23,407 research outputs found

    Multi-Hop Routing-Based Optimization of the Number of Cluster-Heads in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks require energy-efficient data transmission because the sensor nodes have limited power. A cluster-based routing method is more energy-efficient than a flat routing method as it can only send specific data for user requirements and aggregate similar data by dividing a network into a local cluster. However, previous clustering algorithms have some problems in that the transmission radius of sensor nodes is not realistic and multi-hop based communication is not used both inside and outside local clusters. As energy consumption based on clustering is dependent on the number of clusters, we need to know how many clusters are best. Thus, we propose an optimal number of cluster-heads based on multi-hop routing in wireless sensor networks. We observe that a local cluster made by a cluster-head influences the energy consumption of sensor nodes. We determined an equation for the number of packets to send and relay, and calculated the energy consumption of sensor networks using it. Through the process of calculating the energy consumption, we can obtain the optimal number of cluster-heads in wireless sensor networks

    Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs

    Full text link
    [EN] Most sensor networks are deployed at hostile environments to sense and gather specific information. As sensor nodes have battery constraints, therefore, the research community is trying to propose energyefficient solutions for wireless sensor networks (WSNs) to prolong the lifetime of the network. In this paper, we propose an energy-efficient multi-level and distance-aware clustering (EEMDC) mechanism for WSNs. In this mechanism, the area of the network is divided into three logical layers, which depends upon the hop-count-based distance from the base station. The simulation outcomes show that EEMDC is more energy efficient than other existing conventional approaches.This work has been partially supported by the 'Ministerio de Ciencia e Innovacion', through the 'Plan Nacional de I+D+i 2008-2011' in the 'Subprograma de Proyectos de Investigacion Fundamental', project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-15-11 multidisciplinary projectsMehmood, A.; Khan, S.; Shams, B.; Lloret, J. (2015). Energy-Efficient Multi-Level and Distance-Aware Clustering Mechanism for WSNs. International Journal of Communication Systems. 28(5):972-989. https://doi.org/10.1002/dac.2720S972989285Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Bri D Garcia M Lloret J Dini P Real deployments of wireless sensor networks Third International Conference on Sensor Technologies and Applications (SENSORCOMM 2009) 2009 8 23GUI, L., VAL, T., & WEI, A. (2011). A Novel Two-Class Localization Algorithm in Wireless Sensor Networks. Network Protocols and Algorithms, 3(3). doi:10.5296/npa.v3i3.863Rajeswari, A., & P.T, K. (2011). A Novel Energy Efficient Routing Protocols for Wireless Sensor Networks Using Spatial Correlation Based Collaborative Medium Access Control Combined with Hybrid MAC. Network Protocols and Algorithms, 3(4). doi:10.5296/npa.v3i4.1296Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Liu, G., Xu, B., & Chen, H. (2011). Decentralized estimation over noisy channels in cluster-based wireless sensor networks. International Journal of Communication Systems, 25(10), 1313-1329. doi:10.1002/dac.1308Cheng, L., Chen, C., Ma, J., & Shu, L. (2011). Contention-based geographic forwarding in asynchronous duty-cycled wireless sensor networks. International Journal of Communication Systems, 25(12), 1585-1602. doi:10.1002/dac.1325Wang, X., & Qian, H. (2011). Hierarchical and low-power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513-1529. doi:10.1002/dac.1318Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An Energy-Efficient Routing Protocol Using Movement Trends in Vehicular Ad hoc Networks. The Computer Journal, 56(8), 938-946. doi:10.1093/comjnl/bxt028Chen, J.-S., Hong, Z.-W., Wang, N.-C., & Jhuang, S.-H. (2010). Efficient Cluster Head Selection Methods for Wireless Sensor Networks. Journal of Networks, 5(8). doi:10.4304/jnw.5.8.964-970Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2011). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114-126. doi:10.1002/dac.1336Zeynali, M., Mollanejad, A., & Khanli, L. M. (2011). Novel hierarchical routing protocol in wireless sensor network. Procedia Computer Science, 3, 292-300. doi:10.1016/j.procs.2010.12.050Heinzelman W Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks 33rd Hawaii International Conference on System Sciences (HICSS) 2000 3005 3014Wang, A., Yang, D., & Sun, D. (2012). A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks. Computers & Electrical Engineering, 38(3), 662-671. doi:10.1016/j.compeleceng.2011.11.017Gou H Yoo Y An energy balancing LEACH algorithm for wireless sensor networks Proceedings of the 7th International Conference on Information Technology: New Generations (ITNG) 2010Ding, P., Holliday, J., & Celik, A. (2005). Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks. Lecture Notes in Computer Science, 322-339. doi:10.1007/11502593_25Bandyopadhyay S Coyle E An energy-efficient hierarchical clustering algorithm for wireless sensor networks The 32nd IEEE International Conference on Computer Communication (INFOCOM 2003) 2003Jarry, A., Leone, P., Nikoletseas, S., & Rolim, J. (2011). Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Networks, 9(6), 1036-1048. doi:10.1016/j.adhoc.2010.11.003Zhu, Y., Wu, W., Pan, J., & Tang, Y. (2010). An energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networks. Computer Communications, 33(5), 639-647. doi:10.1016/j.comcom.2009.11.008Khamfroush H Saadat R Khademzadeh A Khamfroush K Lifetime increase for wireless sensor networks using cluster-based routing International Association of Computer Science and Information Technology-Spring Conference (IACSIT-SC 2009) 2009Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256-268. doi:10.1016/j.comcom.2012.10.006Aslam N Phillips W Robertson W Sivakumar S A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks 4th IEEE Consumer Communications and Networking Conference, (CCNC 2007) 2007 650 654Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14-15), 2842-2852. doi:10.1016/j.comcom.2007.05.034Yong, Z., & Pei, Q. (2012). A Energy-Efficient Clustering Routing Algorithm Based on Distance and Residual Energy for Wireless Sensor Networks. Procedia Engineering, 29, 1882-1888. doi:10.1016/j.proeng.2012.01.231Chuan-Chi W A minimum transmission energy consumption routing protocol for user-centric wireless networks 2011 1143 1148Kumar, D., Aseri, T. C., & Patel, R. B. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662-667. doi:10.1016/j.comcom.2008.11.025Kim KT Moon SS Tree-Based Clustering (TBC) for energy efficient wireless sensor networks IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA) 2010 680 685Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU - International Journal of Electronics and Communications, 66(1), 54-61. doi:10.1016/j.aeue.2011.05.002Ye M Li C Wu J EECS: an Energy Efficient Clustering Scheme in wireless sensor networks 24th IEEE International Performance on Computing, and Communications Conference 2005 535 540Gautama N Lee W Pyun J Dynamic clustering and distance aware routing protocol for wireless sensor networks PE-WASUN'09 2009Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117-131. doi:10.1016/j.ins.2011.08.029Pantazis, N. A., Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). Energy efficiency in wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc Networks, 7(2), 322-343. doi:10.1016/j.adhoc.2008.03.006OMNeT++ Community Documentation and Tutorials of omnet++ http://www.omnetpp.org/Castallia Documentation and Tutorials of Castalia Simulator for WSN and BAN http://castalia.research.nicta.com.au/index.php/en/Research Group on Computer Networks and Multimedia Communication UFPA - Brazil Download-Leach-v2-for-Castalia http://www.gercom.ufpa.br/index.php?option=com_filecabinet&view=files&id=1&Itemid=31&lang=p

    A RELIABLE ROUTING MECHANISM WITH ENERGY-EFFICIENT NODE SELECTION FOR DATA TRANSMISSION USING A GENETIC ALGORITHM IN WIRELESS SENSOR NETWORK

    Get PDF
    Energy-efficient and reliable data routing is critical in Wireless Sensor Networks (WSNs) application scenarios. Due to oscillations in wireless links in adverse environmental conditions, sensed data may not be sent to a sink node. As a result of wireless connectivity fluctuations, packet loss may occur. However, retransmission-based approaches are used to improve reliable data delivery. These approaches need a high quantity of data transfers for reliable data collection. Energy usage and packet delivery delays increase as a result of an increase in data transmissions. An energy-efficient data collection approach based on a genetic algorithm has been suggested in this paper to determine the most energy-efficient and reliable data routing in wireless sensor networks. The proposed algorithm reduced the number of data transmissions, energy consumption, and delay in network packet delivery. However, increased network lifetime. Furthermore, simulation results demonstrated the efficacy of the proposed method, considering the parameters energy consumption, network lifetime, number of data transmissions, and average delivery delay

    Energy Efficient Handover Management in Cluster Based Wireless Sensor Network

    Full text link
    Wireless sensors are compact-size, low power, inexpensive devices which are capable to measure local environmental conditions or other parameters such as temperature, acceleration, and forward such information to a sink for proper processing. Wireless sensor networks (WSNs) have been under development by both academic and industrial societies for a while. By moving toward applications such as the area of medical care and disaster response mobility in wireless sensor networks has attracted a lot of attentions. In energy constraint sensor network, mobility handling introduces unique challenges in aspects like resource management, coverage, routing protocols, security, etc. This paper, proposes an energy-efficient mobility-aware MAC protocol to handle node handover among different clusters. The simulation-based experiments show that the proposed protocol has better performance compared to the existing S-MAC method

    Energy Efficient Handover Management in Cluster Based Wireless Sensor Network

    Get PDF
    Wireless sensors are compact-size, low power, inexpensive devices which are capable to measure local environmental conditions or other parameters such as temperature, acceleration, and forward such information to a sink for proper processing. Wireless sensor networks (WSNs) have been under development by both academic and industrial societies for a while. By moving toward applications such as the area of medical care and disaster response mobility in wireless sensor networks has attracted a lot of attentions. In energy constraint sensor network, mobility handling introduces unique challenges in aspects like resource management, coverage, routing protocols, security, etc. This paper, proposes an energy-efficient mobility-aware MAC protocol to handle node handover among different clusters. The simulation-based experiments show that the proposed protocol has better performance compared to the existing S-MAC method

    MSGR: A Mode-Switched Grid-Based Sustainable Routing Protocol for Wireless Sensor Networks

    Full text link
    © 2013 IEEE. A Wireless Sensor Network (WSN) consists of enormous amount of sensor nodes. These sensor nodes sense the changes in physical parameters from the sensing range and forward the information to the sink nodes or the base station. Since sensor nodes are driven with limited power batteries, prolonging the network lifetime is difficult and very expensive, especially for hostile locations. Therefore, routing protocols for WSN must strategically distribute the dissipation of energy, so as to increase the overall lifetime of the system. Current research trends from areas, such as from Internet of Things and fog computing use sensors as the source of data. Therefore, energy-efficient data routing in WSN is still a challenging task for real-Time applications. Hierarchical grid-based routing is an energy-efficient method for routing of data packets. This method divides the sensing area into grids and is advantageous in wireless sensor networks to enhance network lifetime. The network is partitioned into virtual equal-sized grids. The proposed mode-switched grid-based routing protocol for WSN selects one node per grid as the grid head. The routing path to the sink is established using grid heads. Grid heads are switched between active and sleep modes alternately. Therefore, not all grid heads take part in the routing process at the same time. This saves energy in grid heads and improves the network lifetime. The proposed method builds a routing path using each active grid head which leads to the sink. For handling the mobile sink movement, the routing path changes only for some grid head nodes which are nearer to the grid, in which the mobile sink is currently positioned. Data packets generated at any source node are routed directly through the data disseminating grid head nodes on the routing path to the sink
    corecore