1,080 research outputs found

    Trends in human activity recognition using smartphones

    Get PDF
    AbstractRecognizing human activities and monitoring population behavior are fundamental needs of our society. Population security, crowd surveillance, healthcare support and living assistance, and lifestyle and behavior tracking are some of the main applications that require the recognition of human activities. Over the past few decades, researchers have investigated techniques that can automatically recognize human activities. This line of research is commonly known as Human Activity Recognition (HAR). HAR involves many tasks: from signals acquisition to activity classification. The tasks involved are not simple and often require dedicated hardware, sophisticated engineering, and computational and statistical techniques for data preprocessing and analysis. Over the years, different techniques have been tested and different solutions have been proposed to achieve a classification process that provides reliable results. This survey presents the most recent solutions proposed for each task in the human activity classification process, that is, acquisition, preprocessing, data segmentation, feature extraction, and classification. Solutions are analyzed by emphasizing their strengths and weaknesses. For completeness, the survey also presents the metrics commonly used to evaluate the goodness of a classifier and the datasets of inertial signals from smartphones that are mostly used in the evaluation phase

    Ensemble and continual federated learning for classifcation tasks

    Get PDF
    Federated learning is the state-of-the-art paradigm for training a learning model collaboratively across multiple distributed devices while ensuring data privacy. Under this framework, different algorithms have been developed in recent years and have been successfully applied to real use cases. The vast majority of work in federated learning assumes static datasets and relies on the use of deep neural networks. However, in real world problems, it is common to have a continual data stream, which may be non stationary, leading to phenomena such as concept drift. Besides, there are many multi-device applications where other, non-deep strategies are more suitable, due to their simplicity, explainability, or generalizability, among other reasons. In this paper we present Ensemble and Continual Federated Learning, a federated architecture based on ensemble techniques for solving continual classification tasks. We propose the global federated model to be an ensemble, consisting of several independent learners, which are locally trained. Thus, we enable a flexible aggregation of heterogeneous client models, which may differ in size, structure, or even algorithmic family. This ensemble-based approach, together with drift detection and adaptation mechanisms, also allows for continual adaptation in situations where data distribution changes over time. In order to test our proposal and illustrate how it works, we have evaluated it in different tasks related to human activity recognition using smartphonesOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research has received financial support from AEI/FEDER (European Union) Grant Number PID2020-119367RB-I00, as well as the Consellería de Cultura, Educación e Universitade of Galicia (accreditation ED431G-2019/04, ED431G2019/01, and ED431C2018/29), and the European Regional Development Fund (ERDF). It has also been supported by the Ministerio de Universidades of Spain in the FPU 2017 program (FPU17/04154)S

    Road Traffic Monitoring System Based on Mobile Devices and Bluetooth Low Energy Beacons

    Get PDF
    The paper proposes a method, which utilizes mobile devices (smartphones) and Bluetooth beacons, to detect passing vehicles and recognize their classes. The traffic monitoring tasks are performed by analyzing strength of radio signal received by mobile devices from beacons that are placed on opposite sides of a road. This approach is suitable for crowd sourcing applications aimed at reducing travel time, congestion, and emissions. Advantages of the introduced method were demonstrated during experimental evaluation in real-traffic conditions. Results of the experimental evaluation confirm that the proposed solution is effective in detecting three classes of vehicles (personal cars, semitrucks, and trucks). Extensive experiments were conducted to test different classification approaches and data aggregation methods. In comparison with state-of-the-art RSSI-based vehicle detection methods, higher accuracy was achieved by introducing a dedicated ensemble of random forest classifiers with majority voting

    Walking Recognition in Mobile Devices

    Get PDF
    Presently, smartphones are used more and more for purposes that have nothing to do with phone calls or simple data transfers. One example is the recognition of human activity, which is relevant information for many applications in the domains of medical diagnosis, elderly assistance, indoor localization, and navigation. The information captured by the inertial sensors of the phone (accelerometer, gyroscope, and magnetometer) can be analyzed to determine the activity performed by the person who is carrying the device, in particular in the activity of walking. Nevertheless, the development of a standalone application able to detect the walking activity starting only from the data provided by these inertial sensors is a complex task. This complexity lies in the hardware disparity, noise on data, and mostly the many movements that the smartphone can experience and which have nothing to do with the physical displacement of the owner. In this work, we explore and compare several approaches for identifying the walking activity. We categorize them into two main groups: the first one uses features extracted from the inertial data, whereas the second one analyzes the characteristic shape of the time series made up of the sensors readings. Due to the lack of public datasets of inertial data from smartphones for the recognition of human activity under no constraints, we collected data from 77 different people who were not connected to this research. Using this dataset, which we published online, we performed an extensive experimental validation and comparison of our proposalsThis research has received financial support from AEI/FEDER (European Union) grant number TIN2017-90135-R, as well as the Consellería de Cultura, Educación e Ordenación Universitaria of Galicia (accreditation 2016–2019, ED431G/01 and ED431G/08, reference competitive group ED431C2018/29, and grant ED431F2018/02), and the European Regional Development Fund (ERDF). It has also been supported by the Ministerio de Educación, Cultura y Deporte of Spain in the FPU 2017 program (FPU17/04154), and the Ministerio de Economía, Industria y Competitividad in the Industrial PhD 2014 program (DI-14-06920)S
    corecore