoretical magnitude ft that is computed by the CSSAs from the 

cutting model, the feed speed, the position of the X-axis and Z-axis feed-drives and spindle speed. If a 

CSSA misses values to compute its estimation, it requests the appropriate CSSAs to provide them. The 

wear W is calculated thanks to the relationship (5).

W=
f e

f t
(5)

The CSSAs compare the value of W to a programmed upper threshold and, if it is over this value, they 

request the NCU to stop the process. The process is stopped if at least two CSSAs detect that the tool is 

worn. During a motion involving cutting process, the CSSAs compare the power and current consumed 

by the motors to the maximum thresholds. If one of them is over its thresholds the concerned CSSA 

requests the other CSSAs to modify the cutting speed and/or the feed speed in order to reduce the cutting 

force otherwise it requests them to work at maximum metal removal speed. If every CSSA requests the 

other ones to work at maximum metal removal speed, the feed speed and cutting speed are modified 

according to the programmed strategy to decrease the time to machine a part and to increase the tool life 

(in number of parts). If not, the feed speed and cutting speed are modified to reduce the cutting force. The 

NCU  supervises  the  modifications  of  those  speeds  in  order  to  keep  them  within  the  programmed 

boundaries. The machining process is stopped if the speeds cannot be modified any more to keep on 

reducing the cutting force.

The OP simulates the behavior of the spindle and feed servo-drives, the cutting process and the tool wear 

process. The simulation is requested by the CSSAs when they send the speed and position references they 

may modify.  When a step of  simulation is  achieved,  the  OP requires  the monitoring method of  the 

CSSAs. The models of the DC motor drives are presented in figures 7 and 8. Many parameters of the 

servo  drives  can  be  modified.  Different  cutting  models  and  tool  wear  evolution  laws  can  easily  be 

implemented as well as other models of servo-drives. 
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The  measurement  validation  process,  which  requires  redundant  current  and  tension  sensors,  is  not 

implemented in the experimental platform. Indeed, it would not be very relevant because the signals are 

the results of a computation and so they are not perturbed.

5.2 Simulation results

We consider the turning operation described on figure 9. The raw part diameter is 402 mm; the final 

diameter is 400 mm; so the depth of cut is 1 mm. The length of the machined cylinder is 150 mm. We 

assume that the nominal feed speed is 5 mm/s and the nominal cutting speed is 10 m/s, which corresponds 

to 49.9 rad/s for the spindle speed. We assume that the cutting speed and feed speed may vary within an 

interval of more or less 20% around their nominal values. All the servo-drives have the same parameters. 

For  the  axis  feed-drives,  the  maximum power  is  6  kW and maximum current  is  50  A whereas  the 

maximum power is 12 kW and maximum current is 100 A for the spindle. The power and the current 

consumed by a servo-drive depend, for a constant load torque, on its physical parameters.

The considered models of the cutting process are empirical (Ravindar  et al., 1993). According to the 

notation of figure 9, the models are with i = t,l or r:

F i =K i .C s
pi . F s

qi . Dc
ri

(6)

where  Cs is the cutting speed,  Fs is the feed speed,  Dc the depth of cut and,  Fi is the magnitude of the 

cutting force component,  pi,  qi and  ri are empirical coefficients and  Ki is a coefficient that varies with 

wear. Ki is considered as a constant in the theoretical model processed by the CSSAs. We assume that:

pi=−0.1
qi=ri= 1

K t=40 E6
K l =K r=20 E6

(7) 

W is a function of  tm the machining time and of  Cs. The general pattern of the tool wear evolution is 

shown on figure 10. The calculus of the cutting force components from equation (6) multiplied by  W 

generates the tool wear effect.

The programmed tool path is presented on figure 11. The only segment involved in metal cutting process 

is the bloc 5. We have considered a quite large tool clearance that may represent the necessary space to 

load the raw part and to unload the machined part. Blocs 1 and 2 describe the tool path after setting the 

part origin. The tool follows the segments of those blocs only once before starting the turning operation of 

the first part.
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The CSSA estimate the physical parameters of the drive quickly and accurately, as shown on figures 12 

and 13. The presented estimations were obtained by setting the estimator to the nominal values of the 

parameters, but the parameters of the drives were set at different values. Those values are presented in 

table 2. For the presented estimations as well as for the Z-axis, the convergence is carried out within 0.1 s 

without any bias. Indeed, there is no bias because the simulated model of the operative part is the same as 

the one implemented in the CSSAs and also because there is no noise on the measurements obtained by 

computation and transmitted numerically. 

From the models computed by the different agents, which exchange their results, each CSSA achieves the 

estimation of tool wear. These estimations are quite accurate because there is no bias in the estimations of 

the physical parameters and because all the models (raw part model, cutting process model…) computed 

by the agents correspond exactly to the ones run by the OP. However, the relative error is about 1E-3. The 

tool wear simulated in the OP without accommodating the cutting speed and feed speed is presented on 

figure 14. The errors of wear estimation for all the drives are presented on figure 15. The scale of figure 

15 disables the distinction between the different errors of the estimations computed by the CSSAs. We 

notice that the sign and the magnitude of the relative errors change with the variation ratio of the wear. 

We therefore suppose that the error of estimation are mainly due to the delay to compute the estimation of 

W that also requires data exchanges between the objects, as described in the sections 4.3 and 5.1.

The simulations without any strategy for accommodating the feed speed and the cutting speed correspond 

to the standard functioning of a traditional NC lathe. Those simulations show that the machine and the 

tool achieve 7 parts. During the machining of the 8th part, the machine stops because the estimated value 

of the tool wear reaches the threshold. Let us note that we let the simulation run although the CSSAS 

detects that the maximum capacity of the spindle is exceeded during the machining of the 7th part. This 

last event should lead the NCU to stop the machining process earlier but we disable this function in order 

to have both results. The machine stops after 258.44 s of turning operation and the maximum capacity 

event occurs after 221.55 s for W estimated at 1.685.

The strategy for accommodating aims at reducing Cs in order to increase the tool life and at increasing Fs 

in order to increase the productivity. When a maximum capacity event is detected, the CSSAS increases 

Cs to keep the productivity at its maximum and while a maximum capacity event is detected. If Cs is at its 

maximum value and if a maximum capacity event is detected again, the CSSAX and CSSAZ decrease Fs 

in  order  to  keep  on  machining  parts.  Thanks  to  this  strategy,  the  simulations  show that  8  parts  are 
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completed before the NCU stops the machining operation of the 9th part because of a worn tool event 

detected after 257.38 s of turning operation whereas Fs is still reduced to tackle the maximum capacity of 

the spindle detected by the CSSAS.

The numerous  values  computed  by the  CSSAs achieve  this  strategy  for  accommodating  to  machine 

process (cutting force) and to the machine capacity (depending on the physical parameters of the servo-

drives). This strategy enables to machine entirely 8 parts in 239.76 s of machine functioning. This must 

be compared to the 6 parts entirely machined without accommodating if the maximum capacity event was 

taken into account. The strategy enables to machine more parts with the same tool and to take less time to 

machine one part, which were the objectives of the study.

6. Conclusion

The  proposed  multi-agent  framework  for  the  control  and  monitoring  of  machine  tools  has  been 

successfully implemented. The presented results show that  the information produced at the additional 

decisional level by the smart sensors/actuators enable to bring into operation functions for monitoring, 

diagnosing and accommodating. Every piece of information is processed from current, speed, tension and 

position measurements  that  are  already  achieved  in  NC machine  tools  for  the  regulations.  The  only 

additional  sensors would be current  and tension sensors for processing measurements  validation. The 

various functions share data. For example, the physical parameters are estimated for monitoring and for 

diagnosing the servo-drives,  for estimating the cutting force and the tool wear and for validating the 

measurements.  This avoids redundant data processes that may be encounter in the implementation of 

function-dedicated modules.

This alternative  structure  is  modular  and satisfies the expectations  for  reconfigurability.  Indeed,  it  is 

developed in C++, there is one agent per drive, and Ethernet network with CORBA protocol offers a 

standard  and  open  communication  system.  The  simulations  show  that  a  non-application  dedicated 

communication  network  like  Ethernet  can  be  sufficient  for  such  applications.  No  problem  of 

communication has disturbed the simulations.

The  multi-agent  integration  platform  is  quite  flexible  because  it  enables  to  reconsider  the  physical 

processes  and the control  structure.  Let  us  note that  all  the agents  could be implemented in  a  same 

treatment unit but this could overload it and, perhaps, could not satisfy real-time constraints. 
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The information processed  at  the  additional  decision  level  can  also be  used  for  other  purposes  like 

maintenance, scheduling... The implementation of functions for monitoring and diagnosing the machine 

and the process as well as for accommodating contributes to increase productivity but also to increase the 

reliability and the reactivity. 

Further  developments  of  the presented  multi-agent  control  and monitoring framework  will  deal  with 

adapting the  regulations  to  the  states  of  feed-drives  and of  the  spindle.  Other  developments  will  be 

undertaken in the definition of strategies for accommodating. Indeed, in the presented case study, the 

evolution of wear in time for given cutting parameters is a priori known, which is seldom. That is why a 

decision-making mechanism could be achieved in order to define the best strategy for accommodating. 

This  process  could  be  realized  by  negotiating  agents.  Another  development  consists  in  testing  this 

alternative control and monitoring structure with a physical operative part driving a real metal cutting 

process.
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Faults Sensitive parameters
bearings and/or slide-ways 

wear
total dry friction torque D

total viscous friction 
coefficient V

lack of lubricating oil and/or
lubricating oil ageing

total dry friction torque D
total viscous friction 

coefficient V
no work-piece and/or work-

piece holder
moment of inertia J

brush wear resistance R
motor heating resistance R , inductance L , 

torque coefficient K
demagnetization inductance L ,

torque coefficient K
... ...

Table 1. Relation between parameters and faults.
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Parameter (unit) nominal value value set in the OPO
L (H) 4E-3 4E-3
R (Ω) 0.3 0.35

K (m.N.A-1) 0.6 0.55
J (kg.m2) 0.116 0.12

V (m.N.s-1) 0.186 0.2
D (m.N) 0.5 0.4

Table 2. Nomimal values and values set in the OP of the physical parameters
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Figure 1. Physical structure of smart sensors and actuators
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Figure 2. Control structure of a NC machine tool
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Figure 4. Place of the additional decision level in the structure
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Figure 5. Proposed framework for the integration of an additional decision level
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Figure 6. Class diagram of the platform
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Figure 9. turning process considered in simulations
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Figure 10. Patterns of tool wear evolution
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Figure 11. Diagram of the programmed tool path
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Figure 14. Wear pattern simulates by the OP for the first part without accommodating
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Figure 15. Tool wear estimation errors
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