47 research outputs found

    Improved Squeaky Wheel Optimisation for Driver Scheduling

    Get PDF
    This paper presents a technique called Improved Squeaky Wheel Optimisation for driver scheduling problems. It improves the original Squeaky Wheel Optimisations effectiveness and execution speed by incorporating two additional steps of Selection and Mutation which implement evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The Analysis step first computes the fitness of a current solution to identify troublesome components. The Selection step then discards these troublesome components probabilistically by using the fitness measure, and the Mutation step follows to further discard a small number of components at random. After the above steps, an input solution becomes partial and thus the resulting partial solution needs to be repaired. The repair is carried out by using the Prioritization step to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, the optimisation in the ISWO is achieved by solution disruption, iterative improvement and an iterative constructive repair process performed. Encouraging experimental results are reported

    A Classification of Hyper-heuristic Approaches

    Get PDF
    The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research

    Evolutionary squeaky wheel optimization: a new framework for analysis

    Get PDF
    Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing

    A survey of workforce scheduling and routing

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers' locations, security guards performing rounds at different premises, etc. We refer to these scenarios as Workforce Scheduling and Routing Problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time to the locations where tasks need to be performed. This kind of problems have been tackled in the literature for a number of years. This paper presents a survey which attempts to identify the common attributes of WSRP scenarios and the solution methods applied when tackling these problems. Our longer term aim is to achieve an in-depth understanding of how to model and solve workforce scheduling and routing problems and this survey represents the first step in this quest

    A survey of workforce scheduling and routing

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers' locations, security guards performing rounds at different premises, etc. We refer to these scenarios as Workforce Scheduling and Routing Problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time to the locations where tasks need to be performed. This kind of problems have been tackled in the literature for a number of years. This paper presents a survey which attempts to identify the common attributes of WSRP scenarios and the solution methods applied when tackling these problems. Our longer term aim is to achieve an in-depth understanding of how to model and solve workforce scheduling and routing problems and this survey represents the first step in this quest

    Search with evolutionary ruin and stochastic rebuild: a theoretic framework and a case study on exam timetabling

    Get PDF
    This paper presents a state transition based formal framework for a new search method, called Evolutionary Ruin and Stochastic Recreate, which tries to learn and adapt to the changing environments during the search process. It improves the performance of the original Ruin and Recreate principle by embedding an additional phase of Evolutionary Ruin to mimic the survival-of-the-fittest mechanism within single solutions. This method executes a cycle of Solution Decomposition, Evolutionary Ruin, Stochastic Recreate and Solution Acceptance until a certain stopping condition is met. The Solution Decomposition phase first uses some problem-specific knowledge to decompose a complete solution into its components and assigns a score to each component. The Evolutionary Ruin phase then employs two evolutionary operators (namely Selection and Mutation) to destroy a certain fraction of the solution, and the next Stochastic Recreate phase repairs the “broken” solution. Last, the Solution Acceptance phase selects a specific strategy to determine the probability of accepting the newly generated solution. Hence, optimisation is achieved by an iterative process of component evaluation, solution disruption and stochastic constructive repair. From the state transitions point of view, this paper presents a probabilistic model and implements a Markov chain analysis on some theoretical properties of the approach. Unlike the theoretical work on genetic algorithm and simulated annealing which are based on state transitions within the space of complete assignments, our model is based on state transitions within the space of partial assignments. The exam timetabling problems are used to test the performance in solving real-world hard problems

    Search methodologies for examination timetabling

    Get PDF
    Working with examination timetabling is an extremely challenging task due to the difficulty of finding good quality solutions. Most of the studies in this area rely on improvement techniques to enhance the solution quality after generating an initial solution. Nevertheless, the initial solution generation itself can provide good solution quality even though the ordering strategies often using graph colouring heuristics, are typically quite simple. Indeed, there are examples where some of the produced solutions are better than the ones produced in the literature with an improvement phase. This research concentrates on constructive approaches which are based on squeaky wheel optimisation i.e. the focus is upon finding difficult examinations in their assignment and changing their position in a heuristic ordering. In the first phase, the work is focused on the squeaky wheel optimisation approach where the ordering is permutated in a block of examinations in order to find the best ordering. Heuristics are alternated during the search as each heuristic produces a different value of a heuristic modifier. This strategy could improve the solution quality when a stochastic process is incorporated. Motivated by this first phase, a squeaky wheel optimisation concept is then combined with graph colouring heuristics in a linear form with weights aggregation. The aim is to generalise the constructive approach using information from given heuristics for finding difficult examinations and it works well across tested problems. Each parameter is invoked with a normalisation strategy in order to generalise the specific problem data. In the next phase, the information obtained from the process of building an infeasible timetable is used. The examinations that caused infeasibility are given attention because, logically, they are hard to place in the timetable and so they are treated first. In the adaptive decomposition strategy, the aim is to automatically divide examinations into difficult and easy sets so as to give attention to difficult examinations. Within the easy set, a subset called the boundary set is used to accommodate shuffling strategies to change the given ordering of examinations. Consequently, the graph colouring heuristics are employed on those constructive approaches and it is shown that dynamic ordering is an effective way to permute the ordering. The next research chapter concentrates on the improvement approach where variable neighbourhood search with great deluge algorithm is investigated using various neighbourhood orderings and initialisation strategies. The approach incorporated with a repair mechanism in order to amend some of infeasible assignment and at the same time aiming to improve the solution quality

    Search methodologies for examination timetabling

    Get PDF
    Working with examination timetabling is an extremely challenging task due to the difficulty of finding good quality solutions. Most of the studies in this area rely on improvement techniques to enhance the solution quality after generating an initial solution. Nevertheless, the initial solution generation itself can provide good solution quality even though the ordering strategies often using graph colouring heuristics, are typically quite simple. Indeed, there are examples where some of the produced solutions are better than the ones produced in the literature with an improvement phase. This research concentrates on constructive approaches which are based on squeaky wheel optimisation i.e. the focus is upon finding difficult examinations in their assignment and changing their position in a heuristic ordering. In the first phase, the work is focused on the squeaky wheel optimisation approach where the ordering is permutated in a block of examinations in order to find the best ordering. Heuristics are alternated during the search as each heuristic produces a different value of a heuristic modifier. This strategy could improve the solution quality when a stochastic process is incorporated. Motivated by this first phase, a squeaky wheel optimisation concept is then combined with graph colouring heuristics in a linear form with weights aggregation. The aim is to generalise the constructive approach using information from given heuristics for finding difficult examinations and it works well across tested problems. Each parameter is invoked with a normalisation strategy in order to generalise the specific problem data. In the next phase, the information obtained from the process of building an infeasible timetable is used. The examinations that caused infeasibility are given attention because, logically, they are hard to place in the timetable and so they are treated first. In the adaptive decomposition strategy, the aim is to automatically divide examinations into difficult and easy sets so as to give attention to difficult examinations. Within the easy set, a subset called the boundary set is used to accommodate shuffling strategies to change the given ordering of examinations. Consequently, the graph colouring heuristics are employed on those constructive approaches and it is shown that dynamic ordering is an effective way to permute the ordering. The next research chapter concentrates on the improvement approach where variable neighbourhood search with great deluge algorithm is investigated using various neighbourhood orderings and initialisation strategies. The approach incorporated with a repair mechanism in order to amend some of infeasible assignment and at the same time aiming to improve the solution quality
    corecore