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Abstract
Recognizing human activities and monitoring population behavior are fundamental needs of our society. Population security,
crowd surveillance, healthcare support and living assistance, and lifestyle and behavior tracking are some of the main appli-
cations that require the recognition of human activities. Over the past few decades, researchers have investigated techniques
that can automatically recognize human activities. This line of research is commonly known as Human Activity Recognition
(HAR). HAR involves many tasks: from signals acquisition to activity classification. The tasks involved are not simple and
often require dedicated hardware, sophisticated engineering, and computational and statistical techniques for data preprocess-
ing and analysis. Over the years, different techniques have been tested and different solutions have been proposed to achieve
a classification process that provides reliable results. This survey presents the most recent solutions proposed for each task in
the human activity classification process, that is, acquisition, preprocessing, data segmentation, feature extraction, and clas-
sification. Solutions are analyzed by emphasizing their strengths and weaknesses. For completeness, the survey also presents
the metrics commonly used to evaluate the goodness of a classifier and the datasets of inertial signals from smartphones that
are mostly used in the evaluation phase.

Keywords ADL · Human activity recognition · Machine learning · Deep learning · Smartphone

1 Introduction

The first work on human activity recognition dates back to
the late ’90s [1]. During the last 30 years, the Human Activ-
ity Recognition (HAR) research community has been very
active proposing several methods and techniques. In recent
years, significant research has been focused on experiment-
ing with solutions that can recognize Activities of Daily
Living (ADLs) from inertial signals. This is mainly due to
two factors: the increasingly low cost of hardware and the
wide spread ofmobile devices equippedwith inertial sensors.
The use of smartphones to both acquire and process signals
opens opportunities in a variety of application contexts such
as surveillance, healthcare, and delivering [2–4].

In the context of HAR, most of the classification methods
rely on the Activity Recognition Process (ARP) protocol. As
depicted in Fig. 1, ARP consists of five steps, acquisition,
preprocessing, segmentation, feature extraction, and classi-
fication.
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The data acquisition step is in charge of acquiring data
from sensors. Data generally originate from sensors such as
accelerometers, compasses, and gyroscopes. Data acquired
from sensors typically include artifacts and noise due tomany
reasons, such as electronic fluctuation, sensors calibration,
and malfunctions. Thus, data have to be processed.

The preprocessing step is responsible for removing arti-
facts and noise. Generally, preprocessing is based on filtering
techniques. The output of the step is a set of filtered data that
constitute the input for the next step.

The data segmentation step is responsible of splitting data
into segments, also called windows. Data segmentation is a
common practice which facilitates the next step.

The feature extraction step aims to extract the most sig-
nificative portion of information from the data to be given to
the classification algorithm while reducing data dimension.

The classification is the last step of the process. It consists
in training and testing the algorithm. That is, the parameters
of the classification model are estimated during the training
procedure. Thereinafter, the classification performances of
the model are tested in the testing procedure.

This paper presents a review of the techniques and meth-
ods commonly adopted in the steps of the ARP process. The
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Fig. 1 Activity recognition
process
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focus is on techniques and methods that have been experi-
mented and proposed for smartphone. Therefore, this review
does not include other types of devices used in HAR. The
choice to consider smartphones only is due to the increasing
attention paid to these devices by the scientific community as
a result of their valuable equipment and their wide diffusion.

The paper also provides an overview of the most used
datasets for evaluating HAR techniques. Since this review is
focused on smartphones, the datasets included are those of
inertial signals collected using smartphones.

The analysis of the state-of-the-art encompasses scientific
articles selected based on the following criteria and key-
words:

– first 100 papers found in Google Scholar with keywords:
human activity recognition smartphone,

– first 100 papers found in Google Scholar with key-
words: human activity recognition smartphone staring
from 2015,

– first 100 papers found in Google Scholar with keywords:
personalized human activity recognition smartphone,

– first 100 papers found in Google Scholar with keywords:
personalized human activity recognition smartphone
staring from 2015.

The selection of the papers has been completed on March
2020.

We initially removedduplicates from the resulting articles.
Then, we manually checked the remaining papers by reading
the abstract, the introduction, and the conclusion sections to
quickly eliminate those articles that are out of the scope of our
survey. The articles that we excluded are those that rely on
devices other than smartphones, those that use smartphones
in conjunction with other devices, those that use sensors dif-
ferent from the inertial ones, and those that dealwith complex
ADLs such as preparing a meal, taking transportation, and
so on.

The paper is organized as follows.
Section 2 introduces the problem related to human activ-

ity recognition. Section 3 describes the data acquisition step
and, thus, the sensors that are mainly exploited in HAR for
data acquisition. Section 4 presents the preprocessing activ-

ity that is normally performed on the raw data as acquired
by the sensors. Sections 5 and 6 describe the commonly
used segmentation strategies and features, respectively. Sec-
tion 7 introduces themost recent classificationmethods, their
strength, andweakness.Moreover, the Section discusses per-
sonalization and why it is important to improve the overall
classification performance. Given the importance of datasets
in the evaluation process of techniques and methods, Sect. 8
discusses the characteristics of a set of publicly available
datasets often used in the evaluation of classifiers. Section 9
summarizes the lessons learned and provides some guidance
onwhere the research should focus. Finally, Sect. 10 sketches
the conclusions.

2 Background

This section is intended to provide a quick overview of the
recognition process of activities of daily living. The details
are then discussed in more detail in the respective sections.

The goal of human activity recognition (HAR) is to auto-
matically analyze and understand human actions from sig-
nals acquired by multimodal wearable and/or environmental
devices, such as accelerometer, gyroscope,microphones, and
camera [5].

Recently, research has been shifting toward the use of
wearable devices. There are several reasons that have led
to this shift, which include lower costs as they do not require
a special installation, the use also outside the home, and a
greater willingness to use as perceived by users as less intru-
sive respecting their privacy.

Among wearable devices, recently, smartphones are the
most widely used compared to ad hoc devices. This is mainly
due to the fact that the smartphone is now widely used even
in the older population and is always ‘worn’ without being
perceived as an additional element of disturbance, because it
is now integrated into the daily routine.

Figure 2 shows the recognition process. To the left are the
sensors that are the source of the data required to recognize
activities, whereas to the right are activities of daily living
that are recognized by the ‘activity recognition’ chain (in the
middle).
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The potentially recognizable activities vary in complexity:
walking, jogging, sitting, and standing are examples of the
most simple ones; preparing a meal, shopping, taking a bus,
and driving a car are examples of the most complex ones.
Depending on the complexity, different techniques and types
of signals are implemented. We are interested in activities
that belong to the category of the simplest ones.

When the wearable device is a smartphone, the most com-
monly used sensors are the accelerometer, gyroscope, and
magnetometer. Therefore, the first step of theActivityRecog-
nitionProcess (ARP) introduced inSect. 1 (DataAcquisition)
requires to be able to interface with the sensors and to acquire
the signals with the required frequencies. This step is detailed
in Sect. 3.

As the signals are acquired, they undergo an elabora-
tion process whose purpose is to remove the noise caused
by the user and the sensors. Generally, high-pass, low-pass
filters, and average smoothingmethods are applied. This cor-
responds to the second step (Preprocessing) of the ARP that
is detailed in Sect. 4.

The continuous pre-processed data stream is then split into
segments whose dimensions and overlaps may vary accord-
ing to several factors such as the technique used to classify,
the type of activity to be detected, and the type of signals to be
processed. This corresponds to the third step (Segmentation)
of the ARP process that is detailed in Sect. 5.

The segments of pre-processed signals are then elaborated
to extract significative features. This step (Feature extraction
in the ARP process) is crucial for the performance of the final
recognition. Two main types of features are commonly used:
hand-crafted features (which are divided into time-domain
and frequency-domain) and learned features that are auto-
matically discovered. Feature extraction is detailed in Sect. 6.

The last step of the ARP process is Classification.
For many years, this step was accomplished through the
exploitation of traditional machine learning techniques.
More recently, due to promising results in the field of video
signal processing, deep learning techniques have also been
used.More recently, due to the problem known as population
diversity [6] (which is related to the natural users heterogene-
ity in terms of data), researchers have applied recognition
techniques based on personalization to obtain better results.
Classification is detailed in Sect. 7.

3 Data acquisition

Historically, human activity recognition techniques exploited
both environmental devices and ad hoc devices worn by
subjects [7]. Commonly used environment devices include
cameras [8–11], and other sensors such as, for example RFID
[12], acoustic sensors [13], andWiFi [14]. The ad hoc devices

were worn by people on different parts of their bodies and
included typically inertial sensors [7].

Over the past decade, a considerable progress in hard-
ware and software technologies has modified habits of the
entire population and business. On one hand, the micro-
electro-mechanical systems (MEMS) have reduced sensors
size, cost, and power needs of sensors, while capacity, preci-
sion, and accuracy have increased.On the other hand, Internet
of Things (IoT) has enabled the spread of easy and fast con-
nections between devices, objects, and environments. The
pervasiveness and the reliability of these new technologies
enables the acquisition and storage of a large amount of mul-
timodal data [15].

Thanks to these technological advances, smartphones,
smartwatches, home assistants, and drones are daily used
and represent essential instruments for many economy busi-
nesses, such as remote healthcare, merchandise delivering,
agriculture, and others [16]. These new technologies together
with the large availability of data gained the attention from
the research communities, including HAR.

The goal of this section is to present the most used
wearable devices for data acquisition in HAR, which are a
consequence of the technological advances discussed above.

Wearable devices encompass all accessories attached to
the person’s body or clothing incorporating computer tech-
nologies, such as smart clothing, and ear-worn devices [17].
They enable to capture attributes of interest as motion, loca-
tion, temperature, and ECG, among others.

Nowadays, smartphones and smartwatches are the most
used wearable devices among the population. In particular,
the smartphone is one of the most used devices in people’s
daily lives and it has been stated that it is the first thing people
reach for after waking up in the morning [18,19].

Smartphone’s pervasiveness over last years is due mostly
because it provides the opportunity to connect with people,
to play games, to read emails, and, in general, to achieve
almost all online services that a user needs. In particular, their
high diffusion is a crucial aspect, because the more the users,
the more the data availability. The more data availability, the
more information and themore the possibility to create robust
models.

A the same time, smartphones are preferable over other
wearables, because a huge amount of sensors and softwares
are already installed and permit to acquire many kind of data,
potentially, all day long.

The choice of the sensors plays an important role for the
activity recognition performances [20].

Accelerometers, gyroscopes, and magnetometers are the
most used sensors for HAR tasks and classification.

– Accelerometer. The accelerometer is an electromechani-
cal sensor that captures the rate of change of the velocity
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Fig. 2 An abstracted overview
of the human activity
recognition process

of an object over a time laps, that is, the acceleration.
It is composed of many other sensors, including some
microscopic crystal structures that become stressed due
to accelerative forces. The accelerometer interprets the
voltage coming from the crystals to understand how fast
the device is moving and which direction it is pointing
in. A smartphone records three-dimension acceleration,
which join the reference devices axes. Thus, a trivariate
time series is produced. The measuring unit is meters
over second squared (m/s2) or g forces.

– Gyroscope. The gyroscope measures three-axial angu-
lar velocity. Its unit is measured in degrees over second
(degrees/s).

– Magnetometer. A magnetometer measures the change of
amagnetic field at a particular location. Themeasurement
unit is Tesla (T ), and is usually recorded on the three axes.

In addition to accelerometers, gyroscopes, and magne-
tometers, other less common sensors are used in HAR. For
example, Garcia-Ceja and Brena use a barometer to classify
vertical activities, such as ascending and descending stairs
[21]. Cheng et al. [22] and Foubert et al. [23] use pressure
sensors arrays to detect respectively activities and lying and
sitting transitions. Other researchers use biometric sensors.
For example, Zia et al. use electromyography (EMG) for
fine-grained motion detection [24], and Liu et al. use elec-
trocardiography (ECG) in conjunction with accelerometer to
recognize activities [25].

Accelerometer is themost popular sensor inHAR,because
it measures the directional movement of a subject’s motion
status over time [26–31]. Nevertheless, it struggles to resolve
lateral orientation or tilt, and to find out the location of the
user, which are precious information for activity recognition.

For these reasons, some sensor combinations have been
proposed as valid solution in HAR. In most of the cases,
accelerometer and gyroscope are used conjointly to both
acquire more information about the device movements, and
to possibility infer the device position [32–36]. Moreover,

Shoaib et al. demonstrated that gyroscope-based classifica-
tion achieves better results than accelerometer for specific
activities, such as walking downstairs and upstairs [35]. Fur-
thermore, as afore mentioned, gyroscope data permit to infer
device position that drastically impacts recognition perfor-
mances [37,38].

Other studies combined accelerometer and magnetometer
simultaneously [39], acceleration and gyroscope with mag-
netometer [40,41], accelerometer with microphone and GPS
[6], and other combinations [42].

An important factor to consider in the acquisition step is
the sample rate that influences the number of available sam-
ples for the classification step. The sampling rate is defined
as the number of data points recorded in a second and is
expressed inHertz. For instance, if the sampling rate is equal
to 50Hz, it means that 50 values per second are recorded.
This parameter is normally set during the acquisition phase.

In the literature, different sampling rates have been con-
sidered. For instance, in [43], the sampling rate is set at 50
Hz, in [44] at 45 Hz, and from 30 to 32 Hz in [32]. Although
the choice is not unanimous in the literature, 50 Hz define a
suitable sampling rate that properly permits to model human
activities [45].

4 Preprocessing

In a classification pipeline, data preprocessing is a funda-
mental step to prepare raw data for further steps.

Raw data coming from sensors often present artifacts due
to instruments, such as electronic fluctuation or sensor cal-
ibration, or to the physical activity its self. Data have to be
cleaned to exclude from the signals these artifacts.

Moreover, accelerometer signal combines the linear accel-
eration due to body motion and due to gravity. The presence
of the gravity is a bias that can influence the accuracy of
the classifier, and thus is a common practice to remove the
gravity component from the raw signal.
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For all the reasons mentioned above, a filtering proce-
dure is normally executed. Filters are powerfully instruments
which acting on frequency component of the signal.

The high-frequency component of the accelerometer sig-
nal is mostly related to the action performed by the subjects,
while the low-frequency component of the accelerometer sig-
nal is mainly related to the presence of gravity [46–48].

Usually, a low-pass filter with cut-off frequency ranging
between 0.1 and 0.5 Hz is used to isolate the gravity com-
ponent. To find the body acceleration component, the result
of the low-pass filtered signal is subtracted from the original
signal [49–51].

Filtering is also used to clear raw data from artifacts. It is
stated that a cut-off frequency of 15Hz is enough to capture
human body motion which energy spectrum lies between 0
Hz and 15 Hz [49,52].

5 Data segmentation

Data segmentation partitions signals into smaller data seg-
ments, also called windows.

Data segmentation helps in overcoming some limitations
due to acquisition and pre-proccessing aspects. First, data
sampling: data recorded from different subjects may present
different lengths in time which is generally a limit for the
classification process. Second, time consumption: multidi-
mensional data can lead to a very high computational time
consumption. Splitting data into smaller segments helps the
algorithm to face with high volumes of data. Third, it helps
the computation of the features extraction procedure in terms
of more simplicity and lower time consumed.

Window characteristics are influenced by: (a) the type of
windowing, (b) the size of the window, and (c) the overlap
among contiguous windows.

5.1 Window type

Three main types of windowing are mainly used in HAR:
activity-defined windows, event-defined windows, and slid-
ing windows [53].

In activity-defined windowing, the initial and end points of
eachwindow are selected by detecting patterns of the activity
changes.

In event-defined windowing, the window is created around
a detected event. In some studies, it is also mentioned as
windows around peak [43].

In sliding windowing, data are split into windows of fixed
size, without gap between two consecutive windows, and, in
some cases, overlapped, as shown in Fig. 4. Sliding window-
ing is the most widely employed segmentation technique in
activity recognition, especially for periodic and static activ-
ities [54].

Fig. 3 State-of-the-art Sliding Window’s Size

5.2 Window size

The choice of the window size influences the accuracy of the
classification [55]. However, its choice is not trivial. Win-
dows should be large enough to guarantee to contain at least
one cycle of an activity and to differentiate similar move-
ments. At the same time, incrementing its dimension does
not necessarily improve the performance. Shoaib et al. show
that 2 s is enough for recognizing basic physical activities
[35].

Figure 3 shows the distribution of windows size among
the state-of-the-art studies we considered. It is possible to
notice that the most frequently used window size does not
exceed 3 s.

The impact of windows sizes on the classification per-
formance still remains a challenging task for the HAR
community and continues to be largely studied in the lit-
erature [35,54,56].

5.3 Window overlap

Another parameter to consider is the percentage of over-
lap among consecutive windows. Sliding windows are often
overlapped, which means that a percentage of a window is
repeated in the subsequent window. This leads to two main
advantages: it avoids noise due to the truncation of data dur-
ing the windowing process, and increases the performance
by increasing the data points number.

Generally, the higher the number of data points, the higher
the classification performance. For these reasons, overlapped
sliding windows are the most common choice in the litera-
ture.

Figure 5 shows the distribution of the percentage overlap
in the state-of-the-art. In more than 50% of the proposals
we selected, an overlap of 50% has been chosen. Some
approaches avoid any overlap [29,32,44,57], claiming faster
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Fig. 4 Sliding windows with and without Overlap

Fig. 5 Distribution of % of overlap in the state-of-the-art

responses in real-time environments and better performances
in detection of short duration movements.

At the end of the segmentation step, data are organized in
vectors vi as follows:

vi = (x1, x2, . . . xn
︸ ︷︷ ︸

x−dimension

,

y1, y2, . . . yn
︸ ︷︷ ︸

y−dimension

,

z1, z2, . . . zn
︸ ︷︷ ︸

z−dimension

),

where x , y, z are the three-axis acceleration values, and vi
is a 1 × (n × k) vector that represents the i th window. k
refers dimensionality of the sensor; for instance, a 3-axial
acceleration has value of k = 3. The number n is the total
length of the windows, and it depends on two factors: the size
of the widows, normally in seconds, and the sampling rate.

6 Feature extraction

Theoretical analysis and experimental studies indicate that
many algorithms scale poorly in domains with large number
of irrelevant and\or redundant data [58].

The literature shows that using a set of features instead
of raw data improves the classification accuracy [59]. Fur-
thermore, features extraction reduces the data dimensionality
while extracting the most important peculiarity of the signal

by abstracting each data segment into a high-level represen-
tation of the same segment.

From a mathematical point of view, features extraction is
defined as a process that extracts a set of new features from the
original data segment through some functionalmapping [60].
For instance, let be x = {x1, x2, . . . , xn} ∈ R

n a segment of
data, an extracted feature fi is given by

fi = gi (x1, x2, . . . , xn) for i = 1, . . . ,m,

where gi : R
n → R is a map. The features space is of

dimension m ≤ n, which means that features’ extraction
reduces raw data space dimension.

In the classification context, the choice of gi is crucial.
In fact, in the recognition process, g has to be chosen, such
that the original data are mapped in separated regions of the
features space. In other words, the researcher assumes that
in the feature space, data diversify better than in the original
space.

The accuracy of activity recognition approaches dramati-
cally depends on the choice of the features [55].

In the literature, theway features gi are extracted is divided
into two main categories: hand-crafted features and learned
features.

6.1 Hand-crafted features

Hand-crafted features are the most used features in HAR
[61–63]. The term “hand-crafted” refers to the fact that the
features are selected from an expert using heuristics.

Hand-crafted features are themselves generally split in
time-domain and frequency-domain features. The signal
domain is changed from time to frequency based on the
Fourier transformation.

Table 1 shows some of the most used time-domain and
frequency-domain features.

Low computational complexity and calculation simplicity
make hand-crafted features still a good practice for activity
recognition.

Nevertheless, they present many disadvantages, such as
a high dependency on the sensor choice and the reliance
on the expert knowledge. Hence, a different set of features
need to be defined for each different type of input data, that
is, accelerometer, gyroscope, time domain, and frequency
domain. In addition, hand-crafted features highly depend on
experts’ prior knowledge and manual data investigation and
it is still not always clear which features are likely to work
best.

It is a common practice to chose the features through
empirical evaluation of different combinations of features
or with the aid of feature selection algorithms [64].
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Table 1 Hand-crafted features in time domain and frequency domain. FFT ( f ) is the Fourier transformation of the signal f

Time domain features
Feature name Formula Description

Minimum min j=1,...n(x j ) Minimum value of a given segment

in each dimension

Maximum max j=1,...n(x j ) Maximum value of a given segment

in each dimension

Mean x̄ = 1
n

∑n
i=1 xi Mean value of a given segment

in each dimension

Median Me = x0.5 : F(x0.5) ≤ 0.5 Median value of a given segment

in each dimension

Standard Deviation s =
√

1
n−1

∑n
i=1(xi − x̄)2 Standard deviation of a given segment

in each dimension

Variance s2 = 1
n−1

∑n
i=1(xi − x̄)2 Variance of a given segment

in each dimension

Interquartile Difference I D = x0.75 − x0.25 Difference between third and first quartile

of a given segment in each dimension

Skewness skw = 1
n

∑n
i=1(xi−x̄)3

s3
Skewness value of a given segment

in each dimension

Kurtosis kurt = 1
n

∑n
i=1(xi−x̄)4

s4
Kurtosis value of a given segment

in each dimension

Root mean square rms =
√

1
n

∑n
i=1 x

2
i Root mean square value of a given segment

in each dimension

Total Sum ts = ∑n
i=1 xi Total sum value of a given segment

in each dimension

Range R = max − min Range of a given segment

in each dimension

Mean of Peak’s distance mp = 1
s2

∑s
j=1

∑s
i=1 d(pi , p j ) Mean of distance between peaks of a given

segment in each dimension

Fourth central moment m4 = 1
n

∑n
j=1(x − x̄)4 Fourth central moment of a given segment

in each dimension

Fifth central moment m5 = 1
n

∑n
i=1(xi − x̄)5 Fifth central moment of a given segment

in each dimension

Frequency domain features
Feature name Formula Description

Entropy H(x) = − ∑n
i=1 p(xi ) log2 p(xi ) Normalized information entropy

of the discrete FFT components

Sum of the spectral I D = x0.75 − x0.25 Difference between third and first quartile

power components of a given segment in each dimension

Mean of the spectral μ f = 1
n

∑n
j=1 FFTj Mean of FFT distribution

components

Median of the spectral Me f = FFT0.5 : F(FFT0.5) = 0.5 Median of FFT distribution

components

First cepstral coefficient c(1) = F−1{log |FFT ( f )|} First coefficient of the cepstrum

transformation
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6.2 Learned features

The goal of feature learning is to automatically discover
meaningful representations of raw data to be analyzed [65].

According to [66], the main features learning methods
from sensor data are the following:

– Codebooks [67,68] considers each sensor datawindow as
a sequence, from which subsequences are extracted and
grouped into clusters. Each cluster center is a codeword.
Then, each sequence is encoded using a bag-of-words
approach using codewords as features.

– Principal Component Analysis (PCA) [69] is a multi-
variate technique, commonly used for dimensionality
reduction. The main goal of PCA is the extraction of
a set of orthogonal features, called principal component,
which are linear combination of the original data and such
as the variance extracted from the data is maximal. It is
also used for features selection.

– Deep Learning uses Neural Networks engines to learn
patterns from data. Neural Networks are composed from
a set of layers. In each layer, the input data are trans-
formed through combinations of filters and topological
maps. The output of each layer becomes the input of the
following layer and soon.At the endof this procedure, the
result is a set of features more or less abstract depending
on the number of layers. The higher the number of layers
is, the more the features are abstract. These features can
be used for classification. Different deep learning meth-
ods for features extraction have been used for time series
analysis [70].

Features learning techniques avoid the issue of manu-
ally defining and selecting the features. Recently, promising
results are leading the research community to exploit learned
features in their analysis.

7 Classification

Over the last years, hardware and software development has
increased wearable devices capability to face with complex
applications and tasks. For instance, smartphones are, nowa-
days, able to acquire, store, share, and elaborate huge amount
of data in a very short time. As a consequence of this tech-
nological development, new instruments related to the data
availability, data processing, and data analysis are born.

The capability of a simple smartphone to meet some com-
plex tasks (e.g., steps count and life style monitoring) is the
result of very recent scientific changes regarding methods
and techniques.

In general, more traditional data analysis methods, based
on model-driven paradigms, have been largely substituted

by more flexible techniques, developed during recent years,
basedondata-drivenparadigms.Themaindifferencebetween
these two approaches is given by the a priori assumption
about the relationship between independent and response
variables. Thus, given a classification model, y = f (x),
model-driven approaches state that f is (or can be) deter-
mined by assumptions on the distribution of the underlying
stochastic process that generates x. f is build through a set
of rules, or algorithms, which choices depend on data with
an unknown distribution. On the opposite, in data-driven
paradigms, f is unknown and depends directly on the data
and on the choice of the algorithm.

The strength and the success of data-driven approaches
is due to their capability to manage and to analyze large
amount of variables that characterize a phenomenon without
assuming any a priori relation between the independent and
response variables. From a certain point of view, this flexi-
bility can be a weakness, because the lack of a well-known
relation also can be interpreted as a lack of cause–effect
knowledge.

In model-driven approaches, in contrast, cause–effect
relation is known by definition. However, model-driven
approaches loose in performance in estimating high-
dimensionality relations.

In activity recognition context, model-driven approaches
are less powerful and data-driven approaches are preferred
[71].

Among data-driven algorithms, Artificial Intelligence
(AI) have produced very promising results over the last years
and have been largely used for data analysis, for information
extraction, and for classification tasks. AI algorithms encom-
passes machine learning which, in turns, encompasses deep
learning methods.

Machine learning uses statistical exploration techniques
to enable the machine to learn and improve with the experi-
ences without being explicitly programmed. Deep learning
emulates human neural system to analyze and extract fea-
tures from data. In this survey, we focus on machine learning
and deep learning algorithms.

The choice of the classification algorithmdrastically influ-
ences the classification performance, but up to now, there is
no evidence of a best classifier and its choice still remains a
challenging task for the HAR community.

In particular, machine learning and deep learning meth-
ods struggle to achieve good performances for new unseen
users. This loss of performance is mostly caused by the
subjects variabilities, also called population diversity [6],
which is related to the natural users heterogeneity in terms of
data. The following sections present both traditional state-of-
the-art machine learning and deep learning techniques, and
personalized machine learning and deep learning techniques
as solutions to overcome the population diversity problem.
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7.1 Traditional learningmethods

Artificial Intelligence (AI) algorithms are based on the emu-
lation of the human learning process. According to [72], the
word learning refers to a process to acquire knowledge or
skill about a thing. A thing can always be viewed as a sys-
tem, and the general architecture of the knowledge of the
thing follows the FCBPSS architecture, in which F is a func-
tion that refers to the role a particular structure plays in a
particular context; C is a context that refers to the environ-
ment aswell as pre-condition and post-condition surrounding
a structure; B is a behavior that refers to causal relationships
among states of a structure; P is a principle that refers to
the knowledge that governs a behavior of a structure; S is a
state that describes the property or character of a structure; S
is a structure that represents elements or components of the
system or thing along with their connections [73].

Machine learning and deep learning both refer to the word
learning and, indeed, they are implemented, so that they emu-
late the human capability of learning.

Machine learning techniques used in HAR are mostly
divided into supervised and unsupervised approaches. Super-
vised machine learning encompasses all techniques that rely
on labeled data. Unsupervised machine learning are tech-
niques which are based on data devoid of labels.

Let x and y be, respectively, a set of data and their corre-
sponding labels. A classification task is a procedure whose
goal is to predict the value of the label ŷ from the data input
x. In other terms, assuming that there exists a linear or non-
linear relation f between x and y, the goal of the classification
is to find f such as the prediction’s error, that is, the distance
between y and ŷ, is minimal.

In supervised machine learning, data and corresponding
labels are knownand the algorithm learns f by iterating apro-
cedure until the globalminimumof a loss function is reached.
The loss function is again a measure about the prediction’s
error, estimated by the difference between y and ŷ. The opti-
mization procedure, that is, finding the loss global minimum,
is computed on the training dataset, which is a subset of the
whole dataset. Once the minimum is achieved, the model is
ready to be tested on the test dataset. The algorithm per-
formance measures the model’s capability to classify new
instances (Sect. 7.3 discusses details about the performance
measures).

In unsupervised approaches, the labels y are unknown and
the evaluation of the algorithm goodness bases on statistical
indices, such as the variance or the entropy.

Consequently, the choice between supervised or unsuper-
vised methods determines how the relation f between x and
y is learnt. Since a human activity recognition system should
return a label such as walking, sitting, running, and so on,
most ofHAR systemswork in a supervised fashion. Indeed, it

Table 2 Kernel in support vector machines

Kernel Linear Polynnomial RBF

Formula xTi x j (xTi x j + c)d exp
( ||xi−x j ||2

2σ 2

)

might be very hard to discriminate activities in a completely
unsupervised context [7].

Figure 6 shows the distribution of traditional machine
learning and deep learning algorithms used for human activ-
ity recognition in the papers we selected for this survey. In
the following paragraphs, we will describe the most used
techniques in HAR with the related literature.

7.1.1 Traditional machine learning

Machine learning techniques have been largely used for
activity recognition tasks. More and more sophisticated
methods have been developed to face with the complex-
ity related to activity recognition tasks. In this section, we
describe traditional machine learning algorithms that have
been mostly exploited for HAR, according to Fig. 6.

Support Vector Machine (SVM) belongs to domain
transform algorithms. It implements the following idea: it
is assumed that the input data x are not linearly separable
with respect to the classes y in the data space, but there exists
an higher dimensional space where the linearity is achieved.
Once data are mapped into this space, a linear decision sur-
face (or hyperplane) is constructed and used as recognition
model. Thus, guided from the data, the algorithm searches for
the optimal decision surface by minimizing the error func-
tion. The projection of the optimal decision surface into the
original space marks the areas belonging to a specific class
which is used for the classification [74]. The transformation
of the original space into a higher dimensional space is made
through a kernel which is defined as a linear or non-linear
combination of the data, for example, polynomial kernel,
sigmoid kernel, and radial basis function (RBF) kernel, see
Table 2.

Originally, SVM have been implemented as two-class
classifier. The computation of the multi-class SVM bases
on two strategies: one-versus-all where one class is labeled
with 0 and the other classes as 1, and one-versus-one where
the classification is made between two classes at a time [75].

Among HAR classifiers, SVM is the most popular one
[32,34,48,75–79].

k-Nearest Neighbors (k-NN) is a particular case of
instance-based method. The nearest-neighbor algorithm
compares each new instance with existing ones using a dis-
tance metric (see Table 3), and the closest existing instance
is used to assign the class to the new one. This is the simplest
case where k = 1. If k > 1, the majority class of the closest
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Fig. 6 Traditional machine
learning and deep learning
classifiers distribution

Table 3 Distance metrics in k-nearest neighbor

Distance Formula

Euclidean
√

∑n
i=1(xi − x j )2

City Block
∑n

i=1 |xi − x j |
Chebychev maxi=1...n |xi − x j |
Cosine 1 − xi xTj

√

(xi xTi )(x j xTj )

Correlation 1 − (xi−x̄i )(x j−x̄ j )
T√

(xi−x̄i )(xi−x̄i )T
√

(x j−x̄ j )(x j−x̄ j )
T

Mahalnobis
√

(xi − x j )C−1(xi − x j )T

where C is the covariance matrix

k neighbors is assigned to the new instance [80]. It is a very
simple algorithm and belongs to the lazy algorithms. Lazy
algorithms have no parameters to learnt from the training
phase [32,75–77,81]. k-NN depends only on the number k
of the nearest neighbors.

Decision tree algorithms build a hierarchical model in
which input data are mapped from the root to leafs through
branches. The path between the root and a leaf is a classi-
fication rule [7]. Sometimes, the length of the trees has to
be modified and growing and pruning algorithms are used.

The construction of a tree involves determining split cri-
terion, stopping criterion, and class assignment rule [82].
J48 and C4.5 are the most used decision tree in HAR
[29,30,77,81].

Random Forest (RF) is a classifier consisting of a col-
lection of tree-structured classifiers {h(x,�k), k = 1, ...}
where the {�k} are independent identically distributed
random vectors and each tree casts a unit vote for the
most popular class at input x [83]. Random Forest gen-
erally achieves high performance with high-dimensional
data by increasing the number of trees [29,40,48,56,75,84,
85].

Naive Bayes (NB) belongs to Bayesian methods whose
prediction of new instances is based on the estimation of the
posterior probability as a product of the likelihood, which is
a conditional probability estimated on the training set given
the class, and a prior probability. In Naive Bayes, data are
assumed independent given the class values. Thus, given y
be a certain class and xi ...xn the data, Naive Bayes classi-
fier based on the Bayesian rules and the likelihood splits
in the product of the conditional probabilities given the
class

P(y|x1...xn) = P(y)P(x1, ...xn|y)
P(x1, ...xn)

= P(y)
∏n

i=1 P(xi |y)
P(x1, ...xn)

.
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Decision rules is the maximum a posteriori (MAP) given
by

argmax
y

P(y|x1...xn) = argmax
y

n
∏

i=1

P(xi |y).

Naive Bayes has been applied in activity recognition because
of the simple assumption on the likelihood, which is usually
violated in practice [29,77,81,86]

Adaboost is part of the classifier ensembles. Classifier
ensembles encompass all algorithms that combine different
classifiers together.

The combination between classifiers ismeant in twoways:
either using the same classifiers with different parameter’s
settings (e.g., random forest with different lengths), or using
different classifiers together (e.g., random forest, support
vector machines, and k-NN).

The ensemble classifiers encompass bagging, stacking,
blending, and boosting. In bagging, n samplings are gener-
ated from training set and a model is created on each. The
final output is a combination of eachmodel’s prediction. Nor-
mally, either the average or a quantile is used. In stacking,
the whole training dataset is given to the multiple classifiers
which are trained using the k-fold-cross-validation. After
training, they are combined for final prediction. In blending,
the same procedure as staking is performed, but instead of
the cross-validation, the dataset is divided into training and
validation. Finally, in boosting, the final classifier is com-
posed of a weighted combination of models. The weights
are initially equal for each model and are iteratively updated
based on the models performance, as for Adaboost [6,7,87].

7.1.2 Traditional deep learning

Generally, the relation between input data and labels is very
complex and mostly non-linear. Among Artificial Intelli-
gence algorithms, Artificial Neural Network (ANN) is a set
of supervised machine learning techniques which emulate
human neural systemwith the aim at extracting non-linearity
relations from data for classification.

Human neural system is composed by neurons (about 86
billions) which are connected with synapses (around 1014).
Neurons receive input signals from the outer (e.g., visual or
olfactory) and based on the synaptic’s strength they fire and
produce some output signals to be transmit to other neurons.
Artificial Neural Network bases on the same neurons and
synapses concept.

In a traditional ANN, each data input value is associated
with a neuron and its synapses strength is measured by a
functional combination of input data x and randomly chosen
weights w. This value is passed to an activation functions
σ which is responsable to determine the synapse strength

and eventually to fire the neuron. The output of the acti-
vation function is given by y = σ(wT x). If it fires, the
output becomes the next neuron’s input. Table 4 provides
more details about activation functions.

A set of neurons is called layer. A set of layers and
synapses is called network. The input data x are passed
from the first layers to the last layer, called, respectively,
the input layer and the output layer, through intermediary
layers, called hidden layers. The term Deep Learning comes
from the network’s depth, that is, when the number of hidden
layers grows.

Neurons belonging to same layers are not communicating
to each others, while neurons belonging to different layers
are connected and share the information passed through the
activation function. If each neuron of the previous layer is
connected to all neurons of the next layer, the former is called
fully connected or dense layer. The output layer, also called
classification layers in case of classification task or regres-
sion layer in case of continuous estimation, is responsable
to estimate the predicted value ŷ of the labels y. Once the
last output is computed, the feed-forward procedure is com-
pleted.

Thereafter, an iterative procedure is computed tominimize
the loss function. This procedure is called back propagation
and is responsible to minimize the loss function with respect
to theweightswi . Theweight’s values, indeed, represent how
strong is the relation between neurons belonging to different
layers and how far the input information has to be trans-
fer through the network. The minimization procedure bases
on gradient descent algorithms, which iteratively search for
weights, that reduce the value of the gradient of the loss until
itmeets the globalminimumor a stopping criteria. In general,
a greedy-wise tuning procedure over the hyper-parameters is
performed to the aim at achieving the best network configu-
ration. Most important hyper-parameters are: the number of
layers, the kernel’s number and size, the pooling’s size, and
the regularization parameter, such as the learning rate.

According to Fig. 6, most used deep learning algorithms
are described in the following.

Multi-layer Perceptron (MLP) is the most widely used
Artificial Neural Network (ANN). It is a collection or neu-
rons organized in a layers’ structure, connected in an acyclic
graphs. Each neuron that belongs to a layer produces an
output which becomes the input of the neurons of the next
adjacent layer. Most common layer type is the fully con-
nected layer, where each neurons share their output with each
adjacent layer’s neuron, while same layer’s neurons are not
connected. MLP is made up of the input layer, one (or more)
hidden layer and the output layer [88]. Used in HAR as base-
line for deep learning techniques, it has been often compared
with machine learning, such as SVM [48,89], RF [48], k-NN
[89], DT [89], and deep learning techniques, LSTM [90],
CNN [89,90].
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Convolutional Neural Networks (ConvNet or CNN) is
a class of ANN based on convolution products between ker-
nels and small patches of the input data of the layer. The input
data are organized in channels if needed (e.g., in tri-axial
accelerometer data, each axes is represented by one chan-
nel), and normally convolution is performed independently
on each channel. The convolutional function is computed by
sliding a convolutional kernel of the size of m × m over the
input of the layer. That is, the calculation of the lth convolu-
tional layer is given by

xl, ji = f

(

m
∑

a=1

w
j
a · xl−1, j

i+a−1 + b j

)

,

where m is the kernel size, and xl, ji is the j th kernel on

the i-th unit of the convolutional layer l. w j
a is the convolu-

tional kernel matrix and b j is the bias of the convolutional
kernel. This value is mapped through the activation function
σ . Thereafter, a pooling layer is responsable to compute the
maximum or average value on a patch of the size r × r of the
resulting activation’s output. Mathematically, a local output
after the max pooling or the average pooling process is given
by

max pooling xl, ji = maxra,b=1(xa,b)

average pooling xl, ji = 1
r2

∑r
a,b=1(xa,b).

The pooling layer is responsible to extracts impor-
tant features and to reduces the data size’s dimension.
This convolutional-activation-pooling layers block can be
repeated may time if necessary. The number of repetition
time determines the depth of the network.

Generally, between the last block and the output layer one
(or more), fully connected layer is added to perform a fusion
of the information extracted from all sensor channels [88].
After the feed-forward procedure is ended, the back propa-
gation is performed on the convolutional weights until the
convergence to the global minimum or until a stopping crite-
rion ismet. Figure 7 depicts aCNNexample inHAR,with six
channels, corresponding to xyz-acceleration and xyz-angualr
velocity data, two convolutional-activation-max pooling lay-
ers, one fully connected layer, and a soft-max layer which
compute the class probability given input data.

CNN is a robust model under many aspects: in terms of
local dependency due to the the signals correlation, in terms
of scale invariance for different paces or frequencies, and in
terms of sensor position [31,71]. For this reasons, CNN have
been largely studied in HAR [91].

Additionally, CNN have been compared to other tech-
niques. CNNoutperforms SVM in [78] and baseline Random

Forest in [27]. Roano et al. demonstrate that CNN out-
performs state-of-the-art techniques, which are all using
hand-crafted features [92]. More recently, ensemble clas-
sification algorithm with CNN-2 and CNN-7 shows better
performance when compared with machine learning random
forest, boosting, and traditional CNN-7 [40].

Residual Neural Networks (ResNet) is a particular con-
volutional neural network composed by blocks and skip
connections which permit to increase the number of lay-
ers in the network. Success of Deep Neural network has
been accredited to the additional layer, but He at al. empiri-
cally showed that there exists a maximum threshold for the
network’s depth without avoiding vanishing\explosion gra-
dient’s issues [93].

In Residual Neural Networks, the output xt−1 is both
passed as an input to the next convolutional-activation-
pooling block and directly added to the output of the block
f (xt−1). The former addiction is called shortcut connection.
The resulting output is xt = f (xt−1)+ xt−1. This procedure
is repeated many times and permit to deepen the network
without adding neither extra parameters nor computation
complexity. Figure 8 shows an example of ResNet. Bianco et
al. state that ResNet represents the most performing network
in the state of the art [94], while Ferrari et al. demonstrated
that ResNet outperforms traditional machine learning tech-
niques [59,95].

Long-Short-Term-Memory Networks is a variant of the
Recurrent Neural Network which enables to store infor-
mation over time in an internal memory, overcoming gra-
dient’s vanishing issue. Given a sequence of inputs x =
{x1, x2, ..., xn}, LSTM’s external inputs are its previous cell
state ct−1, the previous hidden state ht−1, and the current
input vector xt . LSTMassociates each time stepwith an input
gate, forget gate, and output gate, denoted, respectively, as it ,
ft , and ot , which all are computed by applying an activation
function of the linear combination of weights, input xi , and
hidden state ht−1. An intermediate state c̃i is also computed
through the tahnh of the linear combination ofweights, input
xi , and hidden state ht−1. Finally, the cell and hidden state
are updated as

ct = ft · c̃t + it · c̃t

ht = ot · thanh(ct ).

The forget gate decides how much of the previous infor-
mation is going to be forgotten. The input gate decides how
to update the state vector using the information from the cur-
rent input. Finally, the output gate decides what information
to output at the current time step [30]. Figure 9 represents
the network schema.
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Fig. 7 Convolutional neural
network schema

Table 4 Activation functions Activation function Step Sigmoid Tanh ReLU

Formula

{

0 i f x < 0
1 i f 0 ≤ x

1
1+ex tan(x) max(0, x)

Table 5 Loss functions for
neural networks. M = number of
classes, x = input data, y = class,
px,y = probability of being y
given x

Loss function Cross-entropy Hinge Euclidean Absolute value

Formula − ∑M
y=1 y · log(px,y) max(0, 1 − ŷ · y) ∑M

y=1(ŷ − y)2
∑M

y=1 |ŷ − y|

Although LSTM is a very powerful techniques when
data temporal dependencies have to be considered during
classification, it takes into account only past information.
Bidirectional-LSTM (BLSTM) offers the possibility to con-
sider past and future information. Hammerla et al. illustrate
how their results based on LSTM and BLSTM, verified on a
large benchmark dataset, are the state-of-the-art [96].

7.1.3 Traditional machine learning vs traditional deep
learning

Machine learning techniques have been demonstrated to be
high performing even with low amount of labeled data and
that are low time-consumption methods.

Nevertheless, machine learning techniques remain highly
expertise-dependent algorithms. Input data feeding machine
learning algorithms are normally features, a processed ver-
sion of the data. Features permit to reduce data dimen-
sionality and computational time. However, features are
hand-crafted and are expert knowledge and tasks depen-
dent.

Furthermore, engineered features cannot represent salient
feature of complex activities, and involve time-consuming

feature selection techniques to select the best features [97,
98].

Additionally, approaches usinghand-crafted featuresmake
it very difficult to compare between different algorithms due
to different experimental grounds and encounter difficulty in
discriminating very similar activities [40].

In recent years, deep learning techniques are increasingly
becoming more and more attractive in human activity recog-
nition. First applied to 3D and 2D context in particular in
vision computing domain [99,100], deep learning methods
have been shown to be valid methods also adapted to the
1D case, that is, for time series classification [101], such as
HAR.

Deep learning techniques have shown many advantages
over the machine learning, among them the capability to
automatically extract features. In particular, depending on
the depth of the algorithm, it is possible to achieve a very
high abstraction level for the features, despite machine
learning techniques [71]. In these terms, deep learning
techniques are considered valid algorithms to overcome
machine learning dependency on the feature extraction
procedure and show crucial advantages in algorithm perfor-
mance.
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Fig. 8 ResNet full schema

However, deep learning techniques, unlike traditional
machine learning approaches, require a large number of sam-
ples and an expensive hardware to estimate the model [95].
Large-scale inertial datasetswithmillions of signals recorded
by hundreds of human subjects are still not available, and
instead, several smaller datasetsmade of thousands of signals
and dozens of human subjects are publicly available [102].
It is therefore not obvious in this domain, which method
between deep and machine learning is the most appropri-
ate, especially in those case where the hardware is low
cost.

Scarcity of data results in an important limit of machine
learning and deep learning approaches in HAR: the difficul-
ties in being able to generalize the models against the variety
of movements performed by different subjects [103]. This
variety occurs in relation to heterogeneity in the hardware
on which the inertial data are collected, different inherent
capabilities or attributes relating to the users themselves, and
differences in the environment in which the data are col-
lected.

One of the most relevant difficulties to face with new sit-
uations is due to the population diversity problem [6], that
is, the natural differences between users’ activity patterns,
which implies that different executions of the same activity
are different. A solution is to leverage labeled user-specific
data for a personalized approach to activity recognition
[104].

7.2 Personalized learningmethods

Traditional systems are limited in their ability to generalize to
newusers and/or newenvironments, and require considerable
effort and customization to achieve good performance in a
real context [105,106].

As previously mentioned, one of the most relevant chal-
lenges to face with new situations is due to the population
diversity problem: as users of mobile sensing applications
increase in size, the differences between people cause the
accuracy of classification to degrade quickly [6].

Ideally, algorithms should be trained on a representative
number of subjects and on as many cases as possible. The
number of subjects present in the dataset does not just impact
the quality and robustness of the induced model, but also the
ability to evaluate the consistency of results across subjects
[107].

Furthermore, althoughnew technologypotentially enables
to store large amount of data from varied devices, the actual
availability of data are scarce andpublic datasets are normally
very limited (see Sect. 8). In particular, it is very difficult to
source labeled data necessary to train supervised machine
learning algorithms. To face this problem, activity classifica-
tion models should be able to generalize as much as possible
with respect to the final user.
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Fig. 9 LSTM networks schema.
Source: “Nonlinear Dynamic
Soft Sensor Modeling With
Supervised Long Short-Term
Memory Network”, by X. Yuan,
L. Li, and Y. Wang, 2020, IEEE
Transactions on Industrial
Informatics, vol. 16, no. 5, pp.
3168–3176, copyright IEEE

Fig. 10 A graphical
representation of the three main
classification models

Following sections discuss state-of-the-art results related
to population diversity issue based on the personalization of
machine learning and deep learning algorithms.

7.2.1 Personalized machine learning

To achieve generalizable activity recognition models based
onmachine learning algorithms, three approaches aremainly
adopted in literature:

– Data-based approaches encompass three data split con-
figurations: subject-independent, subject-dependent, and
hybrid. The subject-independent (also called imper-
sonal) model does not use the end user data for the
development of the activity recognitionmodel. It is based
on the definition of a single activity recognition model
that must be flexible enough to be able to generalize the
diversity between users and it should be able to have good
performance once a new user is to be classified.
The subject-dependent (also called personal) model only
uses the end user data for the development of the activity
recognition model. The specific model, being built with
the data of the final user, is able to capture her/his pecu-
liarities, and thus, it should well generalize in the real

context. The flaw is that it must be implemented for each
end user [108].
The hybrid model uses the end user data and the data of
the other users for the development of the activity recog-
nition model. In other words, the classification model is
trainedboth on the data of other users andpartially ondata
from the final user. The idea is that the classifier should
recognize easier the activity performed by the final user.
Figure 10 shows a graphical depiction of the threemodels
to better clarify their differences. Tapia et al. [109] intro-
duced the subject-independent and subject-dependent
models, and later Weiss at al. [29] the hybrid model.
The models were compared by different researchers and
also extended to achieve better performance.
Medrano et al. [110] demonstrated that the subject-
dependent approach achieves higher performance and
then subject-independent approach for falls detection,
called respectively personal and generic fall detec-
tor.
Shen et al. [111] achieved similar results for activity
recognition and come to the conclusion that the subject-
dependent (termed personalized) model tends to perform
better than the subject-independent (termed generalized)
one, because user training data carry her/his personalized
activity information.
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Lara et al. [112] consider subject-independent approach
more challenging, because in practice, a real-time activ-
ity recognition system should be able to fit any individual
and they consider not convenient in many cases to train
the activity model for each subject.
Weiss at al. [29] and Lockhart et al. [61] compared the
subject-independent and the subject-dependent (termed
impersonal and personal, respectively) with the hybrid
model. They concluded that the models built on the
subject-dependent and the hybrid approaches achieve
same performance and outperform the performance of
the model based on the subject-independent approach.
Similar conclusions are achieved by Lane et al. [6], who
compare subject-dependent and subject-independent
(respectively, named isolated and single) models with
another model called multi-naive. In this case, subject-
dependent approach outperformed the other two
approaches as the amount of the available data increases.
Chen et al. [75] compared the subject-independent,
subject-dependent, and hybrid (respectively, called rest-
to-one, one-to-one, and all-to-one) models, and once
again the subject-dependent model outperforms the
subject-independent model, whereas the hybrid model
achieves the best performance. The authors also classify
subject-independent and hybrid models as generalized
models, while the subject-dependent model falls into the
category of the personalized models.
Same results have been achieved by Vaizman et al.
[113], who compared the subject-independent, subject-
dependent, and hybrid (respectively, called universal,
individual, and adapted) models. Furthermore, they
introduced context-based informationbyexploitingmany
sensors, such as, location, audio, and phone-state sen-
sors.

– Similarity-basedapproach consider the similarity between
users as a crucial factor for obtaining a classification
model able to adapt to new situations.
Sztyler et al. [114,115] proposed a personalized vari-
ant of the hybrid model. The classification model is
trained using the data of those users that are similar to
the final user based on signal patterns similarity. They
found that people with same fitness level also have simi-
lar acceleration patterns regarding the running activity,
whereas gender and physique could characterize the
walking activity. The heterogeneity of the data is not
eliminated, but it is managed in the classification pro-
cedure.
A similar approach is presented by Lane et al. [6]. The
proposed approach consists in exploiting the similarity
between users to weight the collected data. The simi-
larities are calculated based on signal pattern data, or
on physical data (e.g., age and height), or on lifestyle
index. The value of similarity is used as weight. The

higher the weight, the more similar two users are and
the more that signals from those users is used for classi-
fication.
Garcia-Ceja et al. [116,117] exploited inter-class simi-
larity instead of the similarity between subjects (called
inter-user similarity) presented by Lane et al. [6]. The
final model is trained using only the instances that are
similar to the target user for each class.

– Classifier-based approaches obtain generalization from
several combinations of activity recognition models.
Hong at al. [105] proposed a solution where the general-
ization is obtained by a combination of activity recogni-
tion models (trained by a subject-dependent approach).
This combination permits to achieve better activity recog-
nition performance for the final user.
Reiss et al. [118] proposed a model that consists of a set
of weighted classifiers (experts). Initially, all the weights
have the same values. The classifiers are adapted to a
new user by considering a new set of suitable weights
that better fit the labeled data of the new user.

Ferrari et al. have recently proposed a similarity-based
approach that does not fall into the above classification [70].
The proposed approach is a combination of data-based and
similarity-based approaches. Authors trained the algorithms
by exploiting the similarity between subject and different
data splits. They stated that hybrid models and similarity
achieve best performance with respect to the state-of-the-art
algorithms.

7.2.2 Personalized deep learning

Personalized deep learning techniques have been explored in
the literature and mainly refer to two main approaches

– Incremental learning refers to recognition methods that
can learn from streaming data and adapt to new moving
style of a new unseen person without retraining [119]. Yu
et al. [120] exploited the hybridmodel and compare it to a
newmodel called incremental hybrid model. The latter is
trained first with the subject-independent approach, and
then, it is incrementally updated based on personal data
from a specific user. The difference from the hybrid is
that the incremental hybrid model gives more weights to
personal data during training.
Similarly, Siirtola et al. [41] proposed an incremental
learning method. The method initially uses a subject-
independent model, which is updated with a two-step
feature extraction method from the test subject data.
Afterwards, the same authors proposed a 4 steps subject-
dependent model [39]. The proposed method initially
uses a subject-independent model, collects and labels
the data from the user based on the subject-independent
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model, trains a subject-dependent model on the collected
and labeled data, and classifies activity based on the
subject-dependent model.
Vo et al. [121] exploited a similar approach. The proposed
approach first trains a subject-dependentmodel fromdata
of subject A. The model of subject A is then transferred
to subject B. Then, the unlabeled samples of subject B
are classified to the model of subject A. These data are
finally used to adjust model for the subject B.
Abdallah et al. [122] propose an incremental learning
algorithm based on clustering procedure which aims at
tuning the general model to recognize a given user’s per-
sonalized activities.

– Transfer learning bases on pre-trained network; it
adjusts weights using new user’s data. This procedure
permits to reduce the time consumption of the training
phase. In addition, it is a powerful method for when
scarcity of labeled data does not permit to train a net-
work from scratch.
Rokni et al. [123] propose to personalize their HARmod-
els with transfer learning. In the training phase, a CNN is
first trained with data collected from a few participants.
In the test phase, only the top layers of the CNN are fine-
tuned with a small amount of data for the target users.

A recent personalization approach is proposed by Ferrari
et al. that relies on similarity among the subjects. The simi-
larity is used to select the m most similar ones to the target.
The algorithm is trained with their data [124].

7.3 Metrics for performance evaluation

In supervised machine learning algorithms, the classifica-
tion uses three sets of data: the training, the validation, and
the test datasets. The training set is designed to estimate the
relation between input and output, together with the model
parameters. The validation set is designed to affine and tune
the model parameters and hyper-parameters. With hyper-
parameters, it is meant the parameters that are not necessarily
directly involved in the model, but define the structure of the
algorithm, such as, for instance, the number of the channels
in a deep network. Finally, the test set is used to evaluate
the classification performance of the resulted classification
model.

Training, validation, and test sets are generally defined as
a partition of the original dataset and mostly representing,
for instance, the 70%, 20%, and 10% of the number of the
samples.

It is a common practice to perform the k-fold cross-
validationprocedure [48,81,125].The k-fold-cross-validation
is a procedure that helps to achieve more robust results and
helps to avoid that the algorithm specializes on a specific
partitions of the original dataset. In particular, it consists in

Table 6 Confusion matrix

Groundtruth Estimated

1 0

1 True positives (TP) False negatives (FP)

0 False positives (FN) True negatives (TN)

split the training and test set in k-folds. The entire classifica-
tion procedure is performed on each split, k times. Thus, k
models are estimated, and their performances are evaluated
and averaged.

The classification performance is calculated through
heuristic metrics based on the correctly classified samples.
In particular, these metrics are all derived from the confusion
matrix.

In supervised machine learning, the confusion matrix
compares the groundtruth (the observed labels) with the esti-
mated labels. The binary case is shown in Table 6.

True positives are observed 1-class samples which are
classified as 1. True negatives represent the number of
observed 0-class samples which are classified as 0. False
negatives are 0-class samples which are classified as class 1.
Viceversa, False positives represent the number of samples
classified as 1-class but which truly belongs to 0-class.

The confusion matrix can be extended to the multi-class
classification problem. In this case, on the principal diago-
nal are displayed the number of correctly classified samples,
while out of the principal diagonal miss-classified samples
are listed.

The classification performance can bemeasured by focus-
ing either on the number of correct classified samples or
by giving more importance on the miss-classification. The
choice of the evaluation metric accentuates either one or the
other aspect of the classification.

In the context of HAR, the accuracy is the most used
metric for the evaluation of the classification performance
[6,33,40,126]. According to the confusion matrix showed in
Table 6, accuracy (Acc) is defined as follows:

Acc = T P + T N

T N + FP + FN + T P
.

It calculates the percentage of correctly classified samples
over the total number of the samples. The accuracy highlights
the correct classification performance and givesmore empha-
sis to the classification of the true positives and of the true
negatives.

In some cases, it is required that the evaluation of the clas-
sification performance accentuates the mis-classifications,
such as either false positives or false negatives cases. For
instance, in the case of falls detection, the algorithm should
bemore penalized if it does not recognize a fallwhen it occurs

123



206 Journal of Reliable Intelligent Environments (2021) 7:189–213

(false negative) with respect to the cases where it does rec-
ognize a normal behavior as fall (false positive).

An appropriate metric for this case is the Fβ -score. It is
defined as function of recall and precision.

Recall is also called sensitivity or true positive rate and
is calculated as the number of correct positive predictions
divided by the total number of positives; the best value cor-
responds to 1, the worst to 0.

Precision is also called positive predictive value and is cal-
culated as the number of correct positive predictions divided
by the total number of positive prediction; the best precision
is 1, whereas the worst is 0.

Formula are given by

precision = T P
T P+FP

recall = T P
T P+FN

Fβ = (1+β2)·precision·recall
(β2·precision)+recall

If β = 1, F1-score is the harmonic mean of the precision
and the recall.

The specifictiy, also called true negative rate, is calcu-
lated as the number of correct negative predictions divided
by the total number of negatives. Best value corresponds to
1, while the worst is 0. Together with the sensitivity, the
specificity helps to determine the best parameter value when
a tuning procedure is computed. A common practice is to
calculate the area under the curve (AUC) created by plot-
ting values of the sensitivity and 1-specificity. This curve is
called Receiver-Operating Characteristic curve (ROC). The
value of the parameter which maximizes the classification
performance corresponds the point on the ROC curve where
AUC is maximal.

8 Datasets

In recent years, the spread of wearable devices has lead to
a huge availability of physical activity data. Smartphones
and smartwatches have become more and more pervasive
and ubiquitous in our everyday life. This high diffusion and
portability of wearable devices has enabled researchers to
easily produce plenty of labeled raw data for human activity
recognition.

Several public datasets are open to the HAR community
and are freely accessible on the web, see for instance the UC
Irvine Machine Learning Repository [127].

Table 7 shows the main characteristics of the most used
datasets in the state-of-the-art.

Most of the datasets used contain signals recorded by
smartphones. Some datasets also contain signals from both
smartphones and IMUs, and from both smartphones and
smartwatches (datasets D03, D010, D11, and D16).

In Table 7, each dataset has assigned an ID (column ID).
Columns Dataset and Reference specify the official name
and the bibliographic reference of each dataset respectively.

Column # Activities specifies the number of ADLs present
in the dataset. Usually, each dataset contains 6–10 ADLs and
in some cases, both ADLs and Falls data are considered, as
in datasets D08, D09, D11.

Column # Subjects reports the number of subjects that
performed the activities. Considering a restricted number of
subjects in the analysis does not just impact the quality and
robustness of the classification, but also the ability to eval-
uate the consistency of the results across subjects [107]. In
other words, the number of the subjects included in the train-
ing set of the algorithm is crucial in terms of generalization
capabilities of the model to classify a new unseen instance.
Nevertheless, the difference between people, also called pop-
ulation diversity, could lead to poor classification, as largely
discussed in [6]. Unfortunately, most of the datasets are lim-
ited in terms of subject numerousness.

To overcome this issues, recently, several HAR research
groups implemented strategies for merging datasets [102,
134]. Other techniques, such as transfer learning and per-
sonalization, have been investigated for robustness of results
[61,123,135].

ColumnDevices reports typologies and number of devices
that have been used to collect the data. In particular, datasets
D03, D04, D05, D06, D11, D12 collected data from sev-
eral wearable devices at the same time, which is due to the
following reasons. First, the device position influences the
performance of the classification. Several works investigated
which position leads to the best classification [35,136]. Fur-
thermore, it is also challenging to investigate devices fusion,
which has a not negligible positive effects on the classifica-
tion performances and reflects realistic situation where users
employ multiple smart devices at once [30,56,63,114].

Position-aware and position-unaware scenarios have been
presented in [35]. In position-aware scenarios, the recogni-
tion accuracy on different positions is evaluated individu-
ally, while in position-unaware scenarios, the classification
performance of the combination of devices positions is mea-
sured. It is shown that the latter approach highly improves the
classification performances for some activities, such aswalk-
ing, walking upstairs, and walking downstairs. Almaslukh et
al. exploited deep learning technique for classification and
demonstrated its capability to produce an effective position-
independent HAR.

Column Sensors lists the sensors exploited in data collec-
tion. Tri-axial acceleration sensor (A) is the most exploited
inertial sensor among the literature [7]. Datasets D9, D14,
and D15 even collected just acceleration data. Acceleration
is very popular, because it both directly captures the subjects’
physiology motion status and it consumes low energy [137].
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Acceleration has been combined with other sensors, such
as gyroscope, magnetometer, GPS, and biosensors, with the
aim of improving activity classification performance.

In general, data captured from several sensors carry addi-
tional informations about the activity and about the device
settings. For instance, information derived from the gyro-
scope is used to maintain reference direction in the motion
system and permits to determine the orientation of the smart-
phone [32,51].

Performances comparisons between gyroscope, accelera-
tion, and their combination for human activity recognition
have been explored in many studies. For example, Ferrari et
al. showed that accelerometer is more performing than the
gyroscope and their combination leads to an overall improve-
ment of about 10% [36]. Shoaib et al. stated that in situations
where accelerometer and gyroscope individually perform
with low accuracies, their combination improved the over-
all performances, while when one of the sensors performs
with higher accuracy, the performances are not impacted by
the combination of the sensors [35].

Column Sampling Rate shows the frequency at which the
data are acquired. The sampling rate has to be high enough
to capture most significant behavior of data. In HAR, the
most commonly used sampling rate is 50 Hz when recording
inertial data (see Table 7).

Column Metadata lists characteristics regarding the sub-
jects that performed the activities. In D07–11, D15 physical
characteristics are annotated. In D15, environmental char-
acteristics have been also stored, such as the kind of shoes
worn, floor characteristics, and places where activities have
been preformed. As discussed in Sect. 7, metadata are pre-
cious additional information, which help to overcome the
population diversity problem.

9 Lessons learned and future directions

In this study,wecovered themain steps of theActivityRecog-
nition Process (ARP). For each phase of the ARP pipeline,
we highlighted what are the key aspects that are being con-
sidered and that are more challenging in the field of HAR.

Specifically,whenconsidering theDataAcquisitionphase,
we noted that the number and kind of available devices
is constantly increasing and new devices and sensors are
introduced every day. To take advantage of this aspect, new
sensors should be experimented in HAR applications to
determine whether or not they can be employed to recog-
nize actions. Moreover, new combinations (data fusion) are
possible, which may again increase the ability of the data to
represent the performed activities.

This increase in sensor numbers and types, while ensuring
the availability of more data sources, may pose a challenge
in terms of heterogeneity as not all the devices and sensors

share the exact same specifications. As an example, some
accelerometers may output signals including the low fre-
quencies of the gravity acceleration, while othermay exclude
it internally. For this reason, the preprocessing phase is of
paramount importance to reduce signal differences due to
heterogeneous sources and improve the consistency between
the in vitro training (usually performed with specific devices
and sensors) and real-world use, where the devices and sen-
sors may be similar, but not equal, to the ones used when the
models have been trained.

Moreover, we covered the fact that the way the signal
is segmented and fed to the classification model may have
a significant impact on the results. In the literature, sliding
windows with a 50% overlap is the most common choice.

Another aspect we highlighted during this study is the
importance of the features used to train the model, as they
have a significant impact on the performances of the clas-
sifiers. Specifically, hand-crafted features may better model
some already known traits of the signals, but automatically
extracted features are free of bias and may uncover unfore-
seen patterns and characteristics.

New and improved features that are able to better repre-
sent the peculiar traits of the human activities are needed:
ideally, they would combine the domain knowledge of the
experts given in the hand-crafted features and the lack of
bias provided by the automatically generated features.

Finally, regarding the Classification phase, we highlighted
how Model-Driven approaches are being replaced by Data-
Driven approaches as they are usually better performing.

Among the Data-Driven approaches, we find that both
traditional ML approaches and more modern DL techniques
can be applied to HAR problems. Specifically, we learned
that while DL methods outperform traditional ML most of
the time and are able to automatically extract the features,
they require significant amounts of computational power and
data more than traditional ML techniques, which makes the
latter still a good fit for many use cases.

Regardless of the classificationmethod, we discussed how
Population Diversity may impact the performances of HAR
applications. To alleviate this problem, we mentioned some
recents trends regarding the personalization of the models.
Personalizing a classificationmodelmeans identifying only a
portion of the population that is similar to the current subject
under some perspective and then only use this subset to train
the classifier. The resulting model should be better fitting to
the end user. This, however, may exacerbate the issue of data
scarcity, since only small portions of the full datasets may be
used to train the model for that specific user.

To solve this issue, more large-scale data collection cam-
paigns are needed, as well as further studies in the field of
dataset combination and preprocessing pipelines to effec-
tively combine and reduce differences among data acquired
from different sources.
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10 Conclusions

This paper surveyed the state-of-the-art and new trends in
human activity recognition using smartphones. In particu-
lar, we went through the activity recognition process: the
data acquisition, preprocessing, data segmentation, feature
extraction, and classification steps.

Each step has been analyzed by detailing the objectives
and discussing the techniques mainly adopted for its realiza-
tion.

We conclude the review by providing some considerations
on the state of maturity of the techniques currently employed
in each step and by providing some ideas for future research
in the field.

We do not claim to have included everything that has been
published on human activity recognition, but we believe that
our paper can be a good guide for all those researchers and
practitioners that approach this topic for the first time.
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