25 research outputs found

    Scalability of microkernel-based systems

    Get PDF

    Thin Hypervisor-Based Security Architectures for Embedded Platforms

    Get PDF
    Virtualization has grown increasingly popular, thanks to its benefits of isolation, management, and utilization, supported by hardware advances. It is also receiving attention for its potential to support security, through hypervisor-based services and advanced protections supplied to guests. Today, virtualization is even making inroads in the embedded space, and embedded systems, with their security needs, have already started to benefit from virtualization’s security potential. In this thesis, we investigate the possibilities for thin hypervisor-based security on embedded platforms. In addition to significant background study, we present implementation of a low-footprint, thin hypervisor capable of providing security protections to a single FreeRTOS guest kernel on ARM. Backed by performance test results, our hypervisor provides security to a formerly unsecured kernel with minimal performance overhead, and represents a first step in a greater research effort into the security advantages and possibilities of embedded thin hypervisors. Our results show that thin hypervisors are both possible and beneficial even on limited embedded systems, and sets the stage for more advanced investigations, implementations, and security applications in the future

    Efficient System-Enforced Deterministic Parallelism

    Get PDF
    Deterministic execution offers many benefits for debugging, fault tolerance, and security. Current methods of executing parallel programs deterministically, however, often incur high costs, allow misbehaved software to defeat repeatability, and transform time-dependent races into input- or path-dependent races without eliminating them. We introduce a new parallel programming model addressing these issues, and use Determinator, a proof-of-concept OS, to demonstrate the model's practicality. Determinator's microkernel API provides only “shared-nothing” address spaces and deterministic interprocess communication primitives to make execution of all unprivileged code—well-behaved or not—precisely repeatable. Atop this microkernel, Determinator's user-level runtime adapts optimistic replication techniques to offer a private workspace model for both thread-level and process-level parallel programing. This model avoids the introduction of read/write data races, and converts write/write races into reliably-detected conflicts. Coarse-grained parallel benchmarks perform and scale comparably to nondeterministic systems, on both multicore PCs and across nodes in a distributed cluster

    Scheduling and locking in multiprocessor real-time operating systems

    Get PDF
    With the widespread adoption of multicore architectures, multiprocessors are now a standard deployment platform for (soft) real-time applications. This dissertation addresses two questions fundamental to the design of multicore-ready real-time operating systems: (1) Which scheduling policies offer the greatest flexibility in satisfying temporal constraints; and (2) which locking algorithms should be used to avoid unpredictable delays? With regard to Question 1, LITMUSRT, a real-time extension of the Linux kernel, is presented and its design is discussed in detail. Notably, LITMUSRT implements link-based scheduling, a novel approach to controlling blocking due to non-preemptive sections. Each implemented scheduler (22 configurations in total) is evaluated under consideration of overheads on a 24-core Intel Xeon platform. The experiments show that partitioned earliest-deadline first (EDF) scheduling is generally preferable in a hard real-time setting, whereas global and clustered EDF scheduling are effective in a soft real-time setting. With regard to Question 2, real-time locking protocols are required to ensure that the maximum delay due to priority inversion can be bounded a priori. Several spinlock- and semaphore-based multiprocessor real-time locking protocols for mutual exclusion (mutex), reader-writer (RW) exclusion, and k-exclusion are proposed and analyzed. A new category of RW locks suited to worst-case analysis, termed phase-fair locks, is proposed and three efficient phase-fair spinlock implementations are provided (one with few atomic operations, one with low space requirements, and one with constant RMR complexity). Maximum priority-inversion blocking is proposed as a natural complexity measure for semaphore protocols. It is shown that there are two classes of schedulability analysis, namely suspension-oblivious and suspension-aware analysis, that yield two different lower bounds on blocking. Five asymptotically optimal locking protocols are designed and analyzed: a family of mutex, RW, and k-exclusion protocols for global, partitioned, and clustered scheduling that are asymptotically optimal in the suspension-oblivious case, and a mutex protocol for partitioned scheduling that is asymptotically optimal in the suspension-aware case. A LITMUSRT-based empirical evaluation is presented that shows these protocols to be practical

    Argobots: A Lightweight Low-Level Threading and Tasking Framework

    Get PDF
    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, either are too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a rich set of controls to allow specialization by end users or high-level programming models. We describe the design, implementation, and performance characterization of Argobots and present integrations with three high-level models: OpenMP, MPI, and colocated I/O services. Evaluations show that (1) Argobots, while providing richer capabilities, is competitive with existing simpler generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency-hiding capabilities; and (4) I/O services with Argobots reduce interference with colocated applications while achieving performance competitive with that of a Pthreads approach
    corecore