
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06330-z

1 3

Ensemble and continual federated learning for classification
tasks

Fernando E. Casado1 · Dylan Lema1 · Roberto Iglesias1 · Carlos V. Regueiro2 ·
Senén Barro1

Received: 2 July 2021 / Revised: 8 December 2022 / Accepted: 14 March 2023
© The Author(s) 2023

Abstract
Federated learning is the state-of-the-art paradigm for training a learning model collabo-
ratively across multiple distributed devices while ensuring data privacy. Under this frame-
work, different algorithms have been developed in recent years and have been successfully
applied to real use cases. The vast majority of work in federated learning assumes static
datasets and relies on the use of deep neural networks. However, in real-world problems,
it is common to have a continual data stream, which may be non-stationary, leading to
phenomena such as concept drift. Besides, there are many multi-device applications where
other, non-deep strategies are more suitable, due to their simplicity, explainability, or gen-
eralizability, among other reasons. In this paper we present Ensemble and Continual Feder-
ated Learning, a federated architecture based on ensemble techniques for solving continual
classification tasks. We propose the global federated model to be an ensemble, consist-
ing of several independent learners, which are locally trained. Thus, we enable a flexible
aggregation of heterogeneous client models, which may differ in size, structure, or even
algorithmic family. This ensemble-based approach, together with drift detection and adap-
tation mechanisms, also allows for continual adaptation in situations where data distribu-
tion changes over time. In order to test our proposal and illustrate how it works, we have
evaluated it in different tasks related to human activity recognition using smartphones.

Keywords Federated learning · Ensemble learning · Concept drift · Semi-supervised
classification · Smartphones

1 Introduction

Smartphones, wearables, robots, or “things” from the Internet of Things (IoT) are already
counted in millions. These devices benefit from increasingly better sensorization, as
well as intercommunication capabilities (Li et al., 2018a). In this context, multi-device

Editor: Albert Bifet.

 * Fernando E. Casado
 fernando.estevez.casado@usc.es

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5071-8529
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06330-z&domain=pdf

 Machine Learning

1 3

machine learning is an opportunity to develop new and sophisticated applications in all
human domains: education, health, banking, sport, etc. The idea is that, although each indi-
vidual device may have limitations, these can be overcome by collaborating as a society.
One important challenge is non-stationary data. Each device will likely collect data on a
continual basis, leading to a potentially unbounded data stream (Ramírez-Gallego et al.,
2017). Thus, it may be impossible to process and store all incoming information. Moreo-
ver, access to true class labels can be limited or delayed, and the data distribution may
change in unforeseen ways, causing the phenomenon known as concept drift (Widmer &
Kubat, 1996).

The most immediate way to perform multi-device learning would be a centralized
approach, i.e., uploading and processing all the data jointly on a cloud server using any
machine learning (ML) technique. Nevertheless, this can lead to scalability issues (Anan-
thanarayanan et al., 2017; Bagui & Nguyen, 2015), and may put data privacy into
risk (Custers et al., 2019; Gaff et al., 2014). In contrast, distributed approaches are much
more appealing. In this sense, the main paradigm is federated learning (FL) (McMahan
et al., 2016). It consists of alternating local learning in the devices with global consensus
in the cloud. Under this approach, no sensitive data is shared, just the learning model. FL
has been successfully applied in several real-world tasks, such as mobile keyboard pre-
diction (Hard et al., 2018), malware detection (Rey et al., 2022), energy demand predic-
tion (Saputra et al., 2019), medical diagnosis (Brisimi et al., 2018), or autonomous naviga-
tion in robotics (Liu et al., 2019).

The vast majority of work in FL has relied on the parallel training of a deep neural net-
work (DNN). That is, all client devices locally update the same model using their private
data. However, although deep learning provides good results in a large number of applica-
tions, it also has shortcomings that sometimes limit its scope, e.g. computational complex-
ity (Schwartz et al., 2020), model opacity (Arrieta et al., 2020; Fazi, 2021), or tendency to
overfitting (O’Mahony et al., 2019). On top of this, it is well known that DNNs are very
prone to suffer from what is known as catastrophic forgetting (Lesort et al., 2020), i.e., the
inability to retain old information in the presence of new one. This issue is critical when
data is processed continuously.

In view of the limitations of standard FL, new solutions that do not depend on deep
learning have started to be explored (Bakopoulou et al., 2019; Ludwig et al., 2020). Typi-
cally, these are adaptations of classical ML algorithms to the federated setting. Neverthe-
less, the common global aggregation mechanism of FL is not always possible using these
methods, forcing to look for specific alternatives. This leads to a lack of homogeneity in
solution designs, and makes it difficult to extrapolate them to new settings. Besides, almost
no progress has been made in providing these FL algorithms with the capacity for con-
tinual adaptation.

In this work, we present Ensemble and Continual Federated Learning (ECFL), a gen-
eral and flexible architecture intended to solve multi-device classification tasks using any
ML method in a federated and continual fashion. Our approach strongly relies on ensemble
techniques. Ensemble learning (Sagi & Rokach, 2018) consists of training multiple base
learners and combining their outputs to obtain better predictive performance. The use of
ensembles within FL is a natural fit: We propose each client device to train its own local
model. Each of these local models will be a potential base learner to join a global and
shared ensemble. Besides, ECFL includes concept drift handling mechanisms, allowing the
devices to detect changes and update their local models accordingly. Keeping the global
model up to date is as straightforward as replacing learners in the ensemble. This makes
it possible to tackle continual single-task problems, i.e., the task remains the same but the

Machine Learning

1 3

underlying distribution of data might change over time. Finally, ECFL is also prepared to
work in semi-supervised scenarios, by using the global model for labeling local data. This
is very useful because, in continual learning, true class labels may be scarce or arrive with
delay. For instance, spam filtering algorithms can be improved when the user provides
feedback, but it can take time since an email arrives until the user classifies it (Androutso-
poulos et al., 2000).

Our approach has the following strengths:

• It allows to work with local learners different from DNNs. This has several advantages
in terms of simplicity, as it opens the door to employ methods that have fewer parame-
ters, require smaller amounts of data, and involve lighter computations. Thus, it is more
environmentally friendly, in line with the green ML initiative (Schwartz et al., 2020;
Strubell et al., 2019). Furthermore, there are other benefits regarding explainability,
since it is possible to use interpretable learners such as decision trees (Arrieta et al.,
2020). This is very useful in applications such as medical diagnosis or autonomous
driving, where it is critical to know why each decision is made.

• The local learning stage consists of training an independent learner on each device, in
an asynchronous way, instead of training a single shared model in parallel. This brings
flexibility, and autonomy. It enables the aggregation of heterogeneous client models,
which may differ in size, structure, or even algorithmic family. It also reduces the
dependency of clients on the server during training, thus avoiding problems such as
connection drops and bottlenecks.

• Local learning also integrates concept drift detection and semi-supervised labeling,
thus promoting continual adaptability. Each client can update its local model individu-
ally and efficiently. Moreover, the fact that the global model is an ensemble makes it
easy to add and remove local contributions. Our approach can deal with continual sin-
gle-task problems without experiencing phenomena such as catastrophic forgetting.

• The choice of ensemble learning for global aggregation also enhances generalization. It
has been shown the ability of ensembles to reduce bias and variance (Dietterich et al.,
2002; Zhou, 2009). The more uncorrelated and independent the base learners are, the
greater the generalization. In our proposal, each base model is trained on a different
device, using local data, thus ensuring this independence.

The rest of the paper is structured as follows: Sect. 2 provides a review of the state of
the art. Section 3 introduces the challenges of continual learning in federated settings. In
Sect. 4, ECFL is presented. Section 5 explains in detail the local learning, carried out on
the devices. Section 6 exposes global consensus stage, performed in the cloud. The experi-
mental results are shown in Sect. 7. In Sect. 8, some thoughts about privacy are given.
Finally, our conclusions are exposed in Sect. 9.

2 Related work

Federated learning (McMahan et al., 2016; Li et al., 2019; Lim et al., 2019) is a distributed
machine learning framework that allows the training of a model across multiple decentral-
ized client devices. Its core idea is simple: solving local problems on the clients and com-
bining their knowledge in the cloud without exchanging any raw data. In a standard feder-
ated scenario, the model is initialized in a central server and shared with the participants.

 Machine Learning

1 3

Then, several learning rounds are conducted, alternating between local training and global
aggregation. In each round, the clients receive the latest version of the model from the
server, perform the local training using their local datasets, and send back their updates.
After that, the individual contributions are merged on the server, thus upgrading the model.

The federated learning literature is closely related to deep learning. Most of the methods
that have been proposed in recent years are designed to collaboratively train a DNN. The
most popular one is FedAvg (McMahan et al., 2016). At each FedAvg round, each client
performs the local learning stage by conducting stochastic gradient descent (SGD) on its
private dataset to adjust the learnable parameters (weights and biases) of the network. On
the server side, the aggregation of all local parameter updates is carried out by means of a
weighted arithmetic mean, which relies on the quantity of data employed in each update.
That is, the more data a participant uses for local training, the more influence it has on the
global model. FedProx (Li et al., 2018b) is another popular method that can be viewed as
a generalization of FedAvg. By adding a proximal term during optimization, it helps to
improve stability in model convergence when the local datasets are heterogeneous.

Although there is a large amount of work on FL with DNNs, there are very few propos-
als based on other, non-deep algorithms. In the same way, little research has been done on
continual adaptation of federated learning in non-stationary data streams. In the following,
we give an overview of the studies in the literature that focus specifically on these aspects.

2.1 Ensemble federated learning

There are some federated methods that are adaptations of classical ML algorithms. Soli-
man et al. (2020) introduce a federated k-means to address decentralized clustering by inte-
grating HyperLogLog counters with a P2P architecture. Bakopoulou et al. (2019) propose
a federated SVM with linear kernels to solve the problem of mobile packet classification.
Ludwig et al. (2020) implement a federated ID3 decision tree that grows at the server side
while the clients only perform light computations. All the above methods are characterized
by having been designed to solve a specific problem, so their use in new applications is
limited. This is mainly because the ML methods on which they are based do not naturally
lend themselves to federation, since most of them are not based on gradient descent and,
therefore, the common global aggregation approaches (such as the weighted average) are
not feasible.

The idea of ensemble federated learning (EFL) has been recently studied in the litera-
ture and promises to be a more generalizable approach. Hamer et al. (2020) propose Fed-
Boost, an algorithm for learning an ensemble of pre-trained base predictors via federated
learning. In this work, the authors use a weighted ensemble, where the output of each pre-
dictor has a certain weight. The goal is to learn the set of weights in a federated fashion,
so that the performance of the ensemble is maximized. Although the method is interesting,
its application is very limited, as it assumes that the server is provided with a set of pre-
trained models.

Lin et al. (2020) develop an algorithm for ensemble distillation in FL settings. They suggest
that clients train local models that are then merged on the server by distillation. Their knowl-
edge distillation technique mitigates privacy risk and also reduces the size of the ensemble.
However, they assume the availability of unlabeled data samples on the server, which is neces-
sary to carry out the distillation. This is a constraining factor, since the protection of clients’
private data is indeed one of the main goals of FL. The authors argue that these data does not

Machine Learning

1 3

have to be real, but could also be generated using a generative adversarial network (GAN).
Nevertheless, it would still require having a GAN pre-trained beforehand.

Guha et al. (2019) present one-shot federated learning. Their aim is to learn a global model
over a network of devices in a single round of communication. For that, they propose an
ensemble of locally trained SVMs. They suggest several strategies to select a subset with the
best local models to add to the global ensemble and thus limit its size. Although it is a prelimi-
nary work, the performed experiments suggest that ensemble-based federated methods have
great potential. Nevertheless, we believe that the efficiency in communications achieved with
one-shot learning does not compensate for the sacrifice in performance.

2.2 Continual federated learning

Continual learning (CL) (Lesort et al., 2020; Parisi et al., 2019) is the machine learning para-
digm that seeks to train models in environments that evolve over time. The goal is to smoothly
update the learner to take into account new data distributions or tasks while retaining prior
knowledge. There is a great deal of work in CL posed in a centralized way, involving a single
learner. However, there is not much research on CL in federated settings.

Yoon et al. (2021) propose FedWeIT, a federated framework for inter-client knowledge
transfer in continual learning. They pose a scenario where each client learns on a sequence
of tasks. FedWeIT decomposes the model weights into global and task-specific parameters,
allowing each participant to adaptively train benefiting from the knowledge of other clients
that share common tasks. Although the idea is interesting, the work does not focus on con-
tinual learning challenges. The training is addressed in a classical manner, prefixing a number
of communication rounds and assuming that all tasks are known in advance. In real-world
problems, however, tasks often arise and evolve unpredictably, leading to concept drift, so it is
important to have mechanisms for detecting and adapting to change.

Park et al. (2021) present FIL-VER, an algorithm designed to address incremental single-
task FL problems. FIL-VER is based on applying rehearsal to avoid catastrophic forgetting.
For that, the authors use variational embedding encoders. The algorithm is able to deal with
different scenarios where clients can drop in or out dynamically. Nevertheless, there is no
explicit drift detection, but rehearsal is applied all the time regardless of whether a change
happened or not. This could be improved to be more efficient, knowing exactly when training
is necessary and which data to use. Besides, the method requires having a pre-trained encoder
for rehearsal, which is a limitation for its implementation in real problems.

To the best of our knowledge, there are no proposals in the literature for federated and
continual learning with explicit drift detection, nor based on methods other than DNNs. The
present work is in line with the aforementioned studies in EFL (Guha et al., 2019; Lin et al.,
2020), relying on an ensemble of local learners as a means of global aggregation, but also tak-
ing advantage of ensemble techniques to enable continual adaptation.

3 Learning under data streams and concept drift in federated settings

A data stream is a potentially unbounded sequence of data arriving over time (Ramírez-
Gallego et al., 2017). Learning under data streams imposes several constraints that cannot
be fulfilled by standard ML algorithms, thus appearing new solutions that fall within the
field of CL. We highlight the following key aspects:

 Machine Learning

1 3

• Data is not given beforehand, but become available over time.
• The size of the stream may be infinite, so it can be infeasible to store all data in mem-

ory.
• Each instance may be accessed a limited number of times to guarantee storage space.
• The amount of labeled samples could be small because of the high cost of querying the

label for each incoming instance.
• The access to the labels might be delayed by hours, days, or even months, depending on

the problem to be treated.
• Statistical properties of data may vary over time unpredictably, leading to concept drift.

Special attention should be paid to concept drift, since it can cause that the inducted knowl-
edge of past data may not be relevant anymore, leading to poor predictions or decision
outcomes. Formally, we can define concept drift as follows: Given a time period [0, t], a
set of samples, denoted as S0,t = {s0,… , st} , where si = (xi, yi) is one data instance, xi is
the feature vector, yi is the label, and S0,t has a certain joint probability distribution of x
and y, Pt(x, y) . Therefore, concept drift can be defined as a change in the joint probability
at timestamp t, such that ∃t ∶ Pt(x, y) ≠ Pt+1(x, y) . Given that the joint probability can be
factorized as P(x, y) = P(x) ⋅ P(y ∣ x) , we can categorize concept drift into two types (Webb
et al., 2016): (1) virtual, and (2) real. Virtual concept drift implies shifts in the input prob-
ability, P(x), whereas real concept drift is caused by novelty on data, which has an effect
on posterior class probabilities, P(y ∣ x).

The above applies to a single data stream. Nevertheless, when we talk about multi-
device learning, each of the participants will have an independent data stream, with differ-
ent properties, being able to drop in or out at any time. Thus, the problem becomes more
complex. Now, the goal is to train a global model in a distributed and parallel way using
the local data of the D available clients. Each client will have a different bias because of
the conditions of its local environment, and likewise, its data stream may change in dif-
ferent ways over time. Therefore, there may occur concept drifts that affect all clients,
some of them, or just a single one. Thus, we can generalize the problem in the follow-
ing way: Given a time period [0, t], a set of clients {d1,… , dD} , and a set of local sam-
ples for each client, denoted as Sk

0,t
= {sk

0
,… , sk

t
} , where sk

i
= (xk

i
, yk

i
) is one data instance

from client dk , xki is the feature vector, and yk
i
 is the label. Each local dataset Sk

0,t
 has a

certain joint probability Pk
t
(x, y) . A local concept drift occurs at timestamp t for client dk

if ∃t, k ∶ Pk
t
(x, y) ≠ Pk

t+1
(x, y) . In the same way, we can define a global concept drift as a

probability change at time t such that ∃t ∶ PG
t
(x, y) ≠ PG

t+1
(x, y) , where PG

t
(x, y) is the global

joint probability of all clients {d1,… , dC} . Both local and global drift can be either virtual
or real. Note that a global drift does not necessarily mean that a local drift will occur for all
the clients at exactly the same time t.

If there is a real and local drift in only one or a few clients, they will start to behave very
differently from the others and, hence, a global model will not provide a good performance
for them. To deal with this kind of problems, there are already several personalization tech-
niques in the literature (Sattler et al., 2019; Wang et al., 2019a). However, in this work we
are not interested in that situation, but we want to deal with scenarios where changes affect
all participants. Thus, we focus on global concept drift. In our experiments we assume that
change occurs locally in all clients closely in time. Besides, we consider changes in the

Machine Learning

1 3

input data, P(x), i.e., virtual drifts. This is because we pose drift handling in a totally unsu-
pervised manner, which is not possible when working with real drift.

Algorithms that deal with data streams and concept drift can be categorized according
to different criteria (Lu et al., 2018; Ditzler & Polikar, 2012):

• Given the number of learners employed during classification, we find single classifier
and ensemble-based approaches. Single classifiers use just one learner to make predic-
tions, whereas ensemble-based techniques combine the results of a set of learners.

• Depending on whether or not they perform explicit drift detection, we distinguish
between active and passive methods. Active drift detection involves observing the
stream to search for changes and determine whether and when a drift occurs, so that the
model is updated only when a drift is detected. Instead, passive drift detection consid-
ers that changes may occur constantly or occasionally, and therefore the learner is con-
tinually updated as data arrive.

• Finally, determined by the amount of data considered during training, there are online
and batch algorithms. Online approaches update the model instance by instance. In
contrast, batch methods wait to collect a representative amount of data for training.

Online proposals are usually passive and rely on a single classifier, while batch
approaches tend to be active and either based on a single learner or ensembles. In
this work, we have designed a federated ensemble-based architecture that learns in
batches and provides active drift detection in all the devices. The use of ensembles
has already been justified in the previous sections by the fact that they are easily
adaptable to federated environments, providing an alternative and general way to per-
form global aggregation different from weighted average. The preference for batch
processing and active drift detection is motivated by the efficiency of client–server
communications. Performing passive and online learning on the devices would imply
training and sending updates to the server continuously and at a high frequency. This
would mean a high workload for the clients and could also lead to bottlenecks on
the server side. Instead, there are significant benefits in applying active drift detec-
tion together with batch learning. Explicit drift detection answers two key questions:
what to learn and when to learn it. In a FL setting, this information is even more rel-
evant, since it determines not only when a model should be locally updated, but also
uploaded to the cloud. Hence, drift detection together with batch learning may be
lighter in terms of number of communications and computational cost. In particular,
when the data distribution changes little, the number of operations will be very low,
since training is conducted only when necessary.

4 Ensemble and continual federated learning: an overview

We present Ensemble and Continual Federated Learning (ECFL), a new FL architecture
based on ensemble learning and suitable for dealing with continual data streams and con-
cept drift. Figure 1 shows a high-level diagram of our proposal. As we can see, it involves
a cyclical learning. In the figure there are smartphones, but we could think of any other set
of devices, either homogeneous or heterogeneous, including wearables, robots, etc. Each
client device is able to perceive its environment through its sensors and is connected to the
cloud.

 Machine Learning

1 3

Iteratively, each of the devices creates and updates its own local model of the problem.
For that, each of them is continuously acquiring new information from the data stream
perceived through its sensors. This information is raw data, which must be locally pre-
processed before using it in a learning stage: noise detection, data transformation, feature
extraction, data normalization, instance selection, etc. The preprocessing is task-dependent
and it is performed online as new information becomes available. The preprocessed data
are stored locally until a significant amount is available to train a model. Each local model
is sent to the cloud where a global aggregation stage is performed to join the local con-
tributions, thus obtaining a global model. The global model is then shared with all the
devices in the network. After that, each device can take advantage of that global model to
make more accurate predictions and, at the same time, keep improving the local one. The
enhancement of the local learners will also result in an improvement at the global level.

Note that the information available at the local level will increase progressively
and may evolve in unpredictable ways. As it is unrealistic to assume that infinite stor-
age is available, a compromise solution must be reached to retain previous knowledge
that is still relevant at the same time as old information is replaced with new one.
ECFL allows to learn under strong storage constraints, working only with a small
amount of data within a sliding window. Our proposal is also robust in the lack of
labeled instances by incorporating a semi-supervised labeling system. Finally, it is
able to deal with concept drift, as it integrates local mechanisms for change detec-
tion and adaptation. In this work, we have focused on continual single-task scenarios.

Fig. 1 High-level diagram of ECFL

Machine Learning

1 3

Thus, we address classification problems where the input data space, X, and the set
of possible classes, {c1,… , cC} , are the same for all clients, and do not change over
time, although the input probabilities P(x), x ∈ X , may vary, leading to virtual con-
cept drift.

Ensemble techniques play an important role in our proposal. First, the global model is
an ensemble composed of a selection of local models. This allows global aggregation to
be performed regardless of the learning algorithm used locally, which does not have to be
SGD-based. The server is in charge of choosing the most relevant local models to become
part of the global ensemble through a distributed voting system. On the other hand, we
also use ensemble techniques locally to allow for continual adaptation to concept drift. In
fact, each local model will be an ensemble able to preserve old learners while adding new
ones, trained on new data. Drift detection is implemented locally, so that each client is able
to determine when the global model has become obsolete. If a drift is detected, the local
model is updated and the changes are communicated to the server. In the following sections
we explain the details of our approach at both learning levels, local (Sect. 5), and global
(Sect. 6).

5 Local learning

Figure 2 shows the continuous work flow for each device. Basically, devices gather raw
data from the environment. These data, conveniently preprocessed, are used to build or
update the local model. The preprocessing of the data refers to feature extraction, normali-
zation, instance selection, etc. Note that it might be partially labeled.

As we mentioned in the previous section, in order to learn and update the local model,
we have opted for the use of ensembles. In particular, every device builds its own local
ensemble of base classifiers.1 Any algorithm that provides posterior probabilities for its
predictions can be used as base classifier. In our experimental results (Sect. 7), we tried
different methods: Naïve Bayes, C5.0 Decision Trees, Support Vector Machines, etc. In
the same way, any state-of-the-art algorithm could be used to combine the predictions of
the base classifiers in the local ensemble. We opted for a simple but effective approach,
employing decision rules, which combine the posterior class probabilities from all base
classifiers.

Rule based ensembles have received very much attention because of their simplicity
and because they do not require training (Czyz et al., 2004; Kittler et al., 1998). When the
base classifiers operate in the same measure space, as it is this case, averaging the different
posterior estimates of each base classifier reduces the estimation noise, thus improving the
decision (Tumer & Ghosh, 1996). Therefore, we should use a rule that averages the poste-
rior estimates of the base classifiers. We use the median rule because it is robust to outliers.
Thus, we predict that an instance x belongs to class cj if the following condition is fulfilled:

(1)median{y1j (x),… , yNj
(x)} =

C
max
k=1

median{y1k (x),… , yNk
(x)},

1 From now on, to avoid confusion we will refer to each of the components of the ensemble as base classi-
fier or learner, while the term model will be used exclusively to designate the ensemble itself.

 Machine Learning

1 3

where C is the number of possible classes (c1, c2,… , cC), N is the number of base classi-
fiers, and yi = {yi1 (x),… , yiC (x)} is the output of the i-th classifier, for i = 1,… ,N.

As we can see in Fig. 2, the device gathers data and, if there is a global model avail-
able, it uses it to annotate the unlabeled samples. In particular, we perform what is called
semi-supervised transduction. As soon as a new unlabeled instance is available, we take

Fig. 2 Work flow on a local device

Machine Learning

1 3

advantage of the knowledge shared by the other devices and use the latest version of the
global model to predict which is the most likely class label. Then, we filter the predictions
based on their degree of confidence. We define the confidence of a prediction as the classi-
fier conditional posterior probability, i.e., the probability P(ci|x) ∈ (0, 1) of a class ci from
one of the C possible classes {c1, c2,… , cC} to be the correct class for an instance x. We
will explain how the confidence of the global model is obtained in Sect. 6. We accept a
predicted label as the real label when its confidence is equal to or greater than a threshold
� , whose optimal value we have empirically set at � = 0.9 . Low thresholds (𝛾 < 0.8) may
introduce noise in the training set, while very high thresholds (� ≥ 0.95) may allow to add
very few examples to the labeled set. See the experimental results for more details (Sect. 7).

We keep collecting data until we have enough instances to perform the training of
the first base classifier for the local model. The data is stored for a limited time in a
sliding window W of maximum size Nmax . This memory W follows the FIFO (First In,
First Out) rule. A common question in batch learning is how much data is necessary
for training. Unfortunately, the answer is not simple. In fact, it will depend on many
factors, such as the complexity of the problem and the complexity of the learning algo-
rithm (Jain & Chandrasekaran, 1982; Raudys & Jain, 1991). Statistical heuristic meth-
ods have been frequently used to calculate a suitable sample size, typically based on
the number of classes, the number of input features or the number of model param-
eters. To ensure a minimally balanced training set with representation of all classes, in
this work we establish a single heuristic rule that must be fulfilled in order to allow the
training of a base classifier. We define a minimum amount of labeled data, L, so that
there must be at least L/(2C) examples from each class in W to allow the training pro-
cess, where C is the number of possible classes. Formally, each client keeps collecting
data until the following condition is met:

where (x, y) is a data sample, being x the input features and y the true class label. The first
base learner of the local ensemble can be trained as soon as this rule is met. In our experi-
ments we have evaluated ECFL working with different values for L. As a rule of thumb, we
can say that a reasonable amount of data is given by L = 2Δ , where Δ is a strongly related
parameter used during drift detection algorithm that we will expose in Sect. 5.1. We also
use a maximum size Nmax = 20Δ for the sliding window W.

Once the device has a local model, the remaining question is when this local model
should be updated using the new data that is being collected. It makes no sense to update
it if it is performing well. However, as we said before, data is usually non-stationary and
evolves in time causing concept drifts, which damage model performance. Thus, as we will
show in Sect. 5.1, we will update the local model when a concept drift is detected.

Algorithm 1 details the complete local learning process. As soon as a new data sam-
ple (x, y) is available, we classify it using the global model (if any), obtaining the
confidence � that x corresponds to class label ŷ (lines 8–19 in the pseudocode). We do
this regardless of whether we know the actual label, y, because we will use the con-
fidence record later for drift detection. Both instance and confidence are stored in W

(2)∀ci ∈ {c1, c2,… , cC} ∶ |{(x, y) ∈ (X × Y) ∩W ∶ y = ci}| ≥ L

2C
,

 Machine Learning

1 3

(line 20). Depending on whether we know the true label or not, we will store y or its
estimate ŷ . Note that W = {w1,w2,… ,wN} is a history of 3-tuples of the form “[fea-
tures, label, confidence]”. The number of 3-tuples that can be stored in W is given by
Nmax . Once this maximum size is reached, adding a new element to W implies deleting
the oldest one (lines 5–7). When the data in W meet the condition from Eq. (2) (line
21), we can proceed to train the first base classifier, if our local ensemble is empty
(line 32), or move into drift detection and adaptation, if we already have a local model
(lines 23–30).

Machine Learning

1 3

A drift detector (line 25) is in charge of analyzing possible changes in the data
distribution and reporting them. In case a drift is detected, drift adaptation is
applied (line 27) and the sliding window W is reinitialized (line 28). This concept
drift management can be a bottleneck if we have to execute it after each new instance
is processed. Therefore, we restrict the number of executions, so that we check for
drift with a probability of e−2� (line 24). Hence, the higher the confidence, the lower
the probability of executing the change analysis.

5.1 Drift detection

Drift detection refers to the techniques that characterize and quantify concept drift
via identifying change points in data distribution. In our proposal, if a concept drift
is identified it means that the global model is no longer a good abstraction of the
knowledge of the devices, so it must be updated. Drift detection algorithms are typi-
cally classified into three categories (Lu et al., 2018): (1) error rate-based, (2) data
distribution-based, and (3) multiple hypothesis test methods. The first class focuses
on tracking changes in the online error of the classifier. The second uses a distance
function or metric to quantify the dissimilarity between the distribution of historical
and new data. The third group combines techniques from the two previous catego-
ries in different ways. Error rate-based methods operate only on true labeled data,
because they need the labels to estimate the error. Therefore, in order to take advan-
tage of both labeled and unlabeled data, in this work we decided to use a distribution-
based algorithm, which do not present this restriction. Thus, we developed a detec-
tion mechanism inspired in the technique originally designed by Haque et al. (2016),
which is a CUSUM-type method that works with beta distributions (Baron, 1999).

Algorithm 2 outlines our detection method. We propose to detect changes in the
confidence of the predictions provided by the current global model for the instances
in W. For that, we divide W into two sub-windows for every pattern k between Δ and
N − Δ (lines 3–6), where N is the total number of examples in W. Let Wa and Wb be
the two sub-windows, where Wa contains the most recent instances and their confi-
dences. Each sub-window is required to contain at least Δ examples to preserve statis-
tical properties of a distribution. When a drift occurs, confidence scores are expected
to decrease. Thus, only changes in the negative direction are required to be detected. In
other words, if ma and mb are the mean values of the confidences in Wa and Wb respec-
tively, a change point is searched only if ma ≤ (1 − �) × mb , where � is the sensitivity
to change (line 7). We use � = 0.05 and Δ = 100 in our experiments, since these values
are widely used in the literature (Haque et al., 2016).

 Machine Learning

1 3

We can model the confidence values in each sub-window, Wa and Wb , as two different
beta distributions. However, the actual parameters for each one are unknown. The proposed
algorithm estimates these parameters at lines 9 and 10. Next, the sum of the log likelihood
ratios sk is calculated in the inner loop between lines 11 and 13, where f

(
𝜍i ∈ wi | �̂�, 𝛽

)
 is

the probability density function (PDF) of the beta distribution, having estimated parame-
ters

(
�̂�, 𝛽

)
 , applied on the confidence �i of wi = [xi, yi, �i] ∈ W . The variable sk is a dissimi-

larity score for each iteration k of the outer loop between lines 4 and 18. The larger the dif-
ference between the PDFs in Wa and Wb , the higher the value of sk (line 12). Let kmax is the
value of k for which the algorithm calculated the maximum sk value where Δ ≤ k ≤ N − Δ .
Finally, a change is detected at point kmax if skmax ≡ sf is greater than a threshold Th (line
19), being Th = − log(�).

5.2 Local update

Once a drift is detected, the local model should be updated according to that drift. There
exist three main groups of drift adaptation methods (Lu et al., 2018): (1) simple retrain-
ing, (2) ensemble retraining, and (3) model adjusting. The first strategy is to simply train
a new model combining in some way the latest data and the historical data to replace the
obsolete model. The second one preserves old learners in an ensemble and when a new
one is trained, it is added to the ensemble. The third approach consist of developing a
model that adaptatively learns from the changing data by partially updating itself. This

Machine Learning

1 3

last strategy is arguably the most efficient when drift only occurs in local regions. How-
ever, online model adjusting is not straightforward and it will depend on the specific
learning algorithm being used. Instead, we apply ensemble retraining. In particular, as
we already mentioned before, we propose a rule-based ensemble using the median rule
from Eq. (1). Therefore, we conceive each local model as an ensemble of base histori-
cal classifiers. Recall that, for simplicity, we refer to this ensemble simply as the local
model of the device.

Algorithm 3 details our adaptation method. Each device is allowed to keep up to
Ml base classifiers, which will make up its local model. The new base learner will be
trained using only the labeled data stored in the sliding window W (lines 1 and 2 in the
pseudocode). Then, it will be added to the local ensemble. If there are already Ml learn-
ers in the ensemble, the new one replaces the oldest, thus ensuring that there are at most
Ml classifiers at any time (lines 3–6). Hence, with this strategy we also face the infinite
length problem, as a constant and limited amount of memory will be enough to keep
both training data and the model. In our experiments, we evaluated ECFL for different
values of Ml (see Sect. 7).

6 Global learning

The global model is an ensemble that integrates a selection of local models. As in the local
level, any state-of-the-art ensemble technique could be used to combine the predictions of the
local models. There are some interesting choices, such as stacking (Wolpert, 1992). Stack-
ing tries to induce which base classifiers are reliable and which are not by training a meta-
learner. This meta-learner is a higher-level model which is trained on a meta-dataset composed
from the outputs of all base classifiers on a given training set. However, it presents a great
limitation, which is the need to have this meta-dataset available in advance. In our context of
devices, this would involve gathering a certain amount of labeled data from all users in the
cloud, which is not feasible. Therefore, a better solution is to use a simpler but equally effec-
tive rule-based ensemble, as we already do at the local level (Sect. 5). In this case, the optimal
combination rule is the product rule, because each local classifier operates in a different meas-
ure space (Kittler et al., 1998): different environments and users. The product rule predicts that
an instance x belongs to class cj if the following condition is met:

(3)
N∏
i=1

yij (x) =
C

max
k=1

N∏
i=1

yik (x),

 Machine Learning

1 3

where C is the number of possible classes (c1, c2,… , cC), N is the number of base clas-
sifiers, and yi = {yi1 (x),… , yiC (x)} is the probabilistic output of the i-th classifier, for
i = 1,… ,N . The global ensemble is shared with all clients so that everyone can use it.
Note that, unlike in other federated learning solutions, we aggregate the outputs of the
local models, and not the models themselves. Therefore, each time a client uses the global
model, the product rule from Eq. (3) is applied. Also note that the outputs of this equation
are the estimated posterior probabilities that we use on each device as confidence values to
decide which unlabeled patterns can and cannot be labeled. Therefore, the elements yik are
always greater than 0, hence their product and maximum is also greater than 0.

Although the time complexity of using the global model is linear, O(N), including all local
models in the global ensemble is not the best option for several reasons. First, depending on
the problem, there could be hundreds or thousands of devices connected, so using an ensem-
ble of those dimensions could be computationally very expensive. As the global model is sent
back to local devices, it would also have a negative impact on the bandwidth and computa-
tional requirements of the clients. In addition, assuming that there is an optimal global abstrac-
tion of knowledge, not all the local models will bring the same wealth to the ensemble. On
the contrary, there will be devices that, accidentally or intentionally, may be creating local
models with poor performance, which should be detected in time so as not to participate in the
ensemble.

For all these reasons, we propose to keep a selection of the Mg best local models to partici-
pate in the global ensemble. In this way, we can know a priori the computational and storage
resources we will need. When the server receives a new local updated, if there are already Mg
local models in the global one, the new candidate must compete against those in the ensemble.
For that, the server will keep a score representing the relevance of each of the Mg models and
will also compute that score for each new incoming update. The computation of the scores is
based on the Effective Voting (EV) technique (Tsoumakas et al., 2004). EV propose to per-
form 10-fold cross validation for the evaluation of each model and then apply a paired t-test
for each pair of models to evaluate the statistical significance of their relative performance.
Finally, the most significant ones are selected.

In distributed contexts, involving multiple devices, skewness and bias are frequent, so
cross-validation is not a fair way to evaluate each local model. Instead, when a new local
model arrives, the server chooses p different local devices, randomly selected, and asks them
to evaluate that classifier on their respective local training sets. Once this evaluation is done,
each device sends back to the cloud its accuracy. Assuming that not all the p selected devices
are necessarily available to handle the request, the server waits until it has received q perfor-
mance measures for that model. Both p and q parameters depend on the maximum ensemble
size, Mg , and the total number of devices available online, N, so that Mg ≤ q ≤ p ≤ N . This
process could be considered a distributed cross-validation. After gathering the q measure-
ments for the current Mg models and the new one, a paired t-test with a significance level of
0.05 is performed for each pair of models Eli

,Elj
 so that:

Then, for each model we calculate its overall significance index:

(4)t(Eli
,Elj

) =

⎧
⎪⎨⎪⎩

1 ifEli
is significantly better thanElj

,

−1 ifElj
is significantly better thanEli

,

0 otherwise.

Machine Learning

1 3

Finally, we select the new Mg models with the highest significance index or score, S. If
there are ties, we break them by selecting the most accurate ones (we compute the mean
accuracy from the q available evaluations). Figure 3 summarizes the whole selection
process, that we call Distributed Effective Voting (DEV). As we will see in Sect. 7, we
performed several experiments in networks of 10 client devices, so we evaluated ECFL
using values for Mg from 3 to 9. For simplicity, we set p = q = Mg . In any case, the global
ensemble size will be dependent on the problem.

Algorithm 4 details the complete server-side behavior of ECFL. Every time a device
trains or updates its local model, the changes will be reported to the cloud. The server waits
to receive an update (lines 3 and 4). Once this happens, the global model is accordingly
modified. If the client that sends the update is already present in the global ensemble, the
newer version of that local model replaces the older one (lines 5–7). If the client is not in
the global ensemble and its size is still smaller than Mg , then the local model is directly
added (lines 8 and 9). Otherwise, our DEV selection method is applied to determine which
local models remain in the global ensemble and which one does not (lines 10 and 11).
Once the global model is updated, the server shares the new version with all the clients
(line 13).

Note that ECFL needs a mechanism for selecting local models to build the global
one, but it could be other than DEV. However, designing a good selection method is not
straightforward, as some challenges must be addressed. Firstly, local models must be eval-
uated without centralized data being available anywhere and without even being able to
retain all local data. In addition, a balance is required between precision in the selection
and efficiency in the overall system. Improving the voting system may involve more com-
munication between server and devices, which limits the scalability of the architecture. The
proposed DEV method might select some suboptimal local models from time to time. This
makes sense, since it is based just on the voting carried out by a subset of q random clients.

(5)S(Eli
) =

Mg+1∑
j=1

t(Eli
,Elj

).

 Machine Learning

1 3

Nevertheless, as we will see in Sect. 7, results indicate that the global ensemble always
performs close to or better than the best local model. This leads us to think that perhaps
the diversity on the global ensemble is more important than the accuracy of each of its
members.

7 Experimental results

The aim of this section is to evaluate ECFL, while illustrating how it works and highlight-
ing its main properties in different situations. In particular, we want to test the performance
of the global model, obtained from the consensus of the local devices, in distributed, con-
tinual, heterogeneous, and semi-supervised classification scenarios. To this end, through-
out the section, we will work on walking activity recognition on smartphones. For more
in-depth results and additional evaluation on other datasets, see Appendices A and B.

We believe that walking recognition is a good benchmark to evaluate our proposal given
its complexity and its natural fit in a collaborative and continual framework. It is relatively
easy to detect the walking activity when a person walks carrying the smartphone in a fixed
position. Nonetheless, in real life, the orientation of the device with respect to the body, as
well as its location (hand, bag, pocket, etc.), may change constantly as the person moves,

Fig. 3 Work flow of the distributed effective voting

Machine Learning

1 3

thus making the task more challenging. This has already been addressed applying stand-
ard (centralized) machine learning processes (Casado et al., 2020; Rodríguez et al., 2018).
These approaches, however, involve months of work, collecting data from different vol-
unteers—with the privacy restrictions that this may entail—, re-training and fine-tuning a
model until it is finally put into exploitation. Besides, no matter how complete we think the
training data is, there will often be a situation, a user, or a device, for which the model fails
to generalize well enough. A federated and continual learning approach can avoid such
issues.

There are currently a number of public datasets for human activity recognition, but there
are not many designed for experimentation in federated and continual learning. This means
involving different participants, including metadata for each sample indicating its times-
tamp and the user and device it belongs to. Although we could synthetically modify some
existing data, for this work we decided to create a new dataset to be more realistic. For that,
we developed an Android application that samples and logs inertial data (accelerometer
and gyroscope) on the phone continuously. The app allows the user to indicate whether he/
she is walking or not through a switch button in the graphical interface. This is optional,
so depending on the user’s willingness to participate, there will be more or less labeled
data. The app also labels autonomously some examples applying a series of heuristic rules
when it comes to clearly identifiable positives or negatives (e.g., when the phone is at rest).
With this app, we collected partially labeled data from 10 different people. Participants
installed our application and recorded data continuously while they were performing their
usual routine.

We have used the entire dataset obtained with our app for training. For testing, we have
employed the Walking Recognition Dataset (WRD), taken from the literature (Casado
et al., 2020). It is a fully labeled dataset that includes recordings from 77 different people.
Several features were extracted from the raw time series in both cases, ending with almost
70,000 patterns for training and 8000 for testing. Further details on software, data distribu-
tion, and preprocessing can be found in Appendix A.

7.1 Baseline

Before applying ECFL, we decided to set a baseline. Thus, we trained and fine tuned some
of the most popular and widely used supervised classification algorithms: (i) Generalized
Linear Model (GLM), (ii) Naïve Bayes (NB), (iii) C5.0 decision tree (C5.0), (iv) Sup-
port Vector Machine (SVM), (v) Random Forests (RF), (vi) Stochastic Gradient Boosting
(SGB), and (vii) Feed-forward Neural Network (FNN). For that, we used the entire training
set, joining the data of the 10 participants. The results of evaluating all the methods on the
test set are shown in Table 1. We can see that the accuracy of all classifiers ranges between
70% and 90%, but SVM, RF, SGB, and FNN, clearly work better. These are the reference
results that could be achieved under ideal conditions, if centralizing user data were possible
and there were no temporal constraints. For more details on hyperparameter tuning of these
models, see Appendix C.

Next, we addressed the problem in a federated manner, forcing the data and the learn-
ing to be distributed among the 10 clients. In this situation, none of the algorithms from
Table 1 is directly applicable. Thus, we decided to train a local model for each of the 10
participants and then build a global ensemble using the product rule (since this is the same
approach used in ECFL). We also trained two more feed-forward neural networks using
the two most popular FL methods: (a) FedAvg, and (b) FedProx. The performance of each

 Machine Learning

1 3

global model is shown in Table 2. If we compare these results with those in Table 1, we can
see some differences. On the one hand, weaker classifiers, such as GLM or Naïve Bayes,
have their performance enhanced when used in an ensemble. On the other hand, algorithms
that are usually more robust, such as Random Forests or SGB, are weakened by splitting
the data among multiple clients. Finally, when using neural networks, both FedAvg and
FedProx are good options, better than an ensemble of networks. Note that in this experi-
ment we still did not include temporal restrictions, so that each client had access to all its
data at any time.

7.2 Continual federated setting

Both the results in Tables 1 and 2 are useful to get an idea of the performance of the clas-
sifiers under ideal conditions. Having this baseline, we finally introduced the temporal
domain to evaluate ECFL. Thus, data acquisition is continuous over time. For simplicity,
we assume all clients process data with the same frequency and, therefore, each iteration in
our proposal will correspond to a new pattern for all clients. The data stream lasts 10,000
iterations, given that this is the maximum number of samples collected by each client.
Since not all of them reach 10,000 patterns, those with less data do not start at iteration
1, but join at some point later. The data stream of each participant follows the exact order
in which the samples were originally recorded by the Android app. In this way, we have a
realistic data distribution, which will evolve over time, leading to different local concept
drifts.

We ran ECFL trying different base classifiers (the same ones from Table 1). We also
executed FedAvg and FedProx in this setting. Recall that, in continual scenarios, the data
stream is of potentially infinite size, so it is impossible to store all incoming data in the
memory. For this reason, ECFL uses a sliding window, W, of limited size during learning.
In order to be on an equal footing, we introduced the same restriction in FedAvg and Fed-
Prox, so that in each training round they would use only the data available at that moment
in W. We evaluated all models (local and global) over time, after each local update, always
using the same test dataset (WRD). We repeated each execution 10 times, randomly vary-
ing the iteration in which each client joins the learning. Table 3 shows, for each of the con-
figurations, the average performance obtained by the global model after the 10 executions.
That is, Table 3 provides the mean accuracy obtained with the global model at the end of
the data stream, once the latest update has been performed and there is no more data left to
process in any of the devices. In ECFL, each local model is an ensemble of maximum size
Ml , and the global model is composed of up to Mg local models. Besides, there is a mini-
mum amount of labeled data, L, required to train a new learner, and a confidence threshold,
� , used during semi-supervised labeling. The results shown in Table 3 were obtained using
Ml = Mg = 5 , L = 200 , and � = 0.9 . For more information on the impact of these hyperpa-
rameters on the performance of our proposal, see Tables 6, 7, and 8 in Appendix A.

The comparison of the results in Tables 1 and 2 with those of Table 3 is not fair, since
the last setting is much more complex, dealing with spatial and temporal constraints at the
same time. Even so, we can see that ECFL competes with the baseline classifiers, provid-
ing similar performances. Especially noteworthy is the case where SVMs are used as base
classifiers, since it outperforms both the single model from Table 1 and the ensemble from
Table 2. We can also see that, while still performing quite well, both FedAvg and FedProx

Machine Learning

1 3

experience some downgrading compared to the previous setting. This is because these
methods were not designed for continual learning. It is important to remember that ECFL
only uses half of the users to build the global ensemble model (Mg = 5), whereas FedAvg,
FedProx, and all the models in Tables 1 and 2 are trained using all labeled data from all cli-
ents. The results in Table 3 demonstrate the robustness of ECFL in demanding scenarios.

To better illustrate the learning process in ECFL, we will now show in detail one of the
executions from Table 3 as an example. We will select the case where we use SVMs as
base classifiers. Figure 4 details the evolution of the performance per client and over time.
The upper graphs shows the accuracies of all the models—from each of the 10 users and
also the global one—when evaluated on the test dataset. The thick black line corresponds
to the global model, while the rest of the colored lines are each of the 10 clients. As in each
iteration the unlabeled local data is labeled with the most recent global model, the more
unlabeled data the device has, the more it will be enriched by the global knowledge. The
bottom graph shows the local updates and global selection. Once again, each colored line
corresponds to one participant. In those places where the line is not drawn it means that
the device is not processing data. A circumference (◦) on the line indicates when a drift
has been detected and the local model has been updated. If the circumference is filled (∙) it
indicates that the local model is chosen as one of the 5 models of the global ensemble—the
other 4 chosen are marked with a cross (×)—. At the end of the process, the global model
is composed of the local models of users 2, 4, 5, 7 and 9.

By looking at Fig. 4, we can see that each client updates their local model between 1
and 5 times. These updates are done based on the concept drift detection and adaptation

Table 1 Performance of several
supervised classifiers, trained in
ideal conditions

Method Balanced accu-
racy

Sensitivity Specificity

GLM 0.722 0.821 0.624
NB 0.795 0.904 0.685
C5.0 0.817 0.884 0.750
SVM 0.846 0.937 0.755
RF 0.855 0.902 0.807
SGB 0.860 0.908 0.811
FNN 0.858 0.913 0.802

Table 2 Performance of several
supervised classifiers, trained in
a distributed way

Method Balanced
accuracy

Sensitivity Specificity

Ensemble (GLM) 0.782 0.959 0.604
Ensemble (NB) 0.819 0.948 0.690
Ensemble (C5.0) 0.809 0.976 0.642
Ensemble (SVM) 0.852 0.956 0.748
Ensemble (RF) 0.819 0.983 0.655
Ensemble (SGB) 0.814 0.959 0.669
Ensemble (FNN) 0.810 0.951 0.669
FedAvg 0.848 0.937 0.758
FedProx 0.844 0.960 0.728

 Machine Learning

1 3

approach explained in Sect. 5. The need for adaptation is conditioned by the evolution of
the data distribution of the stream. A more detailed evaluation of the drift detection method
is given in Appendix B, where we use another dataset that contains annotated information
on when a change occurs. Regarding the construction of the global ensemble, it should
be reminded that local models are chosen using the Distributed Effective Voting (DEV)
method, explained in Sect. 6. DEV is based on the voting carried out by a subset of q users
randomly chosen (5 in this case, because q = Mg = 5). The results presented here, as well
as the extended evaluation in Appendix A, demonstrate that the global ensemble provides
excellent performance, always similar or greater than that of any local model.

Another important aspect to highlight in Fig. 4 is the fact that the global model is able
to provide good results almost from the beginning. This is due to the great generalization
capability that characterizes ensemble methods and classifiers such as SVM, even when the
amount of training data is limited. It is something that does not happen using FedAvg or
FedProx. Figure 5 shows two examples of execution for these two methods. The horizontal
axis is represented in terms of federated rounds, and not in terms of samples, since both
work with synchronous rounds of local update and global aggregation. We can see how, in
both cases, the global model takes approximately 10 rounds to converge, which is roughly
the half of the data stream.

To conclude this section, we decided to increase the complexity of the problem a bit
more in order to further test our local model selection method, DEV. Suppose now that
there are some users who are mislabeling data, whether intentionally or not. To simulate
this, we synthetically modified the training data, reversing all the labels provided by 4 of
the 10 users. This is the maximum number of clients we can poison to consider them outli-
ers in the system. We chose three very active users (users 1, 2, and 9), and one more not
very involved (user 3). Any centralized, distributed or continual algorithm that is unaware
of mislabeled data and trained using all available information will give poor results. Our
proposal, instead, can detect atypical participants in an unsupervised manner and exclude
them from the global model. Besides, those clients will receive the global model to label
the unlabeled samples correctly, thus overcoming the data that was manually mislabeled.
Table 4 shows the average performance of ECFL, FedAvg and FedProx in this continual
setting with outliers. As can be appreciated, in this case our proposal far outperforms the
results provided by the other approaches.

Figure 6 shows an example of executing ECFL in this scenario, in the particular case
where SVM is used as base classifier. The results are comparable to those shown in Fig. 4.

Table 3 Average performance
of ECFL (using different
base classifiers), FedAvg, and
FedProx, trained in a distributed
and continual setting

The most relevant results are highlighted in bold

Method Balanced accuracy Sensitivity Specificity

ECFL (GLM) 0.743 (±0.066) 0.863 (±0.037) 0.623 (±0.048)

ECFL (NB) 0.789 (±0.014) 0.811 (±0.023) 0.766 (±0.011)

ECFL (C5.0) 0.795 (±0.037) 0.866 (±0.016) 0.726 (±0.021)

ECFL (SVM) �.��� (±0.032) 0.871 (±0.007) 0.843 (±0.036)

ECFL (RF) 0.845 (±0.011) 0.911 (±0.014) 0.779 (±0.013)

ECFL (SGB) 0.833 (±0.033) 0.895 (±0.025) 0.771 (±0.019)

ECFL (FNN) 0.803 (±0.027) 0.861 (±0.018) 0.745 (±0.011)

FedAvg 0.806 (±0.016) 0.911 (±0.015) 0.701 (±0.047)

FedProx 0.816 (±0.008) 0.907 (±0.027) 0.725 (±0.035)

Machine Learning

1 3

In this case, at the end of the process, the global model is composed of the local models of
users 4, 5, 6, 7 and 10. Figure 7 illustrates the process using FedAvg and FedProx. We can
see that FedAvg never stabilizes. FedProx, on the other hand, seems to converge more eas-
ily. In both cases, it is particularly relevant that users with correctly labeled data do achieve
good performance individually. However, the global model is unable to reach the same
results since there is no informed selection during the aggregation stage.

8 Privacy concerns

An important feature of federated learning, and certainly one of its greatest advantages
over other solutions, is its ability to protect data privacy. In our proposal, as is the case with
any other FL method, there is no upload to the cloud or explicit sharing of raw data. In
addition, the entire database is naturally segmented into local storages, from different own-
ers, which makes it more difficult to hack.

However, it should be noted that our approach, in its simplest implementation, involves
communicating models between the server and the clients. This is something that happens
with the majority of FL proposals in their most naive implementation. Unfortunately, it

Fig. 4 Example of executing ECFL with SVM as base classifier. The upper graph shows the evolution of
the accuracy over time. The black line corresponds to the global model, while the others are the clients. The
bottom graph shows the local updates and global selection

 Machine Learning

1 3

can lead to privacy leaks due to, for example, the reverse engineering that can be done on
the models (Nasr et al., 2019; Wang et al., 2019b). To avoid this, there are several protec-
tion mechanisms that can be added as additional layers of security. Firstly, differential pri-
vacy (Dwork, 2008; Augenstein et al., 2019) can be introduced for client models, so that
each participant could have a personalised privacy budget. In addition, there are strategies
based on Secure Multi-party Computation (SMC) (Canetti et al., 1996), where communica-
tions are secured and protected with cryptographic methods. One example of this is homo-
morphic encryption (Aono et al., 2017), which allow operations to be performed directly
on encrypted data and models without the need to decrypt them. Finally, in our particular
case we must highlight the fact that the server acts as a central orchestrator, but it can carry
out its tasks without the need to access sensitive information, not even local models. This is
thanks to the fact that our global aggregation system is an ensemble, and does not require
operations on model parameters. Thus, a simple privacy mechanism would be to imple-
ment a point-to-point encryption for the local models, combined with their anonymization
on the server. In this way, a client’s local model would not be decrypted until needed by

Fig. 5 Example of execution of FedAvg and FedProx in the federated and continual setting

Machine Learning

1 3

another client (as part of the global ensemble), which would in any case be unaware of its
authorship. We leave the exploration of these privacy issues for future work.

9 Conclusions

In this paper we have presented ECFL, a novel architecture for continual and federated
classification using ensemble techniques. Our approach allows to build an ensemble com-
posed of different local models, which are trained in a distributed way on different client
devices. The ensemble is the global, shared model, which can be used by the devices and
help them to label unlabeled patterns to improve performance. This architecture poses sev-
eral advantages for federated learning, such as its simplicity, flexibility, or generalizability.
Furthermore, it allows to work with problems that require continual adaptation, something
that is still beginning to be addressed in research. Thus, our proposal is robust to situations
where data is distributed among multiple clients and is also non-stationary, evolving over
time and causing concept drifts. We have tested ECFL in different tasks and under diverse
conditions, showing that it is able to provide results that are comparable to or even better
than those obtained using other state-of-the-art methods trained in ideal conditions (i.e.,
data is centralized, static, and IID).

Our approach has a series of components that are clearly separable: local training, semi-
supervised labeling, drift detection and adaptation, global selection of candidates, and
global aggregation. We believe that new proposals can be made to improve some of these
modules. For example, we would like to explore optimal ways to combine models in the
ensemble, study effective ways to perform distributed feature selection, or analyze the use
of the global model for instance selection in the local devices. It could also be of interest
to take advantage of our architecture in the context of explainable artificial intelligence
(XAI), given that the use of ensembles is compatible with the use of local learners that
facilitate the explanation of their decisions. Another promising feature could be to have
some personalization system, so that the global model would be able to adjust to local par-
ticularities. In addition, it remains open to explore the privacy enhancements mentioned in
the previous section. There is undoubtedly a whole world of possibilities to be discovered
in continual and federated learning, and we believe that this paper, in addition to providing
a novel architecture in this field, opens up new paths of exploration in it.

Table 4 Average performance
of ECFL, FedAvg, and FedProx,
trained in a distributed and
continual setting, when some
users mislabel data

Method Balanced accuracy Sensitivity Specificity

ECFL (GLM) 0.752 (±0.052) 0.921 (±0.036) 0.583 (±0.050)

ECFL (NB) 0.761 (±0.023) 0.628 (±0.041) 0.893 (±0.028)

ECFL (C5.0) 0.758 (±0.044) 0.831 (±0.027) 0.685 (±0.018)

ECFL (SVM) 0.852 (±0.039) 0.827 (±0.012) 0.876 (±0.021)

ECFL (RF) 0.812 (±0.019) 0.986 (±0.016) 0.638 (±0.011)

ECFL (SGB) 0.822 (±0.015) 0.948 (±0.023) 0.695 (±0.034)

ECFL (NN) 0.799 (±0.026) 0.878 (±0.019) 0.720 (±0.040)

FedAvg 0.669 (±0.189) 0.697 (±0.298) 0.641 (±0.161)

FedProx 0.694 (±0.087) 0.771 (±0.134) 0.617 (±0.139)

 Machine Learning

1 3

A: Extended results on walking recognition

In this appendix we provide further details on the experiments performed on the walking
recognition problem, which were omitted in Sect. 7 for ease of reading.

A.1: Data preprocessing and distribution

Both the training and testing datasets contain tri-axis accelerometer and gyroscope raw
signals recorded at 100 Hz by different smartphones while their users performed differ-
ent activities. They also contain annotated information about what users are doing in each
moment, although in the case of the training set this information is partial.

Before learning any classifier, we performed the signal preprocessing originally pro-
posed in Casado et al. (2020), given the good performance demonstrated in the past. Basi-
cally, the signal was filtered and centered by applying a 10th order Butterworth filter with
a 3 Hz cut-off frequency and then a DC-bias filter. The resulting signal was split into win-
dows of 250 measurements, which is equivalent to 2.5 s. Then, each of these windows
was transformed into a pattern. For that, we applied feature extraction, calculating 21

Fig. 6 Example of executing ECFL when 4 clients mislabel the data. The upper graph shows the evolution
of the accuracy. The black line corresponds to the global model, while the others are the clients. The bottom
graph shows the local updates and global selection

Machine Learning

1 3

state-of-the-art features for each window. We selected diverse and representative features
in both the time and frequency domains, including the standard deviation for each axis of
the acceleration, the variance of the angular velocity, the peak count of the acceleration
norm, the skewness of the angular velocity norm, and the modal frequency of the accelera-
tion norm, among others. Readers interested in more details on preprocessing are referred
to Casado et al. (2020). After this, we obtained the final sets used in our experiments,
where each instance corresponds to 2.5 s of activity. Table 5 summarizes the data distribu-
tion in both datasets, attending to the class labels. For training data, a breakdown by user is
provided.

A.2: Full results

In the following, we provide an exhaustive evaluation of our approach on the walking
recognition problem, for different configurations and hyperparameters. In particular, we
show the impact of building the local models using 7 different base classifiers, and vari-
yng the size of the local and global ensembles (Ml and Mg , respectively), as well as the
confidence threshold (�) and the minimum amount of labeled data required for training
(L). We ran each experiment 10 times, randomly varying the iteration in which each

Fig. 7 Example of execution of FedAvg and FedProx in the federated and continual setting when 4 clients
mislabel the data

 Machine Learning

1 3

client joins the learning. For each setting, we provide the mean and standard deviation
of the balanced accuracy.

Table 6 is an extended version of Table 3 (Sect. 7), and shows the influence of the
base classifier selection in the results. All other parameters were kept constant, being
Ml = Mg = 5 , � = 0.9 , and L = 200 . We provide, for each configuration, the average
accuracy obtained by the global model after 10 different executions. In this extended
version we also include the average accuracy of each of the local models and an addi-
tional column with the mean accuracy of all local models. Table 6 empirically demon-
strates that the global model always performs similar or better than the best of the local
ones.

It is important to mention that, despite the good performance, the use of Random For-
est or SGB as base classifiers in ECFL does not seem to be optimal. This is because these
algorithms are already ensembles. For these cases, there are probably much more efficient
combination strategies that could be tested. For example, when using Random Forests, it
might be better to combine the decisions of all the trees of each forest, at a lower level,
instead of just combining the final decisions of each of the forests. Proposals like this are
out of the scope of this work, in which we have focused on a global learning method scal-
able to multiple settings.

Table 7 shows the impact of local and global ensemble size on model accuracy. In this
case, all executions were performed using SVMs as base classifiers and � = 3 and L = 200 .
As we can see, in general the results are better the larger the size of both local and global
models. However, it seems that the optimal global ensemble size is 7. Those rows with
value 5+ for Ml denote that further increasing the local ensemble size has no impact on the
performance. This is because, in this problem, no client detects more than 4 drifts, so no
more than 5 base classifiers are ever trained.

Finally, in Table 8 we present the influence of the confidence threshold, � , and the mini-
mum amount of training data, L. In general, a higher value for L is a guarantee of better perfor-
mance. However, the trade-off is that a longer waiting time is required to obtain the minimum
amount of data needed for training. In fact, this waiting can be infinite if the clients get very
few labeled data. This is precisely what happens to user 5 when L ≥ 400 , which never gets to
train a local model. We can also appreciate that, at least for this problem, varying � does not
seem to affect significantly. This may be because the local models selected to be part of the

Table 5 Summary of the train
and test data distribution

Walking Not walking Unlabeled Total

Training set User 1 3130 2250 4620 10,000
User 2 2519 4359 3122 10,000
User 3 186 325 125 636
User 4 2432 2455 5113 10,000
User 5 233 2785 6982 10,000
User 6 554 1821 69 2444
User 7 2582 2052 769 5403
User 8 232 678 229 1139
User 9 1151 2669 6180 10,000
User 10 2329 2669 5002 10,000
Total 15348 22063 32211 69,622

Test set 6331 1586 0 7917

Machine Learning

1 3

Ta
bl

e
6

 A
ve

ra
ge

 a
cc

ur
ac

ie
s o

f l
oc

al
 a

nd
 g

lo
ba

l m
od

el
s i

n
EC

FL
 u

si
ng

 d
iff

er
en

t b
as

e
cl

as
si

fie
rs

B
as

e
cl

as
si

fie
r

U
se

r 1
U

se
r 2

U
se

r 3
U

se
r 4

U
se

r 5
U

se
r 6

G
LM

0
.5
0
1
(±

0
.0
0
1
)

0
.7
4
7
(±

0
.0
3
9
)

0
.7
0
0
(±

0
.0
0
5
)

0
.6
6
3
(±

0
.1
0
5
)

0
.7
9
5
(±

0
.0
1
3
)

0
.6
6
1
(±

0
.0
3
5
)

N
aï

ve
 B

ay
es

0
.7
6
3
(±

0
.0
0
4
)

0
.5
7
5
(±

0
.0
0
0
)

0
.7
8
7
(±

0
.0
0
1
)

0
.5
0
0
(±

0
.0
0
0
)

0
.8
3
1
(±

0
.0
0
0
)

0
.8
2
3
(±

0
.0
0
4
)

C
5.

0
Tr

ee
0
.5
0
3
(±

0
.0
0
0
)

0
.7
5
2
(±

0
.0
0
9
)

0
.6
3
9
(±

0
.0
3
9
)

0
.5
0
4
(±

0
.0
6
3
)

0
.8
1
2
(±

0
.0
1
2
)

0
.5
6
6
(±

0
.0
0
8
)

SV
M

0
.4
9
0
(±

0
.0
0
1
)

0
.7
1
2
(±

0
.0
1
5
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
4
1
(±

0
.0
0
8
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

R
F

0
.5
0
3
(±

0
.0
0
0
)

0
.8
3
4
(±

0
.0
0
5
)

0
.7
1
5
(±

0
.0
0
0
)

0
.8
1
9
(±

0
.0
2
8
)

0
.7
9
9
(±

0
.0
0
0
)

0
.6
7
6
(±

0
.0
0
0
)

SG
B

0
.5
0
2
(±

0
.0
0
1
)

0
.6
9
2
(±

0
.0
3
1
)

0
.7
3
0
(±

0
.0
6
2
)

0
.7
7
3
(±

0
.1
6
7
)

0
.8
1
7
(±

0
.0
0
0
)

0
.6
1
8
(±

0
.0
3
9
)

FN
N

0
.5
0
4
(±

0
.0
0
1
)

0
.8
0
8
(±

0
.0
1
0
)

0
.7
0
6
(±

0
.0
1
3
)

0
.6
3
5
(±

0
.0
2
9
)

0
.7
9
3
(±

0
.0
0
2
)

0
.6
5
2
(±

0
.0
0
7
)

B
as

e
cl

as
si

fie
r

U
se

r 7
U

se
r 8

U
se

r 9
U

se
r 1

0
Lo

ca
l m

ea
n

G
lo

ba
l m

od
el

G
LM

0
.7
3
6
(±

0
.0
0
8
)

0
.7
3
7
(±

0
.0
4
7
)

0
.6
2
5
(±

0
.0
6
6
)

0
.6
7
2
(±

0
.1
0
0
)

0
.6
8
4
(±

0
.0
4
2
)

0
.7
4
3
(±

0
.0
6
6
)

N
aï

ve
 B

ay
es

0
.5
0
0
(±

0
.0
0
0
)

0
.8
3
8
(±

0
.0
1
9
)

0
.7
6
1
(±

0
.0
0
8
)

0
.6
7
9
(±

0
.0
1
0
)

0
.7
0
6
(±

0
.0
0
5
)

0
.7
8
9
(±

0
.0
1
4
)

C
5.

0
Tr

ee
0
.5
3
3
(±

0
.1
1
1
)

0
.7
3
3
(±

0
.0
2
3
)

0
.5
8
3
(±

0
.0
0
6
)

0
.5
4
7
(±

0
.0
8
4
)

0
.6
1
7
(±

0
.0
3
6
)

0
.7
9
5
(±

0
.0
3
7
)

SV
M

0
.7
0
8
(±

0
.0
0
2
)

0
.8
6
3
(±

0
.0
0
1
)

0
.6
8
4
(±

0
.1
4
9
)

0
.6
8
4
(±

0
.0
2
2
)

0
.6
9
2
(±

0
.0
2
0
)

0
.8
5
7
(±

0
.0
3
2
)

R
F

0
.6
8
2
(±

0
.0
0
6
)

0
.8
1
5
(±

0
.0
0
4
)

0
.6
7
7
(±

0
.0
1
4
)

0
.7
6
9
(±

0
.0
1
0
)

0
.7
2
9
(±

0
.0
0
7
)

0
.8
4
5
(±

0
.0
1
1
)

SG
B

0
.6
6
7
(±

0
.1
0
6
)

0
.7
7
5
(±

0
.0
4
4
)

0
.6
9
7
(±

0
.0
7
5
)

0
.7
2
6
(±

0
.1
2
4
)

0
.7
0
0
(±

0
.0
6
5
)

0
.8
3
3
(±

0
.0
3
3
)

FN
N

0
.7
6
3
(±

0
.0
1
3
)

0
.7
0
3
(±

0
.0
9
4
)

0
.6
6
3
(±

0
.0
5
1
)

0
.6
8
8
(±

0
.0
4
2
)

0
.6
9
2
(±

0
.0
2
6
)

0
.8
0
3
(±

0
.0
2
7
)

 Machine Learning

1 3

global ensemble are usually those that provide the best results, which tend to belong to clients
that already have a significant amount of labeled data.

B: Additional experiments on the HAR multi‑class dataset

We further provide additional results in a different task and data. We selected the dataset
from Shoaib et al. (2014), which is another popular benchmark for Human Activity Rec-
ognition (HAR) on smartphones. Unlike in the previous case, this one poses a multi-class
classification problem. It includes data of 10 different people performing seven physical
activities: walking, going upstairs, going downstairs, sitting, standing, jogging, and bik-
ing. The data is fully labeled for all the participants. It was collected at 50 Hz and includes
readings from accelerometer, gyroscope, and magnetometer.

Perhaps the most interesting feature of this dataset is that it provides, for each activity,
data recorded with the smartphone placed in 5 different locations (Fig. 8): (1) on the belt,
(2) in the left jeans pocket, (3) in the right jeans pocket, (4) on the right upper arm, and
(5) on the right wrist. We will take advantage of this to analyze in greater detail the perfor-
mance of ECFL in response to drifts.

We posed the problem as a multiclass classification task where the goal is to correctly
predict which of the 7 activities is being performed by the user. We split the raw inertial
signals into windows of 124 samples (2.5 s). We decided to just keep the accelerometer and
gyroscope channels and apply the same preprocessing and feature extraction used in the
previous task (Appendix A.1). After that, each client has a total of 5000 samples, 1000 for
each phone location. In all the experiments that we will show below, we performed leave-
one-out cross-validation at the client level. That is, we used 9 of the clients for training and
the remaining one for testing. Thus, each experiment was repeated 10 times, employing
45,000 samples for training and 5000 for testing.

Similarly to what we did in Sect. 7, we first provide a baseline to get an idea of the per-
formance that could be achieved under ideal conditions. For that, we joined the data from
all clients, shuffled it randomly to have a totally IID dataset, and trained and fine-tuned
several classifiers. Then, we also applied the two state-of-the-art federated methods, Fed-
Avg and FedProx. Table 9 shows the average results. In it, we can see that classifiers such
as Random Forests and SVM are once again leading the ranking. It can also be seen that,
for this task, the performance of federated methods lags slightly behind that of centralized
methods.

Next, in order to test ECFL, we configured a federated and continual setting. Once
again, we generated an evolving data stream for each of the clients. All clients worked at
the same frequency, starting at the same time, so the data streams lasted 5000 iterations.
In real life, data is often non-IID and evolves over time. Thus, we decided to evaluate
accuracy under concept drift. For that, we took advantage of having the information
about the position of the smartphone and we sorted the data of all the users using this as
criteria. Data are sorted according to the phone position in the same way for all users:
1st belt, 2nd left pocket, 3rd right pocket, 4th upper arm, and 5th wrist. In this way, we
force a non-stationary distribution that changes a total of 4 times. Note that this is not
a totally realistic situation because, in real life, each client would acquire data in a dif-
ferent manner. Nonetheless, it is helpful to bound the changes and evaluate their impact
during training.

Machine Learning

1 3

Ta
bl

e
7

 A
ve

ra
ge

 a
cc

ur
ac

ie
s o

f l
oc

al
 a

nd
 g

lo
ba

l m
od

el
s i

n
EC

FL
 v

ar
yi

ng
 th

e
en

se
m

bl
e

si
ze

s

M
g

M
l

U
se

r 1
U

se
r 2

U
se

r 3
U

se
r 4

U
se

r 5
U

se
r 6

1
1

0
.4
8
8
(±

0
.0
3
7
)

0
.5
7
8
(±

0
.0
3
4
)

0
.6
4
1
(±

0
.0
3
8
)

0
.6
8
8
(±

0
.1
2
6
)

0
.7
7
4
(±

0
.0
0
6
)

0
.5
9
9
(±

0
.0
9
1
)

1
3

0
.5
1
6
(±

0
.0
1
4
)

0
.6
6
5
(±

0
.0
5
0
)

0
.6
8
8
(±

0
.0
5
5
)

0
.7
0
6
(±

0
.1
1
6
)

0
.7
7
4
(±

0
.0
0
6
)

0
.6
1
2
(±

0
.0
8
1
)

1
5
+

0
.5
1
6
(±

0
.0
1
4
)

0
.6
9
6
(±

0
.0
3
0
)

0
.6
8
8
(±

0
.0
5
5
)

0
.7
0
6
(±

0
.1
1
6
)

0
.7
7
4
(±

0
.0
0
6
)

0
.6
1
2
(±

0
.0
8
1
)

3
1

0
.4
8
9
(±

0
.0
0
2
)

0
.5
6
5
(±

0
.0
0
6
)

0
.6
0
9
(±

0
.0
2
6
)

0
.6
8
3
(±

0
.1
0
4
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
2
6
(±

0
.0
2
5
)

3
3

0
.4
9
7
(±

0
.0
0
1
)

0
.6
4
5
(±

0
.0
0
3
)

0
.6
3
1
(±

0
.0
0
0
)

0
.7
3
8
(±

0
.0
0
7
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
2
4
(±

0
.0
2
0
)

3
5
+

0
.4
9
1
(±

0
.0
0
1
)

0
.7
1
1
(±

0
.0
1
5
)

0
.6
3
1
(±

0
.0
0
0
)

0
.7
3
8
(±

0
.0
0
7
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
2
4
(±

0
.0
2
0
)

5
1

0
.4
9
0
(±

0
.0
0
2
)

0
.5
7
5
(±

0
.0
1
7
)

0
.6
0
9
(±

0
.0
0
0
)

0
.6
9
7
(±

0
.1
2
2
)

0
.8
1
6
(±

0
.0
0
0
)

0
.5
9
3
(±

0
.0
5
3
)

5
3

0
.4
9
7
(±

0
.0
0
0
)

0
.6
5
1
(±

0
.0
0
5
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
4
1
(±

0
.0
0
8
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

5
5
+

0
.4
9
3
(±

0
.0
0
1
)

0
.7
1
2
(±

0
.0
1
5
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
4
1
(±

0
.0
0
8
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

7
1

0
.4
8
9
(±

0
.0
0
1
)

0
.5
9
2
(±

0
.0
1
2
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
8
(±

0
.0
9
3
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

7
3

0
.4
9
6
(±

0
.0
0
0
)

0
.6
5
5
(±

0
.0
0
9
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
4
(±

0
.0
0
5
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

7
5
+

0
.4
9
0
(±

0
.0
0
1
)

0
.7
1
4
(±

0
.0
1
1
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
4
(±

0
.0
0
5
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

9
1

0
.4
8
9
(±

0
.0
0
1
)

0
.5
6
4
(±

0
.0
1
1
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
2
4
(±

0
.0
9
4
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

9
3

0
.4
9
6
(±

0
.0
0
1
)

0
.6
4
7
(±

0
.0
1
0
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
2
(±

0
.0
0
6
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

9
5
+

0
.4
9
1
(±

0
.0
0
1
)

0
.7
0
9
(±

0
.0
1
3
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
2
(±

0
.0
0
6
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

M
g

M
l

U
se

r 7
U

se
r 8

U
se

r 9
U

se
r 1

0
Lo

ca
l m

ea
n

G
lo

ba
l

1
1

0
.7
2
8
(±

0
.0
3
2
)

0
.7
8
9
(±

0
.0
0
8
)

0
.6
8
0
(±

0
.0
8
5
)

0
.6
3
7
(±

0
.0
4
1
)

0
.6
6
0
(±

0
.0
5
0
)

0
.7
3
4
(±

0
.0
5
3
)

1
3

0
.7
3
2
(±

0
.0
3
1
)

0
.8
6
5
(±

0
.0
1
0
)

0
.6
6
6
(±

0
.1
1
5
)

0
.6
6
5
(±

0
.0
6
3
)

0
.6
8
9
(±

0
.0
5
4
)

0
.7
6
9
(±

0
.0
6
9
)

1
5
+

0
.8
5
6
(±

0
.0
3
1
)

0
.8
6
5
(±

0
.0
1
0
)

0
.7
2
0
(±

0
.0
4
7
)

0
.6
7
4
(±

0
.0
5
1
)

0
.7
0
8
(±

0
.0
4
4
)

0
.7
6
9
(±

0
.0
6
9
)

3
1

0
.7
1
0
(±

0
.0
3
0
)

0
.7
5
9
(±

0
.0
1
2
)

0
.5
1
8
(±

0
.0
1
4
)

0
.6
9
1
(±

0
.0
0
8
)

0
.6
4
7
(±

0
.0
2
2
)

0
.7
9
1
(±

0
.0
5
3
)

3
3

0
.7
1
1
(±

0
.0
0
7
)

0
.8
6
4
(±

0
.0
0
0
)

0
.5
2
5
(±

0
.0
0
6
)

0
.6
7
1
(±

0
.0
4
3
)

0
.6
7
2
(±

0
.0
0
9
)

0
.8
0
0
(±

0
.0
5
1
)

3
5
+

0
.7
6
1
(±

0
.0
0
7
)

0
.8
6
4
(±

0
.0
0
0
)

0
.5
8
9
(±

0
.0
7
9
)

0
.6
9
7
(±

0
.0
3
5
)

0
.6
9
2
(±

0
.0
1
6
)

0
.8
4
0
(±

0
.0
3
4
)

5
1

0
.7
0
8
(±

0
.0
0
7
)

0
.7
6
0
(±

0
.0
1
2
)

0
.5
1
3
(±

0
.0
0
5
)

0
.6
8
4
(±

0
.0
1
0
)

0
.6
4
5
(±

0
.0
2
3
)

0
.8
4
5
(±

0
.0
4
7
)

5
3

0
.7
5
2
(±

0
.0
0
0
)

0
.8
6
3
(±

0
.0
0
2
)

0
.6
1
2
(±

0
.0
0
1
)

0
.6
7
3
(±

0
.1
3
4
)

0
.6
8
3
(±

0
.0
1
9
)

0
.8
5
2
(±

0
.0
4
3
)

5
5
+

0
.7
5
2
(±

0
.0
0
2
)

0
.8
6
3
(±

0
.0
0
1
)

0
.6
8
4
(±

0
.1
4
9
)

0
.6
8
9
(±

0
.0
2
2
)

0
.6
9
7
(±

0
.0
2
0
)

0
.8
5
7
(±

0
.0
3
2
)

7
1

0
.7
0
7
(±

0
.0
1
0
)

0
.7
7
7
(±

0
.0
1
4
)

0
.5
2
8
(±

0
.0
2
6
)

0
.6
8
9
(±

0
.0
1
3
)

0
.6
5
6
(±

0
.0
1
7
)

0
.8
5
6
(±

0
.0
0
5
)

 Machine Learning

1 3

Ta
bl

e
7

 (c
on

tin
ue

d)

M
g

M
l

U
se

r 7
U

se
r 8

U
se

r 9
U

se
r 1

0
Lo

ca
l m

ea
n

G
lo

ba
l

7
3

0
.7
4
3
(±

0
.0
0
1
)

0
.8
6
3
(±

0
.0
0
2
)

0
.6
5
0
(±

0
.1
6
6
)

0
.6
6
1
(±

0
.0
5
2
)

0
.6
8
4
(±

0
.0
2
4
)

0
.8
5
5
(±

0
.0
1
8
)

7
5
+

0
.7
4
3
(±

0
.0
0
1
)

0
.8
6
3
(±

0
.0
0
2
)

0
.7
1
4
(±

0
.1
2
4
)

0
.6
9
1
(±

0
.0
2
7
)

0
.6
9
9
(±

0
.0
1
7
)

0
.8
6
8
(±

0
.0
1
8
)

9
1

0
.7
0
4
(±

0
.0
0
6
)

0
.7
6
1
(±

0
.0
1
3
)

0
.5
1
2
(±

0
.0
0
5
)

0
.6
8
9
(±

0
.0
0
9
)

0
.6
4
8
(±

0
.0
1
4
)

0
.8
4
0
(±

0
.0
0
9
)

9
3

0
.7
0
6
(±

0
.0
0
5
)

0
.8
6
4
(±

0
.0
0
2
)

0
.5
7
6
(±

0
.0
5
9
)

0
.6
3
3
(±

0
.0
1
7
)

0
.6
6
9
(±

0
.0
1
0
)

0
.8
4
7
(±

0
.0
1
4
)

9
5
+

0
.7
4
0
(±

0
.0
0
4
)

0
.8
6
3
(±

0
.0
0
1
)

0
.6
6
4
(±

0
.0
2
2
)

0
.6
6
3
(±

0
.0
0
9
)

0
.6
9
0
(±

0
.0
0
6
)

0
.8
4
9
(±

0
.0
1
2
)

Machine Learning

1 3

Ta
bl

e
8

 A
ve

ra
ge

 a
cc

ur
ac

ie
s o

f l
oc

al
 a

nd
 g

lo
ba

l m
od

el
s i

n
EC

FL
 v

ar
yi

ng
 �

 a
nd

 L

�
L

U
se

r 1
U

se
r 2

U
se

r 3
U

se
r 4

U
se

r 5
U

se
r 6

0.
85

10
0

0
.4
9
5
(±

0
.0
0
1
)

0
.6
0
6
(±

0
.0
0
8
)

0
.7
2
5
(±

0
.0
0
0
)

0
.7
0
0
(±

0
.0
0
6
)

0
.5
2
9
(±

0
.0
0
0
)

0
.7
1
4
(±

0
.0
0
6
)

0.
85

20
0

0
.4
9
0
(±

0
.0
0
1
)

0
.7
0
9
(±

0
.0
1
5
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
0
(±

0
.0
0
7
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

0.
85

30
0

0
.4
8
6
(±

0
.0
0
0
)

0
.7
6
7
(±

0
.0
0
6
)

0
.6
3
7
(±

0
.0
0
0
)

0
.8
2
3
(±

0
.0
3
2
)

0
.7
2
9
(±

0
.0
0
8
)

0
.7
5
0
(±

0
.0
1
2
)

0.
85

40
0

0
.4
8
6
(±

0
.0
0
0
)

0
.7
6
1
(±

0
.0
0
0
)

0
.6
7
6
(±

0
.0
1
6
)

0
.7
7
8
(±

0
.0
1
2
)

−
0
.7
2
9
(±

0
.0
0
4
)

0.
85

50
0

0
.5
0
1
(±

0
.0
0
1
)

0
.7
9
2
(±

0
.0
0
1
)

0
.6
8
9
(±

0
.0
2
6
)

0
.7
3
5
(±

0
.0
1
4
)

−
0
.7
1
0
(±

0
.0
1
2
)

0.
90

10
0

0
.4
9
5
(±

0
.0
0
1
)

0
.6
0
6
(±

0
.0
0
8
)

0
.7
2
5
(±

0
.0
0
0
)

0
.6
9
8
(±

0
.0
0
3
)

0
.5
2
9
(±

0
.0
0
0
)

0
.7
1
5
(±

0
.0
0
6
)

0.
90

20
0

0
.4
9
0
(±

0
.0
0
1
)

0
.7
1
2
(±

0
.0
1
5
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
4
1
(±

0
.0
0
8
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

0.
90

30
0

0
.4
8
6
(±

0
.0
0
0
)

0
.7
7
1
(±

0
.0
0
9
)

0
.6
3
7
(±

0
.0
0
0
)

0
.8
0
9
(±

0
.0
1
3
)

0
.7
3
2
(±

0
.0
0
0
)

0
.7
4
6
(±

0
.0
0
2
)

0.
90

40
0

0
.4
8
6
(±

0
.0
0
0
)

0
.7
6
1
(±

0
.0
0
0
)

0
.6
6
7
(±

0
.0
1
4
)

0
.7
7
1
(±

0
.0
0
7
)

−
0
.7
2
7
(±

0
.0
0
0
)

0.
90

50
0

0
.5
0
1
(±

0
.0
0
1
)

0
.7
9
2
(±

0
.0
0
1
)

0
.6
6
4
(±

0
.0
2
0
)

0
.7
3
1
(±

0
.0
0
6
)

−
0
.7
1
9
(±

0
.0
0
1
)

0.
95

10
0

0
.4
9
5
(±

0
.0
0
1
)

0
.6
0
6
(±

0
.0
0
8
)

0
.7
2
5
(±

0
.0
0
0
)

0
.6
9
8
(±

0
.0
0
3
)

0
.5
2
9
(±

0
.0
0
0
)

0
.7
1
5
(±

0
.0
0
6
)

0.
95

20
0

0
.4
9
1
(±

0
.0
0
1
)

0
.7
1
3
(±

0
.0
1
3
)

0
.6
0
9
(±

0
.0
0
0
)

0
.7
3
8
(±

0
.0
0
6
)

0
.8
1
6
(±

0
.0
0
0
)

0
.6
1
5
(±

0
.0
0
0
)

0.
95

30
0

0
.4
8
6
(±

0
.0
0
0
)

0
.7
6
6
(±

0
.0
1
5
)

0
.6
3
7
(±

0
.0
0
0
)

0
.8
1
2
(±

0
.0
1
2
)

0
.7
3
2
(±

0
.0
0
0
)

0
.7
4
6
(±

0
.0
0
2
)

0.
95

40
0

0
.4
8
6
(±

0
.0
0
0
)

0
.7
6
1
(±

0
.0
0
0
)

0
.6
6
6
(±

0
.0
0
6
)

0
.7
6
6
(±

0
.0
0
0
)

−
0
.7
2
7
(±

0
.0
0
0
)

0.
95

50
0

0
.5
0
1
(±

0
.0
0
1
)

0
.7
9
3
(±

0
.0
0
2
)

0
.6
7
2
(±

0
.0
1
6
)

0
.7
2
2
(±

0
.0
2
0
)

−
0
.7
2
8
(±

0
.0
1
2
)

�
L

U
se

r 7
U

se
r 8

U
se

r 9
U

se
r 1

0
Lo

ca
l m

ea
n

G
lo

ba
l

0.
85

10
0

0
.6
0
9
(±

0
.0
1
5
)

0
.8
2
6
(±

0
.0
4
5
)

0
.5
8
7
(±

0
.0
8
9
)

0
.5
7
7
(±

0
.0
0
3
)

0
.6
3
7
(±

0
.0
1
7
)

0
.6
8
9
(±

0
.0
6
2
)

0.
85

20
0

0
.7
0
7
(±

0
.0
0
5
)

0
.8
6
3
(±

0
.0
0
1
)

0
.6
1
5
(±

0
.0
8
5
)

0
.6
7
0
(±

0
.0
0
9
)

0
.6
8
2
(±

0
.0
1
2
)

0
.8
6
1
(±

0
.0
1
3
)

0.
85

30
0

0
.6
6
8
(±

0
.0
0
5
)

0
.8
6
9
(±

0
.0
0
0
)

0
.8
0
8
(±

0
.0
0
1
)

0
.7
3
3
(±

0
.0
0
5
)

0
.7
2
7
(±

0
.0
0
7
)

0
.8
1
2
(±

0
.0
3
2
)

0.
85

40
0

0
.7
7
7
(±

0
.0
1
3
)

0
.8
7
3
(±

0
.0
0
8
)

0
.6
4
9
(±

0
.0
0
6
)

0
.8
0
0
(±

0
.0
1
0
)

0
.7
2
5
(±

0
.0
0
8
)

0
.8
7
8
(±

0
.0
0
6
)

0.
85

50
0

0
.7
8
1
(±

0
.0
0
6
)

0
.8
7
4
(±

0
.0
0
2
)

0
.7
9
5
(±

0
.0
0
3
)

0
.8
0
7
(±

0
.0
0
5
)

0
.7
4
3
(±

0
.0
0
8
)

0
.8
7
3
(±

0
.0
0
3
)

0.
90

10
0

0
.6
0
7
(±

0
.0
1
5
)

0
.8
2
6
(±

0
.0
4
5
)

0
.5
8
1
(±

0
.0
9
4
)

0
.5
7
7
(±

0
.0
0
3
)

0
.6
3
6
(±

0
.0
1
7
)

0
.6
8
0
(±

0
.0
4
7
)

0.
90

20
0

0
.7
0
8
(±

0
.0
0
2
)

0
.8
6
3
(±

0
.0
0
1
)

0
.6
8
4
(±

0
.1
4
9
)

0
.6
8
4
(±

0
.0
2
2
)

0
.6
9
2
(±

0
.0
2
0
)

0
.8
5
7
(±

0
.0
3
2
)

0.
90

30
0

0
.6
6
6
(±

0
.0
0
9
)

0
.8
6
7
(±

0
.0
0
3
)

0
.8
0
9
(±

0
.0
0
2
)

0
.7
3
3
(±

0
.0
0
5
)

0
.7
2
6
(±

0
.0
0
4
)

0
.8
2
5
(±

0
.0
1
9
)

0.
90

40
0

0
.7
7
0
(±

0
.0
0
2
)

0
.8
6
9
(±

0
.0
0
1
)

0
.6
5
0
(±

0
.0
0
6
)

0
.8
0
2
(±

0
.0
0
6
)

0
.7
2
3
(±

0
.0
0
4
)

0
.8
7
4
(±

0
.0
0
9
)

0.
90

50
0

0
.7
7
6
(±

0
.0
0
4
)

0
.8
7
3
(±

0
.0
0
0
)

0
.7
9
5
(±

0
.0
0
4
)

0
.8
0
6
(±

0
.0
0
5
)

0
.7
4
0
(±

0
.0
0
5
)

0
.8
7
4
(±

0
.0
0
1
)

 Machine Learning

1 3

Ta
bl

e
8

 (c
on

tin
ue

d)

�
L

U
se

r 7
U

se
r 8

U
se

r 9
U

se
r 1

0
Lo

ca
l m

ea
n

G
lo

ba
l

0.
95

10
0

0
.6
0
7
(±

0
.0
1
5
)

0
.8
2
6
(±

0
.0
4
5
)

0
.5
8
1
(±

0
.0
9
4
)

0
.5
7
7
(±

0
.0
0
3
)

0
.6
3
6
(±

0
.0
1
7
)

0
.6
8
0
(±

0
.0
4
7
)

0.
95

20
0

0
.7
0
7
(±

0
.0
0
1
)

0
.8
6
3
(±

0
.0
0
2
)

0
.5
9
2
(±

0
.0
8
4
)

0
.6
7
7
(±

0
.0
0
6
)

0
.6
8
2
(±

0
.0
1
1
)

0
.8
5
4
(±

0
.0
2
6
)

0.
95

30
0

0
.6
6
8
(±

0
.0
0
2
)

0
.8
6
9
(±

0
.0
0
0
)

0
.8
0
8
(±

0
.0
0
2
)

0
.7
3
3
(±

0
.0
0
6
)

0
.7
2
6
(±

0
.0
0
4
)

0
.8
1
9
(±

0
.0
2
9
)

0.
95

40
0

0
.7
7
0
(±

0
.0
0
7
)

0
.8
7
1
(±

0
.0
0
3
)

0
.6
5
1
(±

0
.0
0
9
)

0
.8
0
0
(±

0
.0
0
8
)

0
.7
2
2
(±

0
.0
0
4
)

0
.8
7
8
(±

0
.0
0
4
)

0.
95

50
0

0
.7
7
2
(±

0
.0
0
5
)

0
.8
7
4
(±

0
.0
0
2
)

0
.7
9
6
(±

0
.0
0
4
)

0
.8
0
7
(±

0
.0
0
0
)

0
.7
4
1
(±

0
.0
0
7
)

0
.8
7
4
(±

0
.0
0
2
)

Machine Learning

1 3

We ran ECFL using different base classifiers (the same as those evaluated under ideal
conditions, Table 9). The hyperparameters were set to their default values: Ml = Mg = 5 ,
� = 0.9 , and L = 200 . We also executed FedAvg and FedProx in this scenario. Table 10
shows the average accuracies of the global and local models at the end of the data stream.
We can see that, although this setting is much more complex, some ECFL configurations
provide similar results to those achieved under ideal conditions. For example, ECFL using
Random Forests is able to compete with the baseline.

To end this section, in Fig. 9 we present an example of execution of ECFL using Ran-
dom Forests as base classifier. In this trial, the data from client 5 were reserved for testing,
and the other 9 users participated in the training. The upper graph shows the evolution of
the accuracies. The thick black line corresponds to the global model, while the rest of the
colored lines are each of the clients. The middle graph shows the local updates and global
selection. The vertical dashed lines indicate where changes in the position of the smart-
phone occur. A circumference (◦) on the line means that a drift has been detected and the
local model has been updated. If the circumference is filled (∙) it indicates that the local
model is chosen to be in the global ensemble—the other 4 are marked with a cross (×)—.
The bottom graph shows the amount of data stored in each of the clients at any given time.

Fig. 8 Positions in which the
smartphone was placed during
data recording in HAR

Table 9 Average accuracies of
several classifiers, trained and
tested in ideal conditions (static,
IID)

Method Accuracy

Naïve Bayes 0.793 (±0.064)

C5.0 decision tree 0.834 (±0.032)

Support vector machine (SVM) 0.887 (±0.042)

Random forests (RF) 0.894 (±0.041)

Stochastic gradient boosting (SGB) 0.833 (±0.053)

Feed-forward NN 0.881 (±0.037)

FedAvg 0.806 (±0.043)

FedProx 0.800 (±0.047)

 Machine Learning

1 3

Ta
bl

e
10

A

ve
ra

ge
 a

cc
ur

ac
ie

s o
n

H
A

R
 d

at
as

et
 fo

r l
oc

al
 a

nd
 g

lo
ba

l m
od

el
s i

n
EC

FL
 u

si
ng

 d
iff

er
en

t b
as

e
cl

as
si

fie
rs

Th
e

m
os

t r
el

ev
an

t r
es

ul
ts

 a
re

 h
ig

hl
ig

ht
ed

 in
 b

ol
d

M
et

ho
d

U
se

r 1
U

se
r 2

U
se

r 3
U

se
r 4

U
se

r 5
U

se
r 6

EC
FL

 (N
B

)
0
.6
4
8
(±

0
.0
4
9
)

0
.7
2
5
(±

0
.0
4
6
)

0
.7
0
5
(±

0
.0
4
3
)

0
.6
3
2
(±

0
.0
6
6
)

0
.6
6
2
(±

0
.0
6
0
)

0
.7
0
7
(±

0
.0
4
1
)

EC
FL

 (C
5.

0)
0
.7
1
8
(±

0
.0
5
5
)

0
.6
9
8
(±

0
.0
5
1
)

0
.7
2
8
(±

0
.0
7
6
)

0
.7
6
2
(±

0
.0
4
2
)

0
.6
8
3
(±

0
.0
7
7
)

0
.6
4
1
(±

0
.0
4
6
)

EC
FL

 (S
V

M
)

0
.7
5
8
(±

0
.0
7
6
)

0
.7
7
1
(±

0
.0
3
8
)

0
.7
8
5
(±

0
.0
4
8
)

0
.7
9
2
(±

0
.0
4
3
)

0
.7
7
1
(±

0
.0
3
2
)

0
.7
4
7
(±

0
.0
4
0
)

EC
FL

 (R
F)

0
.8
2
7
(±

0
.0
7
6
)

0
.8
6
7
(±

0
.0
2
2
)

0
.8
5
5
(±

0
.0
4
1
)

0
.8
7
8
(±

0
.0
5
2
)

0
.8
2
4
(±

0
.0
3
5
)

0
.8
2
5
(±

0
.0
6
7
)

EC
FL

 (S
G

B
)

0
.7
7
3
(±

0
.0
6
1
)

0
.7
7
5
(±

0
.0
5
1
)

0
.7
8
7
(±

0
.0
5
8
)

0
.7
0
4
(±

0
.0
4
8
)

0
.6
2
1
(±

0
.0
8
1
)

0
.6
3
4
(±

0
.0
4
7
)

EC
FL

 (F
N

N
)

0
.7
6
8
(±

0
.0
3
6
)

0
.7
8
1
(±

0
.0
3
3
)

0
.7
6
2
(±

0
.0
4
7
)

0
.7
4
9
(±

0
.0
5
2
)

0
.7
6
5
(±

0
.6
3
0
)

0
.7
6
1
(±

0
.0
4
5
)

Fe
dA

vg
0
.7
6
5
(±

0
.0
2
8
)

0
.7
4
1
(±

0
.0
6
2
)

0
.7
5
4
(±

0
.0
4
9
)

0
.7
4
4
(±

0
.0
4
5
)

0
.7
4
5
(±

0
.0
4
3
)

0
.7
2
3
(±

0
.0
5
9
)

Fe
dP

ro
x

0
.7
5
5
(±

0
.0
1
6
)

0
.7
3
7
(±

0
.0
5
9
)

0
.7
5
3
(±

0
.0
4
8
)

0
.7
4
6
(±

0
.0
4
0
)

0
.7
4
5
(±

0
.0
4
4
)

0
.7
1
3
(±

0
.0
5
5
)

M
et

ho
d

U
se

r 7
U

se
r 8

U
se

r 9
U

se
r 1

0
Lo

ca
l m

ea
n

G
lo

ba
l

EC
FL

 (N
B

)
0
.7
2
6
(±

0
.0
4
0
)

0
.6
9
1
(±

0
.0
3
3
)

0
.6
5
4
(±

0
.0
5
3
)

0
.7
2
0
(±

0
.0
5
9
)

0
.6
8
7
(±

0
.0
4
9
)

0
.7
3
6
(±

0
.0
3
9
)

EC
FL

 (C
5.

0)
0
.6
4
9
(±

0
.0
7
3
)

0
.6
0
5
(±

0
.0
4
7
)

0
.7
0
9
(±

0
.0
4
6
)

0
.6
9
8
(±

0
.0
4
9
)

0
.6
8
9
(±

0
.0
5
6
)

0
.7
5
0
(±

0
.0
3
6
)

EC
FL

 (S
V

M
)

0
.7
5
4
(±

0
.0
6
2
)

0
.7
5
8
(±

0
.0
5
6
)

0
.7
3
8
(±

0
.0
5
7
)

0
.7
3
5
(±

0
.0
5
3
)

0
.7
6
1
(±

0
.0
5
0
)

0
.8
1
5
(±

0
.0
2
2
)

EC
FL

 (R
F)

0
.7
9
6
(±

0
.0
4
3
)

0
.8
0
0
(±

0
.0
9
1
)

0
.8
3
7
(±

0
.0
4
0
)

0
.8
6
3
(±

0
.0
3
2
)

0
.8
3
7
(±

0
.0
5
0
)

�
.�
�
�
(±

0
.0
5
3
)

EC
FL

 (S
G

B
)

0
.7
0
3
(±

0
.0
5
6
)

0
.7
3
6
(±

0
.0
4
5
)

0
.7
4
5
(±

0
.0
4
3
)

0
.6
9
6
(±

0
.0
6
6
)

0
.7
1
8
(±

0
.0
5
6
)

0
.7
9
3
(±

0
.0
4
1
)

EC
FL

 (F
N

N
)

0
.7
3
6
(±

0
.0
3
5
)

0
.7
2
6
(±

0
.0
3
8
)

0
.7
1
3
(±

0
.0
5
7
)

0
.7
1
7
(±

0
.0
5
4
)

0
.7
4
8
(±

0
.0
4
6
)

0
.7
9
0
(±

0
.0
2
1
)

Fe
dA

vg
0
.7
7
1
(±

0
.0
5
9
)

0
.7
4
2
(±

0
.0
5
7
)

0
.7
4
4
(±

0
.0
4
5
)

0
.7
4
7
(±

0
.0
6
0
)

0
.7
4
7
(±

0
.0
5
1
)

0
.7
8
8
(±

0
.0
5
3
)

Fe
dP

ro
x

0
.7
6
2
(±

0
.0
5
5
)

0
.7
3
8
(±

0
.0
6
0
)

0
.7
3
1
(±

0
.0
4
9
)

0
.7
5
1
(±

0
.0
6
3
)

0
.7
4
3
(±

0
.0
4
9
)

0
.7
9
0
(±

0
.0
0
9
)

Machine Learning

1 3

By looking at Fig. 9, we can see that the first local models are trained around iteration
600. Then, most of the clients perform a total of 4 updates. This is to be expected, given
that we have forced 4 drifts to occur. Client 7 only detects 2 of these changes. This can be
explained mainly because this is the participant with the worst local model. In the case
of client 4, which only detects 3 drifts, the explanation could be just the opposite: it has
the best local model, so it is able to generalize enough that the last change does not have

Fig. 9 Example of executing ECFL in the HAR task. The black line corresponds to the global model, while
the rest of the colored lines are associated with one client

 Machine Learning

1 3

an impact on the confidence of the model. At the end of the process, the global model is
composed of the local models of users 1, 3, 6, 8 and 10. We can see that the global model
provides always similar or greater performance than that of any local model.

C: Implementation details

Here we provide additional details on the execution of the experiments.

C.1: Hardware

All experiments were carried out on a desktop computer running Ubuntu 18.04 and
equipped with Intel® Core™ i7-4790 processor, Intel® Haswell Desktop graphics, and
27.3 GiB of DDR3 RAM. In addition, data collection for the walking recognition task was
done using 10 mid-range smartphones from different manufacturers and running Android
OS in different versions (between 7.0 and 9.0).

C.2: Software

The app used for data recording was implemented in Android SDK API 25. Data preproc-
essing, model training, and evaluation, were mainly performed using R programming lan-
guage. In particular, for the training of the baseline models (Naïve Bayes, GLM, C5.0, etc.)
we used the algorithm implementations already provided by the caret package (Kuhn
et al., 2020). The ECFL framework was also developed in R using caret to train the base
classifiers. Instead, for FedAvg and FedProx, we used Python 3.6 together with TensorFlow
2.5 library.

C.3: Hyperparameters

To train the baseline models from Tables 1 and 9, a grid search for the optimal hyperpa-
rameters was performed using the methods already provided by caret. In the case of the
base classifiers for ECFL, no hyperparameter tuning was applied, maintaining the default
values proposed by caret. All SVMs used a radial basis function (RBF) kernel. All feed-
forward neural networks had 3 hidden layers, with 32 neurons in each. When FedAvg and
FedProx were tested under ideal conditions (Tables 2 and 9) they were allowed to train
for 30 rounds, performing 3 local epochs per round and using all local models for global
aggregation.

Author Contributions Conceptualization, formal analysis, and investigation: FEC and RI; Methodology:
FEC, RI, and CVR; Data curation and software: FEC and DL; Writing—original draft preparation: FEC;
Writing—review and editing: FEC, RI, CVR, and SB; Funding acquisition, resources, and supervision: RI,
CVR, and SB.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This research has received financial support from AEI/FEDER (European Union) Grant Number
PID2020-119367RB-I00, as well as the Consellería de Cultura, Educación e Universitade of Galicia
(accreditation ED431G-2019/04, ED431G2019/01, and ED431C2018/29), and the European Regional

Machine Learning

1 3

Development Fund (ERDF). It has also been supported by the Ministerio de Universidades of Spain in the
FPU 2017 program (FPU17/04154).

Availability of data and material The raw data used in the experiments described in Sect. 7 and Appendix A
can be found on the following URL: https:// citius. usc. es/t/ 30.

Declaration

Conflict of interest The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ananthanarayanan, G., Bahl, P., Bodík, P., Chintalapudi, K., Philipose, M., Ravindranath, L., & Sinha, S.
(2017). Real-time video analytics: The killer app for edge computing. Computer, 50(10), 58–67.

Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G., & Spyropoulos, C. D. (2000). An evalu-
ation of naive bayesian anti-spam filtering. In Proceedings of the workshop on machine learning in the
new information age, 11th european conference on machine learning (ECML 2000).

Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al. (2017). Privacy-preserving deep learning via addi-
tively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5),
1333–1345.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López,
S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.

Augenstein, S., McMahan, H. B., Ramage, D., Ramaswamy, S., Kairouz, P., Chen, M., Mathews, R., &
y Arcas, B.A. (2019). Generative models for effective ml on private, decentralized datasets. In Interna-
tional conference on learning representations.

Bagui, S., & Nguyen, L. T. (2015). Database sharding: To provide fault tolerance and scalability of big data
on the cloud. International Journal of Cloud Applications and Computing (IJCAC), 5(2), 36–52.

Bakopoulou, E., Tillman, B., & Markopoulou, A. (2019). A federated learning approach for mobile packet
classification. arXiv: 1907. 13113

Baron, M. (1999). Convergence rates of change-point estimators and tail probabilities of the first-passage-
time process. Canadian Journal of Statistics, 27(1), 183–197.

Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I. C., & Shi, W. (2018). Federated learning of
predictive models from federated electronic health records. International Journal of Medical Informat-
ics, 112, 59–67.

Canetti, R., Feige, U., Goldreich, O., & Naor, M. (1996). Adaptively secure multi-party computation. In
Proceedings of the twenty-eighth annual ACM symposium on theory of computing (pp. 639–648).

Casado, F. E., Rodríguez, G., Iglesias, R., Regueiro, C. V., Barro, S., & Canedo-Rodríguez, A. (2020).
Walking recognition in mobile devices. Sensors 20(4).

Custers, B., Sears, A. M., Dechesne, F., Georgieva, I., Tani, T., & van der Hof, S. (2019). EU personal data
protection in policy and practice. Springer.

Czyz, J., Kittler, J., & Vandendorpe, L. (2004). Multiple classifier combination for face-based identity veri-
fication. Pattern Recognition, 37(7), 1459–1469.

Dietterich, T. G., et al. (2002). Ensemble learning. The Handbook of Brain Theory and Neural Networks, 2,
110–125.

Ditzler, G., & Polikar, R. (2012). Incremental learning of concept drift from streaming imbalanced data.
IEEE Transactions on Knowledge and Data Engineering, 25(10), 2283–2301.

Dwork, C. (2008). Differential privacy: A survey of results. In International conference on theory and
applications of models of computation (pp. 1–19). Springer.

https://citius.usc.es/t/30
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.13113

 Machine Learning

1 3

Fazi, M. B. (2021). Beyond human: Deep learning, explainability and representation. Theory, Culture and
Society, 38(7–8), 55–77.

Gaff, B. M., Sussman, H. E., & Geetter, J. (2014). Privacy and big data. Computer, 47(6), 7–9.
Guha, N., Talwalkar, A., & Smith, V. (2019). One-shot federated learning. arXiv: 1902. 11175
Hamer, J., Mohri, M., & Suresh, A. T. (2020). Fedboost: A communication-efficient algorithm for federated

learning. In International conference on machine learning, PMLR (pp. 3973–3983).
Haque, A., Khan, L., & Baron, M. (2016). Sand: Semi-supervised adaptive novel class detection and clas-

sification over data stream. In Thirtieth AAAI conference on artificial intelligence (pp. 1652–1658).
Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., &

Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv: 1811. 03604
Jain, A. K., & Chandrasekaran, B. (1982). 39 dimensionality and sample size considerations in pattern rec-

ognition practice. Handbook of Statistics, 2, 835–855.
Kittler, J., Hatef, M., Duin, R. P., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 20(3), 226–239.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B.,

& Team, R. C., et al. (2020). Package ‘caret’. The R Journal.
Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., & Díaz-Rodríguez, N. (2020). Continual learn-

ing for robotics: Definition, framework, learning strategies, opportunities and challenges. Information
Fusion, 58, 52–68.

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., & He, B. (2019). A survey on federated learning
systems: Vision, hype and reality for data privacy and protection. arXiv: 1907. 09693

Li, S., Da Xu, L., & Zhao, S. (2018). 5G internet of things: A survey. Journal of Industrial Information
Integration, 10, 1–9.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V. (2018b). Federated optimization in
heterogeneous networks. arXiv: 1812. 06127

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., Niyato, D., & Miao, C. (2019).
Federated learning in mobile edge networks: A comprehensive survey. arXiv: 1909. 11875

Lin, T., Kong, L., Stich, S. U., & Jaggi, M. (2020). Ensemble distillation for robust model fusion in feder-
ated learning. Advances in Neural Information Processing Systems, 33, 2351–2363.

Liu, B., Wang, L., & Liu, M. (2019). Lifelong federated reinforcement learning: A learning architecture for
navigation in cloud robotic systems. IEEE Robotics and Automation Letters, 4(4), 4555–4562.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineering.

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A., Rajamoni, S., Ong, Y., Radhakrishnan, J.,
Verma, A., & Sinn, M., et al. (2020). Ibm federated learning: an enterprise framework white paper v0.
1. arXiv: 2007. 10987

McMahan, H. B., Moore, E., Ramage, D., & y Arcas, B. A. (2016). Federated learning of deep networks
using model averaging. arXiv: 1602. 05629 v1

Nasr, M., Shokri, R., & Houmansadr, A. (2019). Comprehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against centralized and federated learning. In 2019 IEEE sym-
posium on security and privacy (SP) (pp. 739–753). IEEE.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan,
D., & Walsh, J. (2019). Deep learning vs. traditional computer vision. In Science and information con-
ference (pp. 128–144). Springer.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neu-
ral networks: A review. Neural Networks.

Park, T. J., Kumatani, K., & Dimitriadis, D. (2021). Tackling dynamics in federated incremental learning
with variational embedding rehearsal. arXiv: 2110. 09695

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey on data pre-
processing for data stream mining: Current status and future directions. Neurocomputing, 239, 39–57.

Raudys, S. J., & Jain, A. K. (1991). Small sample size effects in statistical pattern recognition: Recom-
mendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3),
252–264.

Rey, V., Sánchez, P. M. S., Celdrán, A. H., & Bovet, G. (2022). Federated learning for malware detection in
IoT devices. Computer Networks, 108693.

Rodríguez, G., Casado, F. E., Iglesias, R., Regueiro, C. V., & Nieto, A. (2018). Robust step counting for
inertial navigation with mobile phones. Sensors 18(9).

Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 8(4), e1249.

http://arxiv.org/abs/1902.11175
http://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1907.09693
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1909.11875
http://arxiv.org/abs/2007.10987
http://arxiv.org/abs/1602.05629v1
http://arxiv.org/abs/2110.09695

Machine Learning

1 3

Saputra, Y. M., Hoang, D. T., Nguyen, D. N., Dutkiewicz, E., Mueck, M. D., & Srikanteswara, S. (2019).
Energy demand prediction with federated learning for electric vehicle networks. In 2019 IEEE global
communications conference (GLOBECOM) (pp. 1–6), IEEE.

Sattler, F., Wiedemann, S., Müller, K. R., & Samek, W. (2019). Robust and communication-efficient feder-
ated learning from non-iid data. IEEE Transactions on Neural Networks and Learning Systems, 31(9),
3400–3413.

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM,
63(12), 54–63.

Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2014). Fusion of smartphone motion
sensors for physical activity recognition. Sensors, 14(6), 10146–10176.

Soliman, A., Girdzijauskas, S., Bouguelia, M.R., Pashami, S., & Nowaczyk, S. (2020). Decentralized and
adaptive k-means clustering for non-iid data using hyperloglog counters. In Pacific-Asia conference on
knowledge discovery and data mining (pp. 343–355). Springer.

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in
NLP. In Proceedings of the 57th annual meeting of the association for computational linguistics (pp.
3645–3650).

Tsoumakas, G., Angelis, L., & Vlahavas, I. (2004). Clustering classifiers for knowledge discovery from
physically distributed databases. Data and Knowledge Engineering, 49(3), 223–242.

Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble classifiers. Connection
Science, 8(3–4), 385–404.

Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., & Ramage, D. (2019a). Federated evaluation
of on-device personalization. arXiv: 1910. 10252

Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., & Qi, H. (2019b). Beyond inferring class representa-
tives: User-level privacy leakage from federated learning. In IEEE INFOCOM 2019-IEEE conference
on computer communications (pp. 2512–2520). IEEE.

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Characterizing concept drift. Data
Mining and Knowledge Discovery, 30(4), 964–994.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine
Learning, 23(1), 69–101.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
Yoon, J., Jeong, W., Lee, G., Yang, E., & Hwang, S. J. (2021). Federated continual learning with weighted

inter-client transfer. In International conference on machine learning, PMLR (pp. 12073–12086).
Zhou, Z. H. (2009). Ensemble learning. Encyclopedia of Biometrics, 1, 270–273.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Fernando E. Casado1 · Dylan Lema1 · Roberto Iglesias1 · Carlos V. Regueiro2 ·
Senén Barro1

 Dylan Lema
 dylan.lema@usc.es

 Roberto Iglesias
 roberto.iglesias.rodriguez@usc.es

 Carlos V. Regueiro
 carlos.vazquez.regueiro@udc.es

 Senén Barro
 senen.barro@usc.es

1 CiTIUS (Centro Singular de Investigación en Tecnoloxías Intelixentes), Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain

2 CITIC, Computer Architecture Group, Universidade da Coruña, 15071 A Coruña, Spain

http://arxiv.org/abs/1910.10252
http://orcid.org/0000-0001-5071-8529

	Ensemble and continual federated learning for classification tasks
	Abstract
	1 Introduction
	2 Related work
	2.1 Ensemble federated learning
	2.2 Continual federated learning

	3 Learning under data streams and concept drift in federated settings
	4 Ensemble and continual federated learning: an overview
	5 Local learning
	5.1 Drift detection
	5.2 Local update

	6 Global learning
	7 Experimental results
	7.1 Baseline
	7.2 Continual federated setting

	8 Privacy concerns
	9 Conclusions
	A: Extended results on walking recognition
	A.1: Data preprocessing and distribution
	A.2: Full results

	B: Additional experiments on the HAR multi-class dataset
	C: Implementation details
	C.1: Hardware
	C.2: Software
	C.3: Hyperparameters

	References

