
UNIVERSITY OF THESSALY

PHD THESIS

System software techniques to enhance
reliability of modern platforms.

Author:
Konstantinos PARASYRIS

Supervisor:
Nikolaos BELLAS

Advising committee:
Nikolaos BELLAS,

Spyros LALIS,
Christos D. ANTONOPOULOS

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Electrical and Computer Engineering

October 17, 2018

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

http://www.uth.gr
http://inf-server.e-ce.uth.gr/~koparasy/
http://inf-server.e-ce.uth.gr/~nbellas/
http://inf-server.e-ce.uth.gr/~nbellas/
http://inf-server.e-ce.uth.gr/~lalis/
http://inf-server.e-ce.uth.gr/~cda/
http://e-ce.uth.gr

i

“Optimism is the faith that leads to achievement. Nothing can be done without hope and
confidence.”

"Helen Keller"

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

ii

Abstract

Konstantinos PARASYRIS

System software techniques to enhance reliability of modern
platforms.

Chip manufacturers introduce redundancy at various levels of CPU design to
guarantee correct operation even for worst-case combinations of non-idealities in
process variation and system operating conditions. This redundancy is implemented
partly in the form of wide voltage margins.

This PhD dissertation is based on the concept that these conservative design
runes are mostly excessive, as they account for execution scenarios that rarely ap-
pear during the lifetime of the systems. If the faults are ignored the system will
result to application crashes or even system-wide failures. Our software based ap-
proach treats these faults to enable execution in such conditions.

The approach is based on the concept that many applications domains it is not
the exact output that matters but a rough estimation of the output. Therefore, we
propose a programming model in which the developer can define which parts of
the application are more significant than others. The programming model extends a
widely used parallel programming model, called OpenMP. The developer provides
information about the significance of computations and the programming model ex-
poses a parameter, called ratio, which can control the extend of quality degradation
and energy efficiency.

The idea of significance-aware computing is ported into two different computing
paradigms, the fault tolerant one and the approximate. In the case of fault tolerant
computing we implement a significance-centric programming model and runtime
support which sets the supply voltage in a multicore CPU to sub-nominal values to
reduce the energy footprint and provide mechanisms to control output quality. The
developers specify the significance of application tasks respecting their contribution
to the output quality and provide check and repair functions for handling faults. On
a multicore system we evaluate our approach using an energy model which quanti-
fies the energy reduction. When executing the least significant tasks unreliably, our
approach leads to 20% CPU energy reduction with respect to a reliable execution
and has minimal quality degradation.

In the case of approximate computing, we implement a similar programming
model that promotes the combination of the significance and ratio features. The ap-
proach using analytical models of the energy consumption of the application can

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

iii

efficiently decide the degree of approximation to meet certain user defined energy
requirements.

There are many application domains which require their computations to be per-
formed without any errors. Our study on the x86-64 Haswell and Skylake multicore
microarchitectures reveals wide voltage which can be removed without observing
any errors. These margins can reach up to 22% and 13% of the nominal supply volt-
age for the Skylake and Haswell architectures respectively. The margins vary across
different microarchitectures, different chip parts of the same microarchitecture, and
across different workloads.

We introduce a model which can be used dynamically to adjust the supply volt-
age of modern multicore x86-64 CPUs to just above the minimum required for safe
operation. We identify a set of performance metrics – directly measurable via perfor-
mance monitoring counters – with high predictive value for the minimum tolerable
supply voltage (Vmin). We use benchmarks that vary in terms of application domain,
resource utilization and pressure, and software/hardware interaction characteristics
to train a Vmin prediction model. Finally, at execution time those metrics are moni-
tored and serve as input to the model, in order to predict and apply the appropriate
Vmin for the workload. Compared to the conventional approaches, our methodology
achieves up to 42% energy savings for the Skylake family and 34% for the Haswell
family for complex, real-world applications.

Last but not least, during the course of the thesis we implemented the infrastruc-
ture to observe accurately the application resiliency of faults as well as to identify
voltage and frequency margins of modern processors. GemFI is a fault injection tool
based on the cycle accurate full system simulator Gem5. GemFI provides fault injec-
tion methods and is easily extensible to support future fault models. It also supports
multiple processor models and ISAs and allows fault injection in both functional and
cycle-accurate simulations. GemFI offers fast-forwarding of simulation campaigns
via checkpointing. Moreover, it facilitates the parallel execution of campaign exper-
iments on a network of workstations. XM2 enables the evaluation of software on
systems operating outside their nominal margins. It supports both bare-metal and
OS-controlled execution using an API to control the fault injection procedure and
provides automatic management of experimental campaigns.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

iv

Περίληψη

Κωνσταντίνος Παρασύρης

Αύξηση ανθεκτικότητας των εφαρμογών σε σφάλματα σε

σύγχρονες πλατφόρμες

Η βιομηχανία των ημιαγωγών έχει βασιστεί τις τελευταίες δεκαετίες στο νόμο του

Moore, ο οποίος προβλέπει κάθε 18 μήνες τον διπλασιασμό του αριθμού των transistors
ανά μονάδα επιφάνειας σε ολοκληρωμένα κυκλώματα βασισμένα σε τεχνολογία CMOS.
Σε αντιδιαστολή με το παρελθόν (πριν από το 2004), όπου οι σχεδιαστές επεξεργαστι-

κών συστημάτων, μέσω της αύξησης του αριθμού των transistor, είχαν ως στόχο την
αντίστοιχη αύξηση της απόδοσης, η νέα πραγματικότητα θέτει την μείωση της κατανάλω-

σης ισχύος (και ενέργειας) ως την μεγαλύτερη πρόκληση στην σχεδίαση επεξεργαστών.

Ταυτόχρονα, η μεγάλη πυκνότητα τοποθέτησης των transistors οδηγούν στην ανα-
ξιόπιστη λειτουργία των σύγχρονων επεξεργαστών. Η αναξιοπιστία αυτή οφείλεται εν

μέρει στις δυναμικές διακυμάνσεις ρεύματος και τάσης (supply voltage) οι οποίες είναι
πιο πιθανό να δημιουργήσουν λάθη χρονισμού σε μικρές γεωμετρίες τεχνολογίας CMOS.
Επίσης είναι πιο πιθανά τα κατασκευαστικά λάθη (fabrication faults) λόγω ατελειών της
διαδικασίας φωτολιθογραφίας. Επιπλέον, παροδικά λάθη (transient faults) που οφείλο-
νται σε εξωγενείς παράγοντες, όπως alpha particles, έχουν μεγαλύτερη επίδραση σε
μικρότερες γεωμετρίες τεχνολογίας CMOS. Για να επιτευχθεί αξιόπιστη λειτουργία υπό
αυτές τις συνθήκες, οι σχεδιαστές σύγχρονων επεξεργαστικών συστημάτων χρησιμο-

ποιούν συντηρητικές σχεδιαστικές τεχνικές, όπως υψηλά περιθώρια τάσης τροφοδοσίας

(Vdd) και συχνότητας ρολογιού έτσι ώστε ο επεξεργαστής να προστατεύεται από κάθε
πιθανότητα λαθών χρονισμού. Οι συντηρητικές αυτές τεχνικές μπορεί μεν να προστα-

τεύουν την αξιόπιστη λειτουργία του επεξεργαστή, έχουν όμως ως αποτέλεσμα μεγάλη

σπατάλη σε ισχύ και ενέργεια η οποία φτάνει μέχρι και το 35% σε αρκετές περιπτώσεις.

Η βασική ιδέα της παρούσας διδακτορικής διατριβής βασίζεται στο ότι αυτές οι συ-

ντηρητικές τεχνικές σχεδιασμού είναι σχεδόν πάντα περιττές και αντιστοιχούν σε περι-

πτώσεις λειτουργίας που σχεδόν ποτέ δεν πρόκειται να συμβούν ταυτόχρονα κατά την

διάρκεια της λειτουργίας του επεξεργαστή. Χρησιμοποιώντας τεχνικές κυρίως στο ε-

πίπεδο λογισμικού συστήματος και εφαρμογών, η διατριβή προτείνει την λειτουργία του

επεξεργαστή πολύ κοντά στις ακραίες καταστάσεις λειτουργίας του και την εξάλειψη του

μεγαλύτερου μέρους του σχεδιαστικού περιθωρίου. Για παράδειγμα, η δυναμική μείωση

της τάσης τροφοδοσίας ενός επεξεργαστή κατά την διάρκεια λειτουργίας του μπορεί να

επιφέρει μεγάλες βελτιώσεις στην κατανάλωση ισχύος του, αλλά, εφόσον δεν ελεγχθεί,

είναι δυνατόν να δημιουργήσει λανθασμένα αποτελέσματα ή και να διακόψει απότομα την

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

v

λειτουργία του. Από την άλλη, η αύξηση της συχνότητας του ρολογιού ενός επεξεργα-

στή, μπορεί μεν να βελτιώσει την απόδοση και να επιφέρει μείωση του χρόνου εκτέλεσης,

αλλά, μπορεί να δημιουργήσει προβλήματα στην αξιοπιστία της λειτουργίας του.

Η διατριβή βασίζεται στην ιδέα ότι σε πολλές εφαρμογές (ή επιμέρους φάσεις ε-

φαρμογών) το ακριβές αποτέλεσμα είτε δεν μας ενδιαφέρει, είτε είναι πολύ απαιτητικό

σε κύκλους μηχανής και κατανάλωση ενέργειας για να μας συμφέρει να υπολογιστεί.

Προτείνουμε ένα νέο προγραμματιστικό μοντέλο στο οποίο ο προγραμματιστής μπορε-

ί να χαρακτηρίσει την σημαντικότητα των διαφορετικών τμημάτων μιάς εφαρμογής και

την συνεισφορά τους στην ποιότητα του τελικού αποτελέσματος. Το προγραμματιστι-

κό μοντέλο επεκτείνει το γνωστό μοντέλο OpenMP που χρησιμοποιείται ευρέως στον
παράλληλο προγραμματισμό. Μέσω της πληροφορίας της σημαντικότητας που παρέχει

ο προγραμματιστής σε επίπεδο πηγαίου κώδικα (source code) και μιας επιπλέον παρα-
μέτρου, που ονομάζεται ratio ο προγραμματιστής μπορεί και ελέγχει την αναλογία της
μείωσης της ενέργειας προς την μείωση της ποιότητας του αποτελέσματος.

Η διατριβή υλοποιεί την παραπάνω ιδέα σε δύο διαφορετικούς τομείς υπολογισμών,

τον προσεγγιστικό (approximate) τομέα και στον τομέα των ανθεκτικών υπολογισμών
σε σφάλματα (fault tolerant). Στον τομέα τον ανθεκτικών υπολογισμών, υλοποιείται η
υποδομή του λογισμικού συστήματος (προγραμματιστικό μοντέλο και σύστημα χρόνου

εκτέλεσης) για να καλύψει περιβάλλοντα αναξιόπιστης υπολογιστικής. Η υλοποιήση αυτή

αναφέρεται κυρίως στο ότι σε αναξιόπιστα περιβάλλοντα που μπορεί να προκαλούνται απο

χαμηλότερη τάση τροφοδοσίας ή/και υψηλότερη συχνότητα ρολογιού μπορεί να συμβεί

οποιοδήποτε λάθος στο υλικό το οποίο είναι πέρα από τον έλεγχο του προγραμματιστή.

Αυτό επιβάλλει την ύπαρξη μηχανισμών αναγνώρισης και διόρθωσης λαθών καθώς και

μηχανισμούς απομόνωσης λαθών ώστε αυτά να μην επεκταθούν σε σημεία του κώδικα

που μπορεί να είναι κρίσιμα για την σωστότητα της εφαρμογής. Οι μηχανισμοί αυτοί θα

πρέπει να έχουν όσο το δυνατόν υψηλότερο ποσοστό ανίχνευσης λαθών, αλλά και μικρή

επιβάρυνση στην απόδοση της εφαρμογής.

Η διατριβή προτείνει και υλοποιεί αναλυτικά μοντέλα απόδοσης και κατανάλωσης ενέρ-

γειας σε πολυπύρηνους επεξεργαστές. Πολύ σημαντική επίσης είναι και η αναλυτική μο-

ντελοποίηση των λαθών χρονισμού (fault modeling) που συμβαίνουν σε έναν επεξεργα-
στή σε συνάρτηση με την τάση τροφοδοσίας του επεξεργαστή αυτού. Το πλήρες σύστημα

λογισμικού αξιόπιστης υπολογιστικής, μαζί με τα μοντέλα αυτά, χρησιμοποιούνται σε ε-

κτεταμένες προσομοιώσεις εφαρμογών στον προσομοιωτή GemFI για την εκτίμηση της
βελτίωσης κατανάλωση ενέργειας (λόγω μειωμένης τάσης τροφοδοσίας) χωρίς αλλοίωση

των τελικών αποτελεσμάτων του υπολογισμού και χωρίς διακοπή της λειτουργίας του

επεξεργαστή. Τα πειράματα έδειξαν ότι μπορούμε να μειώσουμε την τάση τροφοδοσίας

ενός επεξεργαστή κατά μέσο όρο 15% μέχρι να φτάσουμε στο Point of First Failure
(PoFF), κάτω από το οποίο ο επεξεργαστής εκτίθεται σε μαζικά λάθη χρονισμού και
είναι αδύνατη (ή ασύμφορη) κάθε προσπάθεια λειτουργίας του. Το σύστημα λογισμικού

αξιόπιστης υπολογιστικής επιτρέπει την μείωση της τάσης τροφοδοσίας μέχρι το PoFF
(αλλά όχι πιο χαμηλά) αντιμετωπίζοντας επιτυχώς τα λάθη που εμφανίζονται στην πε-

ριοχή αυτή και επιτυγχάνοντας μεγάλη μείωση της κατανάλωσης ισχύος/ενέργειας χωρίς

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

vi

επίπτωση στην ταχύτητα του επεξεργαστή.

΄Οσον αφορά τον προσεγγιστικό τομέα, προτείνουμε και υλοποιούμε ένα παρόμοιο

προγραμματιστικό μοντέλο και ενα σύστημα χρόνου εκτέλεσης (run time system), το
οποίο χρησιμοποιώντας αναλυτικά μοντέλα της απόδοσης και κατανάλωσης ισχύος του

επεξεργαστή παίρνει ενημερωμένες αποφάσεις για τη ροή και το συντονισμό της εκτέλε-

σης του προγράμματος. Ο μηχανισμός αυτός επιτρέπει στον προγραμματιστή να προσαρ-

μόσει δυναμικά την ποιότητα των αποτελεσμάτων μιας εφαρμογής με την απόδοση του

συστήματος και την κατανάλωση ισχύος/ενέργειας.

Για πολλες εφαρμογές όμως, είναι απαραίτητοι οι ακριβείς υπολογισμοί καθώς δεν

ανέχονται μείωση της ποιότητας του αποτελέσματος. Επομένως, μέσω μιάς σειράς πειρα-

μάτων σε Intel x86-64 επεξεργαστές αναγνωρίσαμε την μέγιστη μείωση της τάσης τρο-
φοδοσίας έτσι ώστε ο επεξεργαστής να παραμένει σε ασφαλή ζώνη λειτουργίας (χωρίς

σφάλματα). Τα πειράματα αυτά φανέρωσαν ότι τα περιθώρια μείωσης της τάσης φτάνουν

μέχρι 22% για επεξεργαστές Skylake και 13% για Haswell.
Η παραπάνω ανάλυση των περιθωρίων τάσης έδωσαν την δυνατότητα να δημιουργηθε-

ί ένα μοντέλο μηχανικής μάθησης που χρησιμοποιήθηκε για την πρόβλεψη μελλοντικών

περιθωρίων τάσης τροφοδοσίας. Το μοντέλο αυτό δέχεται σαν είσοδο τιμές των per-
formance counters του επεξεργαστή (ενώ το πρόγραμμα εκτελείται) και προβλέπει το
περιθώριο τάσης για το επόμενο χρονικό διάστημα. Με άλλα λόγια, η διατριβή αυτή

έχει δείξει πειραματικά την συσχέτιση μεταξύ γεγονότων σε επίπεδο μικροαρχιτεκτονι-

κής (όπως αυτά περιγράφονται από τους performance counters του επεξεργαστή) και
του μέγιστου περιθωρίου τάσης τροφοδοσίας. Το μοντέλο αυτό χρησιμοποιείται από έναν

εξελιγμένο governor τάσης/συχνότητας που ορίζει κάθε φορά την τάση του επεξεργα-
στή ώστε να επιτυγχάνουμε μεγάλη μείωση στην κατανάλωση ισχύος χωρίς τον κίνδυνο

μειωμένης αξιοπιστίας. Σε σύγκριση με τον συμβατικό Intel DVFS (Dynamic Voltage
Frequency Scaling) governor, η μέθοδός μας επιτυγχάνει μείωση ενέργειας κατά 42%
σε επεξεργαστές Skylake και 34% σε επεξεργαστές Haswell.
Η διατριβή αυτή επίσης μελέτησε την επίδραση που έχουν στα περιθώρια τάσης τροφο-

δοσίας οι βελτιστοποιήσεις που κάνουν οι μεταγλωττιστές στον κώδικα μιας εφαρμογής.

Με τη χρήση του εργαλείου XM2 διαπιστώθηκε ότι οι μετασχηματισμοί που μειώνουν
τις προσπελάσεις στην κύρια μνήμη έχουν μεγάλη επίδραση στα περιθώρια της τάση τρο-

φοδοσίας. Σε γενικές γραμμές όμως, η τάση τροφοδοσίας είναι περισσότερο συνάρτηση

της μικροαρχιτεκτονικής του επεξεργαστή παρά των βελτιστοποίησεων στον κώδικα που

επιφέρει ο compiler.
Η διδακτορική διατριβή δημιούργησε επίσης την ερευνητική υποδομή για τα πειράμα-

τα που διεξήχθησαν στα πλαίσια της αξιολόγησης των τεχνικών που περιγράφησαν στις

προηγούμενες παραγράφους. Το GemFI είναι ένα εργαλείο δημιουργίας και προσομοίω-
σης λογικών λαθών σε ένα πολυπύρηνο επεξεργαστικό σύστημα. Δίνει την δυνατότητα

στο χρήστη να εισάγει διάφορους τύπους λαθών, σε οποιαδήποτε χρονική στιγμή κατά

τη διάρκεια εκτέλεσης του προγράμματος, και σε οποιοδήποτε τμήμα της αρχιτεκτονι-

κής του επεξεργαστή. Το GemFI, το οποίο βασίζεται στο γνωστό προσομοιωτή Gem5,
μπορεί να εκτελέσει πλήρως το λογισμικό εφαρμογών και συστήματος για μεγάλη γκάμα

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

vii

διαφορετικών αρχιτεκτονικών, δίνοντας έτσι τη δυνατότητα μελέτης της αξιοπιστίας του

συστήματος κάτω απο διαφορετικές συνθήκες.

Επίσης δημιουργήθηκε ένα δεύτερο εργαλείο, ο eXtended Margins eXperiment
Manager (ΧΜ2) που αυτοματοποιεί τη δημιουργία πειραμάτων σε πραγματικούς επεξερ-
γαστές που μπορούν να τίθενται σε μη-αξιόπιστες καταστάσεις τάσης και συχνότητας.

Το εργαλείο χρησιμοποιήθηκε για την δημιουργία τέτοιων πειραμάτων για τον χαρακτηρι-

σμό της αξιοπιστίας του υλικού και για τον προσδιορισμό της ανοχής σε λάθη λογισμικού

εφαρμογών που εκτελούνται σε επεξεργαστές x86-64 (Skylake, Haswell) και ARM.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

viii

Acknowledgements

This thesis is the result of research work conducted while I was pursuing my PHD
degree in the Department of Electrical and Computing Engineering of University of
Thessaly in Greece. I acknowledge the funding agencies which made this research
possible through financial means. These include the European Commission through
the SCoRPiO EU project as well as the Center for Research & Technology Hellas
(CERTH).

First and foremost I would like to thank my mentors, professors Nikolaos Bellas,
Spyros Lalis, and Christos D. Antonopoulos from the University of Thessaly. They
have been exceptionally good at guiding me during my initial steps, throughout my
Master’s and PHD, and have molded me as a researcher. Without their guidance
and mentoring none of this work would be possible. They were always available to
discuss and provide constructive criticism.

I would also like to thank my colleagues who provided me with help, as well as
stress relief with their wit and humor to ease the burden of research. Special thanks
to my friend and colleague Vassilis Vassiliadis with whom I shared, pretty much all
of my research career thus far. Our joined research efforts, stimulating, and often
heated, discussions were very educating and most of the time relaxing.

Last but not least, I owe great many thanks to my friends and family. Especially,
I owe to my parents, Wyanda And Antonis, for their unconditional love and support
all along my academic pursuits. My friends will always have a special place in my
heart because they were always there during good times, and bad times to support
me with patience and love. The least I can do is dedicate this thesis to them all.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

ix

Contents

Abstract ii

Περίληψη iv

Acknowledgements viii

1 Introduction 1
1.1 The reality of power consumption . 1
1.2 Reliability and Power . 2
1.3 Design Space exploration . 3

1.3.1 Hardware Level . 3
1.3.2 Software level . 4
1.3.3 Significance Definition . 6

1.4 Contributions . 6
1.4.1 Significance Aware Computing 8

Significance aware fault tolerant programming model 9
Significance aware Runtime system for fault tolerant computing 9
Power/energy and fault modeling of the unsafe region 10
Significance-aware programming model for approximate com-

puting . 10
Significance aware Runtime system for approximate computing 10

1.4.2 Exploiting Voltage Margins for Energy Efficiency 10
1.4.3 Experimental Frameworks for Reliability Analysis 11

1.5 Outline . 12

2 Significance Aware Fault Tolerant Computing 14
2.1 Contributions . 15
2.2 Programming Model Objectives & Properties 16

2.2.1 Significance Characterization . 16
2.2.2 Safety Isolation . 16
2.2.3 Architecture Neutrality . 16
2.2.4 Parallelism Expression . 17
2.2.5 Relaxed Synchronization . 17
2.2.6 User Friendliness . 17

2.3 High Level Description . 17
2.3.1 Task-Based Programming model 17

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

x

Pragmas for the Expression of Parallelism and Significance . . . 18
Early Error Detection To minimize Fault Propagation 19
Elastic Synchronization . 20
Significance of Data . 20

2.4 Syntax . 21
2.4.1 Task Definition and Significance Characterization 21
2.4.2 Synchronization . 22

2.5 Example . 23
2.6 Programmer Insight . 23
2.7 Significance-aware Runtime System . 24

2.7.1 Runtime Execution Management 24
2.7.2 Memory Management . 27
2.7.3 Life of a group-of-tasks . 27

2.8 Evaluation . 29
2.8.1 Benchmarks . 29
2.8.2 Evaluation of Programming model and Runtime System 29
2.8.3 Runtime Overhead . 30

2.9 Energy Reduction Evaluation methodology 31
2.10 Execution Time and Energy Consumption Model 33

2.10.1 Execution time modeling . 33
2.10.2 Power and energy modeling . 34
2.10.3 Calibration and validation . 35

2.11 Fault Model and Fault Injection Methodology 36
2.11.1 Fault modeling . 36
2.11.2 Simulation-based fault injection 38
2.11.3 Software-based fault injection during native execution 39

2.12 Experimental Evaluation . 39

3 Significance Aware Approximate Computing 45
3.1 Contributions . 45
3.2 Programming Model . 46
3.3 Runtime support for significance aware approximate computing 47

3.3.1 Life of a group-of-tasks . 48
3.3.2 Approximate vs Fault Tolerant Runtime Support 49

3.4 Experimental Evaluation . 49
3.4.1 Approach . 50
3.4.2 Experimental Results . 52

4 Modeling and Prediction of Voltage Margins in Multicore CPUs 57
4.1 Background . 57
4.2 Contributions . 59
4.3 Methodology . 60
4.4 Offline Characterization Background . 60

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xi

4.4.1 Methodology to identify maxVmargin 60
4.4.2 Results of offline maxVmargin Characterization 62
4.4.3 Performance Counter Profiling 65

4.5 Modeling phase . 66
4.5.1 Combine Offline Data . 66
4.5.2 Data Splitting . 67
4.5.3 Model fitting . 68

Feature Number . 68
Feature Selection Algorithm . 68
Supervised Learning Algorithm 70
Hyper-parameter selection . 70

4.5.4 Safety Margin . 70
4.6 Evaluation . 71

4.6.1 Mixed Workload Long Run Evaluation 74
4.7 Voltage Emergencies . 74

5 Experimental Frameworks for Reliability Analysis 76
5.1 Contributions . 76
5.2 GemFI:Fault Injection Tool for Studying the Behavior of Applications

on Unreliable Substrates . 77
5.2.1 The Gem5 Simulator . 77
5.2.2 GemFI Design and Implementation 77

GemFI User Interface . 78
5.2.3 Simple Example . 80
5.2.4 GemFI Internals and Implementation 80
5.2.5 Simulation Checkpointing . 81
5.2.6 Simulation Campaigns on a Network Of Workstations 82
5.2.7 Validation . 83

Validation Methodology . 84
Experimental Results . 85

5.2.8 GemFI Performance Evaluation 88
5.3 XM2: A Framework for Evaluating Software on Reduced Margins

Hardware . 90
5.3.1 Platform Requirements . 90
5.3.2 Tool Design and Configuration 90
5.3.3 Configuration File . 92
5.3.4 Run-time Library API . 93
5.3.5 Example . 93
5.3.6 Flow of a Fault Injection Campaign 94
5.3.7 Evaluation . 96

5.4 Arm Cortex A53 Vulnerability Analysis 98
5.4.1 Instruction Level Error Resiliency Analysis 99

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xii

5.4.2 Error Resiliency of Source Code and Algorithm Transformations100
5.4.3 Compiler Optimizations VS Frequency Margins 101

Source Code Transformations . 104
Memory Access Pattern Optimizations 104
SIMD Optimizations . 105

5.5 GemFI versus XM2 . 106

6 Related work 107
6.1 Approximate computing . 107
6.2 Fault Tolerant computing . 109

6.2.1 Power and Energy-Aware Optimization 112
6.3 Voltage Margin Characterization and Prediction 113
6.4 Fault Injection Tools . 115

7 Conclusions 117
7.1 Future Work . 118

Related publications 121

Contribution to Joint Publications 123

Bibliography 124

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xiii

List of Figures

1.1 Description of the reliability of a generic CPU for different operating
points in terms of supply voltage and frequency. 4

1.2 Application domains with intrinsic error resiliency. 5
1.3 Vision of our approach. Applications should be categorized based

on their contribution to the output quality. Using this information the
applications should be scheduled in hardware with appropriate levels
of reliability. 7

2.1 A single threaded execution of an abstract application, dark rectangles
correspond to parts of the application that can be parallelized 17

2.2 Application tasks are created and tagged with significance information 19
2.3 Non-reliable tasks may execute error identification and correction func-

tions after their termination . 19
2.4 Result-checks at the group-of-tasks granularity 20
2.5 A case of relaxed synchronization which results to termination of late

tasks . 20
2.6 The configurations FastRel, SlowRel and FastUnRel used by the

runtime system, to reduce the energy footprint by exploiting the sig-
nificance of computations. Our approach exploits non-nominal con-
figurations within the unsafe region, that are energy-efficient but un-
reliable. 25

2.7 The typical life of a group-of-tasks in the context of significance aware
unreliable computing . 28

2.8 Breakdown of task execution time, for each benchmark. 31
2.9 Evaluation approach: we build the performance, energy and fault

models (left), and use these models to drive experiments and estimate
energy consumption (right). 32

2.10 Relative error for the execution time and energy as predicted by our
model vs. a real execution, for our application benchmarks when
half of the tasks execute in the FastRel = (3.7Ghz, 1.06V) configu-
ration and the other half in a lower-power SlowRel configuration. All
SlowRel configurations are shown in x-axis. 35

2.11 Effects of single fault injection, using the GemFI simulator at the ar-
chitectural CPU level, and the software-based approach during native
execution. 38

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xiv

2.12 Energy gains of a single task for Sobel executed at voltages Vl < Vh for
constant frequency fh = 3.7GHz. 40

2.13 Experimental results for different Vl values for the SlowRel andFastUnRel
configurations. Percentage of experiments which achieved a certain
quality (left), and energy gains with each protection scenario (right). . 41

2.14 DCT output at 0.89V, with one fault injected every 100,000 cycles. The
images correspond (from left to right) to the BP, B-RC, B-SF and FS
protection configurations, resulting to PSNRs of 12, 13, 15 and 37 dB
respectively. A fault free execution leads results in a PSNR of 43 dB.
NP deterministically leads to crashes. 43

2.15 Quality vs. energy trade-offs using the ratio parameter in the FS con-
figuration. 44

3.1 The typical life of a group-of-tasks in the context of significance aware
approximate computing . 49

3.2 Different levels of approximation for the Sobel benchmark 51
3.3 Execution time, energy and quality of results for the benchmarks used

in the experimental evaluation under different runtime policies and
degrees of approximation. In all cases lower is better. Quality is de-
picted as PSNR−1 for Sobel and DCT, relative error (%) is used in all
others benchmarks. The accurate execution and the approximate exe-
cution using perforation are visualized as lines. Note that perforation
was not applicable for Fluidanimate. 53

3.4 Different levels of perforation for the Sobel benchmark. Accurate ex-
ecution, Perforation of 20%, 70% and 100% of loop iterations on the
upper left, upper right, lower left and lower right quadrants respec-
tively. 54

3.5 The normalized execution time of benchmarks under different task
categorization policies, with respect to that over the significance-agnostic
runtime system . 55

4.1 Overview of our approach for margin characterization, modeling and
dynamic prediction. 59

4.2 Offline characterization of maxVmargin methodology 60
4.3 Evaluation of maxMargin settings for 34 benchmarks (10 runs each)

in each workstation; the higher the bar, the wider the exploitable volt-
age margin. The horizontal dotted lines show the maximum (red) and
minimum (black) values of maxMargin. 63

4.4 In the left we present the percentage of the total single core experi-
ment in which the respective core was ranked as weakest or strongest.
On the right we present th percentage of the total experiments in
which the core configuration was considered as the weakest. 64

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xv

4.5 Average (across all configurations) faulure probability CDF for each
CPU, with respect to the applied Vmargin 64

4.6 Profiling performance metrics . 65
4.7 Methodology Used during the model training phase 66
4.8 The number of dispatched uops in port 1 during the execution time of

an application. 67
4.9 Prediction of our model with and without the safety margin, for sam-

ples in the validation data set. 71
4.10 The bars show the average dynamic maxVmargin applied by xDVS for

Skylake (left) and Haswell (right) workstations. The min-max bars
represent the minimum and the maximum maxVmargin applied by
xDVS. The gray diamond represents the maxVmargin as identified by
offline characterization at the granularity of the whole application. . . 72

4.11 Timeline showing the applied maxVmargin for consecutive single core
executions of four applications on Skylake 2 (left), and a snapshot of
full system utilization execution for gromacs application on Skylake 4
(right). 72

4.12 The timeline showing the applied maxVmargin while executing the
large applications in full system utilization for Skylake (left) and Haswell
(right) workstations. 73

4.13 Energy gains of xDVS when compared with Intel P-state governor
for Skylake (left) and Hawell (right) CPUs. The grey horizontal lines
represent the maxVmargin obtained by the offline characterization. . . . 73

5.1 An architectural overview of GemFI. The red components of the ar-
chitecture demonstrate the possible locations where faults can be in-
jected, whereas the red ovals represent applications which use the ex-
tended ISA. 78

5.2 GemFI functionality on each simulated instruction. 81
5.3 Simple checkpoint-restore mechanism to speedup simulation campaigns. 82
5.4 Different categories of results for the DCT benchmark. a) A strict cor-

rect result b) Relaxed correct result c) SDC d) The difference between
(a),(b) (loss of quality) . 84

5.5 Application behavior when fault injecting different architectural com-
ponents. 86

5.6 Correlation of the timing of fault injection with the effect on the appli-
cation. 88

5.7 GemFI average overhead compared with unmodified Gem5. The chart
also depicts the 95% confidence interval for each application. 89

5.8 Effect of GemFI optimizations on the execution time of fault injection
campaigns (y-axis in logarithmic scale). 89

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xvi

5.9 System architecture of XM2. It comprises a single monitoring system
and multiple target systems. The components corresponding to dark
gray boxes are supplied by the user. XM2 includes a built-in classifier
of results, however the latter can be substituted by a user-provided one. 91

5.10 Flow chart for the main steps performed by XM2 for the basic case of
an experimental campaign that does not result to crashes. The dark
box is the only state where the target system is configured at an unre-
liable state. 95

5.11 Overhead of XM2 in terms of execution time and additional lines of
code (LOC) when compared to a native execution and the original
version of the code respectively. 97

5.12 Experimental results for different applications and different overclocked
configurations. 98

5.13 Experimental results of the instruction error resiliency characteriza-
tion when Vu = 1.2V, fu = 1450MHz. The X-axis shows the different
microkernels and the Y-axis presents the classification of the experi-
ments according to the effects of overclocking on execution. 99

5.14 Experimental results stressing the branch predictor for the two micro-
kernels for different overclocked frequencies (fu). 100

5.15 Experimental results of the Cache microkernels of Table 5.4 for unRel =
(1.2V, 1430MHz), when the hardware prefetcher is enabled (left) and
disabled (right). The Y axis presents the classification of the experi-
ments according to the effects of overclocked execution. 100

5.16 Execution time and energy consumption of the application bench-
marks for the different compiler optimization levels, relative to O0. . . 102

5.17 Evaluation of maxfmargin settings for 8 benchmarks (1000 runs each)
in each raspberry PI; the higher the bar, the wider the exploitable fre-
quency margin. The horizontal dotted lines show the maximum (red)
and minimum (black) values of maxfmargin. 103

5.18 (a) Performance metrics and energy concumption of the transposed
and tiled MM versions, with respect to the original implementation.
(b) maxfmargin for all raspberry PIs and all MM implementations. . . . 104

5.19 (a) Normalized performance metrics and energy consumption of the
three benchmarks, with respect to the implementations without SIMD
instructions. (b) maxfmargin for all raspberry PIs and benchmarks. . . 105

7.1 Vision of our approach. The applications and the computations should
provide information to the software stack about their quality/energy
requirements. Using this information the computations can be sched-
uled in hardware with different energy-reliability settings. 119

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xvii

List of Tables

2.1 Lines of code (LOC) for the tasks and corresponding result-check and
correction functions for each benchmark. The result-check functions
are implemented based on the original task code, which was modified
to reduce its computational complexity. 30

2.2 SlowRel and FastUnRel configuration settings used in our evalua-
tion, and average fault rates of the FastUnRel configurations. 40

2.3 Average task execution time in cycles (thousands), number of tasks
executed reliably/unreliably, and number of voltage and frequency
transitions, for each benchmark. 40

3.1 Benchmarks used for the evaluation. For all cases, except Jacobi, the
approximation degree is given by the percentage of accurately exe-
cuted tasks. In Jacobi, it is given by the error tolerance in convergence
of the accurately executed iterations/tasks (10−5 in the native version). 50

4.1 Benchmarks used to characterize the voltage margins of the CPUs. . . 61
4.2 Characteristics of the workstations. 62
4.3 Most influential performance metrics for Vmin, as ranked by the MI

algorithm. 69

5.1 Alpha instruction formats . 85
5.2 API to the run-time library of XM2. 93
5.3 Raspberry 3B Specifications . 97
5.4 Different memory access patterns used by the source code transfor-

mation case study. 101
5.5 Brief Comparison between GemFI and XM2 106

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

xviii

Dedicated to my family and
friends

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

1

Chapter 1

Introduction

The scalability of semiconductor manufacturing process, as predicted by Moore’s
law, has been the driving force of the increase in the capabilities of computer sys-
tems. The 2013 International Technology Roadmap for Semiconductors (ITRS) re-
port warns the public that CMOS, due to their constant scaling, will reach their
atomistic and quantum mechanical physics boundaries in the next 3-12 years [47].

The scientific community is motivated to investigate novel designs which exploit
heterogeneous technologies and emerging new information-processing paradigms.
In contrast to the past, when technology was driven by the quest for higher per-
formance, the primary goal of systems has shifted to optimize the power consump-
tion/performance equilibrium.

1.1 The reality of power consumption

For over four decades Moore’s Law, coupled with Dennard scaling [91] ensured the
exponential performance increase in every process generation through device, cir-
cuit, and architectural advances. Up to 2005, Dennard scaling meant increased tran-
sistor density with constant power density. If Dennard scaling would have contin-
ued by the year 2020 [67], we would have approximately 40 times increase in energy
efficiency compared to 2013. Unfortunately, Dennard scaling has ended because of
the slowdown of voltage scaling due to slower scaling of leakage current.

The end of Dennard scaling has changed semiconductor industry dramatically.
To continue the proportional scaling of performance and exploit Moore’s Law, pro-
cessor designers have focused on building multicore systems and servicing multiple
tasks in parallel instead of building faster single cores. Even so, limited voltage scal-
ing increasingly results in having a larger fraction of a chip unusable, commonly
refer to as Dark Silicon [28]. It is expected by 2020 that only nine percent of the to-
tal number of transistors could be activated at any point in time due to tight power
budgets [67].

To make things even worse, static and dynamic variations [13] result in adding
voltage guardbands to ensure correct processor operation. The added guardbands
increase energy consumption and force operation at higher voltage or lower fre-
quency. They may also result in lower yield or field returns if a part operates at

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 2

higher power than its specification allows. The guardbands are becoming more
prominent with area scaling, the use of more cores per chip, and core to core varia-
tions. The average power cost of these guardbands can be in the order of 35% [22]

For all these reasons, power consumption nowadays is a prime design parame-
ter. If we need to go faster, we need to find ways to become more power efficient.
For example, one of the major concerns of building the new generation of High Per-
formance Computing (HPC) systems and overcoming the exascale barrier is power
consumption. Such systems ideally would consume approximately 20 Megawatts
and would maximize their performance by achieving greater degrees of parallelism.
All other things being equal, if one design uses less power than another, then it has
headroom to improve performance by using more resources or operating at a higher
frequency. Simply put, a more energy efficient chip has headroom to provide more
functionality and to service more tasks at given time frame.

1.2 Reliability and Power

Hardware designers go to great lengths to improve hardware reliability. They use
guardbands in their designs against adverse combinations of factors that affect hard-
ware reliability. This conservative design methodology essentially results in area,
performance, power and energy overheads. Such design choices though, are not
unreasonable as computation accuracy and hardware reliability have traditionally
been primary concerns during the design of computing systems. After all, devel-
opers expect hardware to always behave in a reliable and predictable way. In the
event that a hardware fault arises and manifests as an error in the software level it is
treated as a rare scenario with developers actively spending effort to mask the errors
from the user space, regardless of the magnitude of its effects.

In the terminology used in dependable and reliable operation of computer sys-
tems, a fault is an incorrect value within the internal state of the design of a system.
A fault in the hardware level can result into errors and an error can result into a
failure.

Possible sources of hardware unreliability are voltage droops, transistor vari-
ability, aging, temperature, or even alpha particles temporarily affecting hardware
functionality. The traditional design technique addressing this problem also known
as guardbanding, usually involves a combination of techniques, such as: i) higher
supply voltage levels (voltage margins) ii) larger transistors iii) logic for error detec-
tion and correction iv) spare cells. Although, guardbands have successfully ensured
correct operation up to date, their effectiveness in detecting and correcting all errors
is questioned by researchers, as geometries and supply voltages are scaled down
and circuits become more vulnerable to failures [124, 20, 111].

The extent of guardbanding that may be necessary to protect circuits against

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 3

all potential errors will lead to significant power overheads not sustainable by fu-
ture systems, thus conflicting with power dissipation which is another major chal-
lenge of the semiconductor industry. Note that these guardbands are pessimistic,
as they have to compensate for the worst case scenarios and combinations of non-
determinism, switching patterns, temperature and aging effects. According to [22]
the average power cost of guard bands is roughly 35%. However, most of the time,
these guard bands represent mere overhead, as worst case scenarios and combina-
tions will appear very seldom during application execution. The main reason for
having these pessimistic guard bands and energy inefficiency is that modern com-
puting systems execute programs under strict correctness requirements.

Guardbanding not only increases the power consumption of hardware but it im-
plicitly limits its performance as well. For example, [28] warns that regardless of
chip organization and topology, multicore scaling is power limited. A side-effect of
this issue is that at the 7nm process node, more than 50% of the transistors in a gen-
eral purpose processor will have to be powered off in every cycle. This is a trend that
will be visible at larger scale as well. Even though, it will be possible to fit thousands
of cores in the die it will be impossible to activate simultaneously more than a few
tens or low hundreds [38].

The issue at hand is quite alarming. Even if future applications have the inher-
ent parallelism to make efficient use of thousands of cores, the performance of our
computing systems is going to be restricted due to the extreme power dissipation. In
other words, unless we manage to design novel architectures, technology is bound
to hit again the same power wall as single core architectures.

1.3 Design Space exploration

Assuming that the quality of the output is related to the reliability of the system,
there is a need to rethink the design flow and propose abstractions that shift the
reliability versus energy dissipation balance towards a design philosophy in which
errors may be allowed to happen and safely ignored. To this direction one should
consider and exploit opportunities presented at the hardware level as well as at the
software level.

1.3.1 Hardware Level

In figure 1.1 we present the possible operating points of a generic CPU. We briefly
describe four different operational regions and discuss their trade-offs between en-
ergy and reliability:

Nominal Operating Points. Typically, a CPU manufacturer defines a finite num-
ber of operating points, called Nominal Operating Points (NOP) which guarantee
error-less operation. These settings are the conventional operating points of modern
CPUs. For the increased reliability the system designs needs to pay the overhead of
the guardbands.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 4

Frequency

V
o

lt
a

g
e

Nominal Operating Points:
Several Operating points in terms
of frequency and supply voltage,
defined by the manufacturer. In this
settings, the processors operates
reliably

Nominal Operating Points

Safe Region

Unsafe Region

Safe Region:
A set of operating points where the
reliability of the system is not
significantly reduced. Errors seldom
appear.

Unsafe Region:
A set of operating points where the
reliability of the system significantly
reduced. Errors appear frequently.Non Functional

Region

Non Functional Region:
In this settings the CPU
cannot operate at all.

FIGURE 1.1: Description of the reliability of a generic CPU for different operating points
in terms of supply voltage and frequency.

Safe Region. One can remove the voltage margins imposed by the guardbands,
by decreasing the supply voltage, also referred as undervolting, or by increasing the
operating frequency, also referred as overclocking, without reducing significantly
the reliability of the system [95, 4, 5, 94, 74, 151]. In this region errors appear due to
irregularities, which may appear only rarely or even not at all during the life cycle
of a given processor. The energy reduction mainly depends on the magnitude of the
margins.

Unsafe Region. It is possible, to perform even more aggressive undervolting or
overclocking and operate in the unsafe region, where hardware starts to malfunction
and produce timing errors during the execution time of a workload [11, 26, 22]. Since
the voltage reduction is higher in comparison with the safe region, the energy gains
are larger. However in these settings the errors occur frequently, therefore there is a
need to add some protection mechanisms against these errors.

Non Functional Region. At this region the CPU is not operational at all as the
majority of the paths within the netlist of the system experience timing violations.

1.3.2 Software level

For a lot of applications, not all computations and not all data of the application are
equally critical, requiring to be performed or maintained at 100% accuracy or cor-
rectness. Several application domains offer the opportunity to trade-off quality of
output(QoO) for significant improvements in energy consumption. For such appli-
cations, it may be possible to only approximate the final output (or part of it), rather
than computing the exact output result.

Typically such applications share a common property: they have relaxed accu-
racy constraints. In other words, they can accept a range of possible values as "cor-
rect". Figure 1.2 lists a few examples of application domains which have intrinsic

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 5

Potential to
Approximate

(Too) Many, Noisy
Measurements

(big data)

Statistical & Probabilistic
Computations
(monte carlo)

Self-Healing
(iterative methods)

Streaming Nature

Perceptual Limitations
(visualization, multimedia, etc)

Computational Redundancy
(communications)

FIGURE 1.2: Application domains with intrinsic error resiliency.

error resiliency and are consequently approximation friendly. For example:
Visualization applications are amenable to approximations because their output

is typically consumed by humans. Application developers can exploit the percep-
tual limitations of the human eye to approximate computations without inflicting
noticeable quality degradation to their output.

Streaming applications are inherently amenable to approximations since they
do not maintain a large state. They consume input data, perform computations, and
produce output data. If an error occurs during the computation of a specific output
data batch, the next batch will not be severely affected. In that sense, streaming
applications inherently exhibit computational isolation.

Some iterative methods. For example, in the presence of errors iterative numer-
ical methods still tend to converge to a correct solution but will typically require
more iterations.

Randomized computations, If errors are random, the effect on these algorithm
is part of the randomization process.

Approximate computing is an emerging paradigm, that allows a controlled de-
crease of the quality of the output for energy efficiency [6, 121, 149, 89]. Typically,
approximate computing is used as a term to describe the disciplined aggressive op-
timization at the algorithmic level to gracefully trade-off computation accuracy with
performance/energy efficiency.

A similar notion to approximate computing is fault tolerant computing in which
the underlying hardware may exhibit unexpected behaviour such as computation
errors, crashes, or even infinite loops. This uncertainty/unreliability can be the re-
sult of a wide variety of causes. It may be due to unreliable execution on energy
efficient substrates, or even hostile environments such as space (alpha particles, cos-
mic rays, solar wind flux, etc). In any case, maintaining acceptable levels of reliabil-
ity and maintaining an acceptable quality of the output while executing code using
unreliable hardware requires the use of fault tolerance techniques. Although both

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 6

paradigms exploit similar features to achieve energy efficiency they demonstrate
large differences. Approximate computing is controlled and predictable. A devel-
oper consciously designs an approximate version of the code and/or uses hardware
with reduced precision. On the other hand, execution under unreliable conditions
is less predictable and typically requires the application of fault tolerant computing
techniques. For example, the developer should detect and correct errros before they
irreversibly contaminate the application state.

One factor that contributes to the energy footprint of current computer technol-
ogy is that all parts of the program are considered to be equally important, and
thus are all executed with full accuracy. However, as shown by previous work [73],
in several classes of computations, not all parts or execution phases of a program
affect the quality of its output equally. In fact, the output may remain virtually
unaffected even if some computations produce incorrect results or fail completely.
Significance-aware computing [61, 90] exploits the algorithmic property of computa-
tional significance to create optimization opportunities in terms of performance and
power-efficiency of applications.

1.3.3 Significance Definition

A formal definition of significance can be provided as follows. Assuming code that
implements the function y = f(~x), where ~x is the vector of the function inputs, the
significance of ~x to the output y can be defined using interval arithmetic [92] and first
order adjoint analysis. The range of possible input values is the input interval vector
[~x] = [~x, ~x] = {~x ∈ IRn|~x ≤ ~x ≤ ~x}, and an evaluation of f in interval arithmetic
is obtained by replacing all variables and intermediate elementary functions φ with
their interval version. The significance of an input element xi ∈ ~x to the final result
y is equal to

Sy(xi) = w([xi] · ∇[xi][y])

where w(·) is the width of the interval. The first order derivative ∇[xi][y] =
∂f [~xi]
∂[xi]

is the derivative of the function result [y] with respect to the input variable [xi]. In
other words, the bounds of interval derivative ∇[xi][y] are the steepest downward
and upward slopes, respectively, of y = f(~x) in the interval [xi], which quantify the
impact of all possible values from [xi] on the final result y. If the range (width) of Sy
is large, then xi strongly affects the value of y. As such, the code that produces the
value of xi is highly significant for the accuracy of the final output y. More informa-
tion on the algorithmic property of significance and a methodology for determining
the significance of computations automatically can be found in [141].

1.4 Contributions

The granularity of significance is not bounded in the spectrum of a single applica-
tion, but it can be projected to the entire software stack. For example, the Operating

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 7

System Software

Visualization, Streaming,
Iterative, randomized

applications

HPC,
Animation, etc.
 applications

Operating System,
security,financial,

applications

Categorization
based on
computational
significance

Significant
computations

Non-Significant
computations

Significant
computations

Significant
computations

Categorization of
applications based on
their application-
significance

Unsafe Region Safe Region NOP

Supply Voltage for a specific frequency

Applications are scheduled at processing
cores (regions) with the appropriate error
resilience. For example, the OS kernel should
always be executed in reliable cores.

1

2

3

FIGURE 1.3: Vision of our approach. Applications should be categorized based on their
contribution to the output quality. Using this information the applications should be

scheduled in hardware with appropriate levels of reliability.

System (OS) is more important (significant) than a media application, as an error
corrupting the OS could propagate to multiple applications making the entire sys-
tem unstable. Likewise, a security application is more significant than a gaming
application. Using a similar reasoning the quality of the output can be projected to
the entire software stack, where the quality of the system takes into account all the
applications within the system. This vision is depicted in figure 1.3.

This PhD dissertation aims at improving power and energy efficiency by exploit-
ing the correctness/reliability opportunities presented both in the software level
and the hardware level. Applications which can tolerate quality degradation use
significance-driven approach, which aims to gracefully trade-off application output
quality with improved energy efficiency by forcing the CPU processor to operate on
an unsafe region (Figure 1.3 black circle 1).

The significance-driven approach can be also exploited in approximate comput-
ing, in which alternative more energy efficient approximate versions of the non-
significant computations are scheduled for execution in Nominal operating points
(Figure 1.3 black circle 2).

In any case though the significance-based computing model is not suited for all
applications. For instance, the significance of computations may be highly input-
dependent, hard to specify at design time and difficult or costly to extract even at
run time. Also, some programs may require all tasks to be executed without inac-
curacies. To this direction in this these we achieve energy efficiency by executing
applications in the safe operational region of CPUs. In which errors are not expected
to happen, but pose a rare event(Figure 1.3 black circle 3).

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 8

Finally, this PhD dissertation distributes the responsibility for energy efficiency
and reliability in various design layers starting from the circuit all the way to the
application layer, where available slack in output QoS can be reduced to increase
energy efficiency. The realization of such a system requires modeling of the effects
of potential hardware misbehaviour induced by various sources and also tools that
can easily propagate such effects. To this direction, we designed, implemented and
deployed experimental frameworks, which are used to study the trade-offs between
energy/power efficiency and execution resilience (both in terms of quality of output
and execution resilience).

The next sections describe the contributions in greater detail.

1.4.1 Significance Aware Computing

We investigate significance aware computing, based on the premise that specific
phases of a computation may incur a high toll on performance and energy without
the corresponding contribution to the quality of the result.

For example, Discrete Cosine Transform (DCT), a module of popular video com-
pression kernels, which transforms a block of image pixels to a block of frequency
coefficients, can be partitioned into layers of significance, owing to the fact that hu-
man eye is more sensitive to lower spatial frequencies, rather than higher ones. By
explicitly tagging operations that contribute to the computation of higher frequen-
cies as less-significant, one can leverage smart underlying system software to trade-
off video quality with energy and performance improvements. Significance aware
computing aims to exploit regions of an application which are amenable to aggres-
sive optimizations that do not severely impact the final application outcome but lead
to improvements in energy/power/performance.

There is need for an intuitive programming model which is user-friendly but
also offers the necessary expressiveness and functionality to address all of the key
challenges of the signifiance aware paradigm. To this direction, we introduce a pro-
gramming model which extends the OpenMP, one of the most popular parallel pro-
gramming models, and provides the following main features:

Significance Characterization: The developer can specify the significance of differ-
ent parts of the computation based on how strongly each part contributes to
the quality or correctness of the end-result.

Quality Control: On the one hand, the application should always terminate with
results that are acceptable to the user. On the other hand, it should be elastic;
different users may have varying expectations on the performance and output
quality of an application. In fact, even the same user may need the same appli-
cation for different execution scenarios to modularly adapt the quality/energy
trade-offs. We introduce a single knob, called ratio that controls the propor-
tion of computations which will be approximated or executed on unreliable

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 9

but more energy efficient hardware. The ratio feature can be used to effectively
trade off quality for energy efficiency.

We introduce two different versions of the significance-aware programming model
which correspond to (i) fault tolerant computing in unreliable hardware and (ii) ap-
proximate computing.

Significance aware fault tolerant programming model

We present a programming model which facilitates application execution on hard-
ware within the unsafe region, hence multiple errors occur during the execution of
an application. This necessitates mechanisms to isolate/protect unreliable compu-
tations from reliable ones, in conjunction with methods for detecting and correcting
severe silent errors. Consequently, efficient significance-aware fault tolerant comput-
ing requires an intuitive and user friendly way to provide all of this information to
an intelligent runtime system which will support and orchestrate the execution of
code using mixed reliability hardware. The programming model besides the signifi-
cance characterization and the ratio knob also facilitates the following features:

Sanity Control: The developer can introduce code for checking and repairing the
output of the parts that are executed unreliably.

Relaxed Synchronization: Since errors may result to infinite loops or prolong the
execution of the application, the programming model provides primitives to
support relaxed synchronization which uses timing watchdogs to break from
such rare occurrences.

Significance aware Runtime system for fault tolerant computing

Besides the expressiveness of the programming model, the runtime system should
effectively support unreliable operation. Initially the runtime system should use the
significance information combined with the ratio knob to decide which computa-
tions will be executed on nominal operating points and which computations will be
scheduled for unreliable operation in the unsafe region. Furthermore, the runtime
system should isolate the side-effects of the unreliable execution of non-significant
parts, so that they do not silently propagate to the rest of the computation in an
uncontrolled way. It also, should protect crucial information concerning the run-
time state and the application from errors. Finally, the runtime system is responsible
to hide hardware details from the programming model and consequently from the
developer.

Our evaluation shows the effectiveness of different protection mechanisms pro-
vided by the runtime system. We show that traditional system software protec-
tion mechanisms are not adequate, however their combination with programmer
wisdom provides effective protection against crashing and silent data corruptions,

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 10

while enabling considerable energy gains (on average 20%) . Interestingly, modern
processors with the assistance of our framework can produce acceptable results until
the error rate becomes too high. From that point, additional energy gains are too low,
and massive failure rates defeat any software-based realistic protection mechanism.

Power/energy and fault modeling of the unsafe region

A key challenge is to model the operation of a core in the unsafe operating region.
This PhD dissertation presents an analytical energy and power model of a CPU
when operating in the unsafe region. Moreover, it associates the operation in this
region with the probability of faults due to timing violations. The methodology pre-
sented combines simulation with software fault injection to emulate the unreliable
operation and it uses the analytical models to estimate the energy consumption of
the system in such settings.

Significance-aware programming model for approximate computing

A similar programming model is proposed that facilitates approximate computing
(on reliable hardware). In this case, quality degradation is induced in the application
due to the inaccuracies of the approximate versions. Besides the significance charac-
terization and ratio the programming model should facilitate the following feature:

Approximation characterization: The programming model should provide the
ability to define an approximate version of the computation. This version
should be more energy efficient, but may also create a less accurate result.

Significance aware Runtime system for approximate computing

The runtime system should use the significance as well as the ratio value to decide
for which computations the approximate version of the code should be used. The
runtime system can select the ratio knob to maximize the quality of the output in
energy constrained environments.

1.4.2 Exploiting Voltage Margins for Energy Efficiency

The significance aware programming models can be used to reduce the energy con-
sumption assuming that the user has access to the source code of an application
which is amenable to approximation. There are applications which can not sustain
quality degradation or there is no access to the source code. However, as presented
in Section 1.3.1 the hardware design already presents opportunities for energy effi-
ciency without reducing the quality of the output. These opportunities are presented
within the safe region of operation. To maximize the energy efficiency one should be
able to predict the boundary between the safe and unsafe region and execute the ap-
plications just above this boundary.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 11

To this end, we developed a model to predict a reduced but safe CPU supply
voltage to achieve higher energy efficiency. The model is used by a dynamic volt-
age scaling governor which monitors the utilization of the CPU resources and uses a
prediction model to apply a new safe supply voltage of the system. To train the pre-
diction model we perform an offline characterization phase of the voltage margins,
of two mainstream x86-64 microarchitectures, the Haswell i7–4790 and the Skylake
Xeon E3–1220 v5 processors, using a diverse set of benchmarks which stress differ-
ent components of the CPU microarchitecture. Interestingly, our analysis shows that
the voltage margins depend on a multitude of factors.

The main contributions of our approach are:

• We develop a model that takes as input selected CPU performance counters
and core utilization, and estimates the voltage margin of the workload on the
specific CPU part for CPU base frequency. This estimation can be exploited to
safely undervolt CPUs and achieve higher energy efficiency.

• We evaluate the effectiveness of our model using a dynamic voltage scaling
governor, called xDVS. The governor instructed by our model dynamically
adjusts the CPU supply voltage to levels below conservative nominal values.
Compared to the stock Intel (P-state) DVFS governor, our approach achieves
energy savings up to 40% for Skylake and 34% for Haswell CPUs.

• The model used by xDVS is verified via a long-running (consecutive 72 hours)
and dynamically changing application workload on 6 different workstations,
without any observable degradation of system reliability. Our approach proves
able to handle cases where a single application monopolizes the CPU, but most
importantly real-world scenarios, where a mixture of different applications ex-
ecute simultaneously. To the best of our knowledge there is no prior work that
supports dynamic undervolting for such realistic execution schemes. During
this execution, the supply voltage for the Skylake and Haswell CPUs was ad-
justed a total of 2.6∗106 times, with the average amount of undervolting being
216mV and 116mV respectively.

We note that our dynamic Vmin predictions are accurate and safe for conventional
workloads. Our scheme still may require hardware fail-safe mechanisms to protect
the CPU from worst-case, extreme voltage fluctuations, such as those induced by
voltage droop viruses. Section 4.7 discusses this point in more detail. Moreover, in
our evaluation we do not categorize applications as important or less important. All
applications are executed in hardware operating in similar settings.

1.4.3 Experimental Frameworks for Reliability Analysis

Relaxing the hardware correctness requirements reduces the reliability of the system.
A major challenge of this PhD dissertation was to understand under which circum-
stance do errors manifest on the hardware and how different applications mask the

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 12

respective errors. To be more precise we faced the following challenges:

• Understand how and under what circumstances modern CPU microarchitec-
tures fail when executing code at reduced margins

• Identify the voltage margins of the system and associate them with their re-
spective energy gains.

• Evaluate the resilience of applications – or the whole software stack

To overcome these challenges we developed the following two fault injection
tools which where used by this PhD dissipation to conduct the experimentation:

GemFI: A simulation based fault injection tool. The primary objective of the tool is
to enable fault injection based on different fault models and on systems with
various configurations. A variety of different system configurations and archi-
tectures can be supported without affecting the implementation of fault injec-
tion in GemFI

XM2: a fault injection tool on real hardware . It can be used to identify the margins
of a system, or study the effect of real faults on the application and associate
the undervolting/overclocking with the respective energy gains. We use XM2

in several case studies in which we identify:

• The effect of common compiler optimizations on the energy efficiency and
the frequency margins of four ARM Cortex-A53 processor parts;

• The effect of memory access pattern optimizations on the energy effi-
ciency and the frequency margins;

• The interaction of SIMD instructions on the energy efficiency and the fre-
quency margins.

1.5 Outline

In Chapter 2 we present the significance driven programming model for fault toler-
ant computing. We detail the challenges of fault tolerant computing and their solu-
tion through the programming model and the runtime system. We use an power/-
time/energy model to estimate the energy footprint of applications when executed
on the unsafe region. We also implement a fault injection methodology to simulate
the errors that manifest during the execution in the unsafe region. Finally using these
models we evaluate our programming model.

In Chapter 3 we present the approximate variant of our programming model
and the accompanying runtime system. We evaluate our approach and present a
case study, in which a model-based approach can automatically discern the appro-
priate levels of approximation and concurrency as well as CPU frequency for energy
restricted execution of applications. An offline analysis drives the decisions of an

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 1. Introduction 13

intelligent runtime system, which fine tunes the approximation degree of an appli-
cation so that its energy consumption remains within a budget that is specified by
the end-user at execution time.

In Chapter 4 we present a methodology to detect safe margins for multicore CPU
operation. We create a prediction model to estimate a safe and energy efficient oper-
ating point within the safe region. The model is evaluated using a dynamic voltage
scaling governor.

In Chapter 5 we present the experimental framework used by this work to model
the various energy-reliability trade offs when operating on sub-nominal settings. We
discuss related work in Chapter 6 and present our concluding remarks in Chapter 7.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

14

Chapter 2

Significance Aware Fault Tolerant
Computing

As already discussed, part of the energy inefficiency problem of modern computing
systems is that all computations are treated as equally important, despite the fact
that, in a lot of cases, only a subset of these computations may be critical to achieve
an acceptable quality of service (QoS). In several application domains it is not the
precise result that matters to the user but rather an approximation of the output [24,
33]. More generally, within each program all computations are treated as equally
important for the quality of the end result, although in most cases this assumption
is not true.

In this chapter we lay the foundations for not only approaching the theoretical
limits of energy reduction of conventional technology, but also moving beyond those
limits by accepting the quality degradation in a controlled manner. Applications or
different phases of the same application have different significance for the quality of
the end-result. System designers have traditionally made very strict assumptions
about quality of the output, insisting that the application state and the processor
state is completely accurate and correct. However, this requirement can be relaxed.
For example the user can be satisfied with a lower but acceptable quality of the out-
put. Even if the intermediate state of the system is not accurate. In the end, one may
ask if strict, bit-exact application correctness is even required for some applications.

In any case though, the proposed significance-based computing model does not
fit all applications. For instance, computation significance may be highly input-
dependent, hard to specify at design time and difficult or costly to extract even at
run time. Also, some programs may require all computations to be executed without
any inaccuracy or any chance of data corruption. Our approach focuses on applica-
tion domains that offer the opportunity to trade-off quality of output for significant
improvements in energy consumption. Such applications domains include:

Visualization applications are amenable to approximations because their output
is typically consumed by humans. The correction part of the result check func-
tion can exploit the perceptual limitations of the human eye to approximate

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 15

computations without inflicting noticeable quality degradation to their out-
put. In our evaluation we use two benchmarks from this category: DCT and
Sobel.

Streaming applications are inherently amenable to approximations since they do
not maintain a large state. They consume input data, perform computations,
and produce output data. If an error occurs during the computation of a
specific output data batch, the next batch will not be severely affected. In
that sense, streaming applications inherently exhibit computational isolation.
Blackscholes, one of the benchmarks used in the experimental evaluation, falls
in this category.

Iterative methods tend to be self healing. For example, in the presence of errors,
Monte Carlo simulations, or iterative numerical methods still tend to converge
to a correct solution but will typically require more iterations. Such applica-
tions in our evaluation are Jacobi and K-means.

2.1 Contributions

We present a programming model and the accompanying runtime system that ele-
vates the significance of the computations as a first order constraint to the developers.
We provide a single knob to gracefully trade-off the quality of the output to energy
gains. To be more precise in this chapter we make the following contributions:

• We introduce a significance-centric programming model and runtime system,
which allows computations to be executed on potentially unreliable but low-
power hardware in a controlled way, to trade-off output quality for greater
energy efficiency.

• We introduce a single knob, called ratio, to trade-off quality for energy gains in
a flexible way. The ratio can be set at execution time, thereby allowing the user
or a higher-level framework to control the energy/quality trade-off to meet
dynamically varying application requirements.

• We present a power, energy and fault modeling methodology which simulates
operation on the unsafe region.

• We evaluate our programming model and runtime system. Our approach ef-
fectively trade-offs quality of output to optimize the energy consumption of
applications using the significance aware fault tolerant computing program-
ming model. The evaluation also demonstrates the limitations of execution
application on the unsafe region.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 16

2.2 Programming Model Objectives & Properties

Our programming model can develop applications which target unreliable hardware,
without uncontrolled degradation of the quality. The design objectives and proper-
ties of the programming model are the following:

2.2.1 Significance Characterization

The programming model should allow the developers to characterize computations
according to their degree of significance in a straightforward and intuitive way. Sig-
nificant computations will be executed correctly, at the expense of power consump-
tion and/or performance, while computations characterized as non-significant will
be executed in a way that may produce incorrect results. The significance of a code
region should be expressed either statically, at compile-time, or at run-time, since
significance may very well be input-related and/or context-dependent.

2.2.2 Safety Isolation

The model should be safe: Computations are by default considered significant and
are thus executed correctly, unless the programmer explicitly allows imprecise com-
putations. As a result, a silent data corruption on the output of an early part of the
application can affect the execution of the following parts which are dependent on
the faulty one. Such a scenario would obviously violate the isolation attribute. Our
model should be equipped with mechanisms to tackle this situation by providing
functionality to the developer to detect errors early and even correct the computed
values of non-reliable computations. According to this scheme, the propagation of
errors across the application, can be controlled/avoided.

Moreover, both the design of the programming model and its implementation
should promote — and if possible guarantee — the isolation between significant and
non-significant code regions. In other words, errors manifesting on non-significant
tasks should not be fatal for significant tasks or the whole application. Although
isolation is a desired property, it is not straightforward to guarantee it. Almost all
realistic applications are characterized by data flow among their parts (such as ob-
jects, tasks, functions etc.).

2.2.3 Architecture Neutrality

The programming model should assume as little as possible about the underlying
architecture, making applications portable with no or at least with reasonable effort
to different architectures. It should be noted that our main focus is on functional
portability. The power / performance / reliability balance is highly architecture
dependent, therefore the power / performance / reliability efficiency is expected to
differ when moving to different hardware.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 17

2.2.4 Parallelism Expression

While the key objective of the programming model is to support significance-aware
programming and execution, we also wish to be able to express and handle paral-
lelism. This is important to exploit next-generation multi-core architectures, which
are quite likely to include unreliable cores or allow cores to operate at power levels
that may introduce faults.

2.2.5 Relaxed Synchronization

An important prerequisite for parallel execution of jobs is the existence of synchro-
nization mechanisms to ensure correctness of the final result. Due to the uncer-
tain behavior of jobs executing on unreliable hardware, traditional synchronization
mechanisms are overly stringent and are therefore not a feasible option. To this di-
rection we envision mechanisms offering more elastic synchronization, by extending
synchronization constructs with timing watchdogs, and more flexible synchroniza-
tion achievement criteria.

2.2.6 User Friendliness

A programming model must hide most of the intricate implementation and compu-
tation mapping details from the developers. In our case, we need to simultaneously
support the expression of both significance and parallelism, already putting a lot of
burden to the programmer. Therefore, we should make sure that migration of par-
allel, or even sequential codes to our model does not pose unreasonable overhead
to the programmer. Moreover, it would be desirable to allow incremental porting,
without widespread and intrusive changes to the original source code.

2.3 High Level Description

In the next paragraphs we will utilize an abstract figure to demonstrate the basic con-
cepts of the model. Figure 2.1 depicts an initial, single threaded application, which
however has areas (dark rectangles) that can be approximated or even dropped.

2.3.1 Task-Based Programming model

The programming model adopts a task-based paradigm, similar to OpenMP [12].
Task-based models are quite popular in both the academia and the industry. Such

Application Execution Order

FIGURE 2.1: A single threaded execution of an abstract application, dark rectangles
correspond to parts of the application that can be parallelized

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 18

models offer a straightforward way to express communication (data transfers) across
tasks. Parallelism is expressed by the programmer in the form of independent tasks,
however the scheduling of the tasks is not explicitly controlled by the programmer.
The developer simply defines dependencies among tasks and the underlying run-
time system schedules tasks on available hardware as soon as all their dependencies
have been met.

Adopting a task-based model is an appealing decision:

• It can express parallelism in an efficient manner (objective 2.2.4).

• It minimizes the burden related to controlling the parallelism. (objective 2.2.4

• It provides isolation between different jobs (tasks). A task is independent from
others during its execution, with well defined input and output data flows
(objective 2.2.2).

• Each task is a computation with well defined entry and exit points. This facili-
tates error detection / recovery tests at task boundaries (objective 2.2.2).

Pragmas for the Expression of Parallelism and Significance

The proposed programming model supports task creation and significance charac-
terization by annotating the input source code with #pragma compiler directives.
Pragma-based programming models have the advantage of facilitating non-invasive
and progressive code transformations, without requiring a complete code rewrite.
Adopting compiler directives to support parallelism in combination with the task
based model improves the user friendliness of our proposed model to the user (ob-
jective 2.2.6). Pragmas identify tasks and characterize them as significant or not, thus
steering their execution on reliable and non-reliable cores, respectively. Each task
pragma construct specifies a function which is equivalent to the task body, along
with its data-flow and accompanying significance information. Thus the main gran-
ularity of significance characterization is that of a task.

Significance takes values in the range [0.0, 1.0] and characterizes the relative im-
portance of tasks for the quality of the end-result of the application. Whether the
task will be execute reliably or unreliably will be decided by the runtime system
during execution time. This allows developers to flexibly assign significance values
to tasks depending on information available only during execution time, for exam-
ple the value of a variable.

In Figure 2.2 we show the decomposition of the abstracted example presented
in figure 2.1 into computation chunks. These chunks are categorized with various
significance values (shades of gray), using the programmer intuition, knowledge,
and/or domain-expertise. Tasks can be executed in parallel. Note that after the
parallel execution of tasks, implicit synchronization may be necessary.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 19

Application Execution Order

Synchronization
Points

FIGURE 2.2: Application tasks are created and tagged with significance information

Application Execution Order

Synchronization
Points

FIGURE 2.3: Non-reliable tasks may execute error identification and correction func-
tions after their termination

Early Error Detection To minimize Fault Propagation

Non-reliable tasks are expected to have unpredictable behavior due to the uncer-
tainty of their execution and can result into faults in the hardware level. These faults
can lead to arbitrary error propagation up to the final output of the program, or total
program crashes if they are not identified and isolated early on. The programming
model provides mechanisms that aim at identifying errors and — if possible — even
correcting them (objective 2.2.2). In the event of detected errors the developer is
given the opportunity to specify the recovery strategy (such as ignoring the error ,
re-executing, or even assigning a default value at the task output).

The programming model allows the programmer to specify result-check func-
tions, which will be executed right after a non-significant task completes. In this
function, which is guaranteed (by contract) to be executed reliably, the user can
check for possible errors or failures and even provide a default value to the calling
program as an acceptable replacement of the result of a failed execution.

We expect that the computational overhead of a result-check function should
be minimal, preferably orders of magnitude lower than that of the corresponding
task. Otherwise, the overhead introduced by its execution would cancel the perfor-
mance/power consumption benefits of unreliable execution.

The running example is now modified to include the aforementioned task-level
result-check functions which are illustrated as red rectangles in Figure 2.3

Although result-check functions offer a degree of error detection and isolation, in
some occasions checking a single task’s output is not sufficient to decide if the com-
putation is correct. A typical example is image and video processing applications,
in which the acceptance of the result for a pixel can be judged only in relation to
the values of neighboring pixels. To support error detection/correction at a coarser

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 20

granularity, tasks can be grouped, and result-check functions can also be executed
at the end of each group. We extend the running example to allow for group-level
result check functions as shown in Figure 2.4

Elastic Synchronization

In the context of the programming model we support a more elastic explicit synchro-
nization model for barriers (objective 2.2.5). Barriers can be equipped with watchdog
timers which terminate the wait after the specified time frame has elapsed. In the
case when the synchronization was not successful — in a traditional perspective —
the run-time system terminates all tasks that did not reach the barrier (if they have
not already crashed) and resumes execution of the following code.

Whenever a non-reliable task fails is stack in an infinite loop the entire applica-
tion will wait. The use of an elastic barrier in this case safeguards the application
from the otherwise unavoidable deadlock: it ensures that the task group will ter-
minate, either successfully, or with an error code, thus allowing the application to
continue or try to recover.

The running example is now finalized as shown in Figure 2.5 and serves as an
example of relaxed synchronization. Note that, due to a timing constraint which was
not met, the last non-significant task was terminated by the run-time.

Significance of Data

The main point of interest in a significance-aware computing platform concerns the
quality of the output results. After all, the role of computations – significant or not –

Application Execution Order

Synchronization
Points

FIGURE 2.4: Result-checks at the group-of-tasks granularity

Application Execution Order

Synchronization
Points

Pending tasks are
terminated

Task result check
function is executed

for forcefully
terminated tasks

FIGURE 2.5: A case of relaxed synchronization which results to termination of late tasks

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 21

is to produce output data that are acceptable to the end user.
In this PhD dissertation we have selected to only characterize explicitly the sig-

nificance of computational tasks, and not that of data. In other words, there is no
explicit tagging of significance of data structures in the code. The rationale is that
early error detection and correction using result-checking functions (as explained
earlier in this section) precludes the flow of unacceptably erroneous data between
tasks. If data are deemed unacceptable by a result-checking function, one option
may be to substitute the erroneous value by a default value so that the program can
continue. This approach greatly reduces the amount of effort that the programmer
has to expend to express significance in the code.

2.4 Syntax

In this section we define the API of the proposed programming model which realizes
concepts and ideas expressed in section 2.3.

2.4.1 Task Definition and Significance Characterization

Tasks are defined using the task directive (Listing 2.1). The significance() clause
specifies the significance of the task, and takes values in the range [0.0, 1.0], indi-
cating the importance of the task with respect to the output quality/correctness of
the result. Depending on their significance, tasks may be executed on top of reli-
able or unreliable hardware. The significance expression is evaluated at execution
time, thus allowing the programmer to parameterize task significance depending on
information accessible only at exection time (e.g values of variables).

The taskcheck() clause specifies a result-check function, which is invoked only if
the task is executed unreliably. The result-check function is always executed reliably,
and can be used by the developer to:

• inspect the task status to see if it completed its execution normally or has
crashed;

• assess whether the task output is wrong;

• assign meaningful default values to the task output;

• request a re-execution of the task.

The result-check function has implicitly access to all arguments of the corresponding
task, and may return either TRC_SUCCESS or TRC_REDO to the runtime. In the
latter case, the task is re-executed reliably.

1 #pragma omp task [significance(...)]
2 [label(...)][in(...)] [out(...)]
3 [taskcheck(resultcheck())]

LISTING 2.1: #pragma omp task

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 22

1 #pragma omp taskwait [label(...)]
2 [ratio(...)]
3 [time(...)]
4 [groupcheck(resultcheck())]

LISTING 2.2: #pragma omp taskwait

The programmer can define the inputs and outputs of the task, via the in() and
out() clauses, respectively. This information can be used by the runtime to infer task
dependencies and schedule tasks accordingly. Finally, the label() clause can be used
to group tasks, and to assign the group a common identifier (name), which is in turn
used as a reference to implement synchronization at the granularity of task groups
(Section 2.4.2).

2.4.2 Synchronization

The programming model supports explicit barrier-type synchronization through the
#pragma omp taskwait directive (Listing 2.2). A taskwait can serve as a global barrier,
instructing the runtime to wait for all tasks spawned up to that point in the code.
Alternatively, it can implement a barrier at the granularity of a specific task group, if
the label() clause is present; in this case the runtime system waits for the termination
of all tasks of that group.

Furthermore, the omp taskwait barrier can be used to control the quality degrada-
tion of application results. Through the ratio() clause, the programmer can instruct
the runtime to treat (at least) the specified percentage of all tasks – either globally or
in a specific group, depending on the existence of the label() clause – as significant
and the remaining tasks as non-significant. The runtime must also respect the rela-
tive ordering of tasks with respect to their significance. In other words, a task with
higher significance (value of the respective significant clause should not be treated as
non-significant while a task with lower significance is considered by the runtime to
be significant. The ratio takes values in the range [0.0, 1.0] and serves as a single,
straightforward knob to enforce a minimum quality in the performance / quality /
energy optimization space. Smaller ratios give the runtime more opportunities for
optimization, however at a potential quality penalty.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 23

1 int dct_taskrescheck(...) { /* DCT task result-check function. */
2 if (task_crashed()) /* Takes the same arguments as the task, */
3 coeff = 0; /* returns int. */
4 else if (abnormal(coeff))
5 coeff = 0;
6 return TRC_SUCCESS;
7 }
8 void dct_task(...) { /* Calculate the coefficients for a specific 2x4 block */
9 ... /* over a number of different 8x8 blocks. */

10 }
11 void DCT(...,double taskratio){/*DCT calculation. The taskratio is an extra

parameter.*/
12 float sgnf[] = {1.0, 0.9, 0.7, 0.3, /* Significance look up table */
13 0.8, 0.4, 0.3, 0.1}; /*for each of the 2x4 sub-blocks */
14 for each 2x4 sub-block K {/* Iterate over the blocks of the DCT coefficient

space. */
15 #pragma omp task significance(sgnf[K]) taskcheck(dct_taskrescheck())
16 dct_task(...);/* Task to calculate the Kth 2x4 sub-block, over all 8x8

blocks */
17 }
18 #pragma taskwait ratio(taskratio) time(16)
19 }

LISTING 2.3: programming model use case: dct pseudo-code

2.5 Example

Listing 2.3 presents a task based implementation of DCT using our programming
model. Line 15 defines a task to compute the frequency coefficients of a specific 2x4
sub-block. All tasks created in this loop have varying significance depending on
their position in the 8x8 block: upper left sub-blocks have higher significance than
lower right, as encoded in the sgnf array. In line 15, dct_taskrescheck() is specified
as the result-check function. This function checks whether the task crashed (Line 2)
or whether its output is wrong (Line 4). In both cases a the corrections sets the
respective coefficients to 0. Since this correction does not require task re-execution
the function returns TRC_SUCCESS (Line 6).

In Line 18 of Listing 2.3, the barrier for all dct tasks is specified with a timeout of
16 msec; this corresponds to a target frame rate of 30 fps, assuming DCT corresponds
to almost 50% of the computation time for each frame. Note that the taskratio is an
open parameter that is supplied when the program is invoked. In effect, it serves
as a knob, to set the “borderline” between the most-significant sub-blocks that have
to be computed reliably, and the less-significant sub-blocks that may be computed
unreliably. No group-level result-check function is used in the example, because
task-level result checks and repairs are sufficient.

2.6 Programmer Insight

The programming model assumes that the developer is sufficiently familiar with the
application to take good decisions as to how to structure the computation in tasks,
which tasks to characterize as more significant, and which result-check functions to
provide. Similar to parallelism, significance is a key algorithmic aspect that requires

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 24

the programmer’s full attention, but unlike parallelism task significance is orthogo-
nal to the underlying platform architecture.

Choosing result-check functions is also important. If the result-check function is
too complex, it is practically useless, as the same result could be achieved simply
by declaring the task as significant, and executing it reliably in the first place. If
too simple, the result-check function may erroneously mis-characterize and destroy
good task output, possibly deteriorating the end result of the computation.

Finally, task granularity is an important parameter that should be considered
when using this programming model. Fine-grained tasks may allow for a richer
(more diverse) significance characterization, which in turn can be exploited to achieve
a smoother degradation of output quality at increased energy gains. The downside
is that having many small tasks will also increase the task management overhead of
the runtime system, both in terms of time and energy consumption.

2.7 Significance-aware Runtime System

The runtime system is designed for a multicore shared memory platform, in which
cores can be set to operate in various voltage-frequency configurations (V, f), even
in ones below nominal values. Unsafe settings only apply to the cores of the CPU,
including the integer and FPU pipeline logic as well as the L1 and L2 caches. Mod-
ules critical to the correct operation of all cores, such as buses, memory controllers
and cache coherence mechanisms are set to a safe setting and thus always operate
reliably. Our power model takes this into account and all reported energy gains are
gained from undervolting the core part. A user-level library implements the runtime
system and runs on top of the Linux operating system. A source-to-source compiler,
which we developed based on [148], lowers programs that use the primitives of our
programming model to code with calls to the runtime system API. Finally, the pro-
duced source code is compiled into machine code using the standard gcc tool chain.

2.7.1 Runtime Execution Management

We consider three different hardware configurations:

FastRel: This onfiguration is a high-performance nominal point of operation, with
high voltage/frequency (Vh, fh), where a core executes code fast.

SlowRel: This configuration is a slower nominal operation point in terms of supply
voltage and frequency (Vl, fl). Consequently, parts of this application have low
power consumption but at the same time increased execution time.

FastUnRel In this configuration cores are set to operate in the unsafe region, the
operating point, called FastUnRel(Vl, fh), operates with the same (low) volt-
age as SlowRel and the same (high) frequency as FastRel. Code execution in
FastUnRel is equally fast as in FastRel yet more energy-efficient. At the same

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 25

Frequency

V
o

lt
a

g
e ● low-power and fast but

unreliable task execution

● execution of main
application thread

● task scheduling
● power-hungry, fast and

reliable task execution

● protection mechanisms
● result-check functions
● low-power, slow and

reliable task re-execution

SlowRel(V
l,
f
l
)

FastRel(V
h,
f
h
)

FastUnRel(V
l,
f
h
)

Clock Stretching (fast)

DVFS
(slow)

FIGURE 2.6: The configurations FastRel, SlowRel and FastUnRel used by the runtime
system, to reduce the energy footprint by exploiting the significance of computations.
Our approach exploits non-nominal configurations within the unsafe region, that are

energy-efficient but unreliable.

time, execution is potentially unreliable due to timing faults, since FastUnRel
is outside the nominal range of operation.

We assume that the runtime system can switch the operation of cores dynam-
ically. Due to the difference in their voltage, the transition between FastRel and
SlowRel requires a voltage and frequency scaling step, which introduces significant
delay. In contrast, given that SlowRel and FastUnRel have the same voltage, the
transition between them can be done quickly via clock stretching [19]. Figure 2.6
illustrates the principle of operation.

The main application thread and the master runtime thread are executed reliably
in the FastRel configuration. The tasks of the application can be executed reliably in
the FastRel configuration, or unreliably in the FastUnRel configuration, depending
on their relative significance and the user-supplied task ratio (see Section 2.4.2). Task
execution is done using separate worker threads, with each worker being placed in a
different core. To reduce the number of voltage transitions, task scheduling is done
in two alternating phases. In the first phase, workers are configured to operate in
FastRel, and the master thread schedules all the tasks in the ready list that have
been flagged for reliable execution. Before the second phase starts, all workers soft-
checkpoint crucial context information to use it to recover in case of corruption from
faults 1. Afterwards, the main thread requests the memory allocator (discussed in
Section 2.7.2) to protect all the memory pages as well as the stack of the main ap-
plication thread. This actually forces all data, including non-significant output data,
to a read only state. Reliable task input/output data can be mixed with unreliable

1We use the Linux getcontext() function. The state is copied to a read-only memory page to prevent
it from being written accidentally.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 26

input/output data in the same memory page. However the Operating System (OS)
assigns privileges at the granularity of a page, therefore when locking a page to read
only state even unreliable tasks cannot write to their output data locations. To over-
come this, each worker allocates extra memory in which the non-significant tasks
will store their results. These memory locations have read write permissions.

At this point the second phase starts. Workers switch from FastRel to SlowRel,
and the master thread proceeds with the scheduling of all the tasks that have been
flagged for unreliable execution. When a worker is assigned with a task, it switches
to the FastUnRel configuration and executes the task. If during task execution an
event causes the OS to take over (e.g. an I/O event), the worker switches to SlowRel
prior to executing the kernel code, and switches back to FastUnRel mode when it
resumes the execution of the application task. When the task completes or crashes,
the core is switched back to SlowRel, the previously saved state is restored, and the
result-check function of the task is invoked.

If the result-check function requests task re-execution, the worker repeats the ex-
ecution but maintains the core in the reliable SlowRel configuration. When all tasks
have finished their execution or the synchronization timing constraint is reached, the
main thread requests from the allocator to revert the protected memory privileges to
their previous state. Afterwards the main thread copies the computed output data
from unreliable tasks back to their original memory locations. In case the group
result-check function requests re-execution of the task group, the master thread con-
figures all workers to operate in FastRel. Then, all tasks in the group that have been
flagged for unreliable execution are re-scheduled from scratch, and are executed re-
liably. The overhead of switching to a different voltage level is amortized by the
execution of a large number of tasks.

The runtime supports the following levels of protection:

No Protection (NP): The runtime system does not employ any error detection/-
correction mechanism or programmer-supplied significance information. All
tasks of the application are executed unreliably (FastUnRel configuration)
and are susceptible to faults. A task crash leads to the abrupt termination of
the entire application.

Basic Protection (BP): All applications tasks are executed unreliably as in NP, but
the runtime system identifies and handles errors using the standard proces-
sor/OS protection mechanisms, including the internal soft-checkpointing of
critical state and the memory protection mechanism. As a result, task crashes
are properly caught. However, the programmer-supplied result-check func-
tions are ignored.

Basic & Result Checking (B-RC): In addition to BP, when an application task
completes its execution normally or crashes, the runtime system invokes the
programmer-supplied result-check function to detect and correct possible er-
rors.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 27

Basic & Significance (B-SF): On top of BP, the runtime system takes into account
the programmer-supplied significance of tasks and ratio, and schedules them
for execution accordingly. As a consequence, the most significant tasks are ex-
ecuted reliably (in the FastRel configuration), while the less-significant tasks
are executed unreliably (in the FastUnRel configuration). Task crashes are
caught and handled as in BP, and the programmer-supplied result-check func-
tions are ignored.

Full System (FS): The entire protection arsenal is employed, including basic run-
time system protection, task scheduling based on the programmer-supplied
significance information, and invocation of the result-check functions for un-
reliable tasks.

Full System & Re-Execution (FS-RE): Like FS, but if the task result-check func-
tions detect a task crash or invalid output, they request a full task re-execution,
rather than trying to repair the task output.

2.7.2 Memory Management

Our framework has been developed on a shared memory system, which is the worst
case scenario in terms of reliability. Erroneous stores by code that executes on an
unreliable core may affect global data structures or the memory of significant com-
putations.

The runtime system utilizes a custom dynamic memory manager which requests
memory slabs from the OS at the granularity of pages and serves dynamic alloca-
tions from either the application or the runtime system. When switching to an unre-
liable execution phase, the memory manager assigns read-only privileges to all used
heap pages, to protect them from rogue stores from tasks executed on non-reliable
cores. Should such a store be attempted, it leads to an exception which is handled ac-
cordingly by the runtime system. Besides the heap, faults can also corrupt the stack.
The runtime system allocates its internal data structures dynamically, thus there is
no information within the stack or the global data space to be protected from appli-
cation errors. All memory pages used as stack by the main application thread are
also set to be read-only prior to executing unreliable code. The current framework
does not implement any global data protection as this requires compiler support.

2.7.3 Life of a group-of-tasks

Figure 2.7 illustrates the typical life of a group-of-tasks in an application imple-
mented using our significance aware fault tolerant computing programming model.
For each group instantiated during the life of an application the runtime system
receives a collection of tasks with varying significance values (represented with dif-
ferent colors in Figure 2.7), a desired approximation level in the form of a taskwait
ratio.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 28

taskwait ratio

Most significant
tasks

Least significant
tasks

Execute
reliably

Execute
unreliably

Wait for all of the most significant tasks to
complete and some of the least significant ones

?

Errors
detected?

No

Yes

Correct errors
or

re-execute task

?

Did task
crash/hang?

No

Yes

Taskwait time

Task result check function

Group result check function

Done

?

Errors
detected?

No

Yes

Correct errors
or

re-execute group

Execution in FastRel
configuration.

Execution in FastUnRel
configuration.

Execution in SlowRel
configuration.

Execution in FastRel
configuration.

 Tasks with
different significance

FIGURE 2.7: The typical life of a group-of-tasks in the context of significance aware
unreliable computing

Based on the ratio value, the runtime system partitions the tasks into two sets,
the most significant tasks and the least significant ones. The most significant ones
are executed under reliable conditions (FastRel configuration), whereas the runtime
system schedules the least significant ones on hardware that is operating unreliably

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 29

(FastUnRel configuration). Tasks which are executed unreliably are monitored for
abnormal behaviour (crashes, and infinite loops). In the event that they complete
their execution without an obvious error, their outputs undergo an error detection
phase. Tasks whose outputs are considered to be invalid may then be re-executed
on undergo an error correction phase. Result checking may also be performed at the
granularity of group-of-tasks, this way we enable developers to assess the validity
of the aggregated result of a group-of-tasks.

2.8 Evaluation

In this chapter we evaluate the programmability of the proposed programming model
and the extra overhead induced by the various protection mechanisms provided by
the runtime system. Section 2.12 evaluates the energy gains of the proposed pro-
grammin model.

2.8.1 Benchmarks

We use five benchmarks, listed in Table 2.1, and apply three different methodologies
to perform significance characterization on them. In DCT we use domain exper-
tise to identify the significance of different parts of the computation. The tasks that
compute low frequency coefficients are close to the upper left corner of each 8x8 fre-
quency block, and are more significant than the ones computing coefficients towards
the lower right corner of the block.

In Blackscholes and the iterative benchmarks K-means, Jacobi we employed a profile-
driven approach. More specifically, in Blackscholes we injected bitflips in the input
data and observed the output quality. All parts of the code appear to be equally
significant, since faults had similar manifestations regardless or task computations.
Therefore, all tasks are assigned equal values of significance since all stock options
are considered equally important.

In Jacobi and K-means we injected bit-flips in the input data of a randomly chosen
iteration, and compared the relative error of the faulty execution with an error-free
one. In both Jacobi and K-means we observe that errors in the last few iterations tend
to severely reduce the output quality, and thus infer that these are the most signif-
icant ones. Finally, in Sobel we exploit the perceptual properties of the human eye,
and randomly distribute the significance among tasks. This way errors are spread
across the entire output image and the loss of quality is not clustered in a specific
area of the image.

2.8.2 Evaluation of Programming model and Runtime System

In all benchmarks we used a very simple result-check function. The result-check
function of DCT detects errors in the task output via a heuristic out-of-bounds check;

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 30

Lines of Code

Benchmark Domain
Sgnf.
Characterization

Task TRC function

DCT Multimedia Domain expertise 39 34
Sobel Image Filter Randomly 54 42
Blackscholes Finance Profile-driven 117 105
K-means Data mining Profile-driven 141 57
Jacobi Numerical Solver Profile-driven 62 39

TABLE 2.1: Lines of code (LOC) for the tasks and corresponding result-check and correc-
tion functions for each benchmark. The result-check functions are implemented based
on the original task code, which was modified to reduce its computational complexity.

coefficients that do not respect the bounds are set to zero. In Sobel the task result-
check function corrects only tasks that crashed during their execution by running
an approximate version of the Sobel filter, using a lightweight stencil with just 2/3
of the filter taps. Blackscholes is a benchmark of the Parsec suite [8]. Results are
checked with the isfinite() macro. This is a glibc floating point classification macro,
it returns a non-zero value if the value under inspection is not NaN, or infinite. If
the check fails, the function uses a faster implementation of the Blackscholes formula,
by substituting costly mathematical operations (such as expr(), sqrt(), log()) with
approximate versions. In K-means the result-check function of non-significant tasks
is minimalistic, exploiting the error-tolerant nature of this iterative application: if a
point attempts to subscribe itself to cluster but miscalculates the cluster’s id then it
reverts to its previous cluster. Also, if the runtime system reports an error, then all
points computed by the task are subscribed back to their previous clusters. In Jacobi
it is hard to create an error detection mechanism, since assessment of the quality of
results is associated with the application in which the solver is used. We implement
a simple result-check function which uses the glibc isfinite() macro to detect obvious
errors to the output of tasks. In the event of detecting such an error, the current
solution estimate is replaced with that of the previous iteration.

In our benchmarks, the result-check part was simple, mostly based on range
checks. For the correction part, we reused the original task code and, in some cases,
modified it to perform the computation approximately. Table 2.1 shows that result-
check functions are almost as big as the tasks themselves. Nevertheless, since we
heavily reused the existing task code, the actual effort to implement the result-check
function was minimal.

2.8.3 Runtime Overhead

Figure 2.8 breaks down the execution time of a task for each benchmark using a
fixed frequency of 3.7 Ghz. The time spent by the runtime system to create and
schedule tasks, to protect the memory and to checkpoint the state of each task be-
fore execution is less than 5% of the total task execution time. Task creation and
scheduling overhead is practically constant, at about 5000 cycles. The same applies

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 31

DCT Sobel Blschl. Kmeans Jacobi
0%

20%

40%

60%

80%

100%

Correct Error Detect Error Execute Task
Checkpoint Tag Significance Protect Memory
Create Task

Benchmarks

%
 E

xe
cu

ti
o

n
 T

im
e

FIGURE 2.8: Breakdown of task execution time, for each benchmark.

to checkpointing, which costs approximately 2000 cycles. Noticeably, in Sobel and
Blackscholes the overhead of correction is comparable with the task execution time.
These two benchmarks execute an approximate version of the computation as a cor-
rection heuristic, whereas the rest simply discard the computed erroneous solutions,
which incurs almost zero overhead.

2.9 Energy Reduction Evaluation methodology

Commercially available platforms do not allow individual cores to be operated be-
low nominal settings, hence cannot be used to support the runtime model that was
described in Section 2.7. We note that operation in sub-nominal (V, f) values is pos-
sible in some but not all convenitonal CPUs, but only for the entire CPU. This is
not useful for the purposes of our work, because at least one core has to always
work reliably in order to run the OS and the runtime system. As a consequence, we
cannot take real measurements on the performance, energy consumption and fault
rate/behavior of the system.

To evaluate our framework we use a suitable model for estimating the execu-
tion time and energy consumption of a computation as a function of the voltage-
frequency settings of the FastRel, SlowRel and FastUnRel configurations, and the
tasks that are executed in these configurations. The model also takes into account the
task management overheads of the runtime system, as well as the cost for perform-
ing the voltage and frequency scaling steps needed for a switch between FastRel

and SlowRel/FastUnRel. This allows us to run computations on a real platform,
trace its execution, profile the performance and power parameters used as input to
the model for the FastRel and SlowRel configurations and extrapolate estimates
for the FastUnRel configuration. The performance model is described in detail in
Section 2.10.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 32

Native Profiling
runs

N
FR-SR

,N
SR-FR,

N
u
,N

r,
C,C

dc
,

T
SR-FR

,T
FR-SR,

P
total

E
total

,T
total

Application

Energy model
creation

C
O
N
F
G
U
R
A
T
I
O
N
S

(V,f,c)

Simulation Based
Fault Injection

P
crash

Fault model
creation

P
U
B
L
I
C

K
N
O
W
L
E
D
G
E

Energy Model
(N

FR-SR
,N

SR-FR
,N

u
,N

r
,

V
l
,V

h
,f

h
,f

l
)

Fault Model
(V

l
,V

h
)

Model Building Phase (offline) Execution Phase (online)

Application

Application
Execution

C
O
N
F
G
U
R
A
T
I
O
N
S

(V
l
,f

l
,c)

(V
h
,f

h
,c)

(V
h
,f

l
,c)

Fault Model
(V

l
,V

h
)

P
crash

, Error Rate
Software

Fault
Injection

N
FR-SR

,N
SR-FR

,
N

u
,N

r,
Quality

Energy Model
(N

FR-SR
,N

SR-FR
,

N
u
,N

r
,V

l
,V

h
,f

h
,f

l
)

E
total

FIGURE 2.9: Evaluation approach: we build the performance, energy and fault models
(left), and use these models to drive experiments and estimate energy consumption

(right).

In any case, this performance modeling is insufficient. When executing in the
FastUnRel configuration the hardware may experience timing errors, which in turn
trigger the respective runtime protection mechanisms. A major challenge is to asso-
ciate the operation in the FastUnRel configuration with the probability of hard-
ware faults due to timing violations. Another issue is how to assess the impact of
such faults to the actual execution and outputs of a given task, which is entirely
application-specific. We use a model that estimates the fault rate as a function of the
voltage-frequency setting of FastUnRel. We use a combination of simulation-based
and software-based fault injection to observe the impact of faults on the benchmarks.

Figure 2.9 illustrates the workflow of our evaluation approach which is split into
two phases. During the model building (offline) phase we run the benchmarks in
the GemFI simulator (see section 2.11.2) to obtain the probability of crash (Pcrash).
We also perform native executions and measure the number of reliable and unre-
liable tasks (Nr, Nu), the number of transitions from FastRel to SlowRel and vice
versa (NFR−SR, NSR−FR), the average time required to perform a voltage and fre-
quency transition from FastRel to SlowRel and vice versa (TFR−SR, TSR−FR), the
length (in cycles) of a task (C), the length of its result check function (Cdc), the to-
tal energy and power consumption (Etotal, Ptotal) of the program as well as its total
execution time (Ttotal). We create the energy model using the above information
as well as the operating frequency (f), the supply voltage (V) and the number of
cores (c). The energy model input parameters are the number of reliable/unreliable
tasks (Nr, Nu), the number of active cores (c), the number of voltage and frequency
transitions (NFR−SR, NSR−FR) , the supply voltage and the operating frequency of
all configurations. Its goal is to estimate the energy cost of an unreliable execution.
We model application error resiliency via simulation-based fault injection combined
with observations in literature. The fault model input arguments are the supply volt-
age of the FastRel and the FastUnRel configuration. The energy and fault models
are discussed in more detail in the following sections. During the execution phase,
the models are used to inject errors and to estimate the energy consumption of the
execution. After each execution, the system reports the values for the number of

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 33

tasks that were executed reliably (Nr) and unreliably (Nu), the number of transitions
between the FastRel and SlowRel/FastUnRel (NFR−SR and NSR−FR) configura-
tions. Using this data, we estimate the energy footprint of the computation.

2.10 Execution Time and Energy Consumption Model

We introduce an analytical model for the performance and energy consumption of
a program as a function of the core frequency, the voltage, the number of tasks that
are executed reliably and unreliably and the number of voltage and frequency transi-
tions. Our model is agnostic to the CPU structure and captures the execution phases
of an application. Therefore it accounts for both the core and uncore components of
the CPU. The model is validated for our CPU platform, where it predicts the actual
energy consumption of our benchmark applications with high accuracy over a wide
range of different (nominal and thus reliable) core configurations.

2.10.1 Execution time modeling

As discussed, the runtime uses three different voltage/frequency configurations,
FastRel = (Vh, fh), SlowRel = (Vl, fl) and FastUnRel = (Vl, fh). Equation 2.1
expresses the time for executing a given piece of code N times, where C denotes the
number of cycles spent for code execution, and f is the frequency of the core depend-
ing on its configuration setting (fh for FastRel/FastUnRel and fl for SlowRel).

T (N, f, C) =
C

f
×N (2.1)

Tasks can be executed in parallel by the workers of the runtime system, on differ-
ent cores. Besides task execution itself, the system software spends additional time
to schedule tasks and to manage unreliable task execution. Equations 2.2 give the
total execution time of an application:

TFastRel = T (Nr, C, fh), TSlowRel = T (Nu, Cdc, fl), TFastUnRel = T (Nu, C, fh)

Tvfs = NFR→SR × TFR→SR +NSR→FR × TSR→FR

TTotal =
Workers
max
i=1

(
TFastReli

)
+
Workers
max
i=1

(
TSlowReli + TFastUnReli

)
+ Tvfs

(2.2)

The execution time for each worker in each configuration is expressed by TFastRel,
TSlowRel and TFastUnRel. Variable C is the average number of cycles required to ex-
ecute a task in FastRel/FastUnRel, while Cdc is the average number of cycles re-
quired by the runtime system to prepare for an unreliable task execution and to
execute the result-check/repair function in the SlowRel configuration. Variables
Nr and Nu express the number of reliable and unreliable tasks executed by the worker,
respectively. Tvfs captures the time required to switch between the FastRel and

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 34

SlowRel configurations. Variable NFR→SR denotes the number of times the run-
time system switches from the FastRel to SlowRel, and TFR→SR is the average time
required to perform this transition. Similar parameters apply for the reverse direc-
tion. Finally, the total execution time of the application is the maximum execution
time among all workers for the first task scheduling phase (in the FastRel config-
uration), plus the maximum execution time among all workers for the second task
scheduling phase (in the SlowRel/FastUnRel configurations), plus the time spent
on the respective voltage and frequency transitions.

2.10.2 Power and energy modeling

The total power dissipation of a CMOS circuit is given by Equations 2.3. Pdyn is
the dynamic power dissipation, Pleak is the power dissipation due to transistor leak-
age current, and PshortC is the power dissipation due to the short circuit formed
when both the PMOS and NMOS transistor tree momentarily conduct current dur-
ing CMOS switching. Since modern fabrication technologies which use high-k di-
electric materials can control leakage current, it is the Pdyn component that domi-
nates power dissipation. Therefore, our model considers the idle power consump-
tion of a processor as a constant Pidle and equal to the sum of Pleak and PshortC . The
uncore power consumption of the CPU is included in Pidle. Since the Pidle is a con-
stant all the energy gains are a result of the undervolted core part of the CPU. Pdyn is
the product of the supplied voltage squared (V 1), the frequency (f) and the activity
factor A(~c). We have observed that the activation of a new core in our multicore
platform results to power steps. The number of cores used by the application are
captured via vector ~c, where ~c[n] is 1 if n cores are active , else 0. A(~c) is the dot
product of ~c and a vector ~w containing per-core switching capacitance values which
are obtained via regression.

PTotal = Pidle + Pdyn, Pidle = Pleak + PshortC

Pdyn(~c, V, f) = A(~c)× V 2 × f, A(~c) = ~c · ~w
(2.3)

The total energy dissipation ETotal is given by Equations 2.4. In general, this de-
pends on the hardware/core configuration and the time spent to execute the runtime
management functions, the application tasks, and their result-check/repair func-
tions, as discussed above.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 35

Energy Consumption Execution Time

0.86V
1.2Ghz

0.89V
1.5Ghz

0.92V
1.9Ghz

0.94V
2.2Ghz

0.97V
2.5Ghz

1.0V
2.9Ghz

1.02V
3.2Ghz

1.04V
3.5Ghz

0

1

2

3

 (V,f) Configurations

%
 R

el
at

iv
e

E
rr

o
r

0.86V
1.2Ghz

0.89V
1.5Ghz

0.92V
1.9Ghz

0.94V
2.2Ghz

0.97V
2.5Ghz

1.0V
2.9Ghz

1.02V
3.2Ghz

1.04V
3.5Ghz

0

1

2

(V,f) Configurations

%
 R

el
at

iv
e

E
rr

o
r

FIGURE 2.10: Relative error for the execution time and energy as predicted by our
model vs. a real execution, for our application benchmarks when half of the tasks exe-
cute in the FastRel = (3.7Ghz, 1.06V) configuration and the other half in a lower-power

SlowRel configuration. All SlowRel configurations are shown in x-axis.

EFastRel = P (~c, Vh, fh)×
Workers
max
i=1

(
TFastRel

)
, EFastUnRel = P (~c, Vl, fh)×

Workers
max
i=1

(
TFastUnRel

)
ESlowRel = P (~c, Vl, fl)×

Workers
max
i=1

(
TSlowRel

)
Evfs = NFR→SR × TFR→SR × P (Vh, fh) +NSR→FR × TSR→FR × P (Vl, fl)

ETotal = EFastRel + ESlowRel + EFastUnRel + Evfs

(2.4)

2.10.3 Calibration and validation

We calibrate and validate the timing and energy models based on measurements
taken on our platform, for the benchmarks presented in Section 2.8.1. The param-
eters fh and fl are known while Nr, Nu, NFR→SR, NSR→FR can be measured. C

and Cdc are profiled using likwid [135] by accessing the x86 performance counters.
Similarly, TFR→SR and TSR→FR are profiled using the FTaLaT tool [84]. Finally, the
transition overhead between the SlowRel and FastUnRel configurations is negligi-
ble, since clock adjustment is very fast.

As a first step, we execute all tasks of each application reliably under different
configurations V, f,~c, and measure the power consumption. We then perform lin-
ear regression using least squares to derive the parameters ~w and Pidle of the power
model. Finally, we validate the accuracy of our model by forcing the runtime system
to execute tasks in different (V, f) configurations. To this end, we execute half of
the tasks of each application in the FastRel = (1.06V, 3.7GHz) configuration, and
the other half in various lower power but still reliable configurations. The latter are
different candidates for SlowRel. Cores enter these configurations by applying a
software-driven voltage and frequency transition.

Figure 2.10 depicts the relative error of model-based estimates vs. the execution
time and energy that was measured using likwid. Our model closely matches the

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 36

real numbers for various SlowRel configurations, with the relative error ranging
from 0.004% to 2.7%. In Jacobi the increased error is due to load balancing issues.
Different executions of the benchmark result in different tasks to worker assignment.
This impacts the execution time of the benchmark, hence there is an increase in the
relative error.

Note that our x86 platform does not allow placing individual cores in a non-
nominal configuration, where actual timing violations and faults might occur. Thus
it is impossible to validate the execution time and energy consumption estimates
of the model for non-nominal FastUnRel configurations. Still, the accuracy of the
model for this wide range of real operating points gives us sufficient confidence to
use the model to extrapolate for non-nominal FastUnRel configurations as well.

2.11 Fault Model and Fault Injection Methodology

This section introduces the fault model we use for different unreliable execution.
We discuss how we combine simulation-based and software-based fault injection to
map the fault rates derived from the model into actual errors at the application level.

Note that it was impossible to conduct our full evaluation using a purely sim-
ulated execution platform. Given the vast number of fault injection experiments
required to acquire statistically significant results, we would have to limit execu-
tions to non-realistic input sizes, despite using a large compute farm for the sim-
ulations. Therefore, we adopt a hybrid approach. Initially, we use detailed simu-
lations for injecting faults at the architectural level of an x86 CPU model, and ob-
serve the impact they have on each of our benchmarks. Afterwards, we use these
observations to drive fault-injection via software when running the benchmarks
and our runtime system natively, on our platform. The latter setup, in conjunction
with the performance model discussed in Section 2.10, makes it possible to evalu-
ate the fault-tolerance mechanisms that are provided by our framework for different
SlowRel/FastUnRel configurations.

2.11.1 Fault modeling

A key challenge is to associate the operation of a core in the unreliable FastUnRel
configuration with the probability of hardware faults due to timing violations. Be-
sides undervolting (or overclocking), the number and distribution of faults in a CPU
also depends on the type of instructions executed: instructions which activate long
paths, which are close to the critical path, tend to fail more frequently [103]. The fail-
ure probability of each instruction is also closely related to the micro-architectural
design of the CPU, optimizations used by synthesis, placement & routing CAD tools,
the manufacturing process and process variability, ambient temperature, IR drops,
aging etc. Even identical chips with the same micro-architecture, using the same
technology libraries, and running identical code, can have highly different behav-
ior [22]. Moreover, whether a fault manifests as an error does not only depend on

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 37

the paths which are activated during the current cycles, but also on the paths which
were activated in previous cycles [137].

It is almost impossible to model such complex phenomena in a practical way, as
the conclusions are specific to the particular system used to make the observations
and create the model, and cannot be generalized to other systems. To the best of
our knowledge there is no modern-CPU fault model which combines all the obser-
vations in a unified and applicable method. For these reasons, we abstract out the
instruction mix of applications, by taking into account only the effects of voltage
scaling.

The Point of First Failure (PoFF) is used to indicate the point at which circuits
start to exhibit massive errors (one error every ∼10 million cycles). Prior to this
point errors still occur, however at rates that are orders of magnitude lower [22].
If one goes beyond the PoFF, the fault rate increases exponentially, by one order of
magnitude for every 10mV drop of the supply voltage [11, 22].

To guarantee functional correctness, designers typically account for parameter
variations by imposing conservative margins that guard against worst case scenar-
ios. The extent of the voltage margins required for fault-free operation for all oper-
ating conditions of the chip is on average around 15% [36, 108, 50]. We determine
the PoFF based on Equation 2.5, where ρ is the percentage of the extra voltage mar-
gin to guarantee fault-free operation, and Vn is the nominal supply voltage. A CPU
part with tight margins has a low ρ and, therefore, low energy benefits when using
our approach. We select the average case, ρ = 15%, which is consistent with several
observations in the literature [36, 11, 22]. Based on the same reports, we model the
fault rate as shown in Equation 2.6. The parameters are the voltage VPoFF , which can
be obtained using equation 2.5 using as input argument the nominal voltage Vn and
the voltage of the requested (unreliable) operating point Vu. In our case, Vn = Vh, the
voltage setting of FastRel, and Vu = Vl is the voltage setting of the FastUnRel con-
figuration. Our model obtains the constants β, γ via regression on the data provided
in [11, 22]. Note that Equation 2.6 is CPU agnostic.

VPoFF =
(100− ρ)

100
× Vn (2.5)

Err(VPoFF , Vu) = β × 10γ∗(Vu−VPoFF) (2.6)

Vn(f) = δ × f + η (2.7)

Finally, the nominal supply voltage Vn is linearly dependent on the operating
frequency, as modeled by Equation 2.7. Parameters δ and, η depend on the system
configuration. We deduce their values by monitoring the supply voltage of the CPU
of our x86 platform, while commanding changes of the operating frequency.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 38

FIGURE 2.11: Effects of single fault injection, using the GemFI simulator at the architec-
tural CPU level, and the software-based approach during native execution.

2.11.2 Simulation-based fault injection

We use the GemFI framework [96] to execute our benchmarks on a simulated out-
of-order CPU supporting the x86 ISA. GemFI injects faults at different CPU pipeline
stages. In the fetch stage, a fault corrupts a single bit of the instruction. In the decod-
ing stage, the selection of registers is corrupted so that the instruction in question
reads from, or writes to a different register. In the execution stage, faults corrupt a
single bit of the computed result. Finally, faults in the memory stage corrupt a sin-
gle bit of the value being transferred from/to memory. Even though we only inject
faults to a subset of the CPU modules, these faults can be propagated to the major-
ity of the CPU modules. For example, when a fault is injected during the execution
stage of an integer instruction, the fault corrupts the result of the operation. If the
result is stored in a register, the fault propagates and corrupts the register file. Also,
when injecting a fault to a memory write, the fault can corrupt the data cache hier-
archy and even propagate to the main memory. Note that we model transient faults,
i.e. the injection of the fault only lasts for one clock cycle.

Simulated fault injection captures the “default” impact of faults on an applica-
tion executed on top of unreliable hardware, without employing any of the protec-
tion mechanisms provided by our framework. Consequently, all application tasks
are susceptible to faults, and the result-check functions are ignored. The number
of experiments for each application and pipeline stage (see above) is determined
based on the methodology described in [75], for a 99% confidence level and 1% error
margin. For the purpose of our evaluation, we categorize the outcome of program
execution in three bins: (i) crash if the program did not terminate normally, (ii) inex-
act if the result is not bit-wise identical to that of a reliable execution, and (iii) exact if
the result is bit-wise identical to that of a reliable execution. The output of this phase
is the probability for a single fault to result in a crash (Pcrash) for each benchmark.
This probability is used by the software fault injection mechanisms during native
execution.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 39

2.11.3 Software-based fault injection during native execution

For the native (fast) executions of the benchmarks on our platform, we use software-
based fault injection. This is designed to have two possible effects: (i) it forces a
crash, and (ii) it corrupts a randomly chosen register of the CPU. The former is done
with the probability Pcrash computed in GemFI simulation, and the latter with prob-
ability 1 − Pcrash. As in the simulation experiments, all protection mechanisms are
disabled, and faults are injected in all application tasks. To validate that software-
based fault injection yields realistic results, we compare the outcome of the native
executions with the respective outcomes of simulated executions on GemFI. Fig-
ure 2.11 which summarizes the results for all benchmarks shows that the software-
based fault injection has practically equivalent effects to simulation-based fault in-
jections using GemFI.

Finally, we support native execution scenarios with multiple fault injection. The
runtime selectively executes application tasks in reliable or unreliable mode, and
where the different protection mechanisms of our framework come into play. The
voltage and frequency settings for the FastRel and the FastUnRel configurations
are decided as follows. We pick fh in order to maximize performance, and derive
respective nominal voltage Vh from Equation 2.7. We then set Vl = ε × Vh|ε < 1.0.
Frequency fl is derived from Equation 2.7, and the fault rate of the FastUnRel con-
figuration is derived from Equation 2.6, using Vl and Vh as parameters. The rate
increases for smaller values of ε. Given a target fault rate, we randomly generate a
set of fault injection intervals, expressed as number of cycles between faults, using
a uniform distribution with a mean value equal to the target fault rate. We then use
the performance counter infrastructure of x86 CPUs to interrupt application execu-
tion at those intervals and invoke the software-based fault-injection logic. For each
application, combination of protection mechanisms, and voltage level (fault rate) we
perform 10, 000 multiple fault injection experiments, for a confidence interval of 95%
and an error margin of 2.5%.

2.12 Experimental Evaluation

We study the behavior of benchmarks for the different protection levels supported
by our runtime system (Section 2.7), using the fault modeling methodology dis-
cussed in Section 2.11.1 on our CPU clocked up to 3.70 GHz. We fix the FastRel con-
figuration to the highest performance configuration, with Vh = 1.06V, fh = 3.7GHz.
To determine proper FastUnRel configurations, we run our benchmarks for differ-
ent values for Vl while keeping frequency to fh, observe their behavior and compute
the corresponding energy gains.

Figure 2.12 demonstrates the energy gains for a single task of Sobel when exe-
cuted at different FastUnRel configurations, in comparison with an execution in
the FastRel configuration. The “sweet spot” is around 0.88V . If we further under-
volt, inducing faults at higher rates, tasks are practically certain to crash the CPU.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 40

0.85 0.9 0.95 1 1.05
0

5

10

15

20

25

Energy Gain

Supply Voltage

%
 E

n
e

rg
y

 G
a

in

FIGURE 2.12: Energy gains of a single task for Sobel executed at voltages Vl < Vh for
constant frequency fh = 3.7GHz.

SlowRel FastUnRel

Freq. Voltage Freq. Voltage Fault
Rate

1.67 GHz 0.90V
3.7 GHz

0.90V 10−7

1.54 GHz 0.89V 0.89V 10−6

1.41 GHz 0.88V 0.88V 10−5

TABLE 2.2: SlowRel and FastUnRel configuration settings used in our evaluation, and
average fault rates of the FastUnRel configurations.

This increases the overhead due to the activation of protection and task correction
mechanisms in the SlowRel configuration, and cancels any energy gains. In con-
trast, when a core operates in voltage regions higher than the PoFF, the failure rate
is very small, and the functionality of our framework is rarely activated. Since these
effects are observed in all the application benchmarks in our evaluation , we focus
on the “promising” voltage range from 0.88V to 0.90V . In our evaluation we set
FastRel = (1.06V, 3.7Ghz). Table 2.2 summarizes the configurations used in our
experiments.

Figure 2.13 summarizes our experimental results for a range of voltage settings
and protection mechanisms. For each benchmark we present two diagrams. The

Benchmark. C Nr Nu NFR→SR NSR→FR
DCT 133K 4096 28672 1 1
Sobel 50K 410 3684 1 1
Blscls 197K 90 10 1 1

Kmeans 283K 1500 13500 83 83
Jacobi 594K 830 7470 83 83

TABLE 2.3: Average task execution time in cycles (thousands), number of tasks exe-
cuted reliably/unreliably, and number of voltage and frequency transitions, for each

benchmark.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 41

% Experiments Resulted in Quality Energy Gain
D

C
T

E
x

a
c

t

4
5

3
5

2
5

1
0 0

E
x

a
c

t

4
5

3
5

2
5

1
0 0

E
x

a
c

t

4
5

3
5

2
5

1
0 0

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

Quality (db) PSNR
Voltage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-20%
-10%

0%
10%
20%
30%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

So
be

l

E
x

a
c

t

8
0

6
0

4
0

2
0 0

E
x

a
c

t

8
0

6
0

4
0

2
0 0

E
x

a
c

t

8
0

6
0

4
0

2
0 0

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

Quality (dB) PSNR
Voltage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

0%
5%

10%
15%
20%
25%
30%

Voltage - Error Rate

%
 E

n
er

g
y

G
ai

n

B
la

ck
sc

ho
le

s

E
x

a
c

t

1
E

-5

1
E

-3

1
E

-1

>
1

E
+

1

E
x

a
c

t

1
E

-5

1
E

-3

1
E

-1

>
1

E
+

1

E
x

a
c

t

1
E

-5

1
E

-3

1
E

-1

>
1

E
+

1

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

 Quality (%) Rel. Error
Voltage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-60%

-40%

-20%

0%

20%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

K
m

ea
ns

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

0.88V 0.89V 0.90V

0%
20%
40%
60%
80%

100%

Quality (%) Rel. Error
Votlage

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-45%

-30%

-15%

0%

15%

30%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

Ja
co

bi

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-2

1
E

+
0

>
1

E
+

1

E
x

a
c

t

1
E

-6

1
E

-4

1
E

-2

1
E

+
0

>
1

E
+

1

0.88V 0.89V 090V

0%
20%
40%
60%
80%

100%

(%
)

E
xp

.
re

su
lt

 t
o

 Q
u

al
it

y

 Quality (%) Rel. Error
Voltage

0.88V 0.89V 0.90V
1E-5 1E-6 1E-7

-60%

-40%

-20%

0%

20%

40%

Voltage - Error Rate

(%
)

E
n

er
g

y
G

ai
n

FIGURE 2.13: Experimental results for different Vl values for the SlowRel and
FastUnRel configurations. Percentage of experiments which achieved a certain quality

(left), and energy gains with each protection scenario (right).

left one depicts the cumulative distribution function (CDF) of the percentage of exper-
iments (y-axis) achieving a specific quality threshold (x-axis) under different pro-
tection mechanisms (different lines). For the media benchmarks (DCT, Sobel) the
quality metric is PSNR (higher value is better). For the remaining benchmarks qual-
ity is quantified by the relative error w.r.t the fully reliable execution (lower value
is better). The two extreme bins of the x-axis correspond on the one side to experi-
ments which resulted in bitwise exact results, and on the other side to experiments
producing very bad output quality. The percentage of crashed experiments can be
deduced by subtracting the percentage of worst quality experiments from 100%. The
percentage of experiments which resulted in bitwise exact results are equal to the
percentage of experiments which provide the best quality in the CDF. For a specific
quality target, the height of each CDF line at the specific quality corresponds to the

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 42

percentage of experiments which achieve the specific quality of results. Intuitively,
the sooner (to the left) and the higher the lines raise, the better the respective protec-
tion configurations.

The diagrams to the right depict the average energy gains against a fully reliable
execution (FastRel state) using our runtime in the NP configuration. The number
of voltage and frequency transitions, the average execution time of a task in cycles
as well as the number of reliable and non reliable tasks are given in Table 2.3. In all
scenarios where task significance information is taken into account, the task ratio is
fixed to 10%, except DCT in which the requested ratio is 13%. In DCT all tasks which
compute the upper left coefficient corner need to be executed reliably. These tasks
correspond to the 13% of the total number of tasks. In scenarios that do not exploit
significance information, all tasks are executed unreliably.

When no protection mechanism is active, all experiments result in crashes. Ba-
sic protection (BP) eliminates crashes, and can even lead to satisfactory behavior as
long as the fault rate remains moderate. As expected, error resilience increases as
more protection mechanisms are employed. As an exception, result-check functions
(B-RC) may produce worse results compared with BP, by discarding partially good
results produced by tasks before they crash. On the other hand, energy gains are
typically reduced as the amount of protection increases. Therefore, we select naive
result check (RC) functions, which do not spend a lot of time to detect and correct
an error. This increases the energy gains, however it decreases the quality of the
end result. Another interesting observation is that task re-execution (FS-RE) does
not guarantee perfect results, as is clearly visible from the CDFs in Figure 2.13. A
task is re-executed reliably only if it crashes or the result check function requests a
re-execution. Since the result check functions are simple they miss silent data corrup-
tions, which in turn lead to imperfect results. Finally, when combining all protection
mechanisms, the application error resiliency is pushed to significantly higher fault
rates. In the following paragraphs, we discuss the behavior of each application in
more detail.

The two image processing benchmarks demonstrate a similar behavior. The tran-
sition from NP to BP completely eliminates any program crashes. However, there is
no guarantee for the quality of the output. The produced outputs are of unaccept-
able quality when executed in all FastUnRel configurations. Even the addition of
a result check function (B-RC) doest not increase the quality; the same is observed for
the B-SF scenario. In DCT B-RC the detection part of the result check function is
able to detect many errors, however, when errors corrupt tasks that should had been
significant, there is no efficient way to correct them. This motivates the usage of
the significance information by our runtime system. On the other hand, in Sobel the
detection part is incapable of detecting many errors. In the B-SF scenario significant
tasks are protected by the software stack, however there is no increase in the qual-
ity of the output. In the case of DCT the absence of a result check function allows
faults that manifest on non-significant tasks to negatively impact the end quality.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 43

BP B-RC B-SF FS

FIGURE 2.14: DCT output at 0.89V, with one fault injected every 100,000 cycles. The
images correspond (from left to right) to the BP, B-RC, B-SF and FS protection configu-
rations, resulting to PSNRs of 12, 13, 15 and 37 dB respectively. A fault free execution

leads results in a PSNR of 43 dB. NP deterministically leads to crashes.

Figure 2.14 illustrates the output of four protection configurations (excluding NP
and FS-RE) for the DCT benchmark. The corrupted images show the effect of faults
when protection is not adequate, while the rightmost image shows that even in a
highly faulty environment, our approach almost eliminates visible artifacts. In So-
bel the significance characterization of tasks simply spreads unreliability uniformly
within the output, however PSNR does not capture such effects. It is interesting to
note that for Sobel at 0.88V the B-RC leads to smaller energy gains than B-SF. Un-
der such high error rates tasks tend to crash frequently, which is detectable by the
runtime system and therefore the correction part is invoked. However in Sobel the
correction part of the result check function is almost as costly as the task itself (Table
2.3), so correcting a large number of tasks incurs excessive overhead. The combi-
nation of the result check function with the significance values (FS scenario) results
in increased quality. Even in the highest fault rates the FS scenario delivers quality
higher than 35 dB for DCT and 30 dB Sobel, respectively, for all experiments. Similar
behavior is observed for the FS-RE scenario. In the case of Sobel, the detection part
of the result-check function is unable to detect most faults except the ones which
lead to task crashes. Therefore the correction part (re-execution in FS-RE) is rarely
executed. Consequently, the negative (energy-wise) impact of the re-execution is not
captured in this benchmark.

In the FS configuration when the voltage is decreased from 0.90V to 0.88, the
energy gains of DCT slightly increase from 18% to 21% whereas in Sobel the energy
gain is reduced from 20.0% to 16.0% The result check function of DCT sets a default
value (0) to the erroneous output. For Sobel, an approximate version of the task is ex-
ecuted. Therefore, the energy gains due to undervolting are eliminated by executing
the result check function more frequently due to the higher fault rate. A similar trend
is observed for DCT in the FS-RE configuration. Re-executing the entire task every
time its output is detected as erroneous outweighs all energy savings and results in
energy losses.

The computationally intensive Blackscholes uses mathematical functions, such as
logarithms, square roots, etc. which return NaN or inf when arguments are outside

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 2. Significance Aware Fault Tolerant Computing 44

Sobel Blackscholes

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

0.88V 0.89V 0.90V

0%

5%

10%

15%

20%

20

40

60

80

Ratio-Votlage

E
n

e
rg

y
 G

a
in

 (
%

)

P
S

N
R

 (
d

b
)

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

R
=

0
.1

R
=

0
.5

R
=

0
.9

0.88V 0.89V 0.90V

0%

5%

10%

15%

20%

0

0.1

0.2

0.3

0.4

Ratio-Votlage

E
n

e
rg

y
 G

a
in

 (
%

)

R
e

l.
E

rr
o

r
(%

)

FIGURE 2.15: Quality vs. energy trade-offs using the ratio parameter in the FS configu-
ration.

their definition range. Detecting such errors is easy. Since many errors can be de-
tected, FS-RE computes exact outputs 24% of the time when operating at 0.90V . The
resulting output quality is exceptional with a relative error less than 0.03% across
all experiments. However, at high fault frequencies the application results in energy
losses since a large number of tasks need to be re-executed in the SlowRel domain.

K-means and Jacobi demonstrate similar characteristics. At 0.90V , in all protection
scenarios, both applications result in a relative error less than 10−6%. In K-means the
quality decreases rapidly for higher fault rates. Neither the result check function
nor the significance values increase output quality. The result check function has no
efficient way to correct errors and the small subset of the last significant iterations is
unable to assign the points to the correct centers. For Jacobi, at 0.89V BP has better
quality than B-RC. In B-RC, when an error is detected, the current solution estimate is
replaced with that of the previous iteration. At high fault rates errors are frequently
detected and therefore the respective iterations are discarded. In Jacobi it is better to
rely on the self healing attributes than correcting the result.

Figure 2.15 presents experiments in which we vary the ratio parameter and record
the energy savings and output quality for different values, for the Sobel and Blacksc-
holes benchmarks under the FS configuration. The ratio knob allows the user to se-
lect the percentage of reliably executed tasks and can effectively control the trade
off between energy savings and quality loss. A similar behavior is observed in all
benchmarks.

Note that energy gains are best obtained when shaving voltage guard bands to
the point of first failure. More aggressive voltage scaling diminishes improvements
in energy efficiency, due to the overhead of error detection and correction.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

45

Chapter 3

Significance Aware Approximate
Computing

In this chapter we present the approximate version of our significance aware ap-
proach. Although, the significant-aware fault tolerant programming model provides
significant energy gains it is hard for the developer to completely comprehend the
interactions between significance identification, ratio, error manifestation and error
detection and correction. Developers are more familiar with the approximate com-
puting, as it presents a more intuitive trade-off between quality and energy. To this
direction we port our fault tolerant programming model to support approximate com-
puting. The semantics of our approach, which is the significance clause and the ratio
clause remain the same but we allow the developer to define alternate approximate
more energy efficient functions. We vision the approximate programming model as
an intermediate step prior adopting the fault tolerant one. Developers, using the ap-
proximate variant, can grasp the interactions between the significance tagging and
the ratio clause.

3.1 Contributions

In this chapter we make the following contributions:

• To reduce the energy footprint of applications we port the significance - aware
fault tolerant programming model to support approximate computing. In this
variant of the programming model the developer can supply approximate ver-
sions of non-significant tasks; The basis of the programming model is similar
with the fault tolerant programming model, however the mechanisms to reduce
the energy consumption are slightly different.

• We experimentally evaluate our approach and show that it is superior to loop
perforation [125], a compiler-based approximation technique.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 46

3.2 Programming Model

The significance-aware for approximate computing programming model is similar
to the programming model described in the chapter 2. Both programming models
use the same syntax and semantics to define the significance of the computations,
parallelism and the synchronization of the tasks. The main difference is that the de-
veloper instead of providing functions for error-detection and correction she should
provide an approximate version of the original task version.

1 int sblX(byte *img, int y, int x) {
2 return img[(y-1)*WIDTH+x-1]
3 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
4 - img[(y-1)*WIDTH+x+1]
5 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
6 }
7

8 int sblX_appr(byte *img, int y, int x) {
9 return /* img[(y-1)*WIDTH+x-1] Ommited taps */

10 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
11 /* - img[(y-1)*WIDTH+x+1] Ommited taps *//
12 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
13 }
14

15 /* sblY and sblY_appr are similar */
16 void row_acc(byte *res, byte *img, int i) {
17 unsigned int p, j;
18 for (j=1; j<WIDTH-1; j++) {
19 p = sqrt(pow(sblX(img, i, j),2) +
20 pow(sblY(img, i, j),2));
21 res[i*WIDTH + j] = (p > 255) ? 255 : p;
22 }
23 }
24

25 void row_appr(byte *res, byte *img, int i) {
26 unsigned int p, j;
27 for (j=1; j<WIDTH-1; j++) {
28 /* abs instead of pow/sqrt,
29 approximate versions of sblX, sblY */
30 p = abs(sblX_appr(img, i, j) +
31 sblY_appr(img, i, j));
32 res[i*WIDTH + j] = (p > 255) ? 255 : p;
33 }
34 }
35

36 double sobel(void) {
37 int i;
38 byte img[WIDTH*HEIGHT], res[WIDTH*HEIGHT];
39 /* Initialize img array and reset res array */
40 ...
41 for (i=1; i<HEIGHT-1; i++)
42 #pragma omp task label(sobel) approxfun(row_appr) \
43 in(img[i*WIDTH:(i+1)*WIDTH-1]) \
44 out(res[i*WIDTH:(i+1)*WIDTH-1]) \
45 significant((i%9 + 1)/10.0)
46 row_acc(res, img, i); /* Compute a single
47 output image row */
48 #pragma omp taskwait label(sobel) ratio(0.35)
49 }

LISTING 3.1: Programming model use case: Sobel filter

Listing 3.1 depicts our programming model in the implementation of the Sobel
filter, which we use as a running example.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 47

#pragma omp task [significant(...)] [label(...)]
[in(...)] [out(...)] [approxfun(function())]

LISTING 3.2: #pragma omp task

Tasks are specified using the #pragma omp task directive (Listing 3.2), followed by
the task body function. The significant, label, in, out clauses have the same semantics
as the ones used in the fault tolerant version.

For tasks with significance less than 1.0, the programmer may provide an al-
ternative, approximate task body, through the approxfun() clause. This function is
executed whenever the runtime opts to approximate a task. It typically implements
a simpler version of the computation in the task, which may even degenerate to set-
ting default values for the task output. If the runtime system decides to execute a
task approximately and the programmer has not supplied an approxfun version, the
task is dropped. The approxfun function implicitly takes the same arguments as the
function implementing the accurate version of the task body.

As an example, lines 41-46 of Listing 3.1 create a separate task to compute each
row of the output image. The significance of the tasks gradually ranges between 0.1
and 0.9 (line 45), so that there are no extreme quality fluctuations across the output
image. The approximate function row_appr implements a lightweight version of the
computation. All tasks created in the specific loop belong to the sobel task group,
using img as input and res as output (lines 43-44).

#pragma omp taskwait [label(...)] [ratio(...)]

LISTING 3.3: #pragma omp taskwait

Explicit barrier-like synchronization is supported via the #pragma omp taskwait
directive (Listing 3.3). The synchronization primitive has the same semantics as the
unrelible one, however the user can neither define a group result check function nor
specify a timing constraint.

As an example, line 48 of Listing 3.1 specifies a barrier for the tasks of the sobel
task group. The runtime needs to ensure that at a minimum, the most significant
35% of the group tasks are executed accurately. Note that the runtime may opt for a
higher ratio, provided this is feasible with the energy budget of the program.

3.3 Runtime support for significance aware approximate com-
puting

We demonstrate how to extend existing runtime systems to support our program-
ming model for approximate computing. To this end, we extend a task-based paral-
lel runtime system that implements OpenMP 4.0-style task dependencies [136].

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 48

Our runtime system is organized as a master/slave work-sharing scheduler. The
master thread starts executing the main program sequentially. For every task call
encountered, the task is enqueued in a per-worker task queue. Tasks are distributed
across workers in round-robin fashion. Workers select the oldest tasks from their
queues for execution. When a worker’s queue runs empty, the worker may steal
tasks from other workers’ queues.

The runtime system furthermore implements an efficient mechanism for identi-
fying and enforcing dependencies between tasks that arise from annotations of the
side effects of tasks with in(...) and out(...) clauses. Dependence tracking is how-
ever orthogonal to our approximate computing programming model. Therefore, we
provide no further details on this feature.

The job of the runtime system is to selectively execute a subset of the tasks ap-
proximately while respecting the constraints given by the programmer. The relevant
information consists of (i) the significance of each task, (ii) the group a task belongs
to, and (iii) the fraction of tasks that may be executed approximately for each task
group. Moreover, preference should be given to approximating tasks with lower
significance values as opposed to tasks with high significance values.

The runtime system has no a priori information on how many tasks will be issued
in a task group, nor what the distribution is of the significance levels in each task
group. This information must be collected at runtime. In the ideal case, the runtime
system knows this information in advance. Then, it is straightforward to execute
approximately those tasks with the lowest significance in each task group. We have
designed two runtime policies which work without this information, and estimate
it at runtime [138]. Global Task Buffering (GTB) is a globally controlled policy based
on buffering issued tasks and analyzing their properties. Local Queue History (LQH)
estimates the distribution of significance levels using per-worker local information1.
In GTB the master thread stores a number of tasks as it creates them in a buffer,
postponing the issue of the tasks in the worker queues. When the buffer is full it
sorts the tasks based on their significance. Given a per-group ratio of accurate tasks
R, and a number of B tasks in the buffer, then the R ∗ B tasks with the highest
significance level are executed accurately. The LQH policy avoids the step of task
buffering. Tasks are issued to worker queues immediately as they are created. The
worker decides whether to approximate a task right before it starts its execution,
based on the distribution of significance levels of the tasks executed so far, and the
target ratio of accurate tasks (supplied by the programmer).

3.3.1 Life of a group-of-tasks

Figure 3.1 illustrates the typical life of a group-of-tasks in an application imple-
mented using our significance aware approximate computing programming model.
For each group instantiated during the life of an application, the runtime system

1Both policies (GTB, LQH) are implemented by Charalampos Chalios.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 49

Group tasks

Partition tasks into
most and least significant

Significance ratio
Most significant

tasks
Least significant

tasks

Invoke exact
implementation

Invoke approximate
implementation

Wait for all tasks to complete

Approximate
task alternative

FIGURE 3.1: The typical life of a group-of-tasks in the context of significance aware
approximate computing

receives a collection of tasks with varying significance values and a desired approx-
imation level in the form of a significance ratio. Afterwards, the runtime system
partitions the tasks into two sets, the most significant tasks and the least significant
ones. The most significant ones are executed in an accurate way, whereas the run-
time system invokes the approximate implementation for the least significant ones.

3.3.2 Approximate vs Fault Tolerant Runtime Support

A large portion of the approximate and fault tolerant runtime systems are identi-
cal, as they support similar features. The approximate variant does not require any
protection mechanism such as memory management (2.7.2), relaxed synchroniza-
tion, soft check-pointing or taking into account the operating settings of the CPU.
Regarding the task scheduling, since the approximate variant does not require spe-
cific CPU settings in terms of operating frequency and voltage, tasks are flagged as
ready for execution right after their final significance is decided. On the other hand,
to minimize the number of transitions between the FastRel and the FastUnRel set-
tings the fault tolerant runtime needs to wait for all tasks of a group to be instantiated
prior starting the execution of tasks.

3.4 Experimental Evaluation

We performed a set of experiments to investigate the performance of the proposed
programming model and runtime policies, using different benchmark codes that
were re-written using the task-based pragma directives. In particular, we evaluate
our approach in terms of: (i) The potential for performance and energy reduction;
(ii) The potential to allow graceful quality degradation; (iii) The overhead incurred

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 50

Benchmark
Approximate Approx Degree

Quality
or Drop Mild Med Aggr

Sobel A 80% 30% 0% PSNR
DCT D 80% 40% 10% PSNR
MC D, A 100% 80% 50% Relative Error

K-means A 80% 60% 40% Relative Error
Jacobi D, A 10−4 10−3 10−2 Relative Error

Fluidanimate A 50% 25% 12.5% Relative Error

TABLE 3.1: Benchmarks used for the evaluation. For all cases, except Jacobi, the approx-
imation degree is given by the percentage of accurately executed tasks. In Jacobi, it is
given by the error tolerance in convergence of the accurately executed iterations/tasks

(10−5 in the native version).

by the runtime mechanisms. In the sequel, we introduce the overall evaluation ap-
proach, and discuss the results achieved for various degrees of approximation under
different runtime policies.

3.4.1 Approach

We use a set of six benchmarks, outlined in Table 3.1, where we apply different ap-
proximation approaches, subject to the nature/characteristics of the respective com-
putation.

The approximate version of the Sobel tasks uses a lightweight Sobel stencil with

just 2/3 of the filter taps. Additionally, it substitutes the costly formula
√
sblx

2 + sbl2y

with its approximate counterpart |sblx| + |sbly|. The way of assigning significance
to tasks ensures that the approximated pixels are uniformly spread throughout the
output image.

We assign higher significance to tasks that compute lower frequency coefficients
for the tasks of Discrete Cosine Transform (DCT) [141].

For Monte Carlo (MC) a modified, more lightweight, methodology is used to
decide how far from the current location the next step of a random walk should be.

Approximated K-Means tasks compute a simpler version of the euclidean dis-
tance, while at the same time considering only a subset (1/8) of the dimensions.
Only accurate results are considered when evaluating the convergence criteria.

In Jacobi, we execute the first 5 iterations approximately, by dropping the tasks
(and computations) corresponding to the upper right and lower left areas of the ma-
trix. This is not catastrophic, due to the fact that the matrix is diagonally dominant
and thus most of the information is within a band near the diagonal. All the fol-
lowing steps, until convergence, are executed accurately, however at a higher target
error tolerance than the native execution (see Table 3.1).

In Fluidanimate, each time step is executed as either fully accurate or fully ap-
proximate, by setting the ratio clause of the omp taskwait pragma to either 0.0 or 1.0.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 51

FIGURE 3.2: Different levels of approximation for the Sobel benchmark

In the approximate execution, the new position of each particle is estimated assum-
ing it will move linearly, in the same direction and with the same velocity as it did
in the previous time steps.

Three different degrees of approximation are studied for each benchmark: Mild,
Medium, and Aggressive (see Table 3.1). They correspond to different choices in the
quality vs. energy and performance space. No approximate execution led to abnor-
mal program termination. It should be noted that, with the partial exception of Ja-
cobi, quality control is possible solely by changing the ratio parameter of the taskwait
pragma. This is indicative of the flexibility of our programming model. As an exam-
ple, Figure 3.2 visualizes the results of different degrees of approximation for Sobel:
the upper left quadrant is computed with no approximation, the upper right is com-
puted with Mild approximation, the lower left with Medium approximation, whereas
the lower right corner is produced when using Aggressive approximation.

The quality of the final result is evaluated by comparing it to the output pro-
duced by a fully accurate execution of the respective code. The appropriate metric
for the quality of the final result differs according to the computation. For bench-
marks involving image processing (DCT, Sobel), we use the peak signal to noise ratio
(PSNR) metric, whereas for MC, K-means, Jacobi and Fluidanimate we use the relative
error.

In the experiments, we measure the performance of our approach for the differ-
ent benchmarks and approximation degrees, for the two different runtime policies
GTB and LQH. For GTB, we investigate two cases: the buffer size is set so that tasks

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 52

are buffered until the synchronization barrier (referred to as Max Buffer GTB) ; the
buffer size is set to a smaller value, depending on the computation, so that task exe-
cution can start earlier (referred to as GTB).

As a reference, we compare our approach against:

• A fully accurate execution of each application, using a significance agnostic
version of the runtime system.

• An execution using loop perforation [125], a simple yet usually effective com-
piler technique for approximation. Loop perforation is also applied in three
different degrees of aggressiveness. The perforated version executes the same
number of tasks as those executed accurately by our approach.

The experimental evaluation is carried out on a system equipped with 2 Intel(R)
Xeon(R) CPU E5-2650 processors clocked at 2.00 GHz, with 64 GB shared mem-
ory. Each CPU consists of 8 cores. Although cores support SMT execution (hyper-
threading), we deactivated this feature during our experiments. We use Centos 6.5
Linux Operating system with the 2.6.32 Linux kernel. Each execution pinned 16
threads on all 16 cores.

Finally the energy and power are measured using likwid [135] to access the Run-
ning Average Power Limit (RAPL) registers of the processors.

3.4.2 Experimental Results

Figure 3.3 depicts the results of the experimental evaluation of our system. For each
benchmark we present execution time, energy consumption and the corresponding
error metric.

The approximated versions of the benchmarks execute significantly faster and
with less energy consumption compared to their accurate counterparts. Although
the quality of the application output deteriorates as the approximation level in-
creases, this is typically done in a graceful manner, as it can be observed in Figure 3.2
and the ’Quality’ column of Figure 3.3.

The GTB policies with different buffer sizes are comparable with each other.
Even though Max buffer GTB postpones task issue until the creation of all tasks
in the group, this does not seem to penalize the policy. In most applications tasks
are coarse-grained and are organized in relatively small groups, thus minimizing the
task creation overhead and the latency for the creation of all tasks within a group.
LQH is typically faster and more energy-efficient than both GTB flavors, except for
K-means.

In the case of Sobel, the perforated version seems to significantly outperform our
approach in terms of both energy consumption and execution time. However the
cost of doing so is unacceptable output quality, even for the mild approximation
level as shown in Figure 3.4. Our programming model and runtime policies achieve
graceful quality degradation, resulting to acceptable output even with aggressive
approximation, as illustrated in Figure 3.2.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 53

Execution time (secs) Energy (Joules) Quality
lower is better lower is better lower is better

So
be

l

Aggr Medium Mild
0

0.2
0.4
0.6
0.8

1
1.2
1.4

Aggr Medium Mild
0

10

20

30

40

50

Aggr Medium Mild
0

0.02

0.04

0.06

0.08

0.1

P
S
N
R
−
1

D
C

T

Aggr Medium Mild
0

0.5

1

1.5

2

Aggr Medium Mild
0

20

40

60

80

100

Aggr Medium Mild
0

0.01

0.02

0.03

0.04

0.05

P
S
N
R
−
1

M
C

Aggr Medium Mild
0

5

10

15

20

25

Aggr Medium Mild
0

200
400
600
800

1000
1200
1400

Aggr Medium Mild
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

R
el

.E
rr

or

K
-m

ea
ns

Aggr Medium Mild
0

10

20

30

40

50

Aggr Medium Mild
0

500

1000

1500

2000

2500

Aggr Medium Mild
0

0.1

0.2

0.3

0.4

0.5

R
el

.E
rr

or

Ja
co

bi

Aggr Medium Mild
0

0.5
1

1.5
2

2.5
3

3.5

Aggr Medium Mild
0

50

100

150

200

Aggr Medium Mild
0

0.2

0.4

0.6

0.8

1

1.2

R
el

.E
rr

or

Fl
ui

da
ni

m
at

e

Aggr Medium Mild
0

5

10

15

20

25

30

Aggr Medium Mild
0

200
400
600
800

1000
1200
1400

Aggr Medium Mild
0

20

40

60

80

R
el

.E
rr

or

FIGURE 3.3: Execution time, energy and quality of results for the benchmarks used in
the experimental evaluation under different runtime policies and degrees of approxi-
mation. In all cases lower is better. Quality is depicted as PSNR−1 for Sobel and DCT,
relative error (%) is used in all others benchmarks. The accurate execution and the ap-
proximate execution using perforation are visualized as lines. Note that perforation was

not applicable for Fluidanimate.

DCT is friendly to approximations: it produces visually acceptable results even
if a large percentage of the computations is dropped. Our policies, with the excep-
tion of the Max Buffer version of GTB, perform comparably to loop perforation in

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 54

FIGURE 3.4: Different levels of perforation for the Sobel benchmark. Accurate execution,
Perforation of 20%, 70% and 100% of loop iterations on the upper left, upper right, lower

left and lower right quadrants respectively.

terms of performance and energy consumption, yet resulting to higher quality re-
sults2. This is due to the fact that our model offers more flexibility than perforation
in defining the relative significance of code regions in DCT. The problematic perfor-
mance of GTB(Max Buffer) is discussed later in this Section, when evaluating the
overhead of the runtime policies and mechanisms.

The approximate version of MC significantly outperforms the original accurate
version, without suffering much of a penalty on its output quality. Randomized
algorithms are inherently susceptible to approximations without requiring much
sophistication. It is characteristic that the performance of our approach is almost
identical to that of blind loop perforation. We observe that the LQH policy attains
slightly better results. In this case, we found that the LQH policy undershoots the re-
quested ratio, evidently executing fewer tasks 3. This affects quality, which is lower
than that achieved by the rest of the policies.

K-means behaves gracefully as the level of approximation increases. Even in the
aggressive case, all policies demonstrate relative errors less than 0.45%. The GTB
policies are superior in terms of execution time and energy consumption in com-
parison with the perforated version of the benchmark. Noticeably, the LQH policy
exhibits slow convergence to the termination criteria. The application terminates

2Note that PSNR is a logarithmic metric
34.6% and 5.1% more that requested tasks are approximated for the aggressive and the medium

case respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 55

sobel DCT Monte Carlo Kmeans Jacobi FluidAnimate
0

0.2

0.4

0.6

0.8

1

Normalized execution time

GTB(MAX WINDOW) GTB (User Defined) LQH

FIGURE 3.5: The normalized execution time of benchmarks under different task catego-
rization policies, with respect to that over the significance-agnostic runtime system

when the number of objects which move to another cluster is less than 1/1000 of
the total object population. As mentioned in the Section 3.4.1, objects which are
computed approximately do not participate in the termination criteria. GTB policies
behave deterministically, therefore always selecting tasks corresponding to specific
objects for accurate executions. On the other hand, due to the effects dynamic load
balancing in the runtime and its localized perspective, LQH tends to evaluate accu-
rately different objects in each iteration. Therefore, it is more challenging for LQH
to achieve the termination criterion. Nevertheless, LQH produces results with the
same quality as a fully accurate execution with significant performance and energy
benefits.

Jacobi is an application with unique characteristics: approximations can affect its
rate of convergence in deterministic, yet hard to predict and analyze ways. The blind
perforation version requires fewer iterations to converge, thus resulting to lower en-
ergy consumption than our policies. Interestingly enough, it also results to a solution
closer to the real one, compared with the accurate execution.

The perforation mechanism could not be applied on top of the Fluidanimate bench-
mark. This is because if the evaluation of the movement of part of the particles
during a time-step is totally dropped, the physics of the fluid are violated leading
to completely wrong results. Our programming model offers the programmer the
expressiveness to approximate the movement of the liquid for a set of time-steps.
Moreover, in order to ensure stability, in is necessary to alternate accurate and ap-
proximate time steps. In our programming model this is achieved in a trivial man-
ner, by alternating the parameter of the ratio clause at taskbarrier pragmas between
100% and the desired value in consecutive time steps. It is worth noting that Flu-
idanimate is so sensitive to errors that only the mild degree of approximation leads to
acceptable results. Even so, the LQH policy requires less than half the energy of the
accurate execution, with the 2 versions of the GTB policy being almost as efficient.

Next, we evaluate the overhead of the two runtime policies and mechanisms.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 3. Significance Aware Approximate Computing 56

We measure the performance of each benchmark when executed with a significance-
agnostic version of the runtime system, which does not include the execution paths
for classifying and executing tasks according to significance. We then compare it
with the performance attained when executing the benchmarks with the significance-
aware version of the runtime. All tasks are created with the same significance and
the ratio of tasks executed accurately is set to 100%, therefore eliminating any ben-
efits of approximate execution. Figure 3.5 summarizes the results. It is evident that
the significance-aware runtime system typically incurs negligible overhead. The
overhead is in the order of 7% in the worst case (DCT under the GTB Max Buffer
policy). DCT creates many lightweight tasks, therefore stressing the runtime. At
the same time, given that for DCT task creation is a non-negligible percentage of the
total execution time, the latency between task creation and task issue introduced by
the Max Buffer version of the GTB policy results to a measurable overhead.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

57

Chapter 4

Modeling and Prediction of
Voltage Margins in Multicore CPUs

In this chapter we describe an end-to-end methodology to exploit CPU margins to
increase energy efficiency of modern CPUs. The methodology identifies and sets a
new CPU supply voltage which is lower than the nominal one. The objectives of the
methodology are:

1. Error avoidance. The new CPU supply voltage should be lower than the nom-
inal one to reduce the power consumption of the system but should be high
enough so that errors do not manifest during the execution of various work-
loads.

2. Source code agnostic. The methodology can be applied without any knowl-
edge about the source code of the applications.

In contrast to the previous chapters in this chapter we avoid errors and source
code modifications. Many applications are not error resilient and they require 100%
quality of the output and the source code of multiple applications is not always
available. Our methodology, presented in this chapter, overcomes these difficulties.

4.1 Background

In this chapter we seek to identify an operating point for the CPU in which the CPU
consumes less energy and applications execute without errors. Any CPU operates
with a supplied voltage (V) and an operating frequency (f), the pair (V, f) is referred
as an operating point. Typically, a CPU manufacturer defines a finite number of
operating points, called Nominal Operating Points (NOP) which guarantee error-
less operation as presented in Equation 4.1. The M denotes the total number of
nominal operating points for a given CPU. In the context of this thesis we refer to any
of the nominal points as (Vn, fn). Executing a workload1 (W) on top of an operating
point (V, f), is defined using the operator presented in Equation 4.2. The Quality of

1The workload depends on the executable code and the inputs to the code.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 58

Output QoO of a workload when executed on a NOP is always considered as Bitwise
Exact (BE) (Equation 4.3).

NOP = {(V0, f0), . . . , (Vm, fm) | 0 < m < M} (4.1)

output = Exec(W, (V, f)) (4.2)

output = Exec(W, (Vn, fn)) =⇒ QoO(output) = BE (4.3)

Creating a more energy efficient operating point of a CPU is feasible using two
methods. For a given nominal operating point (Vn, fn) one can create a new more
energy efficient operating point by:

Undervolting: (Vu, fn), reduce the supply voltage Vu below Vn (Vu < Vn), while
keeping the operating frequency unchanged.

Overclocking: (Vn, fo), increase the operating frequency fo beyond fn (fo > fn),
and keep the supply voltage unchanged.

In the context of this thesis we refer to the amount of undervolting or overclock-
ing as margin. The voltage margin (Vmargin) is defined in Equation 4.4 and is the
distance between the nominal supply voltage (Vn) and the undervolted supply volt-
age (Vu). Similarly, in the case of overclocking (fmargin) as defined in Equation 4.5
refers to the distance of the nominal operating frequency (fn) with the overclocked
(fo) frequency.

Vmargin = Vn − Vu | Vu ∈ [0, Vn) (4.4)

fmargin = fo − fn | fo ∈ (fn,∞) (4.5)

Executing applications on CPUs operating at reduced margins comes with risks
as the reliability of the system is reduced. Figure 1.1 depicts the various operating
points regions CPU. The more the voltage reduction or the frequency increase from
the NOP (green dashed line) the higher the reliability reduction. The boundary be-
tween the safe and unsafe region is dependent on the microarchitecture, the specific
chip part and the executed workload. Equations 4.6, 4.7 define the maximum Vmargin

and fmargin respectively, which provide bit-wise exact QoO for a specific workload,
architecture and chip part as maxVmargin and maxfmargin.

maxVmargin = max
0≤Vu≤Vn

Vn − Vu | QoO(Exec(W (Vu, fn)) = BE (4.6)

maxfmargin = max
fn≤fo≤inf

fo − fn | QoO(Exec(W (Vn, fo)) = BE (4.7)

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 59

4.2 Contributions

In this chapter we show the feasibility of executing applications within the safe re-
gion without reducing the reliability or the quality of output (QoO) of the executing
applications. To be more precise we make the following contributions.

• Motivated by the extend of the maxVmargin of two Haswell and four Skylake
processors, we present a modeling methodology that takes as input selected
CPU performance counters and core utilization, and estimates the voltage mar-
gin of the workload on the specific CPU This estimation can be exploited to
safely undervolt CPUs and achieve significant energy gains.

• Our model is used by a dynamic voltage scaling governor, called xDVS2, and
extensively verify our model via a long-running (consecutive 72 hours). The
system dynamically changed the application workload on 6 different worksta-
tions, without any degradation of system reliability.

FIGURE 4.1: Overview of our approach for margin characterization, modeling and dy-
namic prediction.

2The xDVS governor was implemented by Panos Koutsovasilis

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 60

4.3 Methodology

Figure 4.1 illustrates the steps of our approach:

1. ThemaxVmargin is determined for different cores (and all cores together) of the
target CPU part for different workloads via offline characterization;

2. The same workloads are profiled to quantify their interaction with the CPU
using online performance counters;

3. We combine the maxVmargin characterization and the profiling data to fit two
models for each CPU part, one for single core execution and one fore multi
core execution, that predict a reduced, yet still safe supply voltage V ′dd (Vmin <
V ′dd < Vdd).

4. The models are used by a dynamic voltage scaling governor to adjust at exe-
cution time the supply voltage of the CPU below nominal values.

4.4 Offline Characterization Background

In this section we describe the offline characterization steps 1,2 presented in figure
4.1.

4.4.1 Methodology to identify maxVmargin

Figure 4.2 summarizes the methodology we followed to characterize themaxVmargin.
To identify the maxVmargin of each of the applications Ai presented in table 4.1 we
execute each benchmark in different core configurations (Cj): either occupying a
single core, or all cores of the target CPU. Single-core experiments are executed once
per core, with the running thread pinned on the respective core while the rest of
the cores are idle. To fully utilize the CPU, multi-threaded benchmarks are executed
with a degree of parallelism equal to the number of cores, whereas in the case of
sequential (single-process) benchmarks we achieve full utilization by co-executing

A
0

Applications

A
1

A
m

...

C
1

CPU
Part

C
2

C
n

...

Identify maxV
margin

...

A
0

C
1

maxV
margin,0,1

...

A
m

C
n+1

maxV
margin,m,n+1

A
0

C
n+1

maxV
margin,0,n+1

FIGURE 4.2: Offline characterization of maxVmargin methodology

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 61

Name Domain Name Domain Benchmark Suite
Bodytrack Computer Vision Facecim Animation

Parsec [9]Blackscholes Financial Analysis Swaptions Financial Analysis
Freqmine Data mining Fluidanimate Fluid Dynamics
Bwaves Fluid Dynamics Leslie3D Fluid Dynamics

SPEC2006 [40]

Lbm Fluid Dynamics Bzip2 Compression

H264ref Video
Compression DealII Finite Analysis

Gcc C Compiler Gamess Quantum
Chemistry

Gobmk Artificial
Intelligence Gromacs Molecular

Dynamics

Hmmer Search Gene
Sequence Libquantum Quantum

Computing

Milc Chromo-
dynamics Mcf Combinatorial

Optimization

Namd Molecular
Dynamics Omnetpp Event Simulation

Perlbench Programming
Language Povray Ray-tracing

Sjeng Artificial
Intelligence Soplex

Linear
Programming,
Optimization

Sphinx3 Speech
recognition Tonto Quantum

Chemistry
Xalanbmk XML Processing Zeusmp Physics / CFD

Prime Mersenne prime stress test GIMPS [145]
Linpack HPC Linpack [49]

Firestarter Processor stress test Firestarter [37]
Stress-NG Linux Stress Test Stress-NG [132]

TABLE 4.1: Benchmarks used to characterize the voltage margins of the CPUs.

as many copies of the benchmark as the number of cores. We wait initially for all
processes/threads to perform their initialization routines (performing I/O etc.) and
then we apply the instructed Vmargin. In the end, we experiment with n+ 1 applica-
tion mappings to core configurations, where n is equal to the number of cores within
each CPU. The first n configurations are single core executions, and in the case of the
n + 1 core configuration we use all the available cores. In the end, for each combi-
nation of application (Ai), chip part and core configuration (Cj) we have a single
maxVmargin,i,j .

We use XM2 presented in section 5.3 to identify the maxVmargin. For each bench-
mark and core configuration we determine maxVmargin using a binary search algo-
rithm, which looks for the maximum applicable maxVmargin within a range [low,

high]. Initially, low = 0mV and high = 500mV . In the first step of the search we
set Vmargin equal to the middle of this interval. During execution we monitor the
system for Machine Check Exceptions (MCEs), application crashes, kernel panics
etc. When an experiment terminates, the output is compared against the correct,
“golden” output in order to detect any Silent Data Corruptions (SDC). To account
for potentially non-deterministic behavior, we experiment with every configuration
and Vmargin combination 10 times. If all experiments complete successfully, the re-
gion [low, Vmargin] is marked as safe, the low bound is increased to low = Vmargin,
and Vmargin is adjusted accordingly. If problematic behavior is detected during any
experiment, the region [Vmargin, high] is marked as unsafe, and the high bound is
decreased to high = Vmargin. The algorithm terminates when the interval width

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 62

becomes less than 5mV . At this point maxVmargin = Vmargin.

4.4.2 Results of offline maxVmargin Characterization

We perform the experimental analysis on 6 workstations, two of them featuring an
Intel Haswell i7 CPU, called Haswell 1, Haswell 2, and four featuring an Intel Skylake
Xeon CPU called Skylake 1 - 4. In all experiments, we set the operating frequency
to the maximum nominal frequency of the respective CPU. We also disable Intel
Turbo Boost technology and the Intel P-state DVFS governor. All workstations run
Ubuntu 16.04LTS with Linux Kernel version 4.10.0-38-generic. Table 4.2 outlines the
characteristics of each workstation as well as the maximum nominal supply voltage
for both architectures under maximum utilization.

Figure 4.3 illustrates the experimentally identified maxVmargin for the four Sky-
lake and two Haswell CPUs, running 34 benchmarks. Since the SPEC2006 bench-
marks are single-threaded, the respective margins for the fully utilized CPUs are
determined by executing simultaneously four instances of the benchmark on each
4-core CPU. The maxVmargin spans from 17% to 24% and from 9% to 13% of the
nominal Vn for the Skylake and Haswell microarchitectures. The difference between
min and max maxVmargin values (7% and 4% of the Vn for Skylake and Haswell,
respectively) is the workload dependent margin.

Notably, unlike previous studies on ARMv8 [95] and Itanium [4] CPUs that re-
vealed intermediate voltage regions of unsafe operation where indications of erratic
behavior may be observed, for the architectures investigated in this study the tran-
sition to unreliable operation when the voltage reduction is larger than maxVmargin
is abrupt and always leads to crashes. Even in the few cases where SDCs or MCE
errors were observed, these errors were accompanied by an immediate system or
application crash.

We also observe margin variations across different cores of the same part (differ-
ence between margins of the strongest and weakest core of each CPU). ThemaxVmargin
variation when executing the same single-threaded benchmark with different cores
can reach up to 45mV and 32mV for Skylake and Haswell, respectively. Also, in
contrast to the findings of the characterization of ARMv8 and Itanium, the CPUs

Parameters Skylake Workstation Haswell Workstation
CPU Xeon E3–1220 v5 Core i7–4790

Technology 14nm 22nm
of Cores 4 4

CPU Base Freq. 3.00 GHz 3.60 GHz
CPU Max Turbo Freq. 3.50 GHz 4.00 GHz
Supply Voltage (Vdd) 1.15V 1.07V

L1 D-Cache 128KB 32KB
L1 I-Cache 128KB 32KB
L2 Cache 1MB 256KB

CPU LLC Cache 8 MB 8 MB
CPU TDP 80 W 84 W
RAM Size 8 GB 16 GB

TABLE 4.2: Characteristics of the workstations.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 63

Sk
yl

ak
e

1

200

210

220

230

240

250

260

270

280

290

300

b
w

v
s

b
z
ip

2

d
e
a
lI
I

g
m

s
s

g
c
c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e
r

lb
m

le
s
li
e

lb
q

u
a
n

t

m
c
f

m
il
c

n
a
m

d

o
m

n
tp

p

p
b

n
c
h

p
v
ra

y

s
je

n
g

s
p

lx

s
p

h
x
3

tn
t

x
a
la

n

z
e
u

s

b
lc

k
s
c
h

b
d

tr
c
k

fc
s
im

fd
a
n

im

fr
q

m
in

e

s
w

p
tn

s

fr
s
tr

t

ln
p

a
c
k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s

e
t

(m
V

)

Sk
yl

ak
e

2

180

190

200

210

220

230

240

250

260

270

b
w

v
s

b
z
ip

2

d
e
a
lI
I

g
m

s
s

g
c
c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e
r

lb
m

le
s
li
e

lb
q
u
…

m
c
f

m
il
c

n
a
m

d

o
m
n
t…

p
b

n
c
h

p
v
ra

y

s
je

n
g

s
p

lx

s
p

h
x
3

tn
t

x
a
la

n

z
e
u

s

b
lc
k
s
…

b
d

tr
c
k

fc
s
im

fd
a
n

im

fr
q
m
i…

s
w

p
tn

s

fr
s
tr

t

ln
p

a
c
k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s

e
t

(m
V

)

Sk
yl

ak
e

3

180

190

200

210

220

230

240

250

260

270

b
w

v
s

b
z
ip

2

d
e
a

lI
I

g
m

s
s

g
c
c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e

r

lb
m

le
s
li
e

lb
q

u
a
n

t

m
c

f

m
il
c

n
a
m

d

o
m

n
tp

p

p
b

n
c
h

p
v
ra

y

s
je

n
g

s
p

lx

s
p

h
x
3

tn
t

x
a
la

n

z
e

u
s

b
lc

k
s

c
h

b
d

tr
c

k

fc
s
im

fd
a
n

im

fr
q

m
in

e

s
w

p
tn

s

fr
s

tr
t

ln
p

a
c
k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s

e
t

(m
V

)

Sk
yl

ak
e

4

180

190

200

210

220

230

240

250

260

270

280

b
w

v
s

b
z
ip

2

d
e
a
lI
I

g
m

s
s

g
c

c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e

r

lb
m

le
s

li
e

lb
q

u
a

n
t

m
c

f

m
il
c

n
a
m

d

o
m

n
tp

p

p
b

n
c
h

p
v

ra
y

s
je

n
g

s
p

lx

s
p

h
x
3

tn
t

x
a

la
n

z
e
u

s

b
lc

k
s

c
h

b
d

tr
c

k

fc
s

im

fd
a

n
im

fr
q

m
in

e

s
w

p
tn

s

fr
s

tr
t

ln
p

a
c

k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s
e

t
(m

V
)

H
as

w
el

l1

80

90

100

110

120

130

140

b
w

v
s

b
z
ip

2

d
e
a
lI
I

g
m

s
s

g
c
c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e
r

lb
m

le
s
li
e

lb
q

u
a
n

t

m
c
f

m
il
c

n
a
m

d

o
m

n
tp

p

p
b

n
c
h

p
v
ra

y

s
je

n
g

s
p

lx

s
p

h
x
3

tn
t

x
a
la

n

z
e
u

s

b
lc

k
s
c
h

b
d

tr
c
k

fc
s
im

fd
a
n

im

fr
q

m
in

e

s
w

p
tn

s

fr
s
tr

t

ln
p

a
c
k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s

e
t

(m
V

)

H
as

w
el

l2

80

90

100

110

120

130

140

150

b
w

v
s

b
z
ip

2

d
e
a

lI
I

g
m

s
s

g
c

c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e

r

lb
m

le
s
li
e

lb
q

u
a

n
t

m
c

f

m
il
c

n
a

m
d

o
m

n
tp

p

p
b

n
c

h

p
v
ra

y

s
je

n
g

s
p

lx

s
p

h
x

3

tn
t

x
a
la

n

z
e
u

s

b
lc

k
s

c
h

b
d

tr
c

k

fc
s

im

fd
a
n

im

fr
q

m
in

e

s
w

p
tn

s

fr
s

tr
t

ln
p

a
c

k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s

e
t

(m
V

)

80

90

100

110

120

130

140

150

b
w

v
s

b
z
ip

2

d
e
a

lI
I

g
m

s
s

g
c
c

g
o

b
m

k

g
rm

c
s

h
2
6
4

h
m

m
e

r

lb
m

le
s
li
e

lb
q

u
a

n
t

m
c

f

m
il
c

n
a

m
d

o
m

n
tp

p

p
b

n
c

h

p
v
ra

y

s
je

n
g

s
p

lx

s
p

h
x

3

tn
t

x
a
la

n

z
e

u
s

b
lc

k
s

c
h

b
d

tr
c

k

fc
s
im

fd
a
n

im

fr
q

m
in

e

s
w

p
tn

s

fr
s

tr
t

ln
p

a
c

k

s
tr

_
n

g

p
ri

m
e

M
S

R
 O

ff
s

e
t

(m
V

)

Application

Full Utilization Weakest Core Strongest Core Minimum MSR Offset Maximum MSR Offset

FIGURE 4.3: Evaluation of maxMargin settings for 34 benchmarks (10 runs each)
in each workstation; the higher the bar, the wider the exploitable voltage margin.
The horizontal dotted lines show the maximum (red) and minimum (black) values of

maxMargin.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 64

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

S
k
y
la

k
e
 1

S
k
y
la

k
e
 2

S
k
y
la

k
e
 3

S
k
y
la

k
e
 4

H
a
s
w

e
ll
 1

H
a
s
w

e
ll
 2

S
k
y
la

k
e
 1

S
k
y
la

k
e
 2

S
k
y
la

k
e
 3

S
k
y
la

k
e
 4

H
a
s
w

e
ll
 1

H
a
s
w

e
ll
 2

Weakest Strongest

Core 0 Core 1 Core 2 Core 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Skylake 1 Skylake 2 Skylake 3 Skylake 4 Haswell 1 Haswell 2

Single Core Full Utilization

FIGURE 4.4: In the left we present the percentage of the total single core experiment in
which the respective core was ranked as weakest or strongest. On the right we present
th percentage of the total experiments in which the core configuration was considered

as the weakest.

in this study do not exhibit the pattern of a consistently weakest and a consistently
strongest core. Figure 4.4(left) shows for each chip the percentage of single-core ex-
periments in which each core was classified as strongest or weakest. In our case the
strongest/weakest core varies across chips and even on the same chip across bench-
marks.

In most experiments, the exploitable margins on fully utilized CPUs for both
families is narrower than the corresponding ones when a single core is utilized (with
a few exceptions such as gromacs on the Skylake architecture). In Figure 4.4(right) we
compare the most conservative single core maxVmargin with the respective full uti-
lization maxVmargin. Typically the full utilization configuration demonstrates nar-
rower margins. This observation strengthens our approuach to execute, single-core
workloads as well as full core utilization ones.

Figure 4.5 shows the cumulative distribution function (CDF) of the average (across
all configurations) failure probability of each CPU, as a function of the applied Vmargin.
The Skylake family exhibits wider maxVmargin than the Haswell family, by 103mV

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

P
ro

p
a

b
il

it
y
 o

f
E

rr
o

r(
%

)

Voltage Margin (mV)

Haswell 1 Haswell 2 Skylake 1 Skylake 2 Skylake 3 Skylake 4

FIGURE 4.5: Average (across all configurations) faulure probability CDF for each CPU,
with respect to the applied Vmargin

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 65

on average. Note that lower slope CDF curves indicate a broader range of under-
volting opportunities, depending on the characteristics of the workload and the re-
source pressure exercised. For example, Skylake 4 offers an maxVmargin range be-
tween 196mV to 271mV in which different benchmark configurations will run suc-
cessfully. On the contrary, Haswell 2 has a narrower dynamic range (105 to 145mV)
exhibiting a stepwise behavior. All 4 parts of the Skylake family have similar mar-
gins, with Skylake 1 being able to operate at lower Vu values than the rest.

4.4.3 Performance Counter Profiling

Figure 4.6 summarizes the methodology we followed to quantify the utiliazation and
pressure of an application-core configuration to the microarchitectural components.
This quantification is performed through a set of performance metrics observable
through respective Performance Monitoring Unit (PMU).

Each application (Ax), is described by two collections of profiling information,
one for single core execution (Cs) and one for the full utilization execution (Cf).
Each collection consists of several samples (Si) and each sample consists of several
performance metrics (mj), also called features. The total number of samples depends
on the execution time of the application-core configuration, as we sample the perfor-
mance metrics every 100ms using the Linux Perf tools [101]. Finally, the number of
performance metrics collected for each sample depends on the architecture. We pro-
file 84 and 79 performance metrics for Skylake and Haswell, which are the ones also
used in Intel’s Top-down Microarchitecture Analysis Method (TMAM) [83]. Since
only up to 8 performance counters per core can be monitored simultaneously, to col-
lect data for all respective counters, we perform multiple executions for each bench-
mark configuration and in each execution we record a subset of performance coun-
ters, until all counters are covered.

A
0

Apps

A
1

A
m...

C
1

C
2

C
n...

Profile

A
x

C
s

s
0

s
l

m
0
...m

l

m
0
...m

lCPU
Part

...

A
x

C
f

s
0

s
k

m
0
...m

l

m
0
...m

l

...

A
x

C
s

s
0

s
l

m
0
...m

l

m
0
...m

l

...

FIGURE 4.6: Profiling performance metrics

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 66

Combine data

Train

Validation

EvaluationS
p

lit
 d

at
a

se
ts

Select N most important features

Supervised learning algorithm

Cross Validate

feature selection algorithm

FIGURE 4.7: Methodology Used during the model training phase

4.5 Modeling phase

The modeling phase consists of several steps used in Machine learning approaches
presented in Figure 4.7. Initially we need to combine the observations of the of-
fline phases (maxVmargin characterization and profiling). Then the applications are
splitted into a training, a validation and a testing set. Splitting the applications into
sets allows the our methodology to assess how the results of our offline phase will
generalize to an independent/unseen application. The training and the validation
sets are used during the model training phase. The evaluation is used during the
evaluation of the dynamic voltage scaling governor. Finally we perform an iterative
methodology to train our prediction model. The iterative produces multiple models
and selects 2 models for each chip, one for single core execution and one for multi
core executions. Both models are the ones that minimize the RMSE.

4.5.1 Combine Offline Data

The results of the maxVmargin characterization (Section 4.4.2) demonstrate that the
maxVmargin besides being dependent on the workload also depends on the resilience
of the specific cores (inter-core variation) and degree of CPU utilization. Moreover,
in a realistic scenario, the operating system may, independently of our mechanisms,
modify the topology of active cores via thread migration. Our model should provide
a safe setting irrespective of workload mapping to cores. To capture these variations,
we construct two models for each CPU part.

Single Core Model The model covers the case of single core execution and is
trained using themaxVmargin of the weakest core for each benchmark. In other
words we map the profiling collection Cs for each application (Ai) to the mini-
mum observed min(maxVmargin,i,x) | x ∈ [0, n) of single core executions. This
design decision misses opportunities for more aggressive undervolting as we
always respect the weakest core for each application. In any case though, the
penalty is on average 5mV and therefore negligible.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 67

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15 20 25 30

U
O

P
S

_
D

IS
P

A
T

C
H

E
D

_
P

O
R

T
_
1

(i
n

 1
0
0
 m

il
li

o
n

s
)

Time (sec)
facesim swaptions hmmer

FIGURE 4.8: The number of dispatched uops in port 1 during the execution time of an
application.

Full Utilization Model The model covers the case where all cores are occupied (full
utilization model). For each application Ai we use the maxVmargin,i,n and the
profiling collection Cf .

Although we create two models for each part, the methodology used is the same
for all parts and all models.

4.5.2 Data Splitting

Most applications exhibit different execution phases in terms of CPU resource pres-
sure and performance characteristics. For example, Figure 4.8 shows the number
of uops dispatched for execution in port 1 for the first 30 secs of execution for two
applications with a single phase (swaptions, hmmer) and one application with mul-
tiple phases (facesim). However, our offline characterization determines the single
worst-case maxVmargin across all execution phases of an application. This can nega-
tively affect the effectiveness of training our model as it will overgeneralize, trying
to correlate wildly varying performance counter patterns with the samemaxVmargin.

To provision for such cases, we bias the training input set to include mainly ap-
plications with few execution phases such as hmmer and swaptions. We first rank the
34 benchmarks according to the number of phases they exhibit, normalized to their
execution time. Phase change detection is performed by monitoring large changes
(more than 10%) on any of the Level-1 performance metrics of TMAM [83]. The
smaller the number of phase changes, the higher the ranking of the application.
Then, we select the top 90% (most stable) applications for training and validation.
90% of the selected applications are used for training and 10% for validation. The
remaining 10% of applications (the ones with the largest number of phase changes)
serve as the testing (evaluation) set. The validation set includes bodytrack, freqmine,
gcc, and the testing set includes facesim, zeusmp, fluidanimate, stress_ng.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 68

4.5.3 Model fitting

To build an accurate model you need to identify several parameters listed below:

i Number of features How many features the model should use.

ii Feature Selection Algorithm Which feature selection algorithm to use since differ-
ent algorithms rank features in a different order.

iii Model Type What kind of model should you use, for example linear models deci-
sion trees, random forest etc.

iv Hyper-parameters What kind of hyper-parameters to use for this model. In Ma-
chine Learning (ML) techniques, a hyper-parameter is a parameter whose value
is set before the learning process begins. Different model types require different
hyper-parameters, for example, simple algorithms such as ordinary least squares
regression require none, whereas Ridge[42] requires a regularization hyper-parameter.

We performed an exhaustive search over this four dimensional space to discover
the combination which minimizes the Root Mean Square Error (RMSE) of the vali-
dation set. Due to the limitations of Intel PMU, at execution time we are limited to
concurrently measuring up to 8 PMU events per core, hence we limit the search al-
gorithm to test up to 8 features. We use all the feature selection algorithms provided
by the Scikit-learn [100] ML library. Moreover, we tested several different classifica-
tion and regression supervised learning algorithms such as linear regression, nearest
neighbour, Support Vector Machines (SVM), desision trees, and ensemble methods.
Finally, depending on the supervised learning algorithm we searched for different
hyper-parameters.

Below we present the modeling parameters which reduce the RMSE as identified
by the exhaustive search.

Feature Number

To identify the optimal number of features we start from one feature and we test up
to eight features, as the PMUs of our architectures can measure up to eight perfor-
mance counters simultaneously. In the end, the optimal number of features were
estimated to be the maximum (8).

Feature Selection Algorithm

The optimal feature selection algorithm was mutual information (MI) which is an
algorithm commonly used for feature selection in machine learning [69]. It ranks
different features by assigning weights so that the higher the weight the more im-
portant the feature for modeling. The algorithm assigned the highest importance
to the metrics listed in Table 4.3 in decreasing order of importance. Note that the
highest ranked metrics essentially characterize the instruction mix of the workload.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 69

Skylake Haswell
UOPS_DISPATCHED.PORT_0: IDQ.ALL_DSB_CYCLES_4_UOPS:
Uops dispatched for execution in port 0
(Port 0 is responsible for Int., FP, vector
ALU, mult, div and branch operations).

Cycles in which Decode Stream Buffer
(DSB) is delivering 4 Uops.

UOPS_DISPATCHED.PORT_4 UOPS_EXECUTED.PORT_0:

Uops dispatched for execution in port 4
(Port 4 is responsible for Store operations)

Uops dispatched for execution in port 0
(Port 0 is responsible for Int., FP,vector
ALU, mult, div and branch operations).

UOPS_DISPATCHED.PORT_1: UOPS_EXECUTED.PORT_1:
Uops dispatched for execution in port 1
(Port 1 is responsible for Int., FP and
vector ALU operations).

Uops dispatched for execution in port 1
(Port 1 is responsible for Int., FP and
vector ALU operations).

UOPS_DISPATCHED.PORT_5 UOPS_EXECUTED.PORT_5:
Uops dispatched for execution in port 5
(Port 5 is responsible for Int. and vector
ALU operations).

Uops dispatched for execution in port 5
(Port 5 is responsible for Int., vector ALU
operations).

UOPS_DISPATCHED.PORT_2 UOPS_EXECUTED.PORT_2:
Uops dispatched for execution in port 2
(Port 2 is responsible for Load
operations).

Uops dispatched for execution in port 2
(Port 2 is responsible for Load
operations).

EXE_ACTIVITY.PORTS UOPS_EXECUTED.PORT_6
Cycles for which one uop began
execution on any port, and the
Reservation Station was not empty.

Uops dispatched for execution in port 6
(Port 6 is responsible for Int., and branch
operations).

UOPS_EXECUTED.THREAD UOPS_EXECUTED.PORT_3

Number of Uops executed by this
hardware thread.

Uops dispatched for execution in port 3
(Port 3 is responsible for Load
operations.)

MEM_UOPS.ALL_STORES: MEM_UOPS.ALL_STORES:
Number of store operations retired. Number of store operations retired.

TABLE 4.3: Most influential performance metrics for Vmin, as ranked by the MI algo-
rithm.

During the offline profiling phase, the performance metrics are collected through
multiple executions for the same configuration of each experiment. After the model
training procedure identifies all the parameters for the optimal model, we repeat the
experiments so that the selected metrics (Table 4.3) are collected during the same ex-
ecution and we retrain the model. These data are normalized to take values between
0 and 1. As a normalizer, we use the sum of all available slots during the sampling
period, which is equal to the number of pipeline slots (4 in our architectures) mul-
tiplied by the number of clock cycles (the respective counter does not fall into the
limitation of 8 PMU events per core).

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 70

Supervised Learning Algorithm

The values obtained by offline characterization do not always exhibit a simple, mono-
tonic behavior with respect to the obtained performance metrics. Consequently, lin-
ear regression models do not adequately capture themaxVmargin of the applications.
Instead, to predict maxVmargin as a combination of the aforementioned metrics, we
employ a machine learning ensemble technique, called Random Forest Regression
(RFR) [78]. A random forest is a collection of regression decision trees, each used
to independently predict a value based on an input vector. The model predicts by
averaging over the predictions of all regressions trees.

Hyper-parameter selection

Typically, RFR is defined by a predefined number of different simple estimators (the
decision trees) and by the maximum depth of each decision tree. Using a large num-
ber of estimators and/or using deep trees for prediction can both incur high perfor-
mance penalties, and result to overfitting. We detect overfitting by cross-validating
the models. In the end, the models that minimized the RMSE for both the training
and validation set consist of only three estimators, with the maximum depth of each
estimator being equal to three.

In the end our model resulted to an average RMSE of 7.01mV and 5.45mV for
the Skylake and Haswell families, respectively. Generally, there is no single opti-
mal model-parameter, but rather the combination of the parameters that minimize
the RMSE. For example, when using 8 performance counter, with the MI feature
selection algorithm, decision trees with a maximum depth equal to 8 resulted to
overfitting.

4.5.4 Safety Margin

Over- or under-prediction is a common side-effect of many modeling approaches.
In our case, over-predicting the maxVmargin would result in reducing the supply
voltage below Vmin leading to unreliable operation. Therefore, as a last step, we
introduce a small safety margin to the estimated maxVmargin value. For each indi-
vidual model, the safety margin is set equal to the RMSE between the value that is
predicted for the validation data, and the maxVmargin value that was observed dur-
ing the offline characterization for the respective applications in the validation set.
Equation 4.8 provides the final offset that is applied on the MSR registers of the CPU
(where ~X denotes the input vector to the model).

maxVmargin(~X) = maxVmargin(~X)− safetyMargin (4.8)

The safety margin controls the aggressiveness of our methodology. Using very
small values would result to aggressive undervolting at the risk of reduced reliabil-
ity, whereas too large safety margins would merely decrease the energy gains. A

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 71

Vmargin (mV)

FIGURE 4.9: Prediction of our model with and without the safety margin, for samples
in the validation data set.

conservative, yet pessimistic, safety margin is the maximum error between the pre-
dicted values and the validation data. Instead, we use RMSE as safety margin (7.01
and 5.45 mV for the Skylake and Haswell families, respectively) and trust the mod-
eling procedure to correctly handle the outliers. Our approach is validated in the
evaluation; no failures have been observed during application execution.

Figure 4.9 shows the predictions of our model for benchmarks in the validation
set, running on the two Skylake processors, with and without the safety margin.
The black line represents the maxVmargin values that would be predicted by a per-
fect model (corresponding to the observed Vmin). Predictions above the line corre-
spond to application phases that can be executed in a Vdd lower than the conserva-
tive, application-wide Vmin which was obtained in the offline characterization. Such
cases are discussed in Section 4.6. Including the safety margin reduces power effi-
ciency, but enables safe operation.

4.6 Evaluation

The model introduced in the previous section can be used online, to enable fine-
grained undervolting at runtime, according to the resource pressure quantified by
performance counters samples and the cores utilized by the current workload. To
this end, we use an extended dynamic voltage scaling governor (xDVS), which is
invoked periodically (every 100 msec in our experiments). Upon invocation it feeds
the model with the performance counter measurements collected during the previ-
ous interval, and uses the suggested maxVmargin to derive a less-than-nominal but
still safe supply voltage V ′dd.

In this section we evaluate the ability of the governor to dynamically identify
voltage margins based on our prediction model and drive the CPU to a more energy

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 72

180

190

200

210

220

230

240

250

s
tr

_
n

g

z
e
u

s

fd
a

n
im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c

h

g
e
m

5

s
tr

_
n

g

z
e

u
s

fd
a
n

im

fc
s

im

k
e

rn
e

l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

Skylake 1 Skylake 2 Skylake 3 Skylake 4

M
S

R
 O

ff
s

e
t

(m
V

)

0

20

40

60

80

100

120

140

160

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

Haswell 1 Haswell 2

0

20

40

60

80

100

120

140

160

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s

im

k
e

rn
e

l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s

im

k
e

rn
e

l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

Haswell 1 Haswell 2

M
S

R
 O

ff
s
e
t

(m
V

)

Full Utilization Weakest Core Offline Characterization

FIGURE 4.10: The bars show the average dynamic maxVmargin applied by xDVS for
Skylake (left) and Haswell (right) workstations. The min-max bars represent the min-
imum and the maximum maxVmargin applied by xDVS. The gray diamond represents
the maxVmargin as identified by offline characterization at the granularity of the whole

application.

180

200

220

240

260

280

0 6
1

2
1

7
2

3
2

9
3

4
4

0
4

5
5

1
5

7
6

2
6

8
7

3
7

9
8

4
9

0
9

6
1

0
1

1
0
7

1
1
2

1
1
8

1
2
4

1
2
9

1
3
5

1
4
0

1
4
6

1
5
2

1
5
7

1
6
3

1
6
8

1
7
4

1
8
0

1
8
5

1
9
1

1
9
6

2
0
2

2
0
8

2
1
3

2
1
9

stress_ng zeusmp fluidanimate facesim

M
S

R
 O

ff
s
e

t
(m

V
)

Time (sec)

180

200

220

240

260

280

7
1
0

7
1
1

7
1
2

7
1
3

7
1
3

7
1
4

7
1
5

7
1
6

7
1
7

7
1
7

7
1
8

7
1
9

7
2
0

7
2
1

7
2
1

7
2
2

7
2
3

7
2
4

7
2
5

7
2
5

7
2
6

7
2
7

7
2
8

7
2
9

7
2
9

7
3
0

7
3
1

7
3
2

7
3
3

7
3
3

7
3
4

7
3
5

7
3
6

7
3
7

7
3
7

7
3
8

7
3
9

7
4
0

gromacs

M
S

R
 O

ff
s
e
t

(m
V

)

Time (sec)

180

200

220

240

260

280

0 6
1

2
1

8
2

3
2

9
3

5
4

0
4

6
5

2
5

8
6

3
6

9
7

5
8

0
8

6
9

2
9

7
1
0
3

1
0
9

1
1
4

1
2
0

1
2
6

1
3
2

1
3
7

1
4
3

1
4
9

1
5
4

1
6
0

1
6
6

1
7
1

1
7
7

1
8
3

1
8
9

1
9
4

2
0
0

2
0
6

2
1
1

2
1
7

stress_ng zeusmp fluidanimate facesim

M
S

R
 O

ff
s
e
t

(m
V

)

Time (sec)

xDVS Offline Characterization

FIGURE 4.11: Timeline showing the applied maxVmargin for consecutive single core ex-
ecutions of four applications on Skylake 2 (left), and a snapshot of full system utilization

execution for gromacs application on Skylake 4 (right).

efficient state. We quantify the resulting energy gains using the benchmarks in the
test set (stress_ng, zeusmp, fluidanimate,facesim), which have not been used during
model training and validation and we compare the energy gains of xDVS against
the Intel P-state DVFS governor.

In addition, we evaluate xDVS with 4 larger-scale applications, namely as Gem5 [10],
a CPU miner [51], the compilation of the Linux Kernel [80] and Polybench [102].
More specifically, Gem5 simulates an ARM processor using the system emulation
mode. During the simulation we execute a variety of simple micro kernels such
as Integer and Floating Point Matrix Multiplication, Sorting algorithms, and Com-
binatoric problem solving kernels. The CPU miner employs five different hashing
algorithms (Bitcore, Sha256d, Xevan, Timetravel and Cryptonight [93]), all used to per-
form mining for different cryptocurrencies such as Litecoin and Bitcoin. Finally we
use multiple solvers and stencils included in the Polybench suite such as Alternating
Direction Implicit (ADI), Jacobi, LU factorization, Gram–Schmidt process, Gauss–Seidel.
Each one of these 4 larger-scale applications is executed for approximately 1 hour.

Figure 4.10 shows the average maxVmargin applied by xDVS when applications
are executed on all cores and evaluates the full utilization model , or on the weakest
core and it evaluates the single core model. For the large-scale applications, in which
there is no offline characterization, we present the average dynamic maxVmargin
across all single core executions.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 73

180

190

200

210

220

230

240

250

0
1
4
8

2
9
5

4
4
2

5
8
9

7
3
7

8
8
4

1
0
3

1
1

1
7

8
1

3
2

5
1

4
7

2
1

6
2

0
1

7
6

7
1

9
1

4
2

0
6

1
2

2
0

8
2

3
5

6
2

5
0

3
2

6
5

0
2

7
9

7
2

9
4

4
3

0
9

2
3

2
3

9
3

3
8

6
3

5
3

3
3

6
8

0
3

8
2

8
3

9
7

5
4

1
2

2
4

2
6

9
4

4
1

6
4

5
6

4
4

7
1

1
4

8
5

8
5

0
0

5
5

1
5

3
5

3
0

0
5

4
4

7
5

5
9

4
5

7
4

1
5

8
8

9

kernel cpu_miner polybench gem5

M
S

R
 O

ff
s
e
t

(m
V

)

Time (sec)

Skylake 1 Skylake 2 Skylake 3 Skylake 4

80

90

100

110

120

130

140

150

160

0
1
4
6

2
9
2

4
3
7

5
8
3

7
2
9

8
7
4

1
0
2

0
1

1
6

5
1

3
1

1
1

4
5

6
1

6
0

2
1

7
4

8
1

8
9

3
2

0
3

9
2

1
8

4
2

3
3

0
2

4
7

6
2

6
2

1
2

7
6

7
2

9
1

2
3

0
5

8
3

2
0

4
3

3
4

9
3

4
9

5
3

6
4

0
3

7
8

6
3

9
3

2
4

0
7

7
4

2
2

3
4

3
6

8
4

5
1

4
4

6
6

0
4

8
0

5
4

9
5

1
5

0
9

7
5

2
4

2
5

3
8

8
5

5
3

3
5

6
7

9
5

8
2

5

kernel cpu_miner polybench gem5

M
S

R
 O

ff
s
e
t

(m
V

)

Time (sec)

Haswell 2 Haswell 1

FIGURE 4.12: The timeline showing the applied maxVmargin while executing the large
applications in full system utilization for Skylake (left) and Haswell (right) worksta-

tions.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c
h

g
e
m

5

s
tr

_
n

g

z
e
u

s

fd
a
n

im

fc
s

im

k
e
rn

e
l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s

im

k
e

rn
e
l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

Skylake 1 Skylake 2 Skylake 3 Skylake 4

E
n

e
rg

y
 g

a
in

s
 (

%
)

0%

5%

10%

15%

20%

25%

30%

35%

40%

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s

im

k
e

rn
e

l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s

im

k
e

rn
e

l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

Haswell 1 Haswell 2

0

20

40

60

80

100

120

140

160

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s
im

k
e

rn
e
l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

s
tr

_
n

g

z
e

u
s

fd
a

n
im

fc
s
im

k
e

rn
e

l

c
m

in
e

r

p
lb

n
c

h

g
e

m
5

Haswell 1 Haswell 2

M
S

R
 O

ff
s
e
t

(m
V

)

Full Utilization Weakest Core Offline Characterization

FIGURE 4.13: Energy gains of xDVS when compared with Intel P-state governor for Sky-
lake (left) and Hawell (right) CPUs. The grey horizontal lines represent the maxVmargin

obtained by the offline characterization.

The maxVmargin applied by xDVS includes the extra safety margin, thus we ex-
pect it to be on average more pessimistic than the maxVmargin identified by offline
characterization (as shown in Figure 4.10). The voltage applied by xDVS (including
the safety margin) is on average 9.3mV and 8.2mV higher that the one identified by
offline characterization for the Skylake and Haswell microarchitectures respectively.

Despite the safety margin, there are cases in which xDVS successfully identifies
application phases and adjusts the supply voltage to lower values than those identi-
fied in the offline characterization, without compromising system reliability. Note in
Figure 4.10 that xDVS identifies wider static and dynamic (phase-dependent) volt-
age margins for the Skylake family, which is compatible with the findings of the
offline characterization presented in Figure 4.5.

The left side of Figure 4.11 shows the dynamically applied maxVmargin when
four benchmarks are scheduled for consecutive execution on the same core of Sky-
lake 2. xDVS is able to capture the dynamic nature of the applications. In the
facesim case (an iterative application that executes 3 separate kernels per iteration)
the maxVmargin varies between 201mV and 233mV while the model captures the
phases of the application. A similar behavior is observed for gromacs (Figure 4.11
on the right), in which xDVS captures the periodic phase changes and drives under-
volting even more aggressively than what static maxVmargin dictates. For brevity,
we do not include graphs of the remaining CPUs as they present similar trends.

Figure 4.12 shows the maxVmargin timeline when the four larger-scale applica-
tions are scheduled for execution on each workstation. The graphs reveal relatively

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 74

large intra-family margin variations, as well as variations due to different workload
characteristics. Note that the xDVS governor is able to capture the different algo-
rithms consecutively used by the CPU miner application. Although the variation
between different predictions is small, as observed in the offline characterization,
the margin between correct execution and failure is small (less than 5mV). There-
fore, even minimal adjustments to the supply voltage can have an noticeable impact
on system reliability.

Figure 4.13 shows that the xDVS governor achieves 29.59% and 21.93% aver-
age CPU energy gains and can reach up to 42.68% and 34.37% for the Skylake and
Haswell processors respectively, compared with the Intel P-state governor. Higher
gains are – as expected – obtained when cores of the CPU are highly utilized. For
the energy consumption extraction we used Linux Perf tool.

4.6.1 Mixed Workload Long Run Evaluation

To stress the reliable execution of xDVS as well as the ability of the model to predict
safe margins for mixed workloads we orchestrated a custom long run execution. We
created a workload pool comprising the testing set benchmarks, the four larger ap-
plications as well as idle tasks. We randomly select a benchmark from this pool and
randomly define the level of parallelism (either in the form of number of threads or
instances). We keep spawning benchmarks this way until all cores are assigned one
benchmark. Every time an application terminates another application is spawned.
We left this experiment running for 72 hours. All workstations successfully termi-
nated their executions. Our xDVS governor performed on average 2.6 ∗ 106 voltage
regulations per workstation during that period.

Note that when xDVS is enabled, Intel’s Turbo Boost technology is disabled and
the operating frequency is pinned to the CPU maximum nominal frequency. This
penalty, due to lower operating CPU frequency, translates to application execution
slowdown and is on average 8.73% and 5.59% for the Skylake and Haswell, respec-
tively. However, the actual performance overhead of the xDVS governor itself is
minimal. When the governor is active and performs estimations every 100ms the
prediction requires only 160ns, while changing the new maxVmargin requires 155us.
On average, the performance overhead is equal to merely 0.04% of execution time.

4.7 Voltage Emergencies

Our technique is designed to predict Vmin voltage oscillations when executing con-
ventional workloads in a multi-core CPU. However, aggressive voltage scaling comes
at the cost of increased risk of CPU malfunctioning in pathological cases, when, for
example a voltage droop virus is injected (potentially maliciously) for execution.
Such viruses (also called stressmarks) are artificially generated to produce large volt-
age fluctuations and expose the susceptibilities of the power delivery network of

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 4. Modeling and Prediction of Voltage Margins in Multicore CPUs 75

microprocessors [133, 66, 65]. Typically, stressmarks consist of a periodic sequence
of high activity and low activity instruction regions at a frequency equal to the res-
onance frequency of the power delivery network (50 − 200MHz in modern CPUs).
This pattern simulates the invocation of high CPU activity workloads immediately
after a period of very low activity, which causes large di/dt swings and large voltage
droops. Such viruses can affect the reliable operation of CPUs, even when power
supply is at nominal voltage levels.

Our methodology depends on the average behavior of the current workload as
this is quantified by the monitored performance counters. The experimental evalua-
tion demonstrates that for typical workloads the performance counters can be used
as indicators to aggressively reduce the supply voltage. However, the sampling of
the performance counters and the supply voltage adjustment is performed every
100 ms, which is too coarse to capture events caused by viruses which appear at the
granularity of tens of nsecs. The problem of voltage droop detection and mitigation
in modern CPU and GPUs is (and should be) addressed at the hardware level with
specialized circuitry [127, 116]. A high speed droop detection mechanism continu-
ously monitors the power grid causing a rapid charge shunt to the Vdd rail to correct
a voltage emergency within a few clock cycles.

Our scheme makes the CPU more vulnerable to voltage emergencies and would
probably require stricter thresholds and faster response times from such hardware
mechanisms to counteract the effects of voltage droop viruses. Ideally, these mecha-
nisms could also inform the software stack when voltage emergencies are detected,
acting as a trigger towards more conservative undervolting. In general, stronger er-
ror protection and error recovery mechanisms to correct timing violations are very
helpful for extra protection in aggressive voltage scaling. Note also that voltage
droop viruses are difficult to generate and may be different across not only different
microarchitectures but also across different CPU parts. Moreover, on top of a real-
istic software stack, the background operating system activity (jitter) smooths out
large voltage swings caused by such viruses [106].

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

76

Chapter 5

Experimental Frameworks for
Reliability Analysis

This dissertation seeks energy reduction by reducing the correctness requirements
of the computer systems. Relaxing the hardware correctness requirements reduces
the reliability of the system. A major challenge of this thesis was to understand
under which circumstance do errors manifest on the hardware and how different
applications mask the respective errors. To be more precise we faced the following
challenges:

• Understand how and under what circumstances modern CPU microarchitec-
tures fail when executing code at reduced margins

• Identify the voltage margins of the system and associate them with their re-
spective energy gains.

• Evaluate the resilience of individual applications and the complete software
stack.

5.1 Contributions

To overcome these challenges we developed two fault injection frameworks which
where used by this thesis to conduct the experimentation. Below we present the
contributions of this chapter:

GemFI A simulation based fault injection tool, the tool extends the popular Gem5
simulator. The primary objective of the tool is to enable fault injection based on
different fault models and on systems with various configurations. A variety
of different system configurations and architectures can be supported without
affecting the implementation of fault injection in GemFI

XM2: A framework that monitors and manages the operation of systems when their
CPU is either overclocked or undervolted. It can be effectively used to identify
the margins of a system, or study the effect of real faults on the application and
associate the undervolting/overclocking with the respective energy gains.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 77

• We use XM2 to analyze the effects of the source code and compiler opti-
mizations to the frequency margins of the ARM Cortex A53 processor.

In the remainder of the chapter we describe and compare these two frameworks
and the analysis on the ARM Cortex A53 processor.

5.2 GemFI:Fault Injection Tool for Studying the Behavior of
Applications on Unreliable Substrates

5.2.1 The Gem5 Simulator

Gem5 is a popular open-source system simulator. It provides a modular platform
for computer system-level architecture research, encompassing system-level archi-
tecture as well as processor micro-architecture.

Object oriented design enhances the flexibility of Gem5. The ability to construct
configurations from independent objects facilitates multicore and multi-system de-
sign. Moreover, Gem5 provides four different CPU models, each of them represent-
ing a different point in the speed vs simulation accuracy trade-off. Atomic Simple is
a single IPC CPU model. Timing Simple is similar but also simulates the timing of
memory references. InOrder is a pipelined in order CPU. Finally, O3 is a pipelined
out-of-order CPU model. Gem5 also supports two memory system models: classic
and ruby. The classic is fast and easily configurable, while the ruby model provides
a flexible infrastructure capable of accurately simulating a wide variety of cache co-
herence memory systems.

Gem5 operates in two modes: System Call Emulation (SE) and Full System (FS). In
SE mode applications execute on simulated “bare metal”. Whenever the program
executes a system call, Gem5 traps and emulates the call usually by passing it to
the host OS. Currently there is no thread scheduler in SE mode. Therefore, threads
are statically mapped to a core, hindering its use with multi-threaded applications.
FS mode offers an environment for running an operating system (OS) on top of the
simulator. There is support for interrupts, exceptions and I/O devices. Applications
are executed under the control of the OS.

Gem5 supports a number of ISAs, including Alpha, MIPS, ARM, Power, SPARC
and x86. The simulator’s modularity allows these different ISAs to be easily imple-
mented on top of the generic CPU models and the memory system.

5.2.2 GemFI Design and Implementation

We extended Gem5 with fault injection capabilities, following the General Processor
fault model described in [147]. The result, GemFI, is a configurable tool for studying
the effect of faults in a processor.

GemFI was developed using C++ and Python. It fully supports the Alpha and
Intel x86 ISAs. Supporting more instruction sets is rather straightforward, since the

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 78

FIGURE 5.1: An architectural overview of GemFI. The red components of the architec-
ture demonstrate the possible locations where faults can be injected, whereas the red

ovals represent applications which use the extended ISA.

implementation of GemFI is fairly ISA-agnostic. GemFI supports full system simu-
lation mode as well as the execution of multi-threaded applications. An architectural
overview of GemFI is depicted in Fig. 5.1, whereas the following sections discuss its
main features in more detail.

GemFI User Interface

GemFI provides an API consisted of two intrinsic functions.

• void fi_activate_inst(int id) is translated to a pseudo-assembly instruction. Its
successive occurrences toggle (active/inactive) the manifestation of faults for
the specific process/thread. The executing thread is assigned a numerical id
which can be used as an identifier of the thread in fault injection configuration.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 79

• void fi_read_init_all() checkpoints the simulation. Upon restoring from the
checkpoint, it resets all the internal information of GemFI, allowing the same
checkpoint to be used as a starting point for multiple experiments with poten-
tially different fault injection configurations.

On GemFI invocation the user also provides – at command line – an input file
specifying the faults to be injected in the upcoming simulation. Each line of the
input file describes the attributes of a single fault. Faults are characterized by four
attributes: Location, Thread, Time and Behavior.

Location: Fault location specifies the micro-architectural modules to be targeted
for fault injection. The user specifies the core, the module within the core and
finally the specific bit location to be corrupted. Supported locations include
registers (integer, floating point, special purpose), the fetched instruction, the
selection of read/write registers during the decoding stage, the result of an
instruction at the execution stage, the PC address and finally memory transac-
tions (load/stores).

Thread: The thread attribute allows to selectively inject faults to specific threads,
using the id assigned to the thread upon execution of fi_activate_inst(id) as an
identifier.

Time: Another important aspect of the fault injection configuration is its timing.
Timing is relative to a simulation milestone, marked by the execution of the
fi_activate_inst. Faults are scheduled relatively to the number of instructions
already executed, or to the number of elapsed simulation ticks of the targeted
thread.

Behavior: The values of the specified faulty location can be corrupted in following
ways:

• by assigning an immediate value provided by the user to the location.

• by XORing the running value at this location with a user-specified con-
stant.

• by flipping the running value at bit locations. Multiple bit flips are sup-
ported by injecting multiple faults on the same module.

• by setting all bits of the location to a value of 0 or 1.

To emulate the behavior of transient and permanent faults, the user can define how
long the fault is active in terms of the number of simulation ticks or number of in-
structions. For example, a fault injected in the execution stage of the processor can
be injected continuously for the next N instructions (or for the next N simulation
cycles) if so instructed by the user.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 80

1 "RegisterInjectedFault Inst:2457 Flip:21
2 Threadid:0 system.cpu1 occ:1 int 1"

LISTING 5.1: A sample input file to GemFI

1 #include <m5op.h>
2 int main(int argc, char *argv[]){
3 int id = 0;
4 initialize_input_data();
5 fi_read_init_all();
6 fi_activate_inst(id);
7 foo();
8 fi_activate_inst(id);
9 }

LISTING 5.2: Modified source code of an application for fault injection.

5.2.3 Simple Example

Listing 5.1 outlines a user-provided fault configuration example. The fault is injected
in the 21st bit of register R1 of the CPU (location), when the application fetches the
2457th instruction after the initiation of fault injection for this thread (fi_activate_inst).
The fault is activated for a single instruction (occ:1) and only for the thread with id
equal to 0.

The end user compiles (or cross-compiles) the application to be tested (List-
ing 5.2). Target applications must, at least, contain one call to initialize fault in-
jection. Afterwards, the user moves the binaries into the disk image serving as the
virtual disk of GemFI. Using the command line, the user provides a configuration
file (Listing 5.1) describing all the faults to be injected in the simulation. After fi_ac-
tivate_inst(id) is called, the thread identifier is stored in the internal data structures
of GemFI. Simulation continues normally, until it is time for a fault to be injected.
At that time, GemFI alters the state of the target hardware structure according to the
fault specification in the configuration file.

5.2.4 GemFI Internals and Implementation

Fig. 5.2 demonstrates the steps executed by GemFI for each simulated instruction.
Threads that have enabled fault injection are internally represented as instances

of a class (ThreadEnabledFault), containing all per thread information necessary for
fault injection, such as the number of instructions the thread has executed on each
core. Each simulated core has a pointer to a ThreadEnabledFault object. If the thread
executing on the core has not activated fault injection, the pointer is NULL. When a
thread executes fi_activate_inst(), GemFI looks in a hash table to identify whether
the specific thread has already activated fault injection. Threads are identified at the
hardware/simulator level by their unique Process Control Block (PCB) address. If
the thread is not found in the hash table, a new ThreadEnabledFault object is created
and the running core is set to point to that object. On the other hand, if there was
already an entry in the hash table, the invocation of fi_activate_inst() deactivates

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 81

FIGURE 5.2: GemFI functionality on each simulated instruction.

fault injection for the specific thread. The thread is removed from the hash table, the
corresponding ThreadEnabledFault object is destroyed and the core’s pointer is set
to NULL. During context switches, which are identified by the change of the PCB
address, GemFI checks whether the switched-in thread has activated fault injection,
in order to properly set the core’s pointer to the thread’s ThreadEnabledFault object.
Monitoring context switches allows GemFI to eliminate the overhead of checking
the fault injection status of the executing thread in the hash table on each simulated
clock tick.

Faults are described in the input file provided by the user at GemFI command
line. The file is parsed at startup and each fault is inserted to one of five internal
queues. Each queue corresponds to a different pipeline stage.

On each simulation tick, GemFI checks if fault injection has been enabled for the
running thread. In such a case, it prefetches the corresponding ThreadEnabledFault
objects. Then and for each instruction served at a pipeline stage, GemFI updates the
thread’s data and scans the corresponding queue for faults targeting the executing
thread at the specific simulation point. Queue entries are sorted according to the
timing of each fault. If such a fault is found, the value of the targeted location is
corrupted according to fault’s behavior.

5.2.5 Simulation Checkpointing

Checkpointing allows saving the state of a process or a system at a specific time snap-
shot and reverting to that later, to restart the execution from that point if needed.
Checkpointing is necessary in order to avoid losing simulations in case of unex-
pected failures. It is particularly useful when simulation campaigns are executed to
non-dedicated networks of workstations, a feature supported by GemFI.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 82

FIGURE 5.3: Simple checkpoint-restore mechanism to speedup simulation campaigns.

Gem5 provides checkpointing, however with limitations. One method is to switch
the simulation from O3 to atomic simple mode, create the checkpoint, and revert
back to O3 mode to continue the simulation. This requires a pipeline flush, pre-
senting a potential realism loss hazard. The second method requires simulating the
MOESI hammer cache coherency protocol, which however dramatically increases
simulation time.

We used DMTCP (Distributed MultiThreaded Checkpointing) [2] to checkpoint
the state of the Linux process running the simulator, instead of checkpointing the
internal state of the simulator. A feature of DMTCP is its ability to take checkpoints
either by programmatically invoking checkpointing from within the process to be
checkpointed, or asynchronously, by setting environment variables. The ability to
invoke DMTCP from within the simulator allows us to exploit the front-end check-
pointing mechanism of Gem5, while altering the checkpointing back-end to use the
DMTCP API.

Apart from protecting against unexpected problems in simulation campaigns,
checkpointing can be used to speed-up simulations. Before starting simulation cam-
paigns, the user executes one simulation up to the point when fault injection is acti-
vated (including booting of the operating system and application initialization). Us-
ing GemFI’s API the user can checkpoint the simulation at this point. The saved state
is then used as a starting point for all experiments in the campaign (Fig. 5.3). Upon
restoring a checkpoint GemFI parses again the faults configuration file. Therefore,
this strategy allows fast-forwarding of the execution to the checkpoint and spawn-
ing of multiple experiments, with different fault injection configurations from that
point on. As a result, the cumulative execution time of the simulation campaign is
significantly reduced, as we demonstrate in Sec. 5.2.8.

5.2.6 Simulation Campaigns on a Network Of Workstations

GemFI is accompanied by a set of shell scripts which facilitate launching simulation
campaigns on a network of workstations (NoW). The workstations need to share a
network file-system, in order to store the fault description files of the experiments,

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 83

the simulation checkpoints and the output of each simulation. The main steps for
parallel execution of simulation campaigns on a NoW are the following:

1. The configuration files for all experiments are stored on a network share.

2. A simulation is executed up to the point fault injection is activated and the
simulator process is checkpointed. The checkpoint is stored to the share.

3. Each workstation gets a local copy of the checkpoint.

4. Each workstation checks the share for experiments to be executed. It selects
one of the remaining experiments and executes it locally, starting from the
checkpointed state.

5. Simulation results are moved from the workstation back to the network share.

6. Steps 4-6 are repeated until there are no experiments left.

5.2.7 Validation

In order to validate the functional correctness of GemFI, we conducted an experi-
mental study using a set of benchmark applications. Our simulator system was set
to simulate a single core ALPHA CPU coupled with a tournament branch predictor,
a L1 instruction cache and a L1 data cache and as a L2 cache we used a unified L2
cache.

DCT, is a kernel of JPEG image compression and decompression [129]. We ap-
plied each kernel on a gray-scale 512X512 image. Jacobi is applied on a diagonally
dominant 64X64 matrix. Monte Carlo PI estimates the value of PI by randomly se-
lecting 105 points within a unit square and evaluating whether they fall into the
inscribed into a circle with radius one. Knapsack is a solution of the zero one knap-
sack combinational problem using a genetic algorithm. We use an input of 24 items
and a weight limit of 500. The Deblocking filter is a kernel of the AVS video decod-
ing process [30]. We apply it on a 720X240 pixel image. Canneal is a benchmark of
the PARSEC Benchmark Suite [9]. Canneal employs an annealing (SA) algorithm to
minimize the routing cost of a chip design by randomly swapping netlist elements.
It was applied on 100 nets, allowing up to 100 swaps in each step.

The number of executions of each application for every experiment varied from
2501 to 2504 and has been calculated using the method presented in [75], setting 99%
as a target confidence level and 1% as the error margin.

The execution of each application was simulated both with our tool and the orig-
inal Gem5 simulator. When simulating using GemFI we did not inject any faults.
We then compared the application output from the two experiments, as well as the
statistical results provided by the simulator. For all benchmarks the results were
identical. This indicates that GemFI does not corrupt the simulation process.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 84

FIGURE 5.4: Different categories of results for the DCT benchmark.
a) A strict correct result b) Relaxed correct result c) SDC d) The difference between (a),(b)

(loss of quality)

Validation Methodology

We launched simulation campaigns in which applications are injected with faults.
We use a single event upset fault model. Each experiment injects a flip-bit fault, us-
ing a uniform distribution for the Location, Time and Behavior. As mentioned earlier,
GemFI can support any user-provided realistic fault model.

We initially checkpoint after the system boot-up and the initialization phase of
the application under investigation. For each experiment in a campaign, we restore
from the checkpoint, start simulating in O3 mode and inject the fault. The simulation
continues until the affected instruction commits or squashes (for example, due to
a branch misprediction). At that point we switch to atomic simulation and after
application termination (normal or crash) we evaluate the quality of the end-result.
When injecting a fault we print information on the affected assembly instruction.
This information is used postmortem to correlate, either analytically or statistically,
the fault with the simulation result.

The outcome of each experiment can be classified in the following categories:
crashed, non propagated, strictly correct result, correct result and SDC (Silent Data Cor-
ruption). Crashed are experiments which fail to successfully terminate. Non propagated
are experiments in which faults did not manifest as errors (for example they were
inserted in registers, however the corrupted register was either not used during the
execution of the application or overwritten before the erroneous value was used).

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 85

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Type
Opcode Ra Rb Unused 0 Function Rc Integer Operate
Opcode Ra Literal 1 Function Rc Integer Operate,Literal
Opcode Ra Rb Function Rc Floating Point Operate
Opcode Ra Rb Displacement Memory Format
Opcode Ra Displacement Branch Format
Opcode Function CALL_PAL Format

TABLE 5.1: Alpha instruction formats

Strictly correct experiments produce results which are bit-wise identical to those pro-
duced by the corresponding error-less execution. Correct experiments produce re-
sults that are within acceptable quality margins, although not bit-wise identical to
those of the error-less execution. The degree of tolerance is application dependent.
For DCT we compare the produced compressed image with the uncompressed one
used as input. Images with PSNR higher than 30 are regarded as correct, since typ-
ical PSNR values in lossy image and video compression range between 30 and 50
dB [143]. For the deblocking filter, outputs with PSNR higher than 80 dB, when
compared with the error-free execution, are characterized as correct [143]. For PI
estimation we accept experiments that have computed the first two decimal points
correctly, since this the accuracy expected by the error-free execution for the 105 test
points. Since the tolerance on Jacobi is highly dependent on the application domain,
we characterize as correct solutions that result to the same (bit-exact) output as the
golden model, converging after a potentially different number of iterations. Cor-
rect Canneal executions are those that reduce the total cost of routing and produce
a correct chip. Finally, SDCs are executions that terminate normally, yet they pro-
duce results outside the acceptable range compared to the results of the error-free
execution. Fig. 5.4 depicts an example of the different classes of results.

Experimental Results

Fig. 5.5 depicts the results of the fault injection campaigns, correlating the Location
of the fault with application behavior. The last column of each chart summarizes the
results for the specific application.

All applications demonstrate their highest resiliency to faults targeting floating
point registers. Most applications use a small subset of these registers, hence there is
a low probability for a fault to affect a live register. Moreover, floating point registers
are typically used to store data and not system state information or control flow
information. Deblocking, a benchmark with no floating point operations, behaves
exactly as expected, demonstrating 100% strict correctness.

On the other hand, faults on the integer register file result to higher crash rates.
The compiler uses integer registers for storing important information (global pointer,
stack pointer, frame pointer, return address register). Moreover compiler uses inte-
ger registers for control flow information (loop iterators, base addresses for memory
translation). The integrity of these registers is crucial. Integer resisters tend to be live
during large spans of the application life. Therefore, any fault affecting them has a

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 86

DCT Jacobi

Deblocking Knapsack

Monte Carlo PI Canneal

FIGURE 5.5: Application behavior when fault injecting different architectural compo-
nents.

high probability to cause a crash. For example DCT and Jacobi which are character-
ized by many memory accesses and use multi-level loop nests exhibit almost twice
the crash rate compared with other applications.

In order to validate fault injection at the fetch stage, we correlated the affected bit
location and the instruction type with the end result of the application. The analysis
is ISA dependent; Table 5.1 summarizes Alpha instruction format. Experiments af-
fecting unused bits always resulted into strict correct results. Faults affecting branch
instructions were validated by checking the simulation statistical information. For
example when inserting a fault into the displacement bits of the instruction and the
branch is not taken the simulation statistics were the same and the end-result was
categorized as strict correct. Faults affecting the Ra field may cause no error, should
the result of the branch remain the same. Whenever faults altered the displacement

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 87

field of memory instructions the application would crash with a high probability.
The same was observed when the error altered the Ra value of a memory instruc-
tion, since the base address was read by another register. Finally we observed that,
exactly as expected, when faults were injected into the opcode or the function and the
resulting opcode/function is not implemented the benchmarks always terminated
their execution due to illegal instruction.

A similar analysis was applied for faults inserted in the selection of registers
during the decoding stage. Errors which affect the selection of the base of load/store
instructions would usually cause a segmentation fault. An interesting observation
is that faults inserted in the decoding stage of the PI algorithm result to crashes
almost at half the probability compared with the remaining applications, because PI
performs almost no data accesses from memory. Errors in the decoding stage usually
lead to SDCs. This is expected, since operations are executed with different inputs.
Correct results may be produced only by faults which alter a squashed instruction,
or due to inherent, algorithmic application resiliency.

Faults introduced in the execution stage, which alter memory access instructions
tended to result to crashes, because at this stage the virtual address of the memory
transfer is being calculated. Faults altering the resulting address usually result to
segmentation violations. The variation between the percentage of crashes among
different applications is consistent with the variation of the percentage of memory
operations in the instruction mix. In Knapsack, which makes heavy use of arrays and
pointers 42% of faults in the execution stage result to crashes. On the other hand,
PI evaluation, with almost no data accesses from memory, suffers almost no crashes.
Correct and strictly correct results when fault injecting in the execution stage were
found to be due to faults that have been masked during the remaining execution of
the application, or faults that affected the less significant bits of data computations.

Faults altering the result of data loads/stores rarely resulted to crashes, and
when they did it was because the error affected a store/load of an address. For
example, altering the stored or loaded value of the return address usually led to
crash. In total,

Finally faults altering the value of the PC address were almost always fatal for
the affected applications. Correct results were obtained in the few cases when the
corrupted PC address was close to the correct one. This, in practice, corresponds to
a small forward or backward jump.

Another interesting aspect of the experimental validation is the correlation of the
timing of fault injection to the effects on the application. Fig. 5.6 depicts the results
from three fault injections campaigns with interesting trends. The horizontal axis
corresponds to the timing of fault injection normalized to the application execution
time and the vertical axis corresponds to the fraction of experiments that resulted to
each of the classes of outcomes. Acceptable represents the union of correct and strictly
correct results.

For Monte Carlo PI estimation the time when fault injection took place appears

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 88

Monte Carlo PI Knapsack Jacobi

FIGURE 5.6: Correlation of the timing of fault injection with the effect on the application.

to be uncorrelated with application behavior. This is reasonable, since the appli-
cation iteratively produces random numbers, which are used to compute the final
result. All iterations affect the final result similarly, therefore we did not expect dif-
ferent behavior with respect to the timing of the faults. On the other hand, Knapsack
demonstrates a different behavior. The later the faults are injected, the more likely
the results are acceptable. Faults corrupting data in a manner that does not result
to values which converge towards the solution will be discarded on the following
iteration, after applying the fitness function. This effect becomes more intense on
each consecutive iteration of the algorithm. In Jacobi, faults inserted at the beginning
of the execution tend to result to strict correctness. The later the faults are injected,
the more the correct results at the expense of strictly correct. Given that the input
matrix is diagonally dominant, errors which do not alter important variables of the
application (etc. iterators) but alter input or intermediate data, will have no signifi-
cant effect to the results, since the algorithm is bound to converge. However, more
iterations may be needed to achieve convergence.

5.2.8 GemFI Performance Evaluation

In order to evaluate the overhead of GemFI we compare the execution time for simu-
lated runs of all the aforementioned benchmarks on both GemFI and the unmodified
Gem5 simulator. We measure and compare simulation time for the part of the ap-
plication for which fault injection is active (between fi_activate_inst() calls). Despite
activating the fault injection functionality, in this set of experiments we do not actu-
ally inject any faults in the GemFI simulations. Should we inject faults, the behavior
of applications would potentially change, thus making the comparison between the
two tools infeasible. It should be noted that, despite the fact that no faults are in-
jected, all GemFI functionality is activated — especially the modules of GemFI that
are executed on each simulated cycle, thus resulting to most overhead — apart from
the last step of the process described in Fig. 5.2, the fault injection itself. However,
the actual fault injection step would, in any case, be activated only once, with negli-
gible overhead. Moreover, since no faults are injected, there are no opportunities to
switch to atomic simple mode after fault manifestation, therefore the simulation is
performed in the high-overhead O3 CPU model.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 89

FIGURE 5.7: GemFI average overhead compared with unmodified Gem5. The chart also
depicts the 95% confidence interval for each application.

Fig. 5.7 depicts the experimental results, which can be considered as a worst-case
overhead scenario for GemFI. The overhead varies from -0.1% to 3.3%. It is mainly
dependent on the number of instructions simulated with fault injection enabled. The
overhead introduced by GemFI clearly is minimal. For PI estimation GemFI appears
to perform better than Gem5, however this observation is not statistically significant.

Using the checkpointing methodology presented in Sec. 5.2.5, GemFI is able to
significantly reduce the time for executing simulation campaigns. Fig. 5.8 summa-
rizes the simulation time for the campaigns discussed in Sec. 5.2.7, with and without
using the checkpointing capability to fast-forward the simulation to the point where
fault injection is activated. The benefit from checkpointing is a 3x to 244x (64.5x on
average) speedup with respect to the non fast-forwarded execution of the campaign.
The speedup is mainly dependent on the ratio of the execution time spent for each
application on the pre- and post-checkpoint code.

FIGURE 5.8: Effect of GemFI optimizations on the execution time of fault injection cam-
paigns (y-axis in logarithmic scale).

The third set of bars in Fig. 5.8 depicts the execution time of the simulation cam-
paigns on a network of 27 workstations, using the meta-simulation infrastructure
discussed in Sec. 5.2.6. Each workstation is equipped with quad core Intel Xeon
E5520 CPUs at 2.27 Ghz and 8 GB RAM each. On each workstation we execute
simultaneously 4 experiments (simulations). The additional speedup, compared
with execution on a simple system with checkpoint-based fast forwarding, is con-
sistent with the number of simultaneously executed experiments (in all cases ap-
proximately 108x).

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 90

5.3 XM2: A Framework for Evaluating Software on Reduced
Margins Hardware

XM2 adopts a reusable, platform-neutral approach that can scale in simultaneous
multi-board, multi-CPU and multi-process execution campaigns with or without
operating system support. The framework supports user-defined methods for the
collection and classification of the different execution outcomes, and can manage
very large campaigns, thus relieving the user from manually initiating, controlling
and monitoring the experiments.

5.3.1 Platform Requirements

XM2 facilitates the design and implementation of experimental campaigns to char-
acterize either the hardware itself, or the resilience of software operating on top of
overclocked or undervolted hardware. XM2 can be used on top of different hardware
platforms and software stack configurations. It assumes the following support from
the underlying hardware and software of the platform used for the experiments:

Hardware support: The hardware must provide support for controlling and scal-
ing the system operating point (voltage, frequency) beyond the normal working en-
velope. Modern Intel x86-64 CPUs offer such capabilities, starting from the Haswell
family, through the programmable Fully Integrated Voltage Regulator (FIVR) [14].
Several processors based on ARM architectures offer similar functionality. The Ap-
pliedMicro X-Gene 2 [95] chip does so through the SLIMpro management processor
included in the chip. The ARM Cortex A53 processor in Raspberry PI 3b boards can
be set to operate in non-nominal conditions via a configuration file.

Compiler support for common function attributes: Every application using
XM2 must be linked with a thin library, used to notify external systems about the
execution status of the application. It also undertakes the management of the appli-
cation and supports data exchange with external systems. The library exploits the
common function attributes constructor and destructor provided by the gcc compiler.

Connectivity: We assume that the target (tested) system can support TCP con-
nections to other systems. These are used to orchestrate the execution campaign, to
supply input data, and to collect results of the computation from the target system.
The TCP functionality is provided either by the OS, or directly by the aforemen-
tioned library when running on bare metal.

Remote reset support: When operating at extended configurations, errors lead-
ing to full system failure are likely. Therefore, the target system needs to offer a
hardware interface for a full/clean reset.

5.3.2 Tool Design and Configuration

An experimental characterization campaign on top of unreliable hardware typically
involves the execution of multiple experiments under the same configuration (in

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 91

Target System

Target System

Target System

Hardware Platform

Monitoring System

Ethernet

XM Library

User Application

Slave Daemon

Monitoring Hardware Platform

TCP/IP

expConf

Master Daemon

Reliability Configurator (V,f)

Coordinator

Classifier

Input Files

Coordinator

Classifier

DataBase

TCP/IP

2

FIGURE 5.9: System architecture of XM2. It comprises a single monitoring system and
multiple target systems. The components corresponding to dark gray boxes are sup-
plied by the user. XM2 includes a built-in classifier of results, however the latter can be

substituted by a user-provided one.

terms of the underlying hardware, its voltage/frequency configuration, the input
set of the application etc). After each experiment terminates, its results are checked
and classified, depending on potential effects of faults. This experimental proce-
dure continues until the number of experiments is sufficient to provide statistically
significant results.

Figure 5.9 presents a high level overview of XM2. It is structured in a distributed
way, comprising a single monitoring system, and one or more target systems of the
same hardware architecture. The monitoring system deploys a Master daemon which

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 92

spawns a Coordinator thread for each target system. Every target system spawns a
Slave daemon, which receives commands from the Coordinator and orchestrates the
experimental campaign locally, through the library which manages/invokes the ap-
plication.

5.3.3 Configuration File

We employ a configuration file that allows the user to define an experimental cam-
paign by using a single file called expConf. The user defines the following parame-
ters:

Target Application: An absolute path to the binary file which will be executed
on the target system.

Target System: The Internet Protocol (IP) or Media Access Control (MAC) ad-
dresses of the target system(s).

Input File: Input of the application to be executed on the target system(s). XM2

supports only a single input file per application. If the application requires multiple
inputs, they need to be combined into one file by the user.

Operating Configuration: The voltage and frequency settings for the reliable
(Nominal) and unreliable (unRel) configuration of the target system. Applying ag-
gressive overclocking or undervolting settings increases the frequency of errors. No-
tably, the user can change simultaneously both the frequency and the supply voltage
in the unRel configuration.

Result Classification: XM2 comes with a default classifier, which characterizes
the outcome of each experiment as: (i) Exact: if the result is identical to that of a
nominal execution; (ii) SDC: if the result differs from that of a nominal execution;
(iii) Data Abort: if the CPU raised a data abort trap due to accessing a non existent
physical memory address; (iv) Illegal Instruction: if the CPU raised a trap because it
detected an non-existent opcode; (v) CPU Crash: if the execution time exceeds, by
far, the time of a nominal execution.

Nominal outputs for the same target may differ, for example in multi-threaded
applications which use floating point arithmetic. To be flexible, XM2 allows users
to provide their own classifiers that implement a customized comparison between
the golden results and the application output. For example, one can use a deviation
threshold to detect erroneous results.

Termination Criteria: The user may define a custom binary which is used by the
XM2 to determine when to terminate a campaign. The XM2 invokes the user defined
binary using as input the number of experiments classified in each category. The de-
fault termination checker terminates a campaign simply when reaching a predefined
number of experiments, which can be set by the user via the expConf file.

Nominal Experiments: The user defines the number of experiments to be per-
formed by XM2 in Nominal setting. These experiments are used to profile the execu-
tion time of the application and to obtain the error-free (golden) output files.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 93

void readInput(void *ptr, size_t sz,size_t
nmemb):

Receives nmemb * sz bytes from the input
file available at the Coordinator filesystem
and stores them to the memory region
pointed to by ptr.

void writeOutput(void *ptr,size_t
sz,size_t nmemb)

Sends nmemb * sz bytes from the memory
region pointed to by ptr to the
Coordinator.

void switchToRel()

Switch to Nominal state. The
implementation of the function is
architecture dependent. It is blocking – the
Slave daemon needs to acknowledge the
state switch to the Coordinator.

void switchToUnRel()
Switch to unRel state. Similar semantics
as switchToRel.

TABLE 5.2: API to the run-time library of XM2.

5.3.4 Run-time Library API

The run-time library that accompanies XM2 needs to be linked with the target ap-
plication. It offers an API that enables the application to control data exchange with
the Coordinator node, as well as hardware switching between the Nominal and unRel
states. Table 5.2 lists the primitives of the API.

5.3.5 Example

Listing 5.3 provides an example of the expConf configuration file. The file initially as-
signs a name to the target system and specifies it using its IP and the MAC address.
In this example there are two target systems (PC_A, PC_B). The specified Nominal
operating point is used by XM2 to compute error-free outputs (golden) as well as to
determine the normal execution time of the application for each target system. The
configuration file also includes a list of unRel configurations. A separate experimen-
tal campaign will be executed for each of those configurations.

The configuration file also provides the paths to the application binary and the
input file. The keyword Monitor indicates that these files reside in the monitoring
filesystem and need to be fetched over the network. In this example, the user also
specifies the Classifier binary, which will be used to classify the outcome of each
experiment/run. The user specifies the number of experiments (10) to be performed
by XM2 in the Nominal configuration to obtain the golden output file. Finally, the
user defines the maximum number (500) of experiments to be performed on each
unRel configurations.

Listing 5.4 outlines the modified source code of a mini-application implement-
ing a Sobel filter. Lines 4,5,7 and 8 contain function calls to the run-time library of
our tool. Finally, Listing 5.5 outlines a classifier which categorizes experiments as
Exact, Acceptable, SDC. Exact experiments are those that produce a bit-wise exact

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 94

1 {
2 " TargetSystem : {
3 " idName" : "PC_A"
4 " IP Address " : " 10 " ,
5 "MAC address " : "AA: BB :CC:DD: EE : FF " ,
6 " Nominal " : [1 . 2 , 1200] ,
7 " unRel " : [[1 . 2 , 1320] , [1 . 2 , 1330] , [1 . 0 , 1320]] }
8 " TargetSystem_ : {
9 " idName" : "PC_B"

10 }
11 " Appl icat ion " : {
12 " Path " : [" pathToExecutable " , " Monitor "]
13 " I n p u t F i l e s " : [[" pathToInput " , 262144 , " Monitor "]]
14 " C l a s s i f i e r " : "/ path/to/psnr . exe "
15 " Termination " : { " d e f a u l t " : { 500 } } ,
16 " NominalExp " : { 10 } }
17 }

LISTING 5.3: An example expConf file using the json format.

1 #include <FIOrchestrator.h>
2 void sobel(unsigned char* in, unsigned char *out);
3 int main(int argc, char* argv[]){
4 readInput(in, sizeof(char), SIZE);
5 switchToUnRel();
6 sobel(in,out);
7 switchToRel();
8 writeOutput(out, sizeof(char), SIZE);
9 return 0

10 }

LISTING 5.4: Source code of the application extended with calls to the run-time API.

1 #include <FIOrchestrator.h>
2 float PSNR(unsigned char* gld, unsigned char *tst);
3 int main(int argc, char* argv[]){
4 float res = PSNR(gold,test);
5 if (isinf(res) & 1)
6 printf("Exact inf\n");
7 else if (res > 50.0)
8 printf("Acceptable \%f\n",res);
9 else

10 printf("SDC \%f\n",res);
11 return 0
12 }

LISTING 5.5: Source code of a custom classifier.

copy of the result of the error-free execution. Acceptable experiments produce out-
puts with a PSNR higher than 50.0 dB in comparison with a golden output. All other
experiments are categorized as SDC. Note that the classifier is not invoked if the
application terminates abruptly due to a runtime error or a crash. In this case, the
framework automatically classifies the experiment as CPU Crash, Illegal Instruction,
or Data Abort.

5.3.6 Flow of a Fault Injection Campaign

Figure 5.10 illustrates a simplified time-line of a fault injection campaign controlled
by our tool. Initially, the user provides the expConf file to the Master Daemon. The

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 95

Master Slave / User applicationCoordinator

Experimental campaign

False
True

Create database

Spawn
Coordinators

Continue application
in UnRel

Export result and
database to user

Connect to Slave / send
binaries / send

Nominal configuration
Produce golden

output

Initiate experiment /
send unRel

configuration

Inform state
switching to unRel

Inform application
switch to Rel

Track state and
 wait for application

to end

Terminate?

Classify and store
results to database

Inform application
ended

Acknowledge

Send input data Start application

True

FIGURE 5.10: Flow chart for the main steps performed by XM2 for the basic case of an
experimental campaign that does not result to crashes. The dark box is the only state

where the target system is configured at an unreliable state.

daemon creates a new database and spawns a Coordinator thread for each of the tar-
get systems. The Coordinator connects to the respective Slave daemon on the target
system using the TCP protocol, and transfers the Nominal configuration, the applica-
tion binary and inputs to the target system. The inputs will be used when the target
application uses the readInput function.

The Slave daemon performs the Nominal number of experiments as specified in
the expConf (without transitioning to the unRel state). The purpose of this step is to
produce error-free golden outputs as well as to profile the time required to execute
the application under nominal conditions. The golden file is used by the classifier
for comparison against the outputs of unreliably executed code.

At this point the actual experimental campaigns start. The Coordinator sends the
configuration parameters of the unRel state to the Slave. These parameters will be

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 96

used for all subsequent experiments. The Slave then spawns the application. Any
requests to read input data by the application using the XM2 API calls are handled
transparently. Before a Slave transitions to the unRel state it notifies the Coordinator
first. At this point the Coordinator starts a watchdog which waits for the application
to terminate. The maximum waiting time is equal to the profiled time when the code
was executed reliably, increased by 10%. In case the unRel frequency is lower than
the frequency of the Nominal point, we proportionally increase the waiting time to
match the maximum expected performance degradation due to frequency scaling. If
the Coordinator does not receive any information about the application status within
this period, the Slave is reset and the corresponding experiment is flagged as CPU
Crash.

If the application terminates abruptly, e.g example due to executing an Illegal
Instruction, the Slave informs the Coordinator and the experiment is classified accord-
ingly. In case the application terminates normally, the Slave sends all output data, as
defined by the writeOutput call, to the Coordinator.

Afterwards, the Coordinator invokes the classifier binary to characterize the ex-
periment. If the experiment is not flagged as Exact, the Coordinator resets the Slave
so that it is re-initialized to a valid state. The Coordinator then evaluates the termi-
nation criterion and either terminates the campaign or proceeds to deploy the next
experiment. When a campaign terminates, XM2 prints the statistics for the differ-
ent experiment classifications, as well as the path to the output database. In the
database, we store the classification of each experiment and a path to the raw output
data of executions. If there are more unRel configurations specified in the expConf, a
new experimental campaign starts, otherwise the tool terminates.

5.3.7 Evaluation

To evaluate our framework we use three Raspberry PI 3b boards (Table 5.3) as target
systems. We set Nominal configuration to f = 600MHz, Vdd = 0.8V . Even though
XM2 supports both undervolting and overclocking, for the evaluation we perform
overclocking. We overclock the system by providing a list of unRel states starting
from V = 1.2V, fu = 1370MHz with intermediate steps increasing fu by 10MHz, up
to the highest frequency state (V = 1.2V, fu = 1450MHz). The termination criterion
for the experimental campaign is a number of experiments equal to 2000, which
provides a confidence level of 98% and an error margin of 2.5%. For the evaluation,
we use the default classifier.

We use Circle, a C++ library supporting execution on bare metal, to evaluate
the error resiliency of software under unreliable execution without any interference
from the OS software stack, e.g. scheduler of Linux kernel or background OS ser-
vices. Circle provides several C++ classes which selectively enable or use different
hardware features (MMU, Interrupt Support etc.).

The target systems are reset whenever necessary using a small circuit per system,
which employs a transistor operating as a switch to connect the respective reset pins

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 97

System On Chip Broadcom BCM2837
Instruction Set ARMV-8

CPU

4x ARM Cortex-A53, 1.2Ghz
In Order

Dual Instruction Decode and execute
6KB Conditional Predictor

256 Entry Indirect Predictor
NEON advanced SIMD

8 - 64K I-Cache With Parity
8 - 64K D-Cache With Ecc

RAM 1 GB LPDDR2 (900MHz)

TABLE 5.3: Raspberry 3B Specifications

Execution LOCs

0%

2%

4%

6%

8%

10%

O
v

er
h

ea
d

 (
%

)

DCT Blackscholes Inversek2j

FIGURE 5.11: Overhead of XM2 in terms of execution time and additional lines of code
(LOC) when compared to a native execution and the original version of the code respec-

tively.

on the Raspberry PI 3b. The circuits are controlled by the monitoring system through
a serial interface.

We evaluate the programmers’ effort to use our tools in terms of extra lines of
code (LOCs) that are introduced to the source code of an application. Moreover, we
quantify the communication overhead introduced by XM2 between the Coordinator
and the target system. We use three benchmarks: Blackscholes [9], Inversek2j, DCT.
Blackscholes implements a mathematical model for a market of derivatives, Inversek2j
calculates the angles of a 2-joint arm using the kinematic equation and DCT is a
module of the JPEG compression and decompression algorithm.

Figure 5.11-left presents the execution time overhead (%) due to the commu-
nication protocol and data exchange between the Coordinator and the target. XM2

adds, in the worst case (DCT), an extra 5% of execution time compared with a na-
tive execution on the target platform under the same configuration. The execution
time to compute DCT is not negligible, compared to the time needed to transfer the
data. Consequently, this benchmark results to the highest overhead. The remaining
benchmarks are mainly compute-bound. On average XM2 introduces an execution
time overhead of 2.5%.

Figure 5.11-right illustrates programmers’ effort to prepare an application for our
framework. In Blackscholes, the developer needs to unpack and pack the input/out-
put data prior to transferring them, thus the volume of the new code is equal to 8.7%

of the existing one. The remaining two benchmarks are small in terms of LOCs, so

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 98

even small code additions produce a large overhead (%). In both cases we sim-
ply replace the fread, fwrite functions with readInput, writeOutput of the XM2 API.
Moreover, we add two extra function calls to switch between states. On average,
preparing applications for XM2 requires 5.6% extra LOCs.

1
4
2
0

1
4
3
0

1
4
4
0

1
4

5
0

1
4
2
0

1
4
3
0

1
4
4
0

1
4
5
0

1
4
2
0

1
4
3
0

1
4
4
0

1
4
5
0

Blackscholes Inversek2j DCT

0%

20%

40%

60%

80%

100%

C
la

ss
if

ic
a
ti

o
n

 o
f

ex
p

er
im

en
ts

 (
%

)

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

Read Write Copy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
la

ss
ifi

ca
tio

n
of

 e
xp

er
im

en
ts

 (%
)

Exact SDC Data Abort Illegal Instruction CPU Crash

FIGURE 5.12: Experimental results for different applications and different overclocked
configurations.

Figure 5.12 shows the experimental campaign results evaluating the reliability
of the system under different overclocked configurations. Blackscholes uses double
precision arithmetic. Due to the representation of such numbers, faults are unlikely
to be masked. Therefore, this benchmark suffers the highest percentage of SDCs (up
to 26%) when executed on fu = 1440MHz. Inversek2j uses primarily trigonometric
functions, which heavily rely on branches. The experiments indicate that faults cor-
rupt the computation of the target address, resulting in decoding memory that does
not contain instructions. Consequently, 74% of the experiments result to Illegal In-
structions when executed at fu = 1440MHz. Finally, 36% of DCT experiments result
in CPU Crash when executed at the same frequency. This benchmark employs six
nested loops to iterate through the image pixels and apply the coefficient transfor-
mation. Corruptions in the control flow of these loops often results to infinite loops.
Therefore, execution is terminated by the watchdog and experiments are classified
as CPU crashes.

5.4 Arm Cortex A53 Vulnerability Analysis

In this section we demonstrate the versatility of XM2 using three case studies. The
first two studies focus on recording and analyzing the behavior of small kernel pro-
grams running on the overclocked Raspberry PI platform, whereas the third study
focuses to study the behavior of compiler and source code tranformations on the
maxfmargin of the applications.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 99

add

Sub

m
ul

div

vadd.f32

vsub.f32

vm
ul.f32

vdiv.f32

and

or xor

Integer Floating Point Logic

0%

20%

40%

60%

80%

100%

C
la

ss
ifi

ca
tio

n
of

 ex
pe

ri
m

en
ts

 (%
)

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

Read Write Copy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
la

ss
ifi

ca
tio

n
of

 e
xp

er
im

en
ts

 (%
)

Exact SDC Data Abort Illegal Instruction CPU Crash

FIGURE 5.13: Experimental results of the instruction error resiliency characterization
when Vu = 1.2V, fu = 1450MHz. The X-axis shows the different microkernels and the
Y-axis presents the classification of the experiments according to the effects of overclock-

ing on execution.

5.4.1 Instruction Level Error Resiliency Analysis

Initially, we employ our tool to assess the resiliency of ARM instruction when exe-
cuted individually in the overclocked Cortex A53 pipeline causing minimal disrup-
tive events such as cache misses and branch mispredictions (Listing 5.6). We selected
a subset of instructions that perform integer (add, sub, mul, div,), floating (vadd.f32,
vsub.f32, vmul.f32, vdiv.f32), and boolean (or, and, xor) arithmetic. The microkernels
use only four registers, two as input, one for temporary storage, and one to accu-
mulate the final result which is propagated to the Coordinator after the end of the
execution.

In our case, we evaluate the error resiliency of instructions using one input file
which sets the register to the value of 1. However the user could define multiple
input files and perform multiple experimental campaigns. Finally, the Nominal and
unRel configurations are the same as in the previous section.

We observe that microkernels which execute multiple times the same instruction,
regardless of the instruction, produce exact results even when we increase the CPU
frequency by 20% (from fu = 1200MHz to fu = 1440MHz). When we overclock
by an additional 10MHz the reliability of most kernels significantly drops as shown
in Figure 5.13. This abrupt fall in reliability confirms previous findings that there
are (V, f) settings called Points of First Failure (PoFF) at which circuits start to exhibit
massive errors.

1 for (){
2 instruction r0, r1, r2
3 instruction r3, r3, r0
4 ...
5 }

LISTING 5.6: Template of microkernels used to stress the same execution path of the
Pipeline.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 100

Srt

R
nd

Srt

R
nd

Srt

R
nd

Srt

R
nd

1420 1430 1440 1450

0%

20%

40%

60%

80%

100%

C
la

ss
ifi

ca
tio

n
of

 ex
pe

ri
m

en
ts

 (%
)

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

Read Write Copy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
la

ss
ifi

ca
tio

n
of

 e
xp

er
im

en
ts

 (%
)

Exact SDC Data Abort Illegal Instruction CPU Crash

FIGURE 5.14: Experimental results stressing the branch predictor for the two microker-
nels for different overclocked frequencies (fu).

R
ow

C
ol

Stride

L2Stride

R
ow

C
ol

Stride

L2Stride

R
ow

C
ol

Stride

L2Stride

Read Write Copy

0%

20%

40%

60%

80%

100%

C
la

ss
ifi

ca
tio

n
of

 ex
pe

ri
m

en
ts

 (%
)

R
ow

C
ol

Stride

L2Stride

R
ow

C
ol

Stride

L2Stride

R
ow

C
ol

Stride

L2Stride

Read Write Copy

0%

20%

40%

60%

80%

100%

C
la

ss
ifi

ca
tio

n
of

 ex
pe

ri
m

en
ts

 (%
)

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

R
ow

C
ol

Stride

L
2Stride

Read Write Copy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
la

ss
ifi

ca
tio

n
of

 e
xp

er
im

en
ts

 (%
)

Exact SDC Data Abort Illegal Instruction CPU Crash

FIGURE 5.15: Experimental results of the Cache microkernels of Table 5.4 for unRel =
(1.2V, 1430MHz), when the hardware prefetcher is enabled (left) and disabled (right).
The Y axis presents the classification of the experiments according to the effects of over-

clocked execution.

5.4.2 Error Resiliency of Source Code and Algorithm Transformations

In this case study, we demonstrate how XM2 is used to identify source code trans-
formations with a large effect on application resiliency. We focus on transformation
which affect branch prediction mechanisms and the cache hierarchy.

To evaluate the vulnerability of the branch prediction mechanism we employ two
simple kernels. The Sorted kernel traverses an array that contains sorted values and
compares each value with the mean of the array. Depending on the outcome of
each comparison a variable is increased or decreased. The branch predictor is able
to predict correctly the behavior of the branches in the Sorted version. The second
kernel, called Random, traverses the same array, however, as the name implies, the
values are stored randomly within the array resulting to a very high misprediction
rate (and subsequent pipeline flushes).

Figure 5.14 shows that the Random microkernel has higher percentages of SDCs
across all frequencies. The two kernels have similar behavior only for extreme over-
clocking fh = 1450MHz, leading to an increased percentage of Illegal instructions.
We believe that this is due to the high branch misprediction rate which set the Pro-
gram Counter to memory addresses without valid code or to a memory wrong seg-
ment.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 101

For the cache we create kernels which perform read, write or memcopy using dif-
ferent memory access patterns (Table 5.4). Figure 5.15 presents results of the cache
evaluation. Note that the write operation shows a higher degree of robustness in
comparison with the rest of the operations. As the CPU automatically enables the
read allocate mode during the execution of write microkernels, the cache is barely
utilized. The read operations are slightly more robust than the memcopy operations.
Actually, the memcopy operations usually result in CPU Crash, whereas the read oper-
ations result in Illegal instructions. When comparing the different access patterns, the
more complex the pattern, the higher the number of experiments which terminate
abnormally. In the case of the L2 Stride, all experiments result in CPU Crash.

We observe that the Strided patterns have high CPU Crash probabilities. We as-
sume that the prefetcher may have a negative impact on reliability. To validate our
assumption we programmatically disable the prefetcher and recompile the cache mi-
crokernels. Executing these binaries is trivial since the expConf files are the same and
only the attribute describing the binary paths should change. The results of the fault
injection campaign without the prefetcher are presented on the right side of Fig-
ure 5.15. In general, deactivating the prefetecher increases slightly the application
resiliency, however in the strided patterns the results remain the same.

5.4.3 Compiler Optimizations VS Frequency Margins

We use the gcc 4.9.3 compiler. While modern compilers provide users with spe-
cific options to optimize their code, individual optimizations are usually grouped in
higher-level options, such as O0, O1, O2, O3, Os. Our study only considers these
options.

Row

This pattern accesses bytes in the same order as they are
stored in main memory. This is the optimal way to access
the memory resulting in lowest L1,L2 cache and TLB miss
rate.

Col
This pattern accesses the first byte of each memory page,
leading to the worst performance of the memory access.
Each memory access causes a L1 and L2 cache miss.

Stride

This pattern iterates through the 2D array using a stride
equal to the cache line (64 bytes). We disable the hardware
prefetcher, so that every memory access leads to a L1 and
L2 cache miss. The prefetcher would have been able to
detect this strided pattern.

L2Stride

This pattern is similar to Stride. We disable the hardware
prefetcher, so that every memory access leads to a L1 and
an L2 cache hit. Similarly to Stride, the prefetcher would
be have been able to detect this strided memory access
pattern.

TABLE 5.4: Different memory access patterns used by the source code transformation
case study.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 102

0%

20%

40%

60%

80%

100%

O1 O2 O3 Os O1 O2 O3 Os O1 O2 O3 Os O1 O2 O3 Os O1 O2 O3 Os O1 O2 O3 Os O1 O2 O3 Os O1 O2 O3 Os

blckschls dct fldnmt invk2j lbqntm sjeng sobel swptns

Normalized Time Normalized Energy

FIGURE 5.16: Execution time and energy consumption of the application benchmarks
for the different compiler optimization levels, relative to O0.

We use several applications/kernels taken from various benchmark suites [40,
9, 146]. In this study, we analyze Sobel, DCT, Inversek2j, Blackscholes, Swaptions, Flu-
idanimate, Sjeng and Libquantum. Swaptions uses the Heath-Jarow-Morton framework
to price a portofolio of swaptions. Sjeng is a chess-player application that finds the
next move via a combination of alpha-beta and priority proof-number tree searches.
Finally, Libquantum simulates a quantum computer.

Compiler optimizations aim at improving performance, we first analyze the ef-
fects of the different optimization levels (O0, O1, O2, O3, Os) on the execution time
and energy consumption of our benchmark applications. Increasing the optimiza-
tion level augments the previous set of optimizations with additional ones. In the
case of Os, the compiler uses most, but not all, of the O2 optimizations, together with
some extra optimizations that decrease the size of the executable.

Figure 5.16 shows the normalized energy consumption and execution time of the
different compiler optimization levels with respect to O0. As expected, the higher
the compiler effort the greater the performance and the energy gain. DCT presents
the higher speedup when using the O3 optimizations. On the other hand, Inversek2j
shows almost no speedup when compiled with increasing optimization levels. This
is because it extensively uses trigonometric functions that are included in an already
optimized version of the standard C library. According to our measurements, the
different optimization levels do not impact CPU power consumption in a significant
way, except of the case of Os level, which in some applications (Blackscholes, DCT,
Inversek2j) increases the power consumption. This is due to the instruction selection
performed on this optimization level as well as that alingment and function inlining
is not performed. In any case typically the energy gains when using higher opti-
mization levels are mainly due to the reduced execution time.

Figure 5.17 illustrates the experimentally identified maxfmargin for the differ-
ent optimizations levels, on the four raspberry PIs; The exploitable extra frequency
ranges from 9% to 19% of the nominal CPU frequency (1200MHz). The highest
frequency at which all applications can be executed reliably, is equal to 1309, 1356,
1346, 1356 Mhz for the four raspberry PIs, corresponding to a CPU part-specific static

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 103

rP
I

1

0

50

100

150

200

dct blckschls fldnmt invk2j lbqntm sjeng sobel swptns

M
a

x
Fr

e
q

u
e

n
cy

 M
a

rg
in

 (
M

h
z)

rP
I

2

0

50

100

150

200

250

dct blckschls fldnmt invk2j lbqntm sjeng sobel swptns

M
a

x
Fr

e
q

u
e

n
cy

 M
a

rg
in

 (
M

h
z)

rP
I

3

0

50

100

150

200

250

dct blckschls fldnmt invk2j lbqntm sjeng sobel swptns

M
a

x
Fr

e
q

u
e

n
cy

 M
a

rg
in

 (
M

h
z)

rP
I

4

0

50

100

150

200

250

dct blckschls fldnmt invk2j lbqntm sjeng sobel swptns

M
a

x
Fr

e
q

u
e

n
cy

 M
a

rg
in

 (
M

h
z)

O0 O1 O2 O3 Os min max

FIGURE 5.17: Evaluation of maxfmargin settings for 8 benchmarks (1000 runs each)
in each raspberry PI; the higher the bar, the wider the exploitable frequency margin.
The horizontal dotted lines show the maximum (red) and minimum (black) values of

maxfmargin.

frequency margin of 109, 156, 146, 156Mhz, respectively. The workload-specific dy-
namic frequency margin for the four raspberry PIs is equal to 75, 69, 69, 69Mhz re-
spectively

Different optimization levels impact the dynamic frequency margin and can in-
crease or decreasemaxfmargin by up to 32Mhz for a given application. Interestingly,
O0 has a wider margin than higher optimization levels for the same application, in
62.5% of the configurations (combinations of different CPU parts and different ap-
plications). Despite the increased maxfmargin of O0, the decrease in the execution
time due to the extra frequency margin is relatively small, resulting in lower energy
gains compared to higher optimization levels. Thus, using higher optimization lev-
els is more beneficial not only in terms of performance but also in terms of energy

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 104

0%

20%

40%

60%

80%

100%

120%

140%

160%

L1 MissL2 Miss L1 Per
Inst

L2 Per
Inst

CPI Time Energy

N
o

rm
a

li
z
e

d
 w

.r
.t

 o
ri

g
in

a
l

E
x

e
c

u
ti

o
n

Trnsp Tile

0

50

100

150

200

250

O
ri

g
in

a
l

T
rn

s
p

T
il
e

O
ri

g
in

a
l

T
rn

s
p

T
il
e

O
ri

g
in

a
l

T
rn

s
p

T
il
e

O
ri

g
in

a
l

T
rn

s
p

T
il
e

PI1 PI2 PI3 PI4

M
a

x
 F

re
q

u
e

n
c

y
 (

M
h

z
)

(a) (b)

FIGURE 5.18: (a) Performance metrics and energy concumption of the transposed and
tiled MM versions, with respect to the original implementation. (b) maxfmargin for all

raspberry PIs and all MM implementations.

gains, even though these have smaller frequency margins than O0. When comparing
the remaining optimization levels (O1,O2,O3,Os) there is no dominant optimization
level in terms of frequency margins. On the other hand, in 80% of the total cases O3

is the most energy efficient optimization level.

Source Code Transformations

Developers very often try to reduce the execution time of their applications by em-
ploying more efficient algorithms, optimizing memory accesses, reducing the num-
ber of instructions, or using special instructions for parallel processing and vector-
ization. In this section, we optimize a Matrix Multiplication (MM) kernel by using
more efficient memory access patterns as well as Single Instructions Multiple Data
(SIMD) instructions. In both cases we observe the effects of the optimizations on the
energy efficiency, the execution time and the maxfmargin of the different benchmark
versions.

Memory Access Pattern Optimizations

The matrix multiplication (MM) kernel performs multiplication between two float-
ing point matrices (C = A ∗ B). We consider three different implementations/ver-
sions. The so-called original version accesses the first matrix (A) in a row-wise fash-
ion and the second matrix (B) in a column wise fashion. The second implementa-
tion, performs a multiplication with the transposedBT matrix, which is allocated on
a new 2D-array. Finally, the third version uses a tiled version of the matrix multipli-
cation. The size of the tile is equal to the cache line size (64 bytes).

Figure 5.18a presents the performance metrics and energy consumption of the
transposed and tiled MM versions, normalized to the original implementation. As
expected, both optimized versions have significantly lower L1-cache misses. They
also demonstrate a significantly decreased CPI, which directly translates to perfor-
mance and energy gains.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 105

0%

50%

100%

150%

200%

250%

300%

350%

400%

L
1
 M

is
s

L
2
 M

is
s

L
1
 P

e
r

In
s
t

L
2
 P

e
r

In
s
t

C
P

I

T
im

e

E
n

e
rg

y

L
1
 M

is
s

L
2
 M

is
s

L
1
 P

e
r

In
s
t

L
2

 P
e

r
In

s
t

C
P

I

T
im

e

E
n

e
rg

y

L
1
 M

is
s

L
2
 M

is
s

L
1

 P
e

r
In

s
t

L
2

 P
e

r
In

s
t

C
P

I

T
im

e

E
n

e
rg

y

Blck Sbl MM

N
o

rm
a

li
z
e

d
 w

.r
.t

 o
ri

g
in

a
l

e
x

e
c

u
ti

o
n

0

50

100

150

200

250

N
o

rm
a
l

S
IM

D

N
o

rm
a
l

S
IM

D

N
o

rm
a

l

S
IM

D

N
o

rm
a
l

S
IM

D

N
o

rm
a

l

S
IM

D

N
o

rm
a
l

S
IM

D

N
o

rm
a
l

S
IM

D

N
o

rm
a

l

S
IM

D

N
o

rm
a
l

S
IM

D

N
o

rm
a

l

S
IM

D

N
o

rm
a
l

S
IM

D

N
o

rm
a
l

S
IM

D

Blck Sbl MM Blck Sbl MM Blck Sbl MM Blck Sbl MM

PI1 PI2 PI3 PI4

M
a

x
 F

re
q

u
e

n
c

y
 M

a
rg

in
 (

M
h

z
)

(a) (b)

FIGURE 5.19: (a) Normalized performance metrics and energy consumption of the
three benchmarks, with respect to the implementations without SIMD instructions. (b)

maxfmargin for all raspberry PIs and benchmarks.

Figure 5.18b presents themaxfmargin of the different MM versions. In contrast to
the compiler optimization analysis, where the non-optimized versions exhibit larger
maxfmargin, the memory access optimizations present mixed results. On the one
hand, in all raspberry PIs, the wider maxfmargin is found for the tiled MM version,
which in one of the raspberry PIs (PI1) yields an increase on the maximum frequency
of up to 50Mhz compared to the original version. On the other hand, in three out of
four PIs, the transposed MM version has lower frequency margins than the original.
Also, on average the extra frequency margins results to an additional performance
gain of 2.5%. We also observe margin variations across different parts, this difference
can reach up to 63Mhz when comparing the original version of PI1 with the same
version on PI2.

SIMD Optimizations

We use SIMD instructions to optimize the execution time and energy efficiency of
Blackscholes, Sobel and tiled MM. Figure 5.19a presents the performance metrics and
energy consumption, relative to the normal versions of the benchmarks without
SIMD instructions. Figure 5.19b shows the frequency margins of the benchmarks
for the four raspberry PIs.

As can be seen, when using SIMD instructions the execution time of Sobel and
MM is decreased to 36% and 46% of the normal versions, respectively. This speedup
is mirrored to energy gains since the power consumption does not increase signif-
icantly when using SIMD instructions. Blackscholes does not show any reduced ex-
ecution time because many math functions used by that benchmark do not have a
SIMD equivalent function. In PI1 the SIMD version of the blackscholes benchmark
greatly increase the frequency margin by 44Mhz. This increase in frequecny pro-
vides an extra performance gain of 3.5% on top of the performance gain obtained by
the SIMD instructions. In general, the use of SIMD instructions on average increases
the maximum frequency by 1%.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 5. Experimental Frameworks for Reliability Analysis 106

GemFI XM2

Fault
Injection
Accuracy

Depends on fault model Realistic

Fault
Injection
Control

High None

Deter-
menism

True None

Execution
Speed

Simulation Speed Native

TABLE 5.5: Brief Comparison between GemFI and XM2

5.5 GemFI versus XM2

Table 5.5 present a high level comparison between GemFI and XM2. The fault injec-
tion results of XM2 are always realistic and accurate as they represent the manifesta-
tion timing faults as errors on the software level, on the other hand GemFI, does not
provide a fault model, this is to be performed from the user. The higher the accuracy
of the fault model used the higher the accuracy of the fault injection of GemFI.

GemFI as it is a simulation based fault injection tool offers a high control over the
fault injection procedure. For example, the user knows exactly the number and the
characteristics of the faults. Using this information the user can replicate as many
times as he needs the exact same fault injection scenario. On the other hand, XM2

does not provide such features. The only control the user has over the fault injection
procedure is to select the operating point of an experiment. The user is not aware
whether a fault was manifested in a hardware component and masked by the ap-
plication resiliency. Moreover, a specific corruption on the output of an application
cannot be replicated. Finally, XM2 is way faster than GemFI as fault injection takes
place in native execution speed. However, GemFI offers mechanisms which allow
silmutaneous fault injection in multiple computer nodes, which increase the fault
injection procedure significantly.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

107

Chapter 6

Related work

This chapter discusses related work and the differentiation between our research
and previous efforts. As approximate and unreliable computing are very active re-
search subjects , we organize literature discussion across three different axis: ap-
proximate computing, unreliable computing, Power & energy-aware optimization,
voltage margin characterization and fault injection tools.

6.1 Approximate computing

The authors in [89] present a thorough survey of the approximation techniques used
in computing systems. They discuss the opportunities and obstacles in use of ap-
proximate computing and present techniques for finding approximable program
portions and monitoring output quality, along with the language support for ex-
pressing approximable variables/operations.

Quickstep [87], is a tool that approximately parallelizes sequential programs.
The parallelized programs are subjected to statistical accuracy tests for correctness.
Quickstep tolerates races that occur after removing synchronization operations that
would otherwise be necessary to preserve the semantics of the sequential program.
Quickstep thus exposes additional parallelization and optimization opportunities
via approximating the data and control dependencies in a program. However, Quick-
Step does not enable algorithmic and application-specific approximation and does
not include energy-aware optimizations in the runtime system.

Variability-aware OpenMP [104] and variation tolerant OpenMP [105], are sets
of OpenMP extensions that enable a programmer to specify blocks of code that can
be computed approximately. The programmer may also specify error tolerance in
terms of the number of most significant bits in a variable which are guaranteed to
be correct. We follow a different scheme that allows approximate –in our context,
not significant– tasks to be selectively dropped from execution and dynamic error
checks to detect and recover from errors via selective task restarting. Variability-
aware OpenMP applies approximation only to specific FPU operations, which ex-
ecute on specialized FPUs with configurable accuracy. In contrast, we explore se-
lective approximation at the granularity of tasks, using the significance abstraction.
Our programming and execution model thus provides additional flexibility to drop

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 108

or approximate code, while preserving output quality. Furthermore, our framework
for significance aware approximate computing does not require specialized hard-
ware support and runs on commodity systems.

Several frameworks for approximate computing discard parts of code at runtime,
while asserting that the quality of the result complies with quality criteria provided
by the programmer. Green [6] is an API for loop-level and function approximation.
Loops are approximated with a reduction of the loop trip count. Functions are ap-
proximated with multi-versioning. The API includes calibration functions that build
application-specific QoS models for the outputs of the approximated blocks of code,
as well as re-calibration functions for correcting unacceptable errors that may incur
due to approximation. Sloan et al. [130] provide guidelines for manual control of
approximate computation and error checking in software. These frameworks del-
egate the control of approximate code execution to the programmer. Emeuro [85]
efficiently breaks down an application into subroutines of varying granularity and
automatically generates approximate alternatives for said subroutines through the
use of Artificial Neural Networks (ANNs). At execution time, an intelligent run-
time system explores the high-dimension subroutine space and generates a graph of
computations which comprises nodes that are either accurate versions of the subrou-
tines approximate ones through the use of ANNs. Additionally, Emeuro employs a
denoising autoencoder-based heuristic to detect ANNs which are incapable of pro-
ducing outputs of acceptable quality for a given input. To this end, each ANN is
coupled with a denoising autoencoder (DAE) whose aim is to reconstruct the input
of the ANN. If the difference, between the actual input of the ANN and the one
reconstructed by its DAE, is larger than some user specified constraint the ANN is
considered to be a sub-optimal choice. In this scenario, a different subroutine graph
is investigated. We explore an alternative approach where the programmer uses a
higher level of abstraction for approximation, namely computational significance,
while the system software translates this abstraction into energy- and performance-
efficient approximate execution.

Loop perforation [125] is a compiler technique that classifies loop iterations into
critical and non-critical ones. The latter can be dropped, as long as the results of
the loop are acceptable from a quality standpoint. Input sampling and code ver-
sioning [150] also use the compiler to selectively discard inputs to functions and
substitute accurate function implementations with approximate ones. Similarly to
loop perforation and code versioning, our framework benefits from task dropping
and the execution of approximate versions of tasks. However, we follow a different
approach whereby these optimizations are driven from user input on the relative
significance of code blocks and are used selectively in the runtime system to meet
user-defined quality criteria energy savings and performance gain. While these ap-
proaches demonstrate aggressive performance optimization thanks to approxima-
tion, they do not consider parallelism in execution. Furthermore, these techniques

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 109

operate at a granularity different than parallel tasks or specific runtime energy opti-
mization opportunities which are exposed through approximation.

Several software and hardware schemes for approximate computing follow a
domain-specific approach. ApproxIt [149] is a framework for approximate iterative
methods, based on a lightweight quality control mechanism. Unlike our task-based
approach, ApproxIt uses coarse-grain approximation at a minimum granularity of
one solver iteration.

Other tools automate the generation and execution of approximate computa-
tions. SAGE [120] is a compiler and runtime environment for automatic genera-
tion of approximate kernels in machine learning and image processing applications.
Paraprox [119] implements transparent approximation for data-parallel programs
by recognizing common algorithmic kernels and then replacing them with approxi-
mate equivalents. ASAC [114] provides sensitivity analysis for automatically gener-
ated code annotations that quantify significance. Contrary to our work on automatic
significance analysis, ASAC systematically perturbates the variables of a program
and observers the results. It then, applies a hypothesis tester to check against a
correct output and subsequently score each variable to rank its contribution to the
output of the program. In our work, we rely on interval analysis in conjunction
with automatic algorithmic differentiation to qualitatively estimate the contribution
of different parts of a code to the application output quality.

Hardware support for approximate computation has taken the form of programmable
vector processors [142], neural networks that approximate the results of code re-
gions in hardware [29], and low-voltage probabilistic storage [117]. These frame-
works assume non-trivial, architecture-specific support from the system software
stack, whereas our approximate computing work depends only on compiler and
runtime support for task-parallel execution, which is already widely available on
commodity multi-core systems.

6.2 Fault Tolerant computing

Gschwandtner et al. [35] use a similar iterative approach to execute error-tolerant
solvers on processors that operate with near-threshold voltage (NTC) and reduce en-
ergy consumption by replacing cores operating at nominal voltage with NTC cores.
Schmoll et al. [123] present algorithmic and static analysis techniques to detect vari-
ables that must be computed reliably and variables that can be computed approxi-
mately in an H.264 video decoder. Although we follow a domain-agnostic approach
in our framework, we provide sufficient abstractions for implementing the afore-
mentioned application-specific approximation methods.

Topaz [1] is a task-based framework which executes computations unreliably.
An online outlier detection mechanism detects and then re-computes unacceptable
task results reliably. Chisel [88] selects approximate kernel operations to minimize
an application’s energy consumption while satisfying its accuracy specification.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 110

Rinard et al. [112], in one of the chronologically earlier efforts on task-based un-
reliable computing, propose a software mechanism that allows the programmer to
identify task blocks and then creates a profile-driven probabilistic fault model for
each task. This is accomplished by injecting faults at task execution and observing
the resulting output distortion and output failure rates. Task Level Vulnerability
(TLV [105]) captures dynamic circuit-level variability for each OpenMP task run-
ning in a specific processing core TLV meta-data are gathered during execution by
circuit sensors and error detection units to provide characterization at the context of
an OpenMP task. Based on TLV meta-data, the OpenMP runtime apportions tasks
to cores aiming at minimizing the number of instructions that incur errors. TLV
does not consider error recovery and user-specified approximate execution paths.
Although, similar to our approach, this work does not consider error recovery and
user-specified approximate execution paths.

Rehman et al. [109] present a framework for reliable code generation and execu-
tion using reliability driven compilation. A compiler generates multiple, function-
ally equivalent, versions of a given function which differ in terms of vulnerability
and execution time. Upon profiling the versions, the runtime system selects one
that both increases the reliability of the system and meets the application’s real-time
constraints. Their work enforces functional correctness but does not exploit the al-
gorithmic characteristic of significance. [118] introduces a system that selects a reli-
ability robustness mechanism (Triple or Double Modular Redundancy, DMR/TMR)
as well as the CPU operating voltage and frequency. Its goal is to minimize power
consumption while achieving the reliability and timing requirements of the system.
In our work, we do not seek functional correctness, but we offer a mechanism to ex-
ploit the algorithmic significance to allow errors to manifest only on non-significant
computations.

[110] introduces the instruction vulnerability index (IVI) for software reliability
estimation. Vulnerability indexes at the granularity of the function (FVI) and the
application (AVI) is computed based on IVI. Given a user specified tolerable perfor-
mance overhead constraint they perform compiler transformation to enhance code
reliability. In our work we do not take into account the instruction vulnerability. We
consider the algorithmic property of significance to steer application execution on
reliable and unreliable cores. Relax [70] is an architectural framework that lets pro-
grammers turn off recovery mechanism as well as annotate regions of code for which
hardware errors can occur. The hardware supports error detection and a C/C++
language-level recovery mechanism provides error recovery from hardware faults
at different levels of code granularity.

Hardware support for error-tolerant and approximate computing spans designs
to novel architectures. Razor [26] is a processor design which is based on dynamic
detection and correction of timing failures of the critical paths due to below-nominal
supply voltage. The key idea is to tune supply voltage by monitoring the error rate

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 111

during operation using shadow latches controlled by delayed clocks. The observa-
tion that the sequence of instructions in an application binary can have a significant
impact on timing error rate is studied in [41]. A number of simple, yet effective code
transformations that reduce error rate are introduced.

In [48] a hardware module monitors the processor pipeline, and checks for pos-
sible control flow violations (infinite loops). This module is used by the OS/compil-
er/application to detect errors and take corrective action. ERSA is a multi-core archi-
tecture where cores are either fully reliable or have relaxed reliability [73]. ERSA uses
an explicit and application-specific mapping of code to cores with different levels of
reliability. Our work follows a different approach, the programmer uses significance
to indicate code with relaxed correctness semantics and the framework implements
error detection and recovery, potentially approximating the task output.

EnerJ [121] proposes a programming model which explicitly declares data struc-
tures that may be subject to unreliable computation in return for increased perfor-
mance or fault tolerance. EnerJ allows operations to be computed in aggressively
voltage-scaled processors and data structures to be stored in DRAM with low re-
fresh rate and SRAM with low supply voltage. Exposing such computing to the pro-
grammer requires expanding the processor ISA with instructions that offer only an
expectation, rather than a guarantee that a certain operation will be performed cor-
rectly [27]. Contrary to our framework EnerJ specifies significance in the granularity
of data and does not consider task-parallel execution, whereas we use as vehicle the
granularity of a task. Furthermore, EnerJ does not explore the idea of error detection
and correction, whereas we provide a systematic approach to using Artificial Neural
Networks to automate the process of error detection.

There has also been a large amount of work which aims to solve the problem
of efficient error detection. Current state of the art approaches to online error de-
tection rely on duplicating the instructions of selected application parts which are
considered error-prone. Unsafe instructions are first identified via compiler-analysis
and/or profiling. Subsequently, a compiler pass hardens the application by du-
plicating the unsafe instructions and inserting checks [31, 81, 23, 71]. The checks
typically involve redundancy in the form of instruction duplication. When a check
detected an error it proceeds to restore an earlier checkpoint. IPAS [71] expects the
user to include a verification function that is used to check whether an injected fault
has propagated to the output of the code which is targeted for software-hardening
against soft-errors. This function is only used to train an Artificial Neural Network
to drives the selection of instructions prior to their duplication. Other works [39, 34,
56] rely on manually implemented Light-Weight Checks (LWCs) to detect errors at
the outputs of computations. [34] use manual LWCs to determine when an approx-
imate alternative to a function computes outputs which severely differs from the
exact implementation. [56] relies on manually implemented LWCs to detect errors
on the output of unreliably executed code. [39] falls back to instruction duplication
whenever light-weight error detectors result in low Detection Coverage.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 112

Two offline debugging mechanisms and three online monitoring mechanisms
for approximate programs are presented in [113]. Among the offline mechanisms,
the first one identifies correlation between QoR and each approximate operation by
tracking the execution and error frequencies of different code regions over multiple
program executions with varying QoR values. The second mechanism tracks which
approximate operations affect any approximate variable and memory location. The
online mechanisms complement the offline ones and they detect and compensate
for QoR loss while maintaining the energy gains of approximation. The first mech-
anism compares the QoR for precise and approximate variants of the program for
a random subset of executions. This mechanism is useful for programs where QoR
can be assessed by sampling a few outputs, but not for those that require bounding
the worst-case errors. The second mechanism uses programmer-supplied "verifica-
tion functions" that can check a result with much lower overhead than computing
the result. The third mechanism stores past inputs and outputs of the checked code
and estimates the output for current execution based on interpolation of the previ-
ous executions with similar inputs. They show that their offline mechanisms help
in effectively identifying the root of a quality issue instead of merely confirming the
existence of an issue and the online mechanisms help in controlling QoR while main-
taining high energy gains. Our method could also be applied to detect errors due to
approximation but we chose to evaluate our automatic error detectors to check for
errors at the output of code which executes under unreliable conditions.

[62] presents an output-quality monitoring and management technique which
can ensure meeting a given output quality. Based on the observation that simple
prediction approaches, e.g. linear estimation, moving average, and decision trees
can accurately predict approximation errors, they use a low-overhead error detec-
tion module which tracks predicted errors to find the elements which need correc-
tion. Using this information, the recovery module, which runs in parallel to the
detection module, re-executes the iterations that lead to high-errors. This becomes
possible since the approximable functions or codes are generally those that simply
read inputs and produce outputs without modifying any other state, such as map
and stencil patterns. Our approach differs in that we use an ANN to detect error
whereas [62] uses hardware accelerated ANNs to approximate code whose output
is subsequently error checked. Large errors on the approximated computations are
corrected by means of executing the accurate code using the CPU.

6.2.1 Power and Energy-Aware Optimization

Dynamic quality control of non-functional application properties including power
and energy has been explored in HeartBeats [43], a framework for user-directed ex-
ecution steering; PowerDial [44], an environment for adapting applications to ex-
ecute efficiently under power and load fluctuations; Metronome [128], an operat-
ing system substrate for dynamic performance and power management; and the

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 113

Angstrom processor [45], which provides hardware support for monitoring perfor-
mance, power, energy and temperature with user-controlled settings.

Dynamic power and energy optimization in the runtime system has been ex-
plored in several parallel programming models including OpenMP [21], message
passing and hybrid models [76, 79], new parallel programming languages that na-
tively support transparent adaptation to dynamic execution conditions such as [131]
as well as distributed programming frameworks [53].

Cohen in Energy types [18] used a type-based system for expressing phases of
computation which were then executed in different energy states, to optimize overall
energy-efficiency. However, this system did not consider approximation or dynamic
parallel execution as techniques for saving energy.

6.3 Voltage Margin Characterization and Prediction

Many research approaches have emerged in the last few years that relax conserva-
tive guardbands to improve energy efficiency. Prior work focusing on commercially
available chips include [95, 4, 5, 94, 74, 151].

In contrast to our work, all previous efforts in predicting voltage margins using
performance counters only report theoretical energy gains, without deploying their
model. They rely only on theoretical results which, if not validated in real hardware,
could result in unrealiable operation and even system crashes. Our FSM based gov-
ernor uses performance counter values to reduce the voltage margin of the system at
run time on real hardware for unseen workloads which consist of several different
applications executing concurrently.

In particular in [95] authors present an automated system-level analysis on
multi-core CPUs based on the ARMv8 64-bit architecture when pushed to operate in
scaled voltage conditions. Due to the manifestation of SDCs before system crashes,
the authors propose a severity function that can predict safe, SDC-free undervolt
levels for each core of the processor. Based on this function and the corresponding
core Vmin resulted from the offline characterization, they produce a linear regres-
sion model that predicts the Vmin of a core for a single-threaded workload. Their
model is trained and evaluated using only single core executions. In contrast to
their work, we use multi-threaded workloads and demonstrate their importance as
multi-threaded workloads usually result to more conservative Vmin. Moreover, [95]
states that Vmin prediction is uncorrelated to performance counters (R2 = 0) and in
combination with limited dynamic variation of Vmin in ARMv8 a naive prediction
of using average values is sufficient. In the x86-64 architecture we observe higher
dynamic variations and our model is able to track these variations of the current
workload. Note also that we identify margin deviations between off-the-shelf, com-
mercially available parts, and not parts from extreme corner nodes (TTT, TFF and
TSS in [95]). In a more recent paper [59], the same authors present a comprehensive

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 114

statistical analysis for the same platform that improves on prediction on dynamic
variations.

In [94] the authors characterize the voltage margins of two x86-64 microproces-
sors (Sandy-Bridge-E and Haswell) for a subset of the SPEC CPU2006 benchmark
suite. Similar to [95], they do not consider the implications induced by multi-core
executions. Finally, in our work we also quantify the voltage margins deviations
between off-the-shelf parts that belong to the same CPU family.

The heuristics presented in [4] and [5] that dynamically reduce voltage margins
while always preserving safe operation, are based on the error correction ECC hard-
ware built on modern processors such as the server-class Intel Itanium 9560. A key
observation there is that as Vdd is lowered, ECC correctable errors appear before un-
correctable errors (SDCs and CPU crashes). The rate of ECC correctable errors is
used as an indicator on how to adjust the Vdd voltage. In our work, errors reported
by the ECC mechanism appear very rarely, and they are always accompanied by
immediate CPU crashes. We do not rely on ECC, but rather predict a safe supply
voltage using a selected set of performance counters as estimators. Eventually, the
methodology we propose is generic enough that can be applied to any processor,
that provides the ability to manipulate the supply voltage, by measuring perfor-
mance counters.

Authors in [151] exploit the large margins available when only one core in a
server-class 8-core Power7+ processor is utilized, turning under-utilized margin into
power and performance benefits. Similar to our work, this paper finds that as more
cores are progressively utilized by a multi-threaded applications causing larger IR
drops across the chip, the benefits of an adaptive margin scheme begin to diminish.

A study of the voltage margins on several Kepler and Fermi GPUs is presented in
[74]. They first characterize the impact of process, temperature and voltage variation
on Vmin, and then predict safe values of Vmin by deploying a linear regression and
a neural network model. They show that high energy margins can be achieved by
shaving conservative guardbands in modern GPUs. Our work targets CPU architec-
tures which are significantly more complex than GPUs. Moreover, typically CPUs -
contrary to GPUs - serve volatile workloads, with diverse characteristics, consisting
of mixed user and OS jobs. Our model is able to provide accurate voltage margins
predictions for workloads which consist of a mixture of different benchmarks.

Based on microarchitectural events (such as branch mispredictions and cache
misses) that flush and stall the CPU pipeline and cause large voltage droops, in
[107] they propose a voltage emergency predictor that learns the signatures of such
voltage emergencies and triggers a CPU throttling mechanism (e.g. increase voltage
or decrease frequency) to prevent their recurrence. This work is based on CPU mod-
eling on the Simplescalar simulator. In a subsequent paper, the authors measure run
time voltage emergencies on a Core 2 Duo processor and attribute them to pipeline
stalls and flushes [106]. Based on these experimental observations, they propose that
a mechanism that uses more aggressive margins and a recovery (check-point based)

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 115

scheme may be better than a fail-safe static margin. Moreover, they propose a pro-
gram scheduling mechanism so that the combined voltage droop is canceled out as
much as possible. In the same spirit, [46, 86] identify and mitigate voltage emergen-
cies introduced by multithreaded workloads by correlating performance counters
and by introducing other thread synchronization mechanisms, respectively. Unlike
our work, the previous papers do not resort to undervolting to reduce voltage mar-
gins but instead they describe techniques and provide solid design guidelines that
could be exploited by the supplementary mechanism we describe in Section 4.7.

A number of proposed techniques present design approaches at the circuit or
micro-architectural level that trade reliability for lower voltage, by attempting to
reduce voltage down to the point that produces maximum allowable errors with-
out causing catastrophic failures [57]. Several approaches propose methods which
ensure correct operation of caches under undervolted conditions at the microarchi-
tectural level [25, 17, 144]. Architectural techniques are presented to eliminate data
corruption, and by extension enable cache operation at scaled voltage settings. In
our work we are only interested on the behavior of the whole CPU, and not of any
specific component. EVAL is a framework for dynamic adaptation of supply voltage,
processor frequency and body bias using a machine learning algorithm [122]. Sim-
ilar ideas include dynamic pipeline adaptation transferring the time slack of faster
pipeline stages to the slower ones (ReCycle)[134], and using variable latency tech-
niques to mitigate the impact of variations on the register file and execution units in
a microprocessor [77].

Furthermore, there are many approaches that employ simulations and model-
ing techniques to provide design guidelines for future hardware. Authors in [64]
propose a multi-core processor which can scale its resources and the number of op-
erating cores to lower than that of integrated to meet certain power constrains. Sev-
eral approaches [55, 54, 72] employ regression analysis to map certain performance
counters to micro-architectural events and power-delivery estimation. [63] explores
ECC protection mechanisms to enable low-power caches through a detailed SRAM
failure modeling. [16] introduces a workload dependent technique to identify the
paths excited by individual applications on ultra-low-power microprocessors and
reduce voltage to a level that meets timing of those paths (instead of all paths).

6.4 Fault Injection Tools

In CLKSCREW[133], the voltage and frequency scaling capabilities of modern pro-
cessors are exploited in order to compromise system security, by injecting faults
during code execution and extracting cryptographic keys from the ARM TrustZone.
This work focuses on the security risks raised by modern energy management tech-
niques. RIFLE [82] and MESSALINE [3] introduce a deterministic and reproducible
fault injection technique at the pin-level of a processor. FIAT [7] and FERRARI [60]
implement a software-level fault injection which models complex systems with great

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 6. Related work 116

accuracy however, ensuring that the simulated models are realistic and restrain-
ing simulation time are significant challenges. VERIFY [126], MEFISTO [52] and
GemFI [96] are fault injection simulators that provide high accuracy in both the lo-
cation and the timing of the fault, but they introduce significant overhead. Finally,
REFINE [32] allows fault injection in the back-end of the LLVM compiler.

In [15] a multi-faceted microarchitecture-level toolset for reliability assessment
of modern microprocessors is presented. The framework is built around the Gem5
simulator and provides several modes of operation which employ acceleration fea-
tures for all stages of a fault-injection based reliability assessment campaign. The
same authors in [58] examine the effectiveness of microarchitectural fault injection
for x86 and ARM microprocessors in a differential way: by developing and compar-
ing two fault injection frameworks on top of the most popular performance simula-
tors, MARSS and Gem5.

In our work we provided two tools. GemFI a simulation based fault injection tool
which is based on a broadly used reconfigurable simulator (Gem5). The purpose
of GemFI is to support any arbitrary fault model, by allowing the user to describe
the faults to an input file. Moreover to the best of our knowledge GemFI is the
first infrastructure that can target specific applications areas, while minimizing the
changes to the original source code of the application under test. On the other hand
XM2 performs fault injection natively on the targeted system, therefore it provides
native execution time and does not rely on any fault models as they manifest due to
real hardware errors.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

117

Chapter 7

Conclusions

In the first chapters of our work we discussed the significance based computing
paradigm. Our main objective was to formulate the notion of computational signifi-
cance of an application while providing flexible mechanisms to trade off quality for
energy efficiency.

We encapsulate these objectives in two parameters significance and ratio. The sig-
nificance defines the relative importance of a computation in respect to the quality of
the output. On the other hand, the ratio parameter defines the percentage of com-
putations which should be judged as significant and which should be not. These
conceptual idea of significance-ratio are used into two different programming par-
digms, the fault tolerant and the approximate.

We introduce and evaluate a framework that targets fault tolerant computing that
enables execution on platforms operating unreliably outside their normal voltage
/ frequency envelope in order to aggressively reduce energy consumption. We
present a programming model for the development of error resilient programs in
a disciplined manner. Our model exploits programmer wisdom to characterize task
significance, to provide checks and repair mechanisms to the outputs of tasks that
are executed unreliably. We evaluate the effectiveness of different protection mech-
anisms. We show that traditional system software protection mechanisms are not
adequate, however their combination with programmer wisdom provides effective
protection against crashing and silent data corruptions, while enabling considerable
energy gains. Interestingly, modern processors with the assistance of our framework
can produce acceptable results until they reach the Point of First Failure. Decreasing
the supply voltage below that point, either additional energy gains are too low, or
massive failure rates defeat any software-based realistic protection mechanism.

A similar programming model that exposes the significance-ratio parameters is
introduced for approximate computing. This information is used to achieve energy-
constrained execution with graceful quality degradation. An offline, profile-based,
training process produces a model which predicts the energy footprint of a given
application as a function of its input size, the number of cores used, the processor
frequency, and the ratio of accurate to total number of tasks. This model is exploited
by the runtime system of an energy-constrained multi-core platform to steer execu-
tion towards a configuration that maximizes quality of output while complying with

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 7. Conclusions 118

energy constraints.
Significance based computing presents significant energy gains, however, it is

not always applicable as it requires source code modifications and error handling
mechanisms. Therefore we introduce an application agnostic modeling methodol-
ogy, based on the monitoring of selected CPU performance metrics, to estimate and
eliminate voltage margins without lowering they reliability of the system. Our of-
fline characterization on CPUs from Intel Skylake and Haswell microarchitectures
reveals wide voltage margins in both CPU families, and considerable margin vari-
ation across CPU parts, CPU cores, benchmarks and workload configurations, thus
motivating the need for customized and dynamic voltage adjustment to significantly
improve energy efficiency. We evaluate our model effectiveness by using a voltage
governor. The governor relies on our prediction model to continuously adjust the
supply voltage and drive the processor to a more energy efficient, yet safe zone of
operation. The experimental evaluation across a wide range of benchmarks and
larger-scale applications shows large energy savings up to 42.68% and 34.37% over
the standard Intel P-state DVFS governor for parts of the Skylake and Haswell fam-
ilies, respectively.

Finally, we present two experimental frameworks for reliability analysis to study
the effects of sub-nominal CPU operation. GemFI is simulation based fault injection
and enables fault injection of transient, intermittent and permanent faults. It simu-
lates unreliable environments in full system, cycle accurate mode. It is not limited
to specific fault models, but is easily extensible and facilitates support of future fault
models. Moreover, GemFI features such as checkpointing allow the execution of
large-scale fault injection campaigns. XM2 is a software framework which facili-
tates the experimental evaluation of the effects of voltage/frequency margins on the
operation of CPU platforms. XM2 can be used to study the behavior of software
running on platforms operating – potentially unreliably – outside their nominal op-
erational envelope.

7.1 Future Work

There are several open research opportunities based on our work. An interesting re-
search direction is the relationship of significance, task granularity, quality of results,
and overhead of error detection & correction. This is a problem similar to choosing
the appropriate granularity for parallel code to optimize the resulting performance.
It is important that application developers can make educated decisions regarding
the granularity of their application tasks. Otherwise, the resulting implementations
might under-utilize the hardware or even produce output of lesser quality.

Another interesting research direction is to observe the interactions between the
voltage margins of modern processors and the operating frequency of the system.
Using a similar modeling methodology one can express the margins of the system
as a function of the performance metrics and the operating frequency. Using such

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 7. Conclusions 119

Applications

Decreasing order of application
importance / task significance, therefore

increasing opportunities for energy
efficiency by trading off quality for

reliability.

Application Quality/Energy Requirements

Energy Quality Aware Scheduler

Heterogeneous hardware consisting of
multiple cores with different reliability settings

Schedule computations on different
cores, depending their quality-energy

requirements

Important
Applications-
Significant
tasks

Less
important
significant
applications/
tasks

Decreasing order of core reliability and
therefore increasing opportunities for

energy efficiency.

Severely
unreliable
cores

Reliable
cores

FIGURE 7.1: Vision of our approach. The applications and the computations should pro-
vide information to the software stack about their quality/energy requirements. Using
this information the computations can be scheduled in hardware with different energy-

reliability settings.

a model one can create a power capping governor which will select the voltage-
frequency setting of a processor depending on a user defined power budget.

Moreover, we are also plan to study the effects of computation approximations
and the dynamic margins of the application. We have shown that the voltage mar-
gins of both X86 and ARM processors are workload dependent. For example the
approximate versions of the code could present wider voltage or frequency margins,
hence allowing our governor to set the operating point of the system to lower val-
ues. Such a method would increase the energy efficiency of the system even more,
as the approximate version by design consume less energy and these computation
can be executed in a more energy efficient processor operating point.

This thesis concludes with the following suggestion towards the realization of
energy efficient computing on next generation hardware depicted in figure 7.1. The
transition to subnominal operation requires effort from the side of the software stack,
to design systems which present clear quality requirements. Of course not all parts
of an application are amenable to errors. There are critical regions of software which
would significantly deter the reliability of the system if an erroneous event corrupted
their execution flow. Such sensitive software inclure for example such software Op-
erating Systems, runtime systems etc. Fortunately, there are classes of applications,
as presented in this thesis, in which the majority of computations present error re-
siliency characteristics, such applications can be executed in deep unreliable hard-
ware setting. The remaining of the software can benefit from execution on hardware

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 7. Conclusions 120

that operates in the safe region.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

121

Related publications

[1] Konstantinos Parasyris, Georgios Tziantzoulis, Christos D. Antonopoulos, Niko-
laos Bellas GemFI: A Fault Injection Tool for Studying the Behavior of Applica-
tions on Unreliable Substrates In Proceedings of the 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2014

[2] Konstantinos Parasyris, Nikolaos Bellas, Christos D. Antonopoulos, and Spyros
Lalis Exploring the Effects of Code Optimizations on CPU Frequency Margins,
ATCET 2018 In Proceedings of the 1st Workshop on Approximate and Transprecision
Computing on Emerging Technologies, ATCET 2018

[3] Konstantinos Parasyris, Nikolaos Bellas, Christos D. Antonopoulos, and Spyros
Lalis A Framework for Evaluating Software on Reduced Margins Hardware
InProceedings of the 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018

[4] Konstantinos Parasyris, Vassilis Vassiliadis, Christos D. Antonopoulos, Spyros
Lalis, and Nikolaos Bellas. Significance-Aware Program Execution on Unreliable
Hardware. ACM Transactions on Architecture and Code Optimization, TACO 2017,
14(2):12:1–12:25

[5] Panos Koutsovasilis, Konstantinos Parasyris, Christos D. Antonopoulos, Niko-
laos Bellas and Spyros Lalis Dynamic Undervolting to Improve Energy Effi-
ciency on Multicore X86 CPUs. (Under review)

[6] Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Chris-
tos D. Antonopoulos, Nikolaos Bellas, Spyros Lalis, and Uwe Naumann. To-
wards automatic significance analysis for approximate computing. In Proceed-
ings of the 2016 International Symposium on Code Generation and Optimization, CGO
2016

[7] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D.
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. Exploiting significance of computations and profile-
driven regression for energy-constrained approximate computing. International
Journal of Parallel Programming, IJPP 2016, 44(5):1078–1098

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

Chapter 7. Conclusions 122

[8] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D.
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. A Significance-driven Programming Framework for Energy-
constrained Approximate Computing In Proceedings of the 12th ACM International
Conference on Computing Frontiers, CF 2015

[9] Vassilis Vassiliadis, Konstantinos Parasyris, Charalampos Chalios, Christos D.
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. A programming model and runtime system for significance-
aware energy-efficient computing. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, volume 50, pages
275–276. PPOPP 2015 (poster abstract)

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

123

Contribution to Joint Publications

The results presented in this Thesis have been partially published in [68, 97, 99, 141,
140, 139, 138, 96]. This appendix discusses my contribution to each of the aforemen-
tioned publications.

In [99] I contributed to the design of the significance aware fault tolerant pro-
gramming model. I contributed the runtime system, the power/time/energy/fault
model, and the hybrid software-simulation based fault injection methodology. Ad-
ditionally, I contributed to the process of benchmarking, as well as the analysis of
the results. These extensions facilitate the development of applications using the
significance aware programming model as well as the implementation of the result
check function.

For [96] I contributed to the design of the fault injection tool, the checkpointing
methodology as well as the deployment of the tool on network of workstations.
Additionally I contributed to the validation and the experimentation of the tool.

For [97] I contributed to the design monitoring and deployment of the fault
injection tool. Additionally, I integrated the functionality of the tool with Circle [115].
Finally, I contributed the case studies regarding the ARM Cortex A53 processor.

In [98] I contributed the study about the correlation of compiler and source code
optimization to the extend of the frequency margins of the ARM Cortex A53 proces-
sor.

For [141, 140, 139, 138], I performed benchmarking, and analysed the results of
the experimental campaigns. I also contributed to the design of the approximation
extensions for our significance aware computing programming model.

Finally, for [68] I contributed the entire modeling methodology. Additionally, I
contributed the synchronization library used by the applications in the offline char-
acterization. The process of benchmarking of the offline characterization and the
online evaluation was jointly performed by me and Panos Koutsovasilis.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

124

Bibliography

[1] Sara Achour and Martin C. Rinard. “Approximate Computation with Outlier
Detection in Topaz”. In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA 2015. New York, NY, USA: ACM, 2015, pp. 711–730. ISBN:
978-1-4503-3689-5. DOI: 10.1145/2814270.2814314. URL: http://doi.
acm.org/10.1145/2814270.2814314.

[2] J Ansel, K Arya, and G Cooperman. “DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop Proc”. In: Proc. of the IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS). 2009.

[3] Jean Arlat et al. “Fault Injection for Dependability Validation: A Methodology
and Some Applications”. In: IEEE Trans. on Software Engineering (1990).

[4] A. Bacha and R. Teodorescu. “Using ECC Feedback to Guide Voltage Specula-
tion in Low-Voltage Processors”. In: 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 2014. DOI: 10.1109/MICRO.2014.54.

[5] Anys Bacha and Radu Teodorescu. “Dynamic Reduction of Voltage Margins
by Leveraging On-chip ECC in Itanium II Processors”. In: SIGARCH Comput.
Archit. News 41.3 (June 2013), pp. 297–307. ISSN: 0163-5964. DOI: 10.1145/
2508148.2485948. URL: http://doi.acm.org/10.1145/2508148.
2485948.

[6] Woongki Baek and Trishul M. Chilimbi. “Green: A Framework for Support-
ing Energy-conscious Programming Using Controlled Approximation”. In:
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’10. New York, NY, USA: ACM, 2010, pp. 198–
209. ISBN: 978-1-4503-0019-3. DOI: 10.1145/1806596.1806620. URL: http:
//doi.acm.org/10.1145/1806596.1806620.

[7] J. H. Barton et al. “Fault Injection Experiments Using FIAT”. In: IEEE Trans.
on Computers (1990).

[8] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Prince-
ton University, 2011.

[9] Christian Bienia et al. “The PARSEC Benchmark Suite: Characterization and
Architectural Implications”. In: Proceedings of the 17th international conference
on Parallel architectures and compilation techniques (PACT). ACM. 2008, pp. 72–
81.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/2814270.2814314
http://doi.acm.org/10.1145/2814270.2814314
http://doi.acm.org/10.1145/2814270.2814314
https://doi.org/10.1109/MICRO.2014.54
https://doi.org/10.1145/2508148.2485948
https://doi.org/10.1145/2508148.2485948
http://doi.acm.org/10.1145/2508148.2485948
http://doi.acm.org/10.1145/2508148.2485948
https://doi.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/1806596.1806620

Bibliography 125

[10] Nathan Binkert et al. “The Gem5 Simulator”. In: ACM SIGARCH Computer
Architecture News (2011).

[11] David Blaauw et al. “Razor II: In Situ Error Detection and Correction for PVT
and SER Tolerance”. In: IEEE Int. Solid-State Circuits Conference, ISSCC , Digest
of Technical Papers. 2008.

[12] OpenMP Architecture Review Board. OpenMP Application Program Interface
(version 4.0). Tech. rep. 2013.

[13] Keith A Bowman et al. “A 45 nm resilient microprocessor core for dynamic
variation tolerance”. In: IEEE Journal of Solid-State Circuits 46.1 (2011), pp. 194–
208.

[14] Edward A Burton et al. “FIVR—Fully Integrated Voltage Regulators on 4th
Generation Intel® Core TM SoCs”. In: Applied Power Electronics Conference and
Exposition (APEC), 2014 Twenty-Ninth Annual IEEE. IEEE. 2014, pp. 432–439.

[15] A. Chatzidimitriou and D. Gizopoulos. “Anatomy of microarchitecture-level
reliability assessment: Throughput and accuracy”. In: 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 2016,
pp. 69–78. DOI: 10.1109/ISPASS.2016.7482075.

[16] H. Cherupalli, R. Kumar, and J. Sartori. “Exploiting Dynamic Timing Slack
for Energy Efficiency in Ultra-Low-Power Embedded Systems”. In: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 2016,
pp. 671–681. DOI: 10.1109/ISCA.2016.64.

[17] Zeshan Chishti et al. “Improving Cache Lifetime Reliability at Ultra-low Volt-
ages”. In: In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 2009, pp. 89–99. ISBN: 978-1-60558-798-1.

[18] Michael Cohen et al. “Energy Types”. In: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’12. New York, NY, USA: ACM, 2012, pp. 831–850. ISBN: 978-1-4503-
1561-6. DOI: 10.1145/2384616.2384676. URL: http://doi.acm.org/
10.1145/2384616.2384676.

[19] Jeremy Constantin et al. “Exploiting Dynamic Timing Margins in Micropro-
cessors for Frequency-over-scaling with Instruction-based Clock Adjustment”.
In: Proc. of the Design, Automation & Test in Europe Conference & Exhibition.
2015.

[20] C. Constantinescu. “Trends and challenges in VLSI circuit reliability”. In:
IEEE Micro 23.4 (2003), pp. 14–19. ISSN: 0272-1732. DOI: 10.1109/MM.2003.
1225959.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1109/ISPASS.2016.7482075
https://doi.org/10.1109/ISCA.2016.64
https://doi.org/10.1145/2384616.2384676
http://doi.acm.org/10.1145/2384616.2384676
http://doi.acm.org/10.1145/2384616.2384676
https://doi.org/10.1109/MM.2003.1225959
https://doi.org/10.1109/MM.2003.1225959

Bibliography 126

[21] Matthew Curtis-Maury et al. “Prediction Models for Multi-dimensional Power-
performance Optimization on Many Cores”. In: Proceedings of the 17th Inter-
national Conference on Parallel Architectures and Compilation Techniques. PACT
’08. New York, NY, USA: ACM, 2008, pp. 250–259. ISBN: 978-1-60558-282-5.
DOI: 10.1145/1454115.1454151. URL: http://doi.acm.org/10.
1145/1454115.1454151.

[22] Shidhartha Das et al. “A self-tuning DVS processor using delay-error detec-
tion and correction”. In: Solid-State Circuits, IEEE Journal of 41.4 (2006).

[23] Moslem Didehban and Aviral Shrivastava. “nZDC: A Compiler technique for
near Zero Silent data Corruption”. In: Proceedings of the 53rd Annual Design
Automation Conference. ACM. 2016, p. 48.

[24] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. “On Sequential
Monte Carlo Sampling Methods for Bayesian Filtering”. In: Statistics and com-
puting 10.3 (2000).

[25] H. Duwe et al. “Rescuing Uncorrectable Fault Patterns in On-Chip Memories
through Error Pattern Transformation”. In: In Proceedings of the 43rd Annual
International Symposium on Computer Architecture (ISCA). 2016, pp. 634–644.
DOI: 10.1109/ISCA.2016.61.

[26] Dan Ernst et al. “Razor: A Low-Power Pipeline Based on Circuit-Level Tim-
ing Speculation”. In: Proc. of the 36th Annual IEEE/ACM Int. Symposium on
Microarchitecture. 2003.

[27] Hadi Esmaeilzadeh et al. “Architecture Support for Disciplined Approximate
Programming”. In: Proc. of the Seventeenth Int. Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 2012.

[28] Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”. In:
Computer Architecture (ISCA), 2011 38th Annual International Symposium on.
IEEE. 2011, pp. 365–376.

[29] Hadi Esmaeilzadeh et al. “Neural Acceleration for General-Purpose Approx-
imate Programs”. In: Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO-45. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 449–460. ISBN: 978-0-7695-4924-8. DOI: 10.
1109/MICRO.2012.48. URL: http://dx.doi.org/10.1109/MICRO.
2012.48.

[30] Liang Fan, Siwei Ma, and Feng Wu. “Overview of AVS video standard”. In:
Proc. of the IEEE International Conference on Multimedia and Expo (ICME). 2004.

[31] Shuguang Feng et al. “Shoestring: probabilistic soft error reliability on the
cheap”. In: ACM SIGARCH Computer Architecture News. Vol. 38. 1. ACM. 2010,
pp. 385–396.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/1454115.1454151
http://doi.acm.org/10.1145/1454115.1454151
http://doi.acm.org/10.1145/1454115.1454151
https://doi.org/10.1109/ISCA.2016.61
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48

Bibliography 127

[32] Giorgis Georgakoudis et al. “REFINE: Realistic Fault Injection via Compiler-
based Instrumentation for Accuracy, Portability and Speed”. In: Proc. of the
Int. Conference for High Performance Computing, Networking, Storage and Analy-
sis. 2017.

[33] Íñigo Goiri et al. “ApproxHadoop: Bringing Approximations to MapReduce
Frameworks”. In: Proc. of the 22th Int. Conference on Architectural Support for
Programming Languages and Operating Systems. 2015.

[34] Beayna Grigorian and Glenn Reinman. “Dynamically adaptive and reliable
approximate computing using light-weight error analysis”. In: Adaptive Hard-
ware and Systems (AHS), 2014 NASA/ESA Conference on. IEEE. 2014, pp. 248–
255.

[35] Philipp Gschwandtner et al. “On the potential of significance-driven execu-
tion for energy-aware HPC”. English. In: Computer Science - Research and De-
velopment (2014), pp. 1–10. ISSN: 1865-2034. DOI: 10.1007/s00450-014-
0265-9. URL: http://dx.doi.org/10.1007/s00450-014-0265-9.

[36] Meeta S. Gupta et al. “Tribeca: Design for PVT Variations with Local Recovery
and Fine-grained Adaptation”. In: Proc. of the 42Nd Annual IEEE/ACM Int.
Symposium on Microarchitecture. 2009.

[37] D. Hackenberg et al. “Introducing FIRESTARTER: A Processor Stress Test
Utility”. In: In Proceedings in the 4th Conference on International Green Comput-
ing (IGC). 2013, pp. 1–9. DOI: 10.1109/IGCC.2013.6604507.

[38] Nikos Hardavellas et al. “Toward dark silicon in servers”. In: IEEE Micro 31.4
(2011), pp. 6–15.

[39] Siva Kumar Sastry Hari, Sarita V Adve, and Helia Naeimi. “Low-cost program-
level detectors for reducing silent data corruptions”. In: Dependable Systems
and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on.
IEEE. 2012, pp. 1–12.

[40] John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In: SIGARCH
Comput. Archit. News 34.4 (Sept. 2006), pp. 1–17. ISSN: 0163-5964. DOI: 10.
1145/1186736.1186737. URL: http://doi.acm.org/10.1145/
1186736.1186737.

[41] Giang Hoang, Robby Bruce Findler, and Russ Joseph. “Exploring Circuit Timing-
aware Language and Compilation”. In: Proc. of the 16th Int. Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. 2011.

[42] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Biased Estima-
tion for Nonorthogonal Problems”. In: Technometrics 12.1 (1970), pp. 55–67.
DOI: 10.1080/00401706.1970.10488634. eprint: http://amstat.
tandfonline.com/doi/pdf/10.1080/00401706.1970.10488634.
URL: http://amstat.tandfonline.com/doi/abs/10.1080/00401706.
1970.10488634.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1007/s00450-014-0265-9
https://doi.org/10.1007/s00450-014-0265-9
http://dx.doi.org/10.1007/s00450-014-0265-9
https://doi.org/10.1109/IGCC.2013.6604507
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
https://doi.org/10.1080/00401706.1970.10488634
http://amstat.tandfonline.com/doi/pdf/10.1080/00401706.1970.10488634
http://amstat.tandfonline.com/doi/pdf/10.1080/00401706.1970.10488634
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634

Bibliography 128

[43] Henry Hoffmann et al. “Application Heartbeats: A Generic Interface for Spec-
ifying Program Performance and Goals in Autonomous Computing Environ-
ments”. In: Proceedings of the 7th International Conference on Autonomic Comput-
ing. ICAC ’10. New York, NY, USA: ACM, 2010, pp. 79–88. ISBN: 978-1-4503-
0074-2. DOI: 10.1145/1809049.1809065. URL: http://doi.acm.org/
10.1145/1809049.1809065.

[44] Henry Hoffmann et al. “Dynamic Knobs for Responsive Power-aware Com-
puting”. In: Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS XVI. New
York, NY, USA: ACM, 2011, pp. 199–212. ISBN: 978-1-4503-0266-1. DOI: 10.
1145/1950365.1950390. URL: http://doi.acm.org/10.1145/
1950365.1950390.

[45] Henry Hoffmann et al. “Self-aware Computing in the Angstrom Processor”.
In: Proceedings of the 49th Annual Design Automation Conference. DAC ’12. New
York, NY, USA: ACM, 2012, pp. 259–264. ISBN: 978-1-4503-1199-1. DOI: 10.
1145/2228360.2228409. URL: http://doi.acm.org/10.1145/
2228360.2228409.

[46] X. Hu et al. “Orchestrator: A low-cost Solution to Reduce Voltage Emergen-
cies for Multi-threaded Applications”. In: 2013 Design, Automation Test in Eu-
rope Conference Exhibition (DATE). 2013, pp. 208–213. DOI: 10.7873/DATE.
2013.056.

[47] SI ITRS. “International technology roadmap for semiconductors: Executive
summary”. In: Semiconductor Industry Association, Tech. Rep (2013).

[48] Ravishankar K Iyer et al. “Recent Advances and New Avenues in Hardware-
Level Reliability Support”. In: IEEE Micro 25.6 (2005).

[49] Antoine Petitet Jack J. Dongarra Piotr Luszczek. “The LINPACK Benchmark:
Past, Present and Future”. In: Concurrency and Computation Practice and Expe-
rience 10 (9 2003).

[50] Norman James et al. “Comparison of split-versus connected-core supplies in
the POWER6 microprocessor”. In: 2007 IEEE Int. Solid-State Circuits Confer-
ence. Digest of Technical Papers. 2007.

[51] ArtForz. Jeff Garzik. CPU-Miner. URL: https://github.com/tpruvot/
cpuminer-multi.

[52] Eric Jenn et al. “Fault Injection into VHDL Models: The MEFISTO Tool”. In:
Proc. of the Symposium on Fault-Tolerant Computing (FTCS). 1994.

[53] Myeongjae Jeon et al. “Adaptive Parallelism for Web Search”. In: Proceedings
of the 8th ACM European Conference on Computer Systems. EuroSys ’13. New
York, NY, USA: ACM, 2013, pp. 155–168. ISBN: 978-1-4503-1994-2. DOI: 10.
1145/2465351.2465367. URL: http://doi.acm.org/10.1145/
2465351.2465367.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/1809049.1809065
http://doi.acm.org/10.1145/1809049.1809065
http://doi.acm.org/10.1145/1809049.1809065
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1145/1950365.1950390
http://doi.acm.org/10.1145/1950365.1950390
http://doi.acm.org/10.1145/1950365.1950390
https://doi.org/10.1145/2228360.2228409
https://doi.org/10.1145/2228360.2228409
http://doi.acm.org/10.1145/2228360.2228409
http://doi.acm.org/10.1145/2228360.2228409
https://doi.org/10.7873/DATE.2013.056
https://doi.org/10.7873/DATE.2013.056
https://github.com/tpruvot/cpuminer-multi
https://github.com/tpruvot/cpuminer-multi
https://doi.org/10.1145/2465351.2465367
https://doi.org/10.1145/2465351.2465367
http://doi.acm.org/10.1145/2465351.2465367
http://doi.acm.org/10.1145/2465351.2465367

Bibliography 129

[54] W. Jia, K. A. Shaw, and M. Martonosi. “Stargazer: Automated Regression-
Based GPU Design Space Exploration”. In: In Proceedings of the International
Symposium on Performance Analysis of Systems Software (ISPASS). 2012, pp. 2–
13. DOI: 10.1109/ISPASS.2012.6189201.

[55] P. J. Joseph, Kapil Vaswani, and M. J. Thazhuthaveetil. “Construction and Use
of Linear Regression Models for Processor Performance Analysis”. In: In Pro-
ceedings of the 12th International Symposium on High-Performance Computer Ar-
chitecture (HPCA). 2006, pp. 99–108. DOI: 10.1109/HPCA.2006.1598116.

[56] Edin Kadric, Kunal Mahajan, and André DeHon. “Energy reduction through
differential reliability and lightweight checking”. In: Field-Programmable Cus-
tom Computing Machines (FCCM), 2014 IEEE 22nd Annual International Sympo-
sium on. IEEE. 2014, pp. 243–250.

[57] Andrew B. Kahng et al. “Designing a Processor from the Ground up to Al-
low Voltage/Reliability Tradeoffs”. In: In Proceedings of the 16th International
Conference on High-Performance Computer Architecture (HPCA). 2010, pp. 1–11.

[58] M. Kaliorakis et al. “Differential Fault Injection on Microarchitectural Sim-
ulators”. In: 2015 IEEE International Symposium on Workload Characterization.
2015, pp. 172–182. DOI: 10.1109/IISWC.2015.28.

[59] M. Kaliorakis et al. “Statistical Analysis of Multicore CPUs Operation in Scaled
Voltage Conditions”. In: IEEE Computer Architecture Letters 17.2 (2018), pp. 109–
112. ISSN: 1556-6056. DOI: 10.1109/LCA.2018.2798604.

[60] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. “FERRARI:
A Flexible Software-Based Fault and Error Injection System”. In: IEEE Trans.
Comput. 44 (1995).

[61] Georgios Karakonstantis et al. “Significance driven computation on next-
generation unreliable platforms”. In: Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE. IEEE. 2011, pp. 290–291.

[62] Daya S. Khudia et al. “Rumba: An Online Quality Management System for
Approximate Computing”. In: SIGARCH Comput. Archit. News 43.3 (2015),
pp. 554–566.

[63] Jangwoo Kim et al. “Modeling SRAM Failure Rates to enable Fast, Dense,
Low-Power Caches”. In: SELSE’09 (2009).

[64] N.S. Kim. Resource and Core Scaling for Improving Performance of Power-Constrained
Multicore Processors. US Patent 9,606,842. 2017. URL: https://www.google.
com/patents/US9606842.

[65] Y. Kim et al. “AUDIT: Stress Testing the Automatic Way”. In: In Proceedings of
the 45th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 2012, pp. 212–223.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1109/ISPASS.2012.6189201
https://doi.org/10.1109/HPCA.2006.1598116
https://doi.org/10.1109/IISWC.2015.28
https://doi.org/10.1109/LCA.2018.2798604
https://www.google.com/patents/US9606842
https://www.google.com/patents/US9606842

Bibliography 130

[66] Youngtaek Kim and Lizy Kurian John. “Automated Di/Dt Stressmark Gener-
ation for Microprocessor Power Delivery Networks”. In: In Proceedings of the
17th IEEE/ACM International Symposium on Low-power Electronics and Design
(ISLPED). 2011, pp. 253–258. ISBN: 978-1-61284-660-6.

[67] Jonathan Koomey et al. “Implications of historical trends in the electrical effi-
ciency of computing”. In: IEEE Annals of the History of Computing 33.3 (2011),
pp. 46–54.

[68] Panos Koutsovasilis et al. “Dynamic Undervolting to Improve Energy Ef-
ficiency on Multicore X86 CPUs”. In: IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS) (2018).

[69] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Estimating
Mutual Information”. In: Phys. Rev. E 69 (6 2004), p. 066138. DOI: 10.1103/
PhysRevE.69.066138.

[70] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. “Relax:
An Architectural Framework for Software Recovery of Hardware Faults”. In:
Proc. of the 37th Int. Symposium on Computer Architecture. 2010.

[71] Ignacio Laguna et al. “Ipas: Intelligent protection against silent output cor-
ruption in scientific applications”. In: Proceedings of the 2016 International Sym-
posium on Code Generation and Optimization. ACM. 2016, pp. 227–238.

[72] Benjamin C. Lee and David M. Brooks. “Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction”. In: SIG-
PLAN Not. 41.11 (Oct. 2006), pp. 185–194. ISSN: 0362-1340. DOI: 10.1145/
1168918.1168881. URL: http://doi.acm.org/10.1145/1168918.
1168881.

[73] Larkhoon Leem et al. “ERSA: Error Resilient System Architecture for Proba-
bilistic Applications”. In: Proc. of the Conference on Design, Automation and Test
in Europe. 2010.

[74] J. Leng et al. “Safe limits on Voltage Reduction Efficiency in GPUs: A Di-
rect Measurement Approach”. In: 2015 48th Annual International Symposium
on Microarchitecture (MICRO). 2015. DOI: 10.1145/2830772.2830811.

[75] Régis Leveugle et al. “Statistical fault injection: quantified error and confi-
dence”. In: Design, Automation & Test in Europe Conference & Exhibition, 2009.
2009.

[76] Dong Li et al. “Strategies for Energy-Efficient Resource Management of Hy-
brid Programming Models”. In: IEEE Trans. Parallel Distrib. Syst. 24.1 (Jan.
2013), pp. 144–157. ISSN: 1045-9219. DOI: 10.1109/TPDS.2012.95. URL:
http://dx.doi.org/10.1109/TPDS.2012.95.

[77] Xiaoyao Liang and David M. Brooks. “Mitigating the Impact of Process Vari-
ations on Processor Register Files and Execution Units”. In: In Proceedings of
the 39th Annual International Symposium on Microarchitecture (MICRO). 2006.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1145/1168918.1168881
https://doi.org/10.1145/1168918.1168881
http://doi.acm.org/10.1145/1168918.1168881
http://doi.acm.org/10.1145/1168918.1168881
https://doi.org/10.1145/2830772.2830811
https://doi.org/10.1109/TPDS.2012.95
http://dx.doi.org/10.1109/TPDS.2012.95

Bibliography 131

[78] A. Liaw and M. Wiener. “Classification and Regression by RandomForest”.
In: R news 2.3 (2002), pp. 18–22.

[79] Min Yeol Lim, Vincent W. Freeh, and David K. Lowenthal. “Adaptive, Trans-
parent CPU Scaling Algorithms Leveraging Inter-node MPI Communication
Regions”. In: Parallel Comput. 37.10-11 (Oct. 2011), pp. 667–683. ISSN: 0167-
8191. DOI: 10.1016/j.parco.2011.07.001. URL: http://dx.doi.
org/10.1016/j.parco.2011.07.001.

[80] Linux Kernel. 2017. URL: https://www.kernel.org/.

[81] Qining Lu et al. “SDCTune: a model for predicting the SDC proneness of an
application for configurable protection”. In: Compilers, Architecture and Syn-
thesis for Embedded Systems (CASES), 2014 International Conference on. IEEE.
2014, pp. 1–10.

[82] Henrique Madeira et al. “RIFLE: A general purpose pin-level fault injector”.
In: Proc. of the European Dependable Computing Conference (EDCC). 1994.

[83] Jackson Marusarz, Shannon Cepeda, and Ahmad Yasin. How to Tune Applica-
tions Using a Top-Down Characterization of Microarchitectural Issues. Tech. rep.
Technical report, Intel, 2013.

[84] Abdelhafid Mazouz et al. “Evaluation of CPU Frequency Transition Latency”.
In: Comput. Sci. 29.3-4 (2014).

[85] Lawrence McAfee and Kunle Olukotun. “EMEURO: A Framework for Gen-
erating Multi-purpose Accelerators via Deep Learning”. In: Proceedings of the
13th Annual IEEE/ACM International Symposium on Code Generation and Op-
timization. CGO ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 125–135. ISBN: 978-1-4799-8161-8. URL: http://dl.acm.org/citation.
cfm?id=2738600.2738616.

[86] T. N. Miller et al. “VRSync: Characterizing and Eliminating Synchronization-
induced Voltage Emergencies in Many-core Processors”. In: 2012 39th Annual
International Symposium on Computer Architecture (ISCA). 2012, pp. 249–260.
DOI: 10.1109/ISCA.2012.6237022.

[87] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. “Parallelizing Sequen-
tial Programs with Statistical Accuracy Tests”. In: ACM Trans. Embed. Com-
put. Syst. 12.2s (2013), 88:1–88:26. ISSN: 1539-9087. DOI: 10.1145/2465787.
2465790. URL: http://doi.acm.org/10.1145/2465787.2465790.

[88] Sasa Misailovic et al. “Chisel: Reliability- and Accuracy-aware Optimization
of Approximate Computational Kernels”. In: SIGPLAN Not. 49.10 (2014), pp. 309–
328. ISSN: 0362-1340. DOI: 10.1145/2714064.2660231. URL: http://
doi.acm.org/10.1145/2714064.2660231.

[89] Sparsh Mittal. “A survey of techniques for approximate computing”. In: ACM
Computing Surveys (CSUR) 48.4 (2016), p. 62.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1016/j.parco.2011.07.001
http://dx.doi.org/10.1016/j.parco.2011.07.001
http://dx.doi.org/10.1016/j.parco.2011.07.001
https://www.kernel.org/
http://dl.acm.org/citation.cfm?id=2738600.2738616
http://dl.acm.org/citation.cfm?id=2738600.2738616
https://doi.org/10.1109/ISCA.2012.6237022
https://doi.org/10.1145/2465787.2465790
https://doi.org/10.1145/2465787.2465790
http://doi.acm.org/10.1145/2465787.2465790
https://doi.org/10.1145/2714064.2660231
http://doi.acm.org/10.1145/2714064.2660231
http://doi.acm.org/10.1145/2714064.2660231

Bibliography 132

[90] Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik Roy. “Signif-
icance Driven Computation: A Voltage-scalable, Variation-aware, Quality-
tuning Motion Estimator”. In: Proceedings of the 2009 ACM/IEEE International
Symposium on Low Power Electronics and Design. ISLPED ’09. San Fancisco,
CA, USA: ACM, 2009, pp. 195–200. ISBN: 978-1-60558-684-7. DOI: 10.1145/
1594233.1594282. URL: http://doi.acm.org/10.1145/1594233.
1594282.

[91] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE
Solid-State Circuits Society Newsletter 11.3 (2006), pp. 33–35. ISSN: 1098-4232.
DOI: 10.1109/N-SSC.2006.4785860.

[92] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to In-
terval Analysis. 1st ed. Society for Industrial and Applied Mathematics, 2009.
ISBN: 9780898716696. URL: http://amazon.com/o/ASIN/0898716691.

[93] U. Mukhopadhyay et al. “A Brief Survey of Cryptocurrency Systems”. In: In
Proceedings of 14th Annual Conference on Privacy, Security and Trust (PST). 2016,
pp. 745–752. DOI: 10.1109/PST.2016.7906988.

[94] G. Papadimitriou et al. “Voltage Margins Identification on Commercial x86-
64 Multicore Microprocessors”. In: 2017 IEEE 23rd Int, Symposium on On-Line
Testing and Robust System Design (IOLTS). 2017.

[95] George Papadimitriou et al. “Harnessing Voltage Margins for Energy Effi-
ciency in Multicore CPUs”. In: (2017).

[96] K. Parasyris et al. “GemFI: A Fault Injection Tool for Studying the Behavior of
Applications on Unreliable Substrates”. In: Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP Int. Conference on. 2014.

[97] Konstantinos Parasyris et al. “A Framework for Evaluating Software on Re-
duced Margins Hardware”. In: Proceedings of the 2018 International Conference
on Dependable Systems and Networks (DSN2018).

[98] Konstantinos Parasyris et al. “Exploring the Effects of Code Optimizations on
CPU Frequency Margins”. In: Proceedings of the 1st Workshop on Approximate
and Transprecision Computing on Emerging Technologies, ATCET. 2018.

[99] Konstantinos Parasyris et al. “Significance-Aware Program Execution on Un-
reliable Hardware”. In: ACM Trans. Archit. Code Optim. 14.2 (2017), 12:1–12:25.
ISSN: 1544-3566. DOI: 10.1145/3058980. URL: http://doi.acm.org/
10.1145/3058980.

[100] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J.
Mach. Learn. Res. 12 (Nov. 2011), pp. 2825–2830. ISSN: 1532-4435. URL: http:
//dl.acm.org/citation.cfm?id=1953048.2078195.

[101] Perf: Linux Profiling with Performance Counters. 2017. URL: https://perf.
wiki.kernel.org/index.php/Main_Page.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/1594233.1594282
https://doi.org/10.1145/1594233.1594282
http://doi.acm.org/10.1145/1594233.1594282
http://doi.acm.org/10.1145/1594233.1594282
https://doi.org/10.1109/N-SSC.2006.4785860
http://amazon.com/o/ASIN/0898716691
https://doi.org/10.1109/PST.2016.7906988
https://doi.org/10.1145/3058980
http://doi.acm.org/10.1145/3058980
http://doi.acm.org/10.1145/3058980
http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Bibliography 133

[102] L-N Pouchet. PolyBench/C 3.2. URL: https://sourceforge.linuxKernelnet/
projects/polybench/.

[103] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. “Analysis of instruction-
level vulnerability to dynamic voltage and temperature variations”. In: De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2012. 2012.

[104] Abbas Rahimi et al. “A Variability-aware OpenMP Environment for Efficient
Execution of Accuracy-configurable Computation on shared-FPU Processor
Clusters”. In: Proceedings of the Ninth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis. CODES+ISSS ’13. Piscat-
away, NJ, USA: IEEE Press, 2013, 35:1–35:10. ISBN: 978-1-4799-1417-3. URL:
http://dl.acm.org/citation.cfm?id=2555692.2555727.

[105] Abbas Rahimi et al. “Variation-tolerant OpenMP Tasking on Tightly-coupled
Processor Clusters”. In: Proceedings of the Conference on Design, Automation and
Test in Europe. DATE ’13. San Jose, CA, USA: EDA Consortium, 2013, pp. 541–
546. ISBN: 978-1-4503-2153-2. URL: http://dl.acm.org/citation.cfm?
id=2485288.2485422.

[106] V. J. Reddi et al. “Voltage Smoothing: Characterizing and Mitigating Voltage
Noise in Production Processors via Software-Guided Thread Scheduling”. In:
In Proceedings of 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture. 2010, pp. 77–88. DOI: 10.1109/MICRO.2010.35.

[107] Vijay Janapa Reddi et al. “Voltage Emergency Prediction: Using Signatures to
Reduce Operating Margins”. In: In Proceedings of the 15th International Sympo-
sium on High Performance Computer Architecture, (HPCA). 2009, pp. 18–29.

[108] Vijay Janapa Reddi et al. “Voltage smoothing: Characterizing and mitigating
voltage noise in production processors via software-guided thread schedul-
ing”. In: 2010 43rd Annual IEEE/ACM Int. Symposium on Microarchitecture.
2010.

[109] Semeen Rehman et al. “Cross-layer software dependability on unreliable hard-
ware”. In: IEEE Trans. on Computers (2016).

[110] Semeen Rehman et al. “Reliable Software for Unreliable Hardware: Embed-
ded Code Generation Aiming at Reliability”. In: Proc. of the 7th IEEE/ACM/I-
FIP Int. Conference on Hardware/Software Codesign and System Synthesis. 2011.

[111] George A. Reis et al. “SWIFT: Software Implemented Fault Tolerance”. In:
Proceedings of the International Symposium on Code Generation and Optimization.
CGO ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 243–254.
ISBN: 0-7695-2298-X. DOI: 10.1109/CGO.2005.34. URL: http://dx.
doi.org/10.1109/CGO.2005.34.

[112] Martin Rinard. “Probabilistic Accuracy Bounds for Fault-tolerant Computa-
tions That Discard Tasks”. In: ICS ’06. ACM, 2006, pp. 324–334.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://sourceforge.linuxKernelnet/projects/polybench/
https://sourceforge.linuxKernelnet/projects/polybench/
http://dl.acm.org/citation.cfm?id=2555692.2555727
http://dl.acm.org/citation.cfm?id=2485288.2485422
http://dl.acm.org/citation.cfm?id=2485288.2485422
https://doi.org/10.1109/MICRO.2010.35
https://doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1109/CGO.2005.34

Bibliography 134

[113] Michael Ringenburg et al. “Monitoring and Debugging the Quality of Results
in Approximate Programs”. In: ASPLOS ’15. ACM, 2015, pp. 399–411.

[114] Pooja Roy et al. “ASAC: Automatic Sensitivity Analysis for Approximate
Computing”. In: Proceedings of the 2014 SIGPLAN/SIGBED Conference on Lan-
guages, Compilers and Tools for Embedded Systems. LCTES ’14. New York, NY,
USA: ACM, 2014, pp. 95–104. ISBN: 978-1-4503-2877-7. DOI: 10.1145/2597809.
2597812. URL: http://doi.acm.org/10.1145/2597809.2597812.

[115] rsta2. Circle: A C++ bare metal programming environment for the Raspberry PI.
URL: https://github.com/rsta2/circle.

[116] S. T. Kim and Y. C. Shih and K. Mazumdar and R. Jain and J. F. Ryan and C.
Tokunaga and C. Augustine and J. P. Kulkarni and K. Ravichandran and J. W.
Tschanz and M. M. Khellah and V. De. “Enabling Wide Autonomous DVFS
in a 22 nm Graphics Execution Core Using a Digitally Controlled Fully Inte-
grated Voltage Regulator”. In: IEEE Journal of Solid-State Circuits 51.1 (2016),
pp. 18–30. ISSN: 0018-9200. DOI: 10.1109/JSSC.2015.2457920.

[117] Mastooreh Salajegheh et al. “Half-Wits: Software Techniques for Low-Voltage
Probabilistic Storage on Microcontrollers with NOR Flash Memory”. In: ACM
Trans. Embed. Comput. Syst. 12.2s (May 2013), 91:1–91:25. ISSN: 1539-9087. DOI:
10.1145/2465787.2465793. URL: http://doi.acm.org/10.1145/
2465787.2465793.

[118] Mohammad Salehi et al. “DRVS: Power-efficient reliability management through
Dynamic Redundancy and Voltage Scaling under variations”. In: Proc. of the
IEEE/ACM Int. Symposium on Low Power Electronics and Design. 2015.

[119] Mehrzad Samadi et al. “Paraprox: Pattern-based Approximation for Data
Parallel Applications”. In: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems. ASP-
LOS ’14. New York, NY, USA: ACM, 2014, pp. 35–50. ISBN: 978-1-4503-2305-5.
DOI: 10.1145/2541940.2541948. URL: http://doi.acm.org/10.
1145/2541940.2541948.

[120] Mehrzad Samadi et al. “SAGE: Self-tuning Approximation for Graphics En-
gines”. In: Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-46. New York, NY, USA: ACM, 2013, pp. 13–24.
ISBN: 978-1-4503-2638-4. DOI: 10.1145/2540708.2540711. URL: http:
//doi.acm.org/10.1145/2540708.2540711.

[121] Adrian Sampson et al. “EnerJ: Approximate Data Types for Safe and General
Low-power Computation”. In: Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI ’11. New York,
NY, USA: ACM, 2011, pp. 164–174. ISBN: 978-1-4503-0663-8. DOI: 10.1145/
1993498.1993518. URL: http://doi.acm.org/10.1145/1993498.
1993518.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/2597809.2597812
https://doi.org/10.1145/2597809.2597812
http://doi.acm.org/10.1145/2597809.2597812
https://github.com/rsta2/circle
https://doi.org/10.1109/JSSC.2015.2457920
https://doi.org/10.1145/2465787.2465793
http://doi.acm.org/10.1145/2465787.2465793
http://doi.acm.org/10.1145/2465787.2465793
https://doi.org/10.1145/2541940.2541948
http://doi.acm.org/10.1145/2541940.2541948
http://doi.acm.org/10.1145/2541940.2541948
https://doi.org/10.1145/2540708.2540711
http://doi.acm.org/10.1145/2540708.2540711
http://doi.acm.org/10.1145/2540708.2540711
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518

Bibliography 135

[122] Smruti R. Sarangi et al. “EVAL: Utilizing Processors with Variation-induced
Timing Errors”. In: In Proceedings of the 41st Annual International Symposium
on Microarchitecture (MICRO). 2008, pp. 423–434.

[123] Florian Schmoll et al. “Improving the Fault Resilience of an H.264 Decoder
Using Static Analysis Methods”. In: ACM Trans. Embed. Comput. Syst. 13.1s
(2013), 31:1–31:27. ISSN: 1539-9087. DOI: 10.1145/2536747.2536753. URL:
http://doi.acm.org/10.1145/2536747.2536753.

[124] P. Shivakumar et al. “Modeling the effect of technology trends on the soft
error rate of combinational logic”. In: Proceedings International Conference on
Dependable Systems and Networks. 2002, pp. 389–398. DOI: 10.1109/DSN.
2002.1028924.

[125] Stelios Sidiroglou-Douskos et al. “Managing Performance vs. Accuracy Trade-
offs with Loop Perforation”. In: Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineer-
ing. ESEC/FSE ’11. ACM, 2011, pp. 124–134. ISBN: 978-1-4503-0443-6. DOI:
10.1145/2025113.2025133. URL: http://doi.acm.org/10.1145/
2025113.2025133.

[126] Volkmar Sieh, Oliver Tschäche, and Frank Balbach. “VERIFY: Evaluation of
Reliability Using VHDL-Models with Embedded Fault Descriptions”. In: Proc.
of the Symposium on Fault-Tolerant Computing (FTCS). 1997.

[127] Teja Singh et al. “Zen: An Energy-Efficient High-Performance \×86 Core”.
In: IEEE Journal of Solid-State Circuits 53.1 (2018), pp. 102–114.

[128] Filippo Sironi et al. “Metronome: Operating System Level Performance Man-
agement via Self-adaptive Computing”. In: Proceedings of the 49th Annual De-
sign Automation Conference. DAC ’12. New York, NY, USA: ACM, 2012, pp. 856–
865. ISBN: 978-1-4503-1199-1. DOI: 10.1145/2228360.2228514. URL: http:
//doi.acm.org/10.1145/2228360.2228514.

[129] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. “The
JPEG 2000 still Image Compression Standard”. In: Signal Processing Magazine,
IEEE 18.5 (Sept. 2001), pp. 36–58. DOI: 10.1109/79.952804. URL: http:
//doi.org/10.1109/79.952804.

[130] Joseph Sloan, John Sartori, and Rakesh Kumar. “On Software Design for Stochas-
tic Processors”. In: Proceedings of the 49th Annual Design Automation Confer-
ence. DAC ’12. New York, NY, USA: ACM, 2012, pp. 918–923. ISBN: 978-1-
4503-1199-1. DOI: 10.1145/2228360.2228524. URL: http://doi.acm.
org/10.1145/2228360.2228524.

[131] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. “Adaptive, Efficient,
Parallel Execution of Parallel Programs”. In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
’14. New York, NY, USA: ACM, 2014, pp. 169–180. ISBN: 978-1-4503-2784-8.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/2536747.2536753
http://doi.acm.org/10.1145/2536747.2536753
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
https://doi.org/10.1145/2228360.2228514
http://doi.acm.org/10.1145/2228360.2228514
http://doi.acm.org/10.1145/2228360.2228514
https://doi.org/10.1109/79.952804
http://doi.org/10.1109/79.952804
http://doi.org/10.1109/79.952804
https://doi.org/10.1145/2228360.2228524
http://doi.acm.org/10.1145/2228360.2228524
http://doi.acm.org/10.1145/2228360.2228524

Bibliography 136

DOI: 10.1145/2594291.2594292. URL: http://doi.acm.org/10.
1145/2594291.2594292.

[132] Stress-NG. URL: http://kernel.ubuntu.com/~cking/stress-ng/.

[133] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management”. In: In Pro-
ceedings of 26th Security Symposium (USENIX Security). 2017.

[134] Abhishek Tiwari, Smruti R. Sarangi, and Josep Torrellas. “ReCycle: Pipeline
Adaptation to Tolerate Process Variation”. In: In Proceedings of the 34th Inter-
national Symposium on Computer Architecture, (ISCA). 2007, pp. 323–334.

[135] Jan Treibig, Georg Hager, and Gerhard Wellein. “LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments”. In: Proc.
of the 2010 39th Int. Conference on Parallel Processing Workshops. 2010.

[136] George Tzenakis et al. “BDDT:: Block-level Dynamic Dependence Analysis
for Deterministic Task-based Parallelism”. In: Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP
’12. New York, NY, USA: ACM, 2012, pp. 301–302. ISBN: 978-1-4503-1160-1.
DOI: 10.1145/2145816.2145864. URL: http://doi.acm.org/10.
1145/2145816.2145864.

[137] G. Tziantzioulis et al. “b-HiVE: A Bit-level History-based Error Model with
Value Correlation for Voltage-scaled Integer and Floating Point Units”. In:
Proc. of the 52Nd Annual Design Automation Conference. 2015.

[138] Vassilis Vassiliadis et al. “A programming model and runtime system for
significance-aware energy-efficient computing”. In: ACM SIGPLAN Notices.
Vol. 50. 8. ACM. 2015, pp. 275–276.

[139] Vassilis Vassiliadis et al. “A significance-driven programming framework for
energy-constrained approximate computing”. In: Proceedings of the 12th ACM
International Conference on Computing Frontiers. ACM. 2015, p. 9.

[140] Vassilis Vassiliadis et al. “Exploiting significance of computations and profile-
driven regression for energy-constrained approximate computing”. In: Inter-
national Journal of Parallel Programming 44.5 (2016), pp. 1078–1098.

[141] Vassilis Vassiliadis et al. “Towards Automatic Significance Analysis for Ap-
proximate Computing”. In: Proceedings of the 2016 International Symposium on
Code Generation and Optimization. CGO 2016. New York, NY, USA: ACM, 2016,
pp. 182–193. ISBN: 978-1-4503-3778-6. DOI: 10.1145/2854038.2854058.
URL: http://doi.acm.org/10.1145/2854038.2854058.

[142] Swagath Venkataramani et al. “Quality Programmable Vector Processors for
Approximate Computing”. In: Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. MICRO-46. New York, NY, USA:
ACM, 2013, pp. 1–12. ISBN: 978-1-4503-2638-4. DOI: 10.1145/2540708.
2540710. URL: http://doi.acm.org/10.1145/2540708.2540710.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1145/2594291.2594292
http://doi.acm.org/10.1145/2594291.2594292
http://doi.acm.org/10.1145/2594291.2594292
http://kernel.ubuntu.com/~cking/stress-ng/
https://doi.org/10.1145/2145816.2145864
http://doi.acm.org/10.1145/2145816.2145864
http://doi.acm.org/10.1145/2145816.2145864
https://doi.org/10.1145/2854038.2854058
http://doi.acm.org/10.1145/2854038.2854058
https://doi.org/10.1145/2540708.2540710
https://doi.org/10.1145/2540708.2540710
http://doi.acm.org/10.1145/2540708.2540710

Bibliography 137

[143] Stephen T Welstead. Fractal and wavelet image compression techniques. SPIE Op-
tical Engineering Press, 1999. ISBN: 9780819435033.

[144] C. Wilkerson et al. “Trading off Cache Capacity for Reliability to Enable Low
Voltage Operation”. In: In Proceedings of the 35th International Symposium on
Computer Architecture (ISCA). 2008, pp. 203–214. DOI: 10.1109/ISCA.2008.
22.

[145] G. Woltman and S Kurowski. GIMPS, The Great Internet Mersenne Prime Search.
2008. URL: https://www.mersenne.org/.

[146] Amir Yazdanbakhsh et al. “AXBENCH: A Multi-Platform Benchmark Suite
for Approximate Computing”. In: IEEE Design & Test (2016).

[147] Charles R Yount and Daniel P Siewiorek. “A methodology for the rapid in-
jection of transient hardware errors”. In: IEEE Trans. on Computers (1996).

[148] Foivos S. Zakkak et al. Inference and Declaration of Independence: Impact on
Deterministic Task Parallelism. New York, NY, USA, 2012. DOI: 10.1145/
2370816.2370892. URL: http://doi.acm.org/10.1145/2370816.
2370892.

[149] Qian Zhang et al. “ApproxIt: An Approximate Computing Framework for
Iterative Methods”. In: Proceedings of the The 51st Annual Design Automation
Conference on Design Automation Conference. DAC ’14. New York, NY, USA:
ACM, 2014, 97:1–97:6. ISBN: 978-1-4503-2730-5. DOI: 10.1145/2593069.
2593092. URL: http://doi.acm.org/10.1145/2593069.2593092.

[150] Zeyuan Allen Zhu et al. “Randomized Accuracy-aware Program Transfor-
mations for Efficient Approximate Computations”. In: Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’12. New York, NY, USA: ACM, 2012, pp. 441–454. ISBN: 978-1-
4503-1083-3. DOI: 10.1145/2103656.2103710. URL: http://doi.acm.
org/10.1145/2103656.2103710.

[151] Y. Zu et al. “Adaptive Guardband Scheduling to Improve System-Level Effi-
ciency of the POWER7”. In: In Proceedings of the 48th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 2015, pp. 308–321.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 01:59:22 EEST - 137.108.70.13

https://doi.org/10.1109/ISCA.2008.22
https://doi.org/10.1109/ISCA.2008.22
https://www.mersenne.org/
https://doi.org/10.1145/2370816.2370892
https://doi.org/10.1145/2370816.2370892
http://doi.acm.org/10.1145/2370816.2370892
http://doi.acm.org/10.1145/2370816.2370892
https://doi.org/10.1145/2593069.2593092
https://doi.org/10.1145/2593069.2593092
http://doi.acm.org/10.1145/2593069.2593092
https://doi.org/10.1145/2103656.2103710
http://doi.acm.org/10.1145/2103656.2103710
http://doi.acm.org/10.1145/2103656.2103710

	Abstract
	Περίληψη
	Acknowledgements
	Introduction
	The reality of power consumption
	Reliability and Power
	Design Space exploration
	Hardware Level
	Software level
	Significance Definition

	Contributions
	Significance Aware Computing
	Significance aware fault tolerant programming model
	Significance aware Runtime system for fault tolerant computing
	Power/energy and fault modeling of the unsafe region
	Significance-aware programming model for approximate computing
	Significance aware Runtime system for approximate computing

	Exploiting Voltage Margins for Energy Efficiency
	Experimental Frameworks for Reliability Analysis

	Outline

	Significance Aware Fault Tolerant Computing
	Contributions
	Programming Model Objectives & Properties
	Significance Characterization
	Safety Isolation
	Architecture Neutrality
	Parallelism Expression
	Relaxed Synchronization
	User Friendliness

	High Level Description
	Task-Based Programming model
	Pragmas for the Expression of Parallelism and Significance
	Early Error Detection To minimize Fault Propagation
	Elastic Synchronization
	Significance of Data

	Syntax
	Task Definition and Significance Characterization
	Synchronization

	Example
	Programmer Insight
	Significance-aware Runtime System
	Runtime Execution Management
	Memory Management
	Life of a group-of-tasks

	Evaluation
	Benchmarks
	Evaluation of Programming model and Runtime System
	Runtime Overhead

	Energy Reduction Evaluation methodology
	Execution Time and Energy Consumption Model
	Execution time modeling
	Power and energy modeling
	Calibration and validation

	Fault Model and Fault Injection Methodology
	Fault modeling
	Simulation-based fault injection
	Software-based fault injection during native execution

	Experimental Evaluation

	Significance Aware Approximate Computing
	Contributions
	Programming Model
	Runtime support for significance aware approximate computing
	Life of a group-of-tasks
	Approximate vs Fault Tolerant Runtime Support

	Experimental Evaluation
	Approach
	Experimental Results

	Modeling and Prediction of Voltage Margins in Multicore CPUs
	Background
	Contributions
	Methodology
	Offline Characterization Background
	Methodology to identify maxVmargin
	Results of offline maxVmargin Characterization
	Performance Counter Profiling

	Modeling phase
	Combine Offline Data
	Data Splitting
	Model fitting
	Feature Number
	Feature Selection Algorithm
	Supervised Learning Algorithm
	Hyper-parameter selection

	Safety Margin

	Evaluation
	Mixed Workload Long Run Evaluation

	Voltage Emergencies

	Experimental Frameworks for Reliability Analysis
	Contributions
	GemFI:Fault Injection Tool for Studying the Behavior of Applications on Unreliable Substrates
	The Gem5 Simulator
	GemFI Design and Implementation
	GemFI User Interface

	Simple Example
	GemFI Internals and Implementation
	Simulation Checkpointing
	Simulation Campaigns on a Network Of Workstations
	Validation
	Validation Methodology
	Experimental Results

	GemFI Performance Evaluation

	XM2: A Framework for Evaluating Software on Reduced Margins Hardware
	Platform Requirements
	Tool Design and Configuration
	Configuration File
	Run-time Library API
	Example
	Flow of a Fault Injection Campaign
	Evaluation

	Arm Cortex A53 Vulnerability Analysis
	Instruction Level Error Resiliency Analysis
	Error Resiliency of Source Code and Algorithm Transformations
	Compiler Optimizations VS Frequency Margins
	Source Code Transformations
	Memory Access Pattern Optimizations
	SIMD Optimizations

	GemFI versus XM2

	Related work
	Approximate computing
	Fault Tolerant computing
	Power and Energy-Aware Optimization

	Voltage Margin Characterization and Prediction
	Fault Injection Tools

	Conclusions
	Future Work

	Related publications
	Contribution to Joint Publications
	Bibliography

