252 research outputs found

    Peer coaching through mHealth targeting physical activity in people with Parkinson disease: feasibility study

    Get PDF
    BACKGROUND: Long-term engagement in exercise and physical activity mitigates the progression of disability and increases quality of life in people with Parkinson disease (PD). Despite this, the vast majority of individuals with PD are sedentary. There is a critical need for a feasible, safe, acceptable, and effective method to assist those with PD to engage in active lifestyles. Peer coaching through mobile health (mHealth) may be a viable approach. OBJECTIVE: The purpose of this study was to develop a PD-specific peer coach training program and a remote peer-mentored walking program using mHealth technology with the goal of increasing physical activity in persons with PD. We set out to examine the feasibility, safety, and acceptability of the programs along with preliminary evidence of individual-level changes in walking activity, self-efficacy, and disability in the peer mentees. METHODS: A peer coach training program and a remote peer-mentored walking program using mHealth was developed and tested in 10 individuals with PD. We matched physically active persons with PD (peer coaches) with sedentary persons with PD (peer mentees), resulting in 5 dyads. Using both Web-based and in-person delivery methods, we trained the peer coaches in basic knowledge of PD, exercise, active listening, and motivational interviewing. Peer coaches and mentees wore FitBit Zip activity trackers and participated in daily walking over 8 weeks. Peer dyads interacted daily via the FitBit friends mobile app and weekly via telephone calls. Feasibility was determined by examining recruitment, participation, and retention rates. Safety was assessed by monitoring adverse events during the study period. Acceptability was assessed via satisfaction surveys. Individual-level changes in physical activity were examined relative to clinically important differences. RESULTS: Four out of the 5 peer pairs used the FitBit activity tracker and friends function without difficulty. A total of 4 of the 5 pairs completed the 8 weekly phone conversations. There were no adverse events over the course of the study. All peer coaches were "satisfied" or "very satisfied" with the training program, and all participants were "satisfied" or "very satisfied" with the peer-mentored walking program. All participants would recommend this program to others with PD. Increases in average steps per day exceeding the clinically important difference occurred in 4 out of the 5 mentees. CONCLUSIONS: Remote peer coaching using mHealth is feasible, safe, and acceptable for persons with PD. Peer coaching using mHealth technology may be a viable method to increase physical activity in individuals with PD. Larger controlled trials are necessary to examine the effectiveness of this approach.This study is supported by Boston Roybal Center for Active Lifestyle Interventions (RALI Boston), Grant #P30 AG048785, and the American Parkinson Disease Association, Massachusetts chapter. The authors would like to thank Nicole Sullivan, SOT, for her assistance with data management and data collection and Nick Wendel, DPT, for his assistance with data collection. Additionally, the authors would like to thank the participants in this study for their time, effort, and insights. (P30 AG048785 - Boston Roybal Center for Active Lifestyle Interventions (RALI Boston); American Parkinson Disease Association, Massachusetts chapter)Accepted manuscrip

    Wearables for independent living in older adults: Gait and falls

    Get PDF
    Solutions are needed to satisfy care demands of older adults to live independently. Wearable technology (wearables) is one approach that offers a viable means for ubiquitous, sustainable and scalable monitoring of the health of older adults in habitual free-living environments. Gait has been presented as a relevant (bio)marker in ageing and pathological studies, with objective assessment achievable by inertial-based wearables. Commercial wearables have struggled to provide accurate analytics and have been limited by non-clinically oriented gait outcomes. Moreover, some research-grade wearables also fail to provide transparent functionality due to limitations in proprietary software. Innovation within this field is often sporadic, with large heterogeneity of wearable types and algorithms for gait outcomes leading to a lack of pragmatic use. This review provides a summary of the recent literature on gait assessment through the use of wearables, focusing on the need for an algorithm fusion approach to measurement, culminating in the ability to better detect and classify falls. A brief presentation of wearables in one pathological group is presented, identifying appropriate work for researchers in other cohorts to utilise. Suggestions for how this domain needs to progress are also summarised

    Free-living monitoring of Parkinson’s disease: lessons from the field

    Get PDF
    Wearable technology comprises miniaturized sensors (e.g. accelerometers) worn on the body and/or paired with mobile devices (e.g. smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionising approaches to healthcare due to their utility, accessibility and affordability. They are positioned to transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility and physical activity. Technological limitations and challenges are highlighted and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multi-disciplinary approach for standardising definitions, protocols and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realise

    BioMeT and algorithm challenges: A proposed digital standardized evaluation framework

    Get PDF
    Technology is advancing at an extraordinary rate. Continuous flows of novel data are being generated with the potential to revolutionize how we better identify, treat, manage, and prevent disease across therapeutic areas. However, lack of security of confidence in digital health technologies is hampering adoption, particularly for biometric monitoring technologies (BioMeTs) where frontline healthcare professionals are struggling to determine which BioMeTs are fit-for-purpose and in which context. Here, we discuss the challenges to adoption and offer pragmatic guidance regarding BioMeTs, cumulating in a proposed framework to advance their development and deployment in healthcare, health research, and health promotion. Furthermore, the framework proposes a process to establish an audit trail of BioMeTs (hardware and algorithms), to instill trust amongst multidisciplinary users

    Designing socially acceptable mHealth technologies for Parkinson's disease self-management

    Get PDF
    Mobile health (mHealth) technologies for Parkinson’s disease management have developed quickly in recent years. Research in this area typically focuses on evaluation of the accuracy and reliability of the technology, often to the exclusion of social factors and patient perspectives. This qualitative systematic review aimed to investigate the barriers to and facilitators of use mHealth technologies for disease self-management from the perspective of People with Parkinson's (PwP). Findings revealed that technological, as well as social, and financial factors are key considerations for mHealth design, to ensure its acceptability, and long-term use by PwP. This study proposes that a co-design approach could contribute to the design and development of mHealth that are socially acceptable to PwP, and enable their successful long-term use in the context of daily life.Mobile health (mHealth) technologies for Parkinson’s disease management have developed quickly in recent years. Research in this area typically focuses on evaluation of the accuracy and reliability of the technology, often to the exclusion of social factors and patient perspectives. This qualitative systematic review aimed to investigate the barriers to and facilitators of use mHealth technologies for disease self-management from the perspective of People with Parkinson's (PwP). Findings revealed that technological, as well as social, and financial factors are key considerations for mHealth design, to ensure its acceptability, and long-term use by PwP. This study proposes that a co-design approach could contribute to the design and development of mHealth that are socially acceptable to PwP, and enable their successful long-term use in the context of daily life

    Feasibility and acceptability of a multi-components intervention (PDConnect) to support physical activity in people living with Parkinson's: a mixed methods study.

    Get PDF
    The benefits of physical activity (PA) for people with Parkinson's are widely acknowledged. To date, research has focussed on the effectiveness of PA interventions, with limited research exploring the optimum means of supporting people living with Parkinson's to change their PA behaviour. A narrative review was undertaken to provide context and underpin the development of a multi-component PA intervention (PDConnect) for people with Parkinson's. PDConnect combines specialist physiotherapy, group-based PA, and self-management with the aim of promoting increased PA and PA self-management. This study was undertaken to determine the feasibility and acceptability of the PDConnect intervention. This study adopted a pragmatist worldview and employed mixed methods. A convergent sequential mixed-methods design was adopted and delivered online via Microsoft Teams. A convenience sample of 31 people with Parkinson's were recruited and randomised into two groups: (i) the usual care group received standard physiotherapy once a week for six-weeks. (ii) the PDConnect group received once a week for six weeks physiotherapy that combined PA, education and behaviour change interventions delivered by a Parkinson's specialist physiotherapist. This was followed by 12 weekly sessions of group-based PA by a fitness instructor specially trained in Parkinson's. Participants were then contacted by the fitness instructor once a month for three months to support PA engagement. Primary feasibility data were collected during the study, with acceptability assessed via semi-structured interviews. Secondary outcomes encompassing motor, non-motor, PA, and health and well-being measures were assessed at baseline, and at six, 18 and 30 weeks. PDConnect was shown to be feasible and safe. The sample was recruited in 12 weeks, and the retention rate was 74%. Outcome measure response and activity diary return rate was high (>95%, 84% respectively). PDConnect attendance was high: 100% for the physiotherapy component and 83% for the group-based exercise component. Participants were very satisfied with PDConnect and perceived that participation increased exercise confidence and knowledge and understanding of Parkinson's. Participation positively impacted Parkinson's symptoms, with perceived improvements in flexibility, muscle strength, PA levels and endurance. Fifty percent of participants receiving PDConnect reported that they were much improved compared to 10% in the usual care group. PDConnect study resources were deemed acceptable. Intervention fidelity was high, with 89% of the physiotherapy and 88% of the group-based exercise delivered as planned. All progression criteria were met, except for participant retention which fell one percent below the a priori criterion. PDConnect is feasible to deliver and rated as highly acceptable among people with Parkinson's. A large-scale trial is required to fully evaluate the effectiveness of PDConnect. Sampling within a future trial needs to include under-represented groups and broader cultural and ethical diversity. In addition, appropriate funding is required to minimise digital exclusion and optimise digital literacy. Minor modifications to the participant manual to support personalisation, and further consideration of type of PA monitor is also recommended. Further consultation with the Parkinson's community is required to guide how to optimise social connection when delivering PA online and to inform the selection of future outcome measures

    Empowering patients in self-management of parkinson's disease through cooperative ICT systems

    Get PDF
    The objective of this chapter is to demonstrate the technical feasibility and medical effectiveness of personalised services and care programmes for Parkinson's disease, based on the combination of mHealth applications, cooperative ICTs, cloud technologies and wearable integrated devices, which empower patients to manage their health and disease in cooperation with their formal and informal caregivers, and with professional medical staff across different care settings, such as hospital and home. The presented service revolves around the use of two wearable inertial sensors, i.e. SensFoot and SensHand, for measuring foot and hand performance in the MDS-UPDRS III motor exercises. The devices were tested in medical settings with eight patients, eight hyposmic subjects and eight healthy controls, and the results demonstrated that this approach allows quantitative metrics for objective evaluation to be measured, in order to identify pre-motor/pre-clinical diagnosis and to provide a complete service of tele-health with remote control provided by cloud technologies. © 2016, IGI Global. All rights reserved

    A new approach to study gait impairments in Parkinson’s disease based on mixed reality

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (especialização em Eletrónica Médica)Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD onset is at 55 years-old on average, and its incidence increases with age. This disease results from dopamine-producing neurons degeneration in the basal ganglia and is characterized by various motor symptoms such as freezing of gait, bradykinesia, hypokinesia, akinesia, and rigidity, which negatively impact patients’ quality of life. To monitor and improve these PD-related gait disabilities, several technology-based methods have emerged in the last decades. However, these solutions still require more customization to patients’ daily living tasks in order to provide more objective, reliable, and long-term data about patients’ motor conditions in home-related contexts. Providing this quantitative data to physicians will ensure more personalized and better treatments. Also, motor rehabilitation sessions fostered by assistance devices require the inclusion of quotidian tasks to train patients for their daily motor challenges. One of the most promising technology-based methods is virtual, augmented, and mixed reality (VR/AR/MR), which immerse patients in virtual environments and provide sensory stimuli (cues) to assist with these disabilities. However, further research is needed to improve and conceptualize efficient and patient-centred VR/AR/MR approaches and increase their clinical evidence. Bearing this in mind, the main goal of this dissertation was to design, develop, test, and validate virtual environments to assess and train PD-related gait impairments using mixed reality smart glasses, integrated with another high-technological motion tracking device. Using specific virtual environments that trigger PD-related gait impairments (turning, doorways, and narrow spaces), it is hypothesized that patients can be assessed and trained in their daily challenges related to walking. Also, this tool integrates on-demand visual cues to provide visual biofeedback and foster motor training. This solution was validated with end-users to test the identified hypothesis. The results showed that, in fact, mixed reality has the potential to recreate real-life environments that often provoke PD-related gait disabilities, by placing virtual objects on top of the real world. On the contrary, biofeedback strategies did not significantly improve the patients’ motor performance. The user experience evaluation showed that participants enjoyed participating in the activity and felt that this tool can help their motor performance.A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais comum depois da doença de Alzheimer. O início da DP ocorre, em média, aos 55 anos de idade, e a sua incidência aumenta com a idade. Esta doença resulta da degeneração dos neurónios produtores de dopamina nos gânglios basais e é caracterizada por vários sintomas motores como o congelamento da marcha, bradicinesia, hipocinesia, acinesia, e rigidez, que afetam negativamente a qualidade de vida dos pacientes. Nas últimas décadas surgiram métodos tecnológicos para monitorizar e treinar estas desabilidades da marcha. No entanto, estas soluções ainda requerem uma maior personalização relativamente às tarefas diárias dos pacientes, a fim de fornecer dados mais objetivos, fiáveis e de longo prazo sobre o seu desempenho motor em contextos do dia-a-dia. Através do fornecimento destes dados quantitativos aos médicos, serão assegurados tratamentos mais personalizados. Além disso, as sessões de reabilitação motora, promovidas por dispositivos de assistência, requerem a inclusão de tarefas quotidianas para treinar os pacientes para os seus desafios diários. Um dos métodos tecnológicos mais promissores é a realidade virtual, aumentada e mista (RV/RA/RM), que imergem os pacientes em ambientes virtuais e fornecem estímulos sensoriais para ajudar nestas desabilidades. Contudo, é necessária mais investigação para melhorar e conceptualizar abordagens RV/RA/RM eficientes e centradas no paciente e ainda aumentar as suas evidências clínicas. Tendo isto em mente, o principal objetivo desta dissertação foi conceber, desenvolver, testar e validar ambientes virtuais para avaliar e treinar as incapacidades de marcha relacionadas com a DP usando óculos inteligentes de realidade mista, integrados com outro dispositivo de rastreio de movimento. Utilizando ambientes virtuais específicos que desencadeiam desabilidades da marcha (rodar, portas e espaços estreitos), é possível testar hipóteses de que os pacientes possam ser avaliados e treinados nos seus desafios diários. Além disso, esta ferramenta integra pistas visuais para fornecer biofeedback visual e fomentar a reabilitação motora. Esta solução foi validada com utilizadores finais de forma a testar as hipóteses identificadas. Os resultados mostraram que, de facto, a realidade mista tem o potencial de recriar ambientes da vida real que muitas vezes provocam deficiências de marcha relacionadas à DP. Pelo contrário, as estratégias de biofeedback não provocaram melhorias significativas no desempenho motor dos pacientes. A avaliação feita pelos pacientes mostrou que estes gostaram de participar nos testes e sentiram que esta ferramenta pode auxiliar no seu desempenho motor

    Self-Tracking, Social Media and Personal Health Records for Patient Empowered Self-Care

    Get PDF
    Objectives: This paper explores the range of self-tracking devices and social media platforms used by the self-tracking community, and examines the implications of widespread adoption of these tools for scientific progress in health informatics. Methods: A literature review was performed to investigate the use of social media and self-tracking technologies in the health sector. An environmental scan identified a range of products and services which were used to exemplify three levels of self-tracking: self-experi- mentation, social sharing of data and patient controlled electronic health records. Results: There appears to be an increase in the use of self-tracking tools, particularly in the health and fitness sector, but also used in the management of chronic diseases. Evidence of efficacy and effectiveness is limited to date, primarily due to the health and fitness focus of current solutions as opposed to their use in dis- ease management. Conclusions: Several key technologies are converging to produce a trend of increased personal health surveillance and monitoring, so- cial connectedness and sharing, and integration of regional and national health information systems. These trends are enabling new applications of scientific techniques, from personal experimentation to e-epidemiology, as data gathered by individuals are aggregated and shared across increasingly connected healthcare networks. These trends also raise significant new ethical and scientific issues that will need to be addressed, both by health informatics researchers and the communities of self-trackers themselves

    Beyond counting steps:Measuring physical behavior with wearable technology in rehabilitation

    Get PDF
    corecore