361 research outputs found

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Low-energy standby-sparing for hard real-time systems

    No full text
    Time-redundancy techniques are commonly used in real-time systems to achieve fault tolerance without incurring high energy overhead. However, reliability requirements of hard real-time systems that are used in safety-critical applications are so stringent that time-redundancy techniques are sometimes unable to achieve them. Standby sparing as a hardwareredundancy technique can be used to meet high reliability requirements of safety-critical applications. However, conventional standby-sparing techniques are not suitable for lowenergy hard real-time systems as they either impose considerable energy overheads or are not proper for hard timing constraints. In this paper we provide a technique to use standby sparing for hard real-time systems with limited energy budgets. The principal contribution of this work is an online energymanagement technique which is specifically developed for standby-sparing systems that are used in hard real-time applications. This technique operates at runtime and exploits dynamic slacks to reduce the energy consumption while guaranteeing hard deadlines. We compared the low-energy standby-sparing (LESS) system with a low-energy timeredundancy system (from a previous work). The results show that for relaxed time constraints, the LESS system is more reliable and provides about 26% energy saving as compared to the time-redundancy system. For tight deadlines when the timeredundancy system is not sufficiently reliable (for safety-critical application), the LESS system preserves its reliability but with about 49% more energy consumptio

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Energy harvesting earliest deadline first scheduling algorithm for increasing lifetime of real time systems

    Get PDF
    In this paper, a new approach for energy minimization in energy harvesting real time systems has been investigated. Lifetime of a real time systems is depend upon its battery life.  Energy is a parameter by which the lifetime of system can be enhanced.  To work continuously and successively, energy harvesting is used as a regular source of energy. EDF (Earliest Deadline First) is a traditional real time tasks scheduling algorithm and DVS (Dynamic Voltage Scaling) is used for reducing energy consumption. In this paper, we propose an Energy Harvesting Earliest Deadline First (EH-EDF) scheduling algorithm for increasing lifetime of real time systems using DVS for reducing energy consumption and EDF for tasks scheduling with energy harvesting as regular energy supply. Our experimental results show that the proposed approach perform better to reduce energy consumption and increases the system lifetime as compared with existing approaches.

    Energy-Efficient Fault-Tolerant Scheduling Algorithm for Real-Time Tasks in Cloud-Based 5G Networks

    Full text link
    © 2013 IEEE. Green computing has become a hot issue for both academia and industry. The fifth-generation (5G) mobile networks put forward a high request for energy efficiency and low latency. The cloud radio access network provides efficient resource use, high performance, and high availability for 5G systems. However, hardware and software faults of cloud systems may lead to failure in providing real-time services. Developing fault tolerance technique can efficiently enhance the reliability and availability of real-time cloud services. The core idea of fault-tolerant scheduling algorithm is introducing redundancy to ensure that the tasks can be finished in the case of permanent or transient system failure. Nevertheless, the redundancy incurs extra overhead for cloud systems, which results in considerable energy consumption. In this paper, we focus on the problem of how to reduce the energy consumption when providing fault tolerance. We first propose a novel primary-backup-based fault-tolerant scheduling architecture for real-time tasks in the cloud environment. Based on the architecture, we present an energy-efficient fault-tolerant scheduling algorithm for real-time tasks (EFTR). EFTR adopts a proactive strategy to increase the system processing capacity and employs a rearrangement mechanism to improve the resource utilization. Simulation experiments are conducted on the CloudSim platform to evaluate the feasibility and effectiveness of EFTR. Compared with the existing fault-tolerant scheduling algorithms, EFTR shows excellent performance in energy conservation and task schedulability

    Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems

    Get PDF
    Over the past several decades, we have experienced tremendous growth of real-time systems in both scale and complexity. This progress is made possible largely due to advancements in semiconductor technology that have enabled the continuous scaling and massive integration of transistors on a single chip. In the meantime, however, the relentless transistor scaling and integration have dramatically increased the power consumption and degraded the system reliability substantially. Traditional real-time scheduling techniques with the sole emphasis on guaranteeing timing constraints have become insufficient. In this research, we studied the problem of how to develop advanced scheduling methods on hard real-time systems that are subject to multiple design constraints, in particular, timing, energy consumption, and reliability constraints. To this end, we first investigated the energy minimization problem with fault-tolerance requirements for dynamic-priority based hard real-time tasks on a single-core processor. Three scheduling algorithms have been developed to judiciously make tradeoffs between fault tolerance and energy reduction since both design objectives usually conflict with each other. We then shifted our research focus from single-core platforms to multi-core platforms as the latter are becoming mainstream. Specifically, we launched our research in fault-tolerant multi-core scheduling for fixed-priority tasks as fixed-priority scheduling is one of the most commonly used schemes in the industry today. For such systems, we developed several checkpointing-based partitioning strategies with the joint consideration of fault tolerance and energy minimization. At last, we exploited the implicit relations between real-time tasks in order to judiciously make partitioning decisions with the aim of improving system schedulability. According to the simulation results, our design strategies have been shown to be very promising for emerging systems and applications where timeliness, fault-tolerance, and energy reduction need to be simultaneously addressed
    • …
    corecore