
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-26-2015

Energy-aware Fault-tolerant Scheduling for Hard
Real-time Systems
Qiushi Han
Florida International University, qhan001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Electrical and Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Han, Qiushi, "Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems" (2015). FIU Electronic Theses and Dissertations.
Paper 2222.
http://digitalcommons.fiu.edu/etd/2222

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/2222?utm_source=digitalcommons.fiu.edu%2Fetd%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ENERGY-AWARE FAULT-TOLERANT SCHEDULING FOR HARD

REAL-TIME SYSTEMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Qiushi Han

2015

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Qiushi Han, and entitled Energy-aware Fault-tolerant
Scheduling for Hard Real-time Systems, having been approved in respect to style
and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kang K. Yen

Jean H. Andrian

Nezih Pala

Deng Pan

Gang Quan, Major Professor

Date of Defense: June 26, 2015

The dissertation of Qiushi Han is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2015

ii

c© Copyright 2015 by Qiushi Han

All rights reserved.

iii

DEDICATION

I would like to dedicate this Doctoral dissertation to my beloved wife, Lu Shen,

my sister, Xiao Han and my dearest mom, Yaqin Guo. Without their love, under-

standing, support, and encouragement, the completion of this endeavor would never

have been possible.

iv

ACKNOWLEDGMENTS

First, I would like to express my heartfelt appreciation to my major advisor, Dr.

Gang Quan, for his constant guidance and endless encouragement during the last six

years of my doctoral study. I truly admire his dedication to science and research. In

addition, I would also like to express my gratitude to my Ph.D. committee members,

Dr. Kang K. Yen, Dr. Jean H. Andrian, Dr. Nezih Pala and Dr. Deng Pan, for

their insightful feedbacak, comments and suggestions in improving the quality of

this dissertation. I am extremely proud to have such wonderful and knowledgeable

people serving on my dissertation committee.

Next, I would like to thank my lab mates, Mr. Ming Fan, Mr. Shuo Liu, Mr.

Tianyi Wang, Mr. Shi Sha, Mr. Soamar Homsi, Mr. Gustavo A.Chaparro-Baquero,

Dr. Vivek Chaturvedi, Dr. Huang Huang and Dr. Guanglei Liu, for creating a

wonderfully collaborative and friendly work environment.

Last, but not least, my deepest gratitude goes to my family for their constant

love and support during this journey. I am very grateful to my beloved wife, Lu

Shen, for accompanying and encouraging me through all these years. I want to

give my life-long gratitude to my dearest sister, Ms. Xiao Han, and my mother, Ms.

Yaqin Guo, for all the love and affection they have showered upon me. I am thankful

to my mother-in-law, Mrs. Yunhui Luo, and farther-in-law, Mr. Qing Shen, for their

care and encouragement.

My Ph.D. research was supported in part by US National Science Foundation

(NSF) grants CNS-0969013, CNS-0917021 and CNS-1018108.

v

ABSTRACT OF THE DISSERTATION

ENERGY-AWARE FAULT-TOLERANT SCHEDULING FOR HARD

REAL-TIME SYSTEMS

by

Qiushi Han

Florida International University, 2015

Miami, Florida

Professor Gang Quan, Major Professor

Over the past several decades, we have experienced tremendous growth of real-

time systems in both scale and complexity. This progress is made possible largely

due to advancements in semiconductor technology that have enabled the continu-

ous scaling and massive integration of transistors on a single chip. In the mean-

time, however, the relentless transistor scaling and integration have dramatically

increased the power consumption and degraded the system reliability substantially.

Traditional real-time scheduling techniques with the sole emphasis on guaranteeing

timing constraints have become insufficient.

In this research, we studied the problem of how to develop advanced scheduling

methods on hard real-time systems that are subject to multiple design constraints, in

particular, timing, energy consumption, and reliability constraints. To this end, we

first investigated the energy minimization problem with fault-tolerance requirements

for dynamic-priority based hard real-time tasks on a single-core processor. Three

scheduling algorithms have been developed to judiciously make tradeoffs between

fault tolerance and energy reduction since both design objectives usually conflict

with each other. We then shifted our research focus from single-core platforms

to multi-core platforms as the latter are becoming mainstream. Specifically, we

launched our research in fault-tolerant multi-core scheduling for fixed-priority tasks

vi

as fixed-priority scheduling is one of the most commonly used schemes in the indus-

try today. For such systems, we developed several checkpointing-based partitioning

strategies with the joint consideration of fault tolerance and energy minimization.

At last, we exploited the implicit relations between real-time tasks in order to judi-

ciously make partitioning decisions with the aim of improving system schedulability.

According to the simulation results, our design strategies have been shown to

be very promising for emerging systems and applications where timeliness, fault-

tolerance, and energy reduction need to be simultaneously addressed.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Real-time systems . 2
1.2 Power/Energy management in real-time systems 5
1.3 Fault tolerance/reliability in real-time systems 7
1.4 The research problem and our contributions 11
1.5 Structure of the dissertation . 13

2. BACKGROUND AND RELATED WORK 14
2.1 Real-time scheduling . 14
2.1.1 Preliminaries of real-time scheduling 14
2.1.2 Related works on real-time scheduling 18
2.2 Energy-efficient real-time scheduling . 20
2.2.1 Preliminaries on power consumption in real-time systems 20
2.2.2 Related works on energy management in real-time systems 21
2.3 Fault-tolerant real-time scheduling . 23
2.3.1 Energy-oblivious fault-tolerant techniques 24
2.3.2 Energy-aware fault-tolerant techniques 26
2.4 Summary . 29

3. ENERGY EFFICIENT FAULT-TOLERANT EARLIEST DEADLINE FIRST
SCHEDULING FOR HARD REAL-TIME SYSTEMS 30

3.1 Related works . 31
3.2 Preliminaries . 32
3.2.1 Real-time application model . 33
3.2.2 Power and energy model . 33
3.2.3 Fault model . 34
3.2.4 Problem formulation . 35
3.3 Fault-tolerant speed schedule . 35
3.4 Fault-tolerant speed schedule with shared recovery slacks 44
3.5 Other considerations of the proposed methods 54
3.5.1 Dealing with the limitations of practical processors 55
3.5.2 System reliability and imperfect fault coverage 56
3.6 Simulation results . 57
3.6.1 System with continuous speeds . 58
3.6.2 System with discrete speed levels . 61
3.6.3 Real-life periodic task sets . 62
3.6.4 Further validation of LPSSR . 63
3.7 Summary . 65

viii

4. ENERGY MINIMIZATION FOR FAULT TOLERANT REAL-TIME AP-
PLICATIONS ON MULTI-CORE PLATFORMS USING CHECKPOINT-
ING . 66

4.1 Related works . 67
4.2 Preliminaries . 68
4.2.1 Application model . 68
4.2.2 Fault model and checkpointing . 69
4.2.3 Platform and energy model . 69
4.3 Optimal checkpointing scheme for minimizing the worst case latency on

a single core . 71
4.4 Energy-aware fault-tolerant task allocation 76
4.5 Experimental results . 78
4.6 Summary . 82

5. ENERGY MINIMIZATION FOR FAULT-TOLERANT SCHEDULING OF
PERIODIC FIXED-PRIORITY APPLICATION ON MULTI-CORE PLAT-
FORMS . 83

5.1 Related works . 83
5.2 Preliminaries . 85
5.2.1 Application model . 85
5.2.2 Fault model and checkpointing . 85
5.2.3 Platform and energy model . 87
5.3 Feasible checkpointing configuration for fixed-priority tasks on a single-

core processor . 88
5.4 Energy-aware task allocation . 95
5.5 Experimental results . 98
5.5.1 Timing complexity evaluation . 98
5.5.2 Energy performance evaluation . 100
5.6 Summary . 103

6. ENHANCED FIXED-PRIORITY FAULT-TOLERANT SCHEDULING OF
HARD REAL-TIME TASKS ON MULTI-CORE PLATFORMS 105

6.1 Related work . 106
6.2 Preliminaries . 108
6.2.1 Application and system model . 108
6.2.2 Fault-tolerance/reliability requirement 109
6.2.3 Problem formulation . 110
6.2.4 Motivation example . 110
6.3 Fault-tolerant schedulability analysis for fixed-priority task sets 112
6.4 Compatibility index and its properties 116
6.5 Fault-tolerant task partitioning . 119
6.6 Task set with checkpointing . 122
6.7 Simulation results . 125

ix

6.7.1 Experiment 1, acceptance ratio vs. system average utilization. 126
6.7.2 Experiment 2, acceptance ratio vs. the number of faults. 128
6.7.3 Experiment 3, acceptance ratio vs. checkpointing 129
6.8 Summary and future directions . 131

7. CONCLUSIONS AND FUTURE WORK 133
7.1 Summary . 133
7.2 Future work . 135
7.2.1 Lifetime and fault model . 136
7.2.2 Preliminary results . 140

BIBLIOGRAPHY . 148

VITA . 162

x

LIST OF FIGURES

FIGURE PAGE

1.1 Embedded system market [117] . 2

1.2 Demand for multi-core based devices . 4

1.3 Transistor count from 1971-2011 [125] 5

1.4 Power consumption for portable and stationary devices 6

1.5 Soft Error Rate, FIT: faults in time (a billion hour operation) 8

3.1 MLPEDF vs. EMLPEDF. K is set to 1, a dark grey rectangle represents
a reserved recovery block and a shaded rectangle indicates that a
recovery block becomes active, i.e. a fault has been encountered.
Figure 3.1(a) and 3.1(b) show the schedules when the fault affects
the job with the longest execution time, i.e.J2 under MLPEDF and
EMLPEDF, respectively. The reserved recovery blocks are not shown
in the fault-free schedules. 38

3.2 Monotonicity violation example . 39

3.3 EMLPEDF vs. LPSSR . 44

3.4 An example of LPSSR . 49

3.5 (a)d′i is deadline to be assigned after the removal of critical interval,
which is ts + RS(Ji), ti is the finishing time of Ji or its recoveries.
(b) t∗ is the completion time of all the jobs and recoveries in J (I∗),
a′i is extended into I∗ by RS(Ji). 50

3.6 Energy savings with different numbers of jobs, K = 1 59

3.7 Energy savings with increasing number of faults, # of jobs = 15 60

3.8 Energy savings with increasing number of jobs under PentiumM, K=1, . 61

3.9 Energy savings with increasing number of faults under PentiumM, # of
jobs = 15 . 61

3.10 LPSSR vs FTUniCk . 64

4.1 Upper and lower bounds of L(Γ, SR) . 75

4.2 20 tasks on a 4-core processor, K = 1 80

4.3 40 tasks on a 8-core processor, K = 2 80

4.4 80 tasks on a 16-core processor, K = 4 81

xi

4.5 Performance of two speed-up techniques 81

5.1 Varying the number of tasks . 99

5.2 Varying the number of tasks . 99

5.3 Varying checkpoint overhead . 100

5.4 40 tasks on 4-core processors, K = 2 . 102

5.5 80 tasks on 8-core processors, K = 5 . 102

5.6 160 tasks on 16-core processors, K = 10 103

6.1 Task partition based on HAPS. Task τ2 misses deadline under the worst
case. 111

6.2 An alternative partition, all tasks are schedulable under the worst case. 111

6.3 32 tasks on 4-core platform, K=2. 126

6.4 64 tasks on 8-core platform, K=2. 127

6.5 32 tasks on 4-core platform, system average utilization is 0.5. 128

6.6 32 tasks on 4-core platform, checkpoint overhead is 5 percent of execu-
tion time, K=2. 129

7.1 Simulation framework . 141

7.2 MTTF VS. Temperature . 142

7.3 Speed Schedule . 143

7.4 Thermal profiles . 144

7.5 Reliability distribution for core 1(2) . 145

7.6 Impacts of m-oscillation on system reliability 146

7.7 MTTF of TC vs. the number of oscillations 146

xii

CHAPTER 1

INTRODUCTION

For the past several decades, we have experienced tremendous growth of real-

time systems and applications largely due to the remarkable advancements of IC

technology. From simple electronic devices such as cell phones, to large and com-

plex systems such as ICU patient monitoring systems, Unmanned Aerial Vehicles

(UAV), industry controls, etc, real-time systems have become indispensable to our

personal and social lives. However, as transistor scaling and massive integration

continue, the dramatically increased power/energy consumption and degraded re-

liability of IC chips have posed significant challenges to the design of real-time

systems. Power/energy management on computing systems has already been one of

the primary concerns in both academia and industry for several decades [19, 37]. At

the same time, the impacts of system failures become more and more substantial,

ranging from personal inconvenience, disruption of our daily lives, to some catas-

trophic consequences such as huge financial loss. For example, Knight Capital lost

an estimated of $400 million and almost fell to the edge of bankruptcy due to a

computer glitch in less than one hour in 2013. Conceivably, guaranteeing the re-

liability of computing systems has also been raised to a first-class design concern.

Left unchecked, the high power/energy consumption and deteriorating reliability of

IC chips will handicap the availability of future generations of real-time computing

systems.

Our research focuses on studying and developing effective and efficient resource-

management schemes that address the constraints of power consumption and re-

liability in the design of real-time systems. In what follows, we first introduce

the basics of real-time systems. We then discuss the opportunities and challenges

associated with the design of real-time systems with power consumption and relia-

1

bility constraints. Next, we introduce the contributions of our research for energy

minimization and reliability enhancement. We also discuss the organization of the

dissertation at the end of this chapter.

1.1 Real-time systems

Real-time systems refer to computing systems that are subject to “real-time” con-

straints where the correctness of an output depends on not only its logic correctness

but when the output is produced. The requirement of real-time capability is perva-

Figure 1.1: Embedded system market [117]

sive in embedded systems, which account for a large portion of modern computing

systems. According to a study in [3], the embedded system market was valued at

$121 billion in 2011, and is predicted to reach $194 billion by 2018. As shown in

Figure 1.1, more than half (61%) of all the embedded systems are equipped with

real-time capability. This feature is manifested by associating tasks (workloads)

with deadlines in such systems.

In general, real-time systems can be broadly classified into two types, i.e. hard

real-time systems and soft real-time systems, according to consequences of missing a

2

deadline. Hard real-time systems have very stringent timing constraints. Deadline

misses in such systems can potentially lead to catastrophic consequences such as an

automatic train fails to stop in time. On the contrary, soft real-time systems can

tolerate certain deadline misses, with degraded quality of service (Qos) of a system

[105]. Examples of such systems include media streaming in distributed systems

and non-mission-critical tasks in control systems. In this research, we focus on hard

real-time systems as such systems are safety-critical in nature and therefore, demand

higher reliability.

In order to guarantee the timeliness of hard real-time embedded systems, real-

time scheduling that determines the order of real-time task executions and manages

the resource allocations has been extensively studied in the literature over the past

several decades. [87, 105, 24]. The research on real-time scheduling can be catego-

rized along different dimensions, such as static/dynamic, periodic/aperiodic, priority

driven/non-priority driven and single-core processor/multi-core processor, and many

scheduling algorithms have been introduced. For example, for a set of periodic real-

time tasks executed on a single-core processor, Rate Monotonic Scheduling (RMS)

and Earliest Deadline First (EDF) scheduling have been identified as the optimal

scheduling policies for static and dynamic priority based scheduling algorithms, re-

spectively [86].

While there has been significant real-time scheduling research based on single-

core platforms, there are growing interests in studying the real-time scheduling prob-

lem on multi-core platforms. Nowadays, there is an increasing number of real-time

embedded systems that are adopting multi-core processors as the underlying archi-

tecture for higher performance, reliability, and overall greater flexibility of opera-

tions [84]. To keep pace with the demands for increasing processor performance,

silicon vendors no longer concentrate wholly on increasing the clock frequency of

3

Figure 1.2: Demand for multi-core based devices

a single-core platform, as this approach leads to excessive power consumption and

heat dissipation [7]. Instead, multi-core platforms have attracted more attention and

become mainstream in the industrial market. Since 2007, many chip manufactures,

e.g. AMD and Intel, have been releasing their new multi-core chips into the market

with increasing number of cores, e.g Intel Xeon Series [69]. The demand of multi-

core processors for various real-time embedded systems is illustrated in Figure 1.2

[2]. Since 2012, there has been an annual increase of 40% in the number of delivered

multi-core processors. As computing paradigms shift towards multi-core processors,

there is a growing need to develop appropriate multi-core real-time scheduling algo-

rithms to efficiently utilize system resources in order to guarantee timing constraints

for hard real-time systems.

The real-time scheduling problem on multi-core platforms is a challenging one.

Different from real-time scheduling on single-core platforms, multi-core real-time

scheduling needs to decide not only when but where to execute real-time tasks. The

real-time scheduling on multi-core systems with only the timing constraints has been

identified as a NP-hard problem [105].

In addition, as transistor miniaturization and mass transistor integration con-

tinue, they present unprecedented challenges to researchers, i.e. soaring power con-

4

sumption and significantly degraded reliability of modern processors, which makes

the real-time scheduling problem even harder to study. In the following sections, we

discuss these challenges in details.

1.2 Power/Energy management in real-time systems

Energy consumption has emerged as a critical design concern for computing systems.

Following Moore’s Law as illustrated in Figure 1.3, the number of transistors being

integrated into a single chip approximately doubles every two years to keep providing

desirable processor performance.

Figure 1.3: Transistor count from 1971-2011 [125]

5

However, one consequence of such progress is high power dissipation, which de-

creases the lifetime of battery-powered real-time systems, e.g. mobile phones, med-

ical devices, [109, 129]. On the other hand, high power consumption dramatically

increase the maintenance cost of large-scale computing systems such as data cen-

ters and server farms. As shown in Figure 1.4, the energy consumption of these

systems has dramatically increased over the past few years and is predicted to keep

increasing in the foreseeable future [36]. Even worse, the soaring power consump-

tion has resulted in an ever-increasing chip temperature which adversely affects the

performance, reliability, and packaging and cooling cost [66].

Figure 1.4: Power consumption for portable and stationary devices

Therefore, it is imperative to develop efficient and effective power/energy man-

agement techniques for real-time systems while satisfying the timing constraints.

For the past two decades, extensive power management techniques (e.g. [20, 21, 50])

have been developed on energy minimization for real-time systems. Among these

6

techniques, dynamic voltage and frequency scaling (DVFS) is one of the most pop-

ular and widely deployed schemes. Most modern processors, if not all, are equipped

with DVFS capabilities, such as Intel Xeon [69] and AMD G-series [5]. DVFS dy-

namically adjusts the supply voltage and working frequency of a processing core to

reduce power consumption at the cost of extended circuit delay. Although there are a

number of works in the literature that are focused on guaranteeing timing constraints

while minimizing energy consumption for real-time systems [91, 102, 103, 74], they

do not explicitly take system reliability into consideration, which makes them insuf-

ficient for systems that require both energy efficiency and high reliability.

1.3 Fault tolerance/reliability in real-time systems

A system fault occurs when a delivered service deviates from the desired service. In

other words, a system fails when it cannot provide the desired service [82]. Even a

perfectly designed computer system can be subject to different faults and therefore

fail unpredictably. As shown in [115], processor faults can be broadly classified into

two categories: transient and permanent faults. Transient faults, also termed soft

errors, are often caused by electromagnetic interference and cosmic ray radiations.

They may cause errors in computation and corruption in data, but are not persistent.

On the other hand, permanent faults, also called hard errors can cause hardware

damages to processors and bring them to halt permanently. Permanent faults can

be further divided into extrinsic faults and intrinsic faults. The extrinsic faults occur

due to process and manufacturing defects and the intrinsic faults are those related

to wear-out [115]. According to [30] and [71], transient faults occur more frequently

than permanent faults.

7

As real-time computing systems continue to grow rapidly in both scale and com-

plexity, maintaining high reliability becomes an increasingly challenging issue. As

semiconductor technology continues to scale, computing systems become less robust.

The aggressive scaling in transistor size makes transistor more vulnerable to external

impacts such as electromagnetic interference and cosmic ray radiations. According

to [106], the soft error rate (SER) per chip of logic circuits increased nine orders of

magnitude from 600nm to 50 nm technology. As the scaling process continues, it is

predicted that there will be one failure per day per computer chip when the size of

transistors shrinks to 16nm as shown in Figure 1.5 [78].

Figure 1.5: Soft Error Rate, FIT: faults in time (a billion hour operation)

Moreover, as more and more transistors are integrated into a single chip (Figure

1.3), the power consumption has been increased exponentially. One immediate

consequence of high power consumption is the high operating temperature, which in

turn poses severe threats on system reliability. As reported in [112], the maximum

temperature reached by a 65nm processor is 15 degrees Kelvin higher than that

8

reached by a 180nm processor, and the corresponding hard error rate is increased

as much as 316%.

Faults in real-time systems that are not addressed properly in a timely fash-

ion will lead to violations of timing constraints, which can cause catastrophical

consequences if the systems are safety-critical, e.g. aircraft, nuclear power plant.

Therefore, providing fault-tolerance features (the property that enables a system to

continue operating properly in the event of failure(s)) to achieve high reliability is

particularly sought after in such systems.

Traditional fault-tolerance techniques to deal with faults consist of two compo-

nents, i.e. fault detection followed by fault recovery [123]. Examples of techniques

that can detect the processor faults timely and effectively are listed below [123, 98]:

1. a fail-signal processor to send notifications to other processors when faults

occur,

2. watchdog processors for concurrent control flow checking,

3. signatures that can be used for detection of hardware and software faults

4. sanity or consistence checks

To tolerate or recover from faults, many hardware/software replication tech-

niques have been developed. For example, two task replication schemes have been

proposed to support fault tolerance in multi-core systems [16].

• Passive replication- One or more backups of a task are assigned either to the

same core or to a backup core. The backup is executed only when a fault

occurs.

• Active replication- One or more independent active copies of a task run con-

currently on different cores.

9

Instead of duplicating the execution of the entire program, checkpointing [131] in

conjunction with backward error recovery is also a well-known fault-tolerant strat-

egy. Checkpointing refers to the scheme that diagnoses system states after a period

of time and stores a snapshot if no fault is detected. In case of a fault detection, the

system rolls back to its pervious correct state. Note that checkpointing is a special

passive replication scheme.

Active replication schemes usually require extra system resources, e.g, processing

cores, and consume more energy even under the fault-free scenarios, but they can

tolerate run-time faults timely and promptly. On the contrary, passive replications

are only invoked in the event of run-time failure(s), and therefore, does not consume

system resources when no faults occur. However, passive replications take longer

to recover from faults and put the system at risk when timing constraints are very

stringent. The selection of the appropriate replication schemes for various hard

real-time systems is a design decision problem and requires careful investigations.

Conceivably, traditional techniques for ensuring the timing constraints for real-

time systems without explicitly considering fault-tolerance requirements are becom-

ing ineffective. It is imperative to explore advanced methodologies to ensure the

timeliness in the presence of faults for real-time systems. Moreover, both fault

tolerance and energy reduction are essentially achieved by exploiting system slack

time, therefore they are two conflicting goals in nature. Even worse, DVFS has

been shown to have adverse impacts on system reliability [107, 136, 135]. It is de-

sirable that different constraints, i.e. timing, power, reliability, and their interplays

be studied in a comprehensive and systematic way to achieve various design goals

for different real-time systems. In what follows, we present our research problem in

this dissertation and briefly summarize our contributions.

10

1.4 The research problem and our contributions

The objective of this research is to develop advanced fault-tolerant yet power effi-

cient resource-management techniques for real-time computing systems. Researchers

from both industry and academia have been studying this problem from different

levels of abstraction, e.g. gate level, circuit level, architecture level, and system

level. We endeavor to explore system-level methodologies and techniques in solving

this problem. Specifically, we are interested in developing reliability-aware/fault-

tolerant real-time scheduling to satisfy different design constants, i.e. reliability and

timeliness, and in the meantime, to optimize different performance metrics such as

energy consumption. To this end, we have made the following contributions.

1. First, we studied the problem of minimizing energy consumption while en-

suring the timing constraints of fault-tolerant real-time tasks scheduled on a

single-core platform. We developed several techniques for the co-management

of energy reduction and fault tolerance. The goal is to utilize the least amount

of system resources to tolerate transient faults and leave more space for en-

ergy minimization. Compared with the existing works, we found that our

algorithm can achieve at least 13% energy reduction while guaranteeing that

all task deadlines can be met under the worst case scenario.

2. Second, we investigated the energy minimization problem for fault-tolerant

fixed-priority tasks scheduled on a multi-core platform. Real-time tasks with

identical deadlines were considered. An efficient optimal checkpointing scheme

was proposed for such tasks in order to minimize the overall schedule length

in the presence of transient faults when they are executed on the same core.

Then, we developed a novel task allocation algorithm that is based on this

checkpointing scheme to judiciously make partitioning and checkpointing de-

11

cisions with the joint consideration of energy minimization and fault tolerance.

Simulation results have shown that the proposed algorithm can outperform two

related approaches by 11% and 50% in terms of energy savings, respectively.

3. Third, we further extended our research problem to more general fixed-priority

tasks, i.e. tasks with arbitrary deadlines, and we explored solutions for effec-

tive checkpointing configuration and energy reduction that can tolerate tran-

sient faults with the least amount of energy consumption. A quick and accu-

rate checkpointing algorithm was derived to determine if there exists a feasible

checkpointing configuration for a set of tasks executed on the same processing

core. It can achieve a speedup of two orders of magnitude over the state-

of-art technique, therefore, it is more favorable to design space explorations.

Moreover, we introduced a task partitioning approach in conjunction with the

checkpointing algorithm to minimize energy consumption while ensuring the

fault-tolerant capability of the system. The effectiveness of this approach has

also been demonstrated using extensive simulations.

4. Finally, we explored the problem of mapping tasks to multi-core platforms

with the focus on maximizing system schedulability in the presence of transient

faults. By taking the task characteristics into consideration, we proposed a

metric named “compatibility index” to measure how “compatible” a set of

tasks are when they are mapped to the same core. Grouping tasks with lower

compatibility index (more compatible) and assigning them to the same core

are more likely to result in higher system utilization and better schedulability.

We developed several techniques based on this concept, and they can at least

improve the current approaches by 24% in terms of system schedulability.

12

1.5 Structure of the dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce

the pertinent background to this dissertation and discuss existing works that are

closely related to our research. In Chapter 3, we study the problem of fault-tolerant

scheduling for dynamic-priority based real-time tasks on single-core systems to guar-

antee the timing constraints while minimizing the energy consumption. In Chapter

4, we focus our research on partitioning fixed-priority tasks with identical deadlines

on multi-core platforms with the joint consideration of fault tolerance and energy

reduction. We also propose an optimal checkpointing scheme and an efficient task

allocation algorithm. In Chapter 5, we extend our research problem presented in

Chapter 4 to more general fixed-priority tasks. We propose an efficient checkpoint-

ing scheme that can guarantee the schedulability of a set of real-time tasks in the

presence of transient faults. A task partitioning approach to minimize energy con-

sumption while ensuring the fault-tolerance capability of the system is presented. In

Chapter 6, we investigate partitioning techniques for fixed-priority real-time tasks

on multi-core platforms with a focus on maximizing system schedulability under the

influence of transient faults. Finally, in Chapter 7, we conclude this dissertation and

discuss possible future works.

13

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we introduce the pertinent research background and discuss the

related works. Specifically, we present some important basics on real-time schedul-

ing, energy-efficient scheduling, fault-tolerant scheduling, and energy-efficient fault-

tolerant scheduling and discuss the existing works related to these topics, respec-

tively.

2.1 Real-time scheduling

In this section, we first introduce some preliminaries of real-time scheduling and

then we review the existing works with regard to this topic.

2.1.1 Preliminaries of real-time scheduling

As explained in Chapter 1.1, a real-time system is responsible for delivering logically

correct computations within the predefined deadlines. A task is defined as a set of

related computations that jointly provide some system functions, and a job is an

invocation of a task. The violations of task deadlines in real-time systems can

potentially lead to catastrophical consequences [87, 105]. To guarantee the timing

constraints, real-time scheduling that primarily determines the resource allocation

and management has been widely adopted as one of the most effective techniques.

In general, real-time scheduling determines when, where, and how to execute a set

of real-time tasks such that all deadlines can be met and other design metrics, e.g.

power consumption and reliability can be optimized.

Real-time scheduling can be classified into various categories from different per-

spectives. According to the stringency of task deadlines, real-time scheduling can

14

be categorized into hard real-time scheduling and soft real-time scheduling [28, 27].

Based on job arrival patterns, it can be classified into periodic and aperiodic [61, 110].

From the perspective of scheduling mechanisms, it can be further characterized as

static or dynamic, priority driven or non-priority driven and preemptive or non-

preemptive [24, 40]. Finally, real-time scheduling can be categorized as single-core

and multi-core scheduling according to the underlying system architectures [57]. In

the following, we discuss the real-time scheduling from several categories in details.

Hard real-time scheduling vs. Soft real-time scheduling.

Hard real-time scheduling focuses on providing deterministic guarantees to all

task deadlines since a deadline miss may have catastrophic consequences. Typical

hard real-time scheduling can be found in avionic systems, industrial control systems,

etc. On the contrary, soft real-time scheduling allows a certain degree of deadline

misses, where the effects on normal operations of a system will not be fatal, but

degrade the delivered quality of service. In this dissertation, we focus our efforts on

hard real-time scheduling.

Periodic vs. Aperiodic.

In a real-time system, a task can be periodic or aperiodic. Specifically, periodic

tasks, as their name implies, execute on a regular basis. A periodic task can po-

tentially generate an infinite number of jobs. The jobs/instances of the same task

are released following a certain pattern where two consecutive jobs are separated by

a fixed length of inter-arrival time (period). A periodic task is represented by its

worst case execution time (WCET), period and relative deadline. The utilization

of a periodic task is determined by the ratio of its WCET over period. According

to the relationships between relative deadline and period, periodic tasks are further

characterized by implicit deadline (task deadlines are equal to their periods), con-

strained deadline (task deadlines are less than their periods) and arbitrary deadlines

15

(tasks deadlines can be arbitrary), respectively. There are a large variety of real-

times systems that are concerned with real-time scheduling for periodic tasks, such

as the Inertial Navigation System (INS) in [76] and the Generic Avionic Platform

(GAP) in [41]. In contrast, an aperiodic task is a single invocation of computation.

The two terms, i.e. job and task, are considered equivalent in this case. An aperi-

odic task is usually characterized by its arrival time, worst case execution time and

relative deadline. For example, Anti-lock Braking System (ABS) in modern cars is

a typical system that employs aperiodic real-time scheduling.

Static vs. Dynamic

For static scheduling, the schedules for each task need to be determined in ad-

vance, therefore it requires prior knowledge of the characteristics of tasks. It only

incurs little runtime overhead. In contrast, dynamic scheduling calculates the sched-

ules during runtime, hence it can provide more flexibility to react to uncertainties

of task characteristics at the cost of large runtime overhead. As deterministic guar-

antees for timing constraints are of critical importance in hard real-time systems,

whether dynamic scheduling is suitable for such systems is highly debated [40].

Priority-Driven vs. Non-Priority-Driven

One of the critical problems in real-time scheduling is in what order should the

tasks be executed. One method is to assign tasks with different priorities, and a

higher priority task is favored over a lower priority tasks when they are competing for

system resources, e.g. CPU. Additionally, priority-driven scheduling can be further

characterized as fixed-priority and dynamic-priority scheduling according to the

priority assignment policy for real-time tasks. For fixed-priority scheduling, all the

jobs from a task share the same priority and maintain it during their lifetime. Rate

Monotonic Scheduling (RMS) [86, 44, 73, 43] is a popular fixed-priority scheduling

method for periodic real-time tasks where task priorities are directly related to the

16

periods. The larger the period is, the lower the priority is. It has been proven in [86]

that RMS is an optimal scheduling policy for fixed-priority tasks on a single-core

processor.

By comparison, instead of statically assigning priorities to real-time tasks, dy-

namic scheduling determines the priority for each job during runtime. Potentially,

jobs from the same tasks can have various priorities. Among all dynamic scheduling

techniques, Earliest Deadline First (EDF) has attracted a lot of researchers’ atten-

tion [86, 128, 57, 26] and it has been proven to be the optimal dynamic scheduling

algorithm for hard real-time tasks on a single-core platform.

On the other hand, in non-priority driven scheduling, the order of task executions

is determined by other criterias. For instance, Round Robin scheduling assigns a

fixed amount of computation time to each task and cycles through them. The

behavior of such scheduling is hard to predict. Therefore, it is not appropriate for

hard real-time systems.

Preemptive vs. Non-Preemptive :

In preemptive scheduling, the execution of a job can be suspended (most likely

by a higher priority job) and restarted later, without affecting the behavior of that

job other than its completion time. On the contrary, non-preemptive scheduling

does not has this feature; once a job starts executing, it continues until completion

[29].

Single-Core vs. Multi-Core

Real-time scheduling can be categorized into single-core scheduling [86] and

multi-core scheduling [105], on the basis of the underlying system architecture. Dif-

ferent from single-core scheduling, multi-core scheduling needs to decide not only

when but where a task should be executed. Multi-core scheduling, known as a

NP-hard problem [105], is more complicated than single-core scheduling.

17

2.1.2 Related works on real-time scheduling

The real-time scheduling has been studied for decades, and a plethora of techniques

has been proposed for various task and system models.

The primary focus of real-time scheduling is to provide deterministic guarantees

to timing constraints in hard real-time systems through schedulability analysis. One

efficient way is to study the utilization bound (least achievable utilization) [86]

of a system such that the system is deemed to be schedulable if this bound is

never exceeded. For single-core platforms, there exist a number of techniques for

improving the utilization bound and achieving more accurate schedulability analysis

for periodic tasks scheduled under RMS policy in preemptive systems [86, 80, 81,

53, 87]. Since the utilization bound is only the sufficient condition to determine

system schedulability, exact timing analysis has been conducted by [85, 83, 118] for

fixed-priority preemptive scheduling of periodic real-time tasks. Similar problems

has been investigated for dynamic-priority (e.g. EDF) tasks in [14, 47, 128]. All the

aforementioned approaches are restricted to single-core processors.

As multi-core platforms are becoming mainstream, multi-core scheduling has

attracted more and more researchers’ attention lately. Multi-core scheduling can

be broadly classified into partitioned scheduling and global scheduling [40]. In par-

titioned multi-core scheduling, each task is allocated to a core and all of its jobs

have to be executed on that core, i.e. no migration is permitted. On the contrary,

in global scheduling, the jobs of a task can be executed on any available cores. A

new paradigm named semi-partitioned scheduling, which is a combination of the two

previous concepts and allows a certain degree of migrations, has recently emerged

in multi-core scheduling [77, 45]. Further, multi-core scheduling can be classified

as homogenous and heterogenous according to the characteristics of the underlying

multi-core systems. In homogenous systems, all processing cores are identical in

18

terms of processing speed, power/thermal characteristics, and so forth. By com-

parison, the cores in a heterogenous system can vary widely. This feature further

complicates the multi-core scheduling problem.

The multi-core scheduling essentially solves two problems, 1) task/job allocation;

2)the order of task/job execution on each core which is mostly determined by priority

assignment. There are a great number of literatures targeting on these two problems.

First, the partitioning scheme is well studied, and various techniques for improv-

ing system schedulability have been proposed. For fixed-priority (e.g. RMS) periodic

tasks scheduled on multi-core platforms, different allocation schemes such as tradi-

tional Bin-packing approaches, i.e. First Fit (FF), Best Fit (BF), and Worst Fit

(WF) have been evaluated in [87], and how the ordering of tasks can affect the task-

allocation results is investigated in [94]. Later, the characteristics of real-times tasks

were exploited to develop more effective task partitioning schemes in [23, 44, 43].

For example, as shown in [44], by grouping harmonic tasks into the same core, sys-

tem schedulability can be greatly enhanced. On the other hand, partitioning of

dynamic-priority periodic tasks on multi-core processors is explored in [26, 13, 10].

Simple heuristics such as BF, FF, and WF have been evaluated, and extensions to

(variants of) these approaches are proposed. As shown in [10], ordering tasks in

decreasing utilization fashion can significantly improve system schedulability.

Second, there is also a great number of literatures on global scheduling of both

fixed-priority and dynamic-priority periodic hard real-time tasks [12, 11, 40]. A new

schedulability test for global scheduling of fixed-priority tasks with arbitrary dead-

lines on identical multi-core processors has been proposed in [12]. Later, Baruah et

al. [11] proposed a new global EDF schedulability test and presented some theoret-

ical advantages of this test.

19

Finally, the effects of semi-partitioning on improving system schedulability are

examined in [45, 73]. By allowing a limited number of tasks to be split and assigned

to different cores, the utilization bound of the system is increased, and hence the

system schedulability can be improved.

All these works predominately focus on guaranteeing the timing constraints for

hard real-time tasks. As discussed in Chapter 1, other design constraints, e.g energy

consumption and relaibility are becoming increasingly critical in the design of real-

time systems. In what follows, we introduce some important real-time scheduling

techniques that explicitly account for these design constraints.

2.2 Energy-efficient real-time scheduling

In this section, we first present some preliminaries on energy-management methods

in real-time systems, and then we review the existing works that are closely related

to this topic.

2.2.1 Preliminaries on power consumption in real-time sys-

tems

Power consumption in computing systems mainly consists of two parts, namely

dynamic power and leakage power [33]. The dynamic power is associated with the

switching activities of the circuits and is also related to the supply voltage and

frequency. To better understand the dependency of dynamic power consumption on

these factors, the following power model is established in [33] and shown in equation

(2.1).

20

Pdyn = CV 2f, (2.1)

where C is the switching capacitance, V and f are the supply voltage and fre-

quency/speed respectively. Moreover, the frequency is usually linearly proportional

to the supply voltage, i.e. f ∝ V .

The leakage power, also termed as static power, is mainly incurred by electronic

devices attached to the capacitors, such as transistors or diodes, which conduct a

small amount of current (leakage current) even when they are turned off. The leakage

current is inter-dependent with the chip temperature [31]. High power consumption

leads to high temperature which in turn aggravates the power situation. The leakage

power is formulated as

Pleak = NgateV I0[AT 2e
αV+β
T +BeγV+δ] (2.2)

where T and V are the current temperature and supply voltage, respectively. Ngate

is the number of gates in the circuit, and T0 is the reference leakage current. A, B,

α, β, and γ are technology dependent constants [119].

Traditionally, dynamic power consumption is the dominating factor in the overall

power consumption of a system. However, as the semiconductor technology enters

into the sub-micro domain, leakage power is becoming increasingly important. In

the following section, we present the related works on energy management.

2.2.2 Related works on energy management in real-time

systems

Researchers in both academia and industry have resorted to various techniques

to minimize energy consumption in computing systems. Among these, Dynamic

21

Voltage and Frequency Scaling has emerged as one the most effective system-level

techniques for energy reductions [9]. DVFS scheduling reduces the supply voltage

and frequency when possible, therefore, its effects on conserving energy consumption

are evident according to equation (2.1 and 2.2) where supply voltage and frequency

directly affect the system energy consumption. However, one consequence of apply-

ing DVFS is the extended circuit delay which may undermine the schedulablity of

a real-time system. As a result, a great number of techniques studying the problem

of minimizing the energy consumption without jeopardizing the timing constraints

on single-core platforms are proposed in the literature [9, 127, 131, 91, 102, 103, 63]

for various task models. Yao et al. [127] developed a DVFS scheme for a set of

aperiodic real-time tasks scheduled under EDF policy with a focus of minimizing

dynamic power consumption. Similar problems for fixed-priority apeorodic/periodic

real-time tasks were investigated in [91, 103]. As leakage power consumption is

becoming prominent, Huang et al. [63] considered the temperate and leakage de-

pendencies and proposed an efficient DVFS scheme to minimize the overall energy

consumption while guaranteeing the timing constraints of a real-time system.

For multi-core systems, various techniques [15, 19, 18, 4], which exploit DVFS

scheduling to minimize dynamic energy consumption, have also been developed.

For example, AlEnawy et al. [4] studied the combination of task partitioning and

DVFS scheme for real-time periodic tasks scheduled under RMS policy on homoge-

nous multi-core platforms. A constant speed was determined for each core under

a given partition result. They have shown that WF dominates other traditional

bin-packing techniques in terms of dynamic energy saving. Different from single-

core platforms, to judiciously minimize the overall system energy consumption with

the consideration of temperature and leakage dependencies is extremely difficult.

Therefore, pessimistic approximations of leakage power consumption using constant

22

values are adopted by many researchers, and various DVFS-based heuristics are pro-

posed in [62, 116, 68, 46]. However, these fault-oblivious approaches are becoming

insufficient due to the fact that the reliability of computing systems are severely de-

graded. It is desirable to develop efficient and effective approaches that can provide

the fault-tolerance feature. Next, we introduce the concept of fault-tolerance and

elaborate on the existing works that are closely related to our research.

2.3 Fault-tolerant real-time scheduling

For a fault-tolerant system, fault detections accompanied by fault recoveries are

usually required. Different software- and hardware- based fault-detection techniques

have been developed, such as watchdog processors and sanity checks [98]. As for fault

recovery, either space or time redundancy/backup is needed. Specifically, there are

two major backup policies, namely active backup and passive backup. Under active-

backup scheme, each task is replicated a number of times on different processing

cores, and all the copies run concurrently. Run-time failures can be countered

promptly and effectively, but extra system resources are consumed even under fault-

free scenarios. By comparison, if a task is passively replicated, the backup copies

can be assigned either to the same core or different cores, and they are only invoked

when run-time faults are detected. This scheme can save system resources when

the system is fault-free, however, it takes more time to recover from faults (a fault

detected at the end of a job requires a re-execution of the entire job). A special

case of passive backup that worths mentioning is checkpointing, where the status

of a system is checked on a regular basis, and a checkpoint is inserted if no fault

is detected or otherwise rollback to the latest saved checkpoint. Checkpointing has

23

been shown to be very effective in reducing the recovery overhead at the cost of

delaying the normal execution of a task/job, i.e. inserting checkpoints [130, 56].

In recent years, extensive studies have been done in improving the reliability

of real-time systems through fault-tolerance, and many interesting techniques have

been proposed. We categorize these work into the following categories: energy-

oblivious fault-tolerant techniques and energy-aware fault-tolerant techniques.

2.3.1 Energy-oblivious fault-tolerant techniques

First, we discuss several advanced fault-tolerant techniques that are very effective

in guaranteeing the schedulability of hard real-time systems in the present of faults,

but they do not explicitly account for energy-consumption constraints. In what

follows, we elaborate on energy-oblivious fault-tolerant techniques with regard to

hard errors and soft errors, respectively.

A hard error occurs when a processing core loses its capability of computation

permanently. Due to the nature of hard errors, to be able to maintain the schedu-

lability of a system, the target platforms have to be multi-core systems. Many

different replication methods were explored to make tradeoffs between fault toler-

ance and system resource usage, e.g. the number of cores required for a feasible

schedule.

Bertossi et al. [16] proposed a fault-tolerant scheduling for periodic task sets.

Both active and passive backups can be used. The objective is to reduce the number

of cores required. However, only one permanent fault can be tolerated. For more

general fault scenarios, Chen et al. [34] introduced several replication schemes to

tolerate a fixed number of faults for periodic real-time tasks on homogenous multi-

core systems. Two problems are studied in the paper. One is to minimize the

24

maximum utilization in a system with a specified number of precessing cores. The

other is to minimize the number of cores required for deriving a feasible schedule. In

that work, only active backups are considered. Later on, two heuristics referred to

R-BFD (Reliable Best-Fit Decreasing) and R-BATCH (Reliable Bin-packing Algo-

rithm for Tasks with Cold standby and Hot standby) were introduced in [79]. The

Cold standby and Hot standby are in fact the active backup and passive backup,

respectively. The main idea is to reduce the number of required cores by utilizing

the passive backups to the greatest extend.

Additionally, there have been significant research efforts on dealing with the soft

errors. As mentioned before, soft errors occur more frequently than hard errors in

modern computing systems. While soft errors can occur in both single-core and

multi-core platforms, a majority of current researches are focused on single-core

platforms [52, 39, 8, 89, 131] and only a few on multi-core platforms.

Han et al. [52] proposed a combined primary and backup scheme to tolerate

at least one transient fault. The backup is assumed to be fault-free and of lower

quality yield. The timing constraint is guaranteed by scheduling the backups with

higher priority at the cost of quality loss. To study the schedulability under more

general fault models, schedulability analysis for fixed-priority systems was extended

to take fault recoveries into account [39]. In [131], the schedulability analysis for

fixed-priority tasks with checkpoints was investigated, and an effective checkpointing

scheme was proposed. Subsequently in [8], a dynamic programming approach was

proposed to evaluate the feasibility of aperiodic task sets under preemptive Earliest

Deadline First (EDF) scheduling given a fault-tolerance constraint, i.e maximum

K-fault.

For multi-core systems, Pop et al. [96] proposed a more comprehensive ap-

proach to the synthesis of fault tolerant schedule for applications on heterogeneous

25

distributed systems. They used the combination of checkpointing and active repli-

cation to deal with the fault-tolerance problem. A meta-heuristic (Tabu search)

was constructed to decide the fault-tolerance policy, the placement of checkpoints,

and the mapping of tasks to processing cores with the aim of minimizing the overall

schedule length. Similar analysis was conducted in [64] where only the passive-

backup scheme was employed. In [108], a process-level redundancy was exploited to

tolerate transient faults where fault detection, coverage, and tolerance were carefully

studied on a practical platform.

All these works are either computationally inhibitive (meta-heuristic based ap-

proaches) or limited by optimistic simplifications in terms of task or fault model.

Moreover, they do not consider energy consumption as a design constraint, which

makes them insufficient for energy-constrained real-time systems.

2.3.2 Energy-aware fault-tolerant techniques

In this section, we present the research efforts on scheduling techniques with the

joint consideration of energy efficiency and fault tolerance. To enable the system

to tolerate hard errors while minimizing its energy consumption, a popular concept

termed standby sparing [58] has been proposed in the literature. The main idea is to

replicate the entire schedule on a primary core to backup core(s), and the execution

of tasks on backup core(s) is delayed as much as possible. A number of techniques

employing this mechanism have been developed for various task and system models

[42, 58, 59, 49]. For example, Haque et al. employed the standby sparing technique

on a dual-core platform where the real-time tasks on primary core are scheduled

under EDF policy whereas the tasks on the backup core are scheduled according

to Earliest Deadline Latest policy (a policy where the execution of a task/job is

26

delayed as much as possible without violating the timing constraints). Due to the

fact that the probability of an error occurrence is relatively low, it can potentially

save system energy consumption. Note that, these techniques can also be used to

tolerant soft errors.

Since soft errors are more common in computing systems, most of researches

related to fault tolerance are focusing on soft errors. In [136], Zhu et al. proposed a

linear and an exponential model to capture the effects of dynamic voltage frequency

scaling (DVFS) on transient fault rate. They showed that energy management

through DVFS can reduce the system reliability. Based on this model, they proposed

a recovery scheme to schedule an recovery for the each scaled job to compensate

the reliability loss caused by DVFS in [135]. Later on, an enhanced approach was

developed in [132] to further reduce energy consumption by reserving only one share

recovery block and leaving more space for DVFS. In 2010, Liu et al. proposed a

heuristic scheme that minimizes the energy consumption when no fault occurs and

preserves feasibility under the worst case of fault occurrences, i.e. up to K fault

occur during an operational cycle of the system [88]. These works suffer a common

drawback that all the approaches can only be applied to frame-based task sets, i.e.

all tasks share the same deadline.

To guarantee the reliability of fixed-priority real-time tasks, Zhang et al.[130]

introduced a combination of checkpointing and DVS scheme for tolerating faults

for periodic task sets while minimizing energy consumption. The author used ex-

haustive search to find the optimal speed assignment, which is computationally

impractical for large task set with a considerable amount of frequencies available on

the processor. Melhem et al. [90] investigated the same problem for periodic task

sets scheduled under EDF on a single-core processor with the restriction that there

is at most one failure. Wei et al. [124] further extended the approach in [130] for

27

the development of combined offline and online DVFS schedules. These techniques

are only applicable to single-core platforms.

For multi-core platforms, there are only a few number of techniques presented

in the literature. Pop et al. [97] presented a constraint logic programming method

to develop fault-tolerant DVFS schedules for real-time tasks with precedence con-

straints on distributed heterogeneous platforms. The task allocation is assumed to

be known a priori. Considering the negative effects of DVFS on system reliability,

Guo et al [48] studied the similar problem and proposed several heuristics to mini-

mize system energy consumption while maintaining system reliability. Qi et al. [100]

investigated global scheduling in conjunction with energy management, i.e. DVFS,

for a set of frame-based real-time tasks running on a homogeneous multi-core system.

Additionally, the standby-sparing techniques in [42, 58, 59, 49] can also address the

combinatorial problem of energy minimization and fault tolerance to transient faults

(reliability guarantee). However, all these techniques rely on replicating the entire

execution of a task to enable the fault-tolerance capability. As shown in [90, 130],

checkpointing scheme can reduce the fault-recovery overhead significantly at the

cost of runtime overhead, i.e. inserting checkpoints, which may potentially improve

system schedulability and leave more space for energy management. However, if

not carefully studied, checkpointing may undermine system schedulability due to its

run-time overhead. Therefore, the problem of how to make judicious checkpoint-

ing decisions together with other design techniques in multi-core systems, e.g. task

allocation and DVFS deployment, is yet to be studied.

28

2.4 Summary

In this section, we present the essential pertinent of our research and review some

closely related works in the literature. We first introduce the basic concepts and dif-

ferent types of real-time scheduling. Existing researches on real-time scheduling for

various task and system models are discussed. Then, we present some preliminaries

on power management in real-time system and particularly introduce an effective

system-level power-management technique, i.e. DVFS. We discuss the related works

on employing DVFS in real-time scheduling in details. Finally, we present the con-

cept of fault tolerance in real-time systems and elaborate on the the related research

in fault-tolerant real-time scheduling for distinct task and system models with dif-

ferent design emphasis, e.g. timing and power. Based on the above discussions, we

can see that fault-tolerant scheduling under various constraints still poses a grand

challenge for researchers. Studying the interplay of different design constraints in a

comprehensive and systematic way is becoming more and more critical.

In this dissertation, the goal of our research is to develop effective and efficient

scheduling methods for hard real-time systems to provide deterministic guarantees

of timing constraints under transient faults and also to optimize other design objec-

tives, e.g. power consumption and the number of required processing cores. In the

following chapters, i.e. Chapter 3, 4, 5 and 6, we present our contributions on this

subject. We then conclude this dissertation in Chapter 7.

29

CHAPTER 3

ENERGY EFFICIENT FAULT-TOLERANT EARLIEST DEADLINE

FIRST SCHEDULING FOR HARD REAL-TIME SYSTEMS

We first present our research on energy-efficient fault-tolerant scheduling on

single-core platforms. Specifically, in this chapter, we focus on EDF-scheduled tasks

with hard real-time constraints that are subject to a fixed number of transient faults,

K. We adopt DVFS mechanism as our power management technique. As energy

reduction and fault tolerance are two conflicting goals, the challenge is how to make

the tradeoff between these two objectives such that the timing constraints can be

guaranteed when no more than K faults occur while the system energy consump-

tion is minimized. This is particularly important in the design of systems, such

as surveillance and satellite systems, that demand both energy efficiency and fault

tolerance.

In this regard, three scheduling algorithms are presented in this chapter. The

first algorithm is an extension of a well-known fault oblivious low-power scheduling

algorithm. The second algorithm intends to minimize the energy consumption under

the fault-free situation while reserving adequate resources for recovery when faults

strike. The third algorithm improves upon the first two by sharing the reserved

resources and thus can achieve better energy efficiency.

The rest of this chapter is organized as follows. Section 3.1 discussed the works

related to our research problem. In Section 3.2, we introduce system models and

formally formulate our research problem. Our three algorithms are presented in

Sections 3.3 and 3.4. Section 3.5 extends our algorithms to deal with several practical

issues. Section 3.6 discusses our simulation results. Finally, we summarize this

chapter in Section 3.7.

30

3.1 Related works

Recently, the problem to address energy conservation with reliability improvement

has drawn considerable attention from many researchers.

When considering the reliability requirement, one approach is to formulate the

reliability of a real-time system analytically. For example, Zhu et al. [136] formu-

lated the reliability of a real-time system as the probability to complete executions

of all tasks, with or without fault occurrences. They also proposed a linear and an

exponential model to capture the effects of DVFS on transient fault rate and showed

that energy management through DVFS could reduce the system reliability. Based

on this model, they proposed a recovery scheme to schedule real-time tasks that can

reduce energy consumption without degrading the reliability. They further proposed

to reserve computing resources that can be shared by different tasks to improve the

energy-saving performance [133]. These algorithms work only for frame-based real-

time systems, i.e. tasks with same arrival times and deadlines. Zhao et al. [134]

considered a more general real-time periodic task model. Different tasks may have

different periods. For each task, its deadline is equal to its period. Algorithms were

proposed to determine the processor speed and resource reservation for each task

to achieve the goal of energy minimization under the task-level reliability require-

ment. The advantage of this approach is that the reliability can be quantified and

the impacts of DVFS to reliability can also be taken into consideration. However,

to precisely identify the parameters for the reliability model can be challenging,

especially when faults usually occur in a burst manner [89].

Another more intuitive approach is to require that a system can still function

properly as long as fault occurrences do not exceed a predefined number. For exam-

ple, Zhang et al. [130] introduced a combination of checkpointing and DVFS scheme

31

for tolerating K faults for periodic task sets while minimizing energy consumption.

To guarantee the timing constraints, they incorporated the worst case fault recov-

ery time into fixed-priority exact timing analysis to obtain the worst case response

time, based on which the energy efficient schedule is determined. Melhem et al.

[90] investigated the same problem for periodic task sets scheduled under EDF on a

single processor, assuming K = 1. Wei et al. [124] further extended the approach in

[130] for the development of combined offline and online DVFS schedules. Since the

probability of fault occurrence can be very small, the energy saving performance of

the proposed algorithm can be limited. Liu et al. [88] proposed a heuristic schedul-

ing algorithm that minimizes the energy consumption under the fault-free scenarios

and preserves feasibility under the worst case fault occurrences, i.e. up to K faults

occur during an operational cycle of the system. This algorithm can only be applied

for frame-based real-time task sets. For frame-based real-time task sets, reserved

computing resources can be readily shared by different jobs. However, if jobs have

different priorities and deadlines, to share the reserved resources becomes much more

challenging.

We are interested in developing scheduling techniques to minimize the energy

consumption and enhance the reliability of a real-time system. In what follows, we

first present the pertinent background of our research and introduce some necessary

notations used throughout this chapter.

3.2 Preliminaries

In this section, we first introduce the system models and related notations. We then

formulate our problem formally.

32

3.2.1 Real-time application model

We model a real-time system as a job set J = {J1, J2, ..., Jn}, where Ji denotes the

ith job in a job set and is characterized by a tuple (ai, ci, di). The definition of theses

parameters is given in the following:

• ai: the time when Ji is ready for execution, referred to as arrival time;

• ci: the worst case execution time of Ji under smax, where smax is the maximum

speed that the processor supports;

• di: the absolute deadline of Ji.

This model is rather general and can be readily extended to other real-time models

such as the general periodic task model. All jobs are considered to be independent

and scheduled under preemptive EDF policy on a single processor.

3.2.2 Power and energy model

For ease of our presentation, we assume the speed/frequency (two terms are used

interchangeably throughout this chapter) of a processor can be changed continuously

in [smin, smax] with 0 ≤ smin ≤ smax = 1. Later in this chapter, we extend our

algorithms to processors supporting only a set of discrete levels of processor speed.

A job is assumed to execute with only one speed. Therefore, when Ji is executed

under speed si, the execution time of Ji becomes ci
si

. A speed schedule for an entire

job set is denoted as S = {s1, s2, s3, ..., sn} where si is the speed for Ji.

Our system-level power model is similar to that in [133] by distinguishing the

frequency-independent and frequency-dependent power components. Specifically,

the overall power consumption (P) can be formulated as

P = Pind + Pdep = Pind + Cefs
α (3.1)

33

where Pind is the frequency-independent power, including the power consumed by

off-chip devices such as main memory and external devices and constant leakage

power. Cef is the effective switching capacitance. α is a constant usually no smaller

than 2. Pdep is the frequency-dependent active power, including the CPU power, and

any power that depends on the processing speed s. Hence, the energy consumption

of a job Ji running at the speed si can be expressed as:

Ei(si) = (Pind + Cefs
α
i) · ci

si
(3.2)

As Ei(si) is a convex function, the minimum system energy is achieved when si

is as small as possible, provided it is larger than so-called critical speed (sc) [136].

In this study, we assume that smin ≥ sc.

3.2.3 Fault model

We assume that the system is subject to a maximum of K transient faults (e.g.,

bit flips in architectural registers or timing errors in CMOS circuit). Faults usually

are detected at the end of each job Ji’s execution using acceptance or sanity tests

[99] and the timing and energy overhead for detection are denoted as TOi and EOi,

respectively. Furthermore, we assume that the overheads of fault detections are not

subject to frequency variations. There is no assumption regarding the occurrence

pattern of faults, i.e. faults can occur anywhere at any time during an operational

cycle of the system, multiple faults may hit a single job. A fault is tolerated by

re-executing the affected job. Therefore, the maximum recovery overhead for job Ji

executing at smax under a single failure, denoted as Ri, is ci, or Ri = ci. When a

fault happens during the execution of Ji, a recovery job that of the same deadline

di is released. The recovery jobs are subject to preemption as well.

34

3.2.4 Problem formulation

We formulate our problem formally as follows:

Problem 3.2.1. Given a real-time job set J scheduled under EDF on a single

processor, find a speed schedule S for all the jobs in J (including the recoveries)

such that the processor energy consumption is minimized without any deadline miss

when no more than K faults occur.

3.3 Fault-tolerant speed schedule

In this section, we introduce an approach to the development of a fault tolerant

DVFS schedule for a hard real-time job set to reduce the energy consumption. The

algorithm is developed based on LPEDF presented in [127]. To ease the presentation

of our approach, we first introduce several definitions and then reiterate briefly the

general idea of LPEDF.

Definition 3.3.1. Given a real-time job set J ,

• J (I) denotes the set of jobs contained in the interval I = [ts, tf], i.e. J (I) =

{Ji|ts ≤ ai < di ≤ tf};

• the workload W (I) of an interval I = [ts, tf] is the accumulated execution

time of jobs completely contained in the interval, i.e W (I) =
∑

Ji∈J (I)

ci;

• the intensity of interval I is defined as

s(I) =
W (I)

L(I)
, (3.3)

where L(I) is the length of interval I, i.e. L(I) = tf − ts;

• the interval I = [ts, tf] is called a critical interval if it has the highest

intensity and ts and tf are the arrival time and the deadline of some job(s),

correspondingly.

35

• the fault-related overhead of an interval I is denoted as Wft(I) = Wr(I) +

WTO(I), where Wr(I) represents the reserved workload to be used for recovery

in the worst case, i.e. Wr(I) = K × (Rx + TOx) and x denotes the index

of the job with the longest recovery time in J (I), i.e. Jx = {Ji|max(Ri +

TOi), Ji ∈ J(I)} and WTO(I) denotes the overhead imposed by fault detections

from regular jobs, i.e. WTO(I) =
∑

Ji∈J (I)

TOi.

Given a real-time job set J , LPEDF can be employed to minimize the energy

consumption (assuming smin ≥ sc) as follows [127] :

1. Step 1: Identify a critical interval I = [ts, tf] using equation (3.3);

2. Step 2: Remove the critical interval and all jobs contained in the interval,

set the speeds of all jobs in J (I) to s(I) and modify the arrival times and

deadlines of other jobs accordingly. Specifically, let J ← J − J (I); change

deadline di to ts if di ∈ [ts, tf], or to di − (tf − ts) if di ≥ tf ; set ai to ts if

ai ∈ [ts, tf], or to ai − (tf − ts) if ai ≥ tf .

3. Step 3: Repeat step 1)− 2) until J is empty.

To make the above LPEDF fault-tolerant, one intuitive approach (we call this

approach as MLPEDF) is to take the fault recovery into consideration and increase

the workload of an interval when calculating its intensity, that is, to replace s(I)

with sm(I), as defined in equation (3.4),

sm(I) =
W (I) +K ×Rx

L(I)−WTO(I)−K × TOx

, (3.4)

where x is the index of the job with longest recovery in J (I) and WTO(I) denotes

the total fault-detection overheads for regular jobs as defined in Definition 3.3.1.

We summarize the feasibility condition of an arbitrary EDF-scheduled job set

on a single processor that is subject to a maximum number of K transient faults in

the following.

36

Theorem 3.3.2. [8] Given a real-time job set J with K faults to be tolerated and

smax = 1, if for each interval I, we have

W (I) +Wft(I)

L(I)
≤ 1, (3.5)

then the job set J is feasible.

Note that, when a fault occurs, MPLEDF executes the recover copy of a job

using a scaled processor speed. This helps to reduce the total energy consumption

for both the original jobs and their recovery copies. However, this may not be energy

efficient in a practical scenario when the possibility of fault occurrence is low.

An alternative approach (we call this approach as EMLPEDF), is to run the

recovery backups using the maximum possible processor speed. The intensity cal-

culation of interval I can be modified correspondingly, as equation (3.6).

se(I) =
W (I)

L(I)−Wft(I)
(3.6)

It can be easily verified that se(I) ≤ sm(I) for a given interval I if W (I) +

Wft(I) ≤ L(I), which always holds for a feasible schedule. The advantage of this

approach is that it requires the least amount of resource reservation to guarantee the

timely recovery, and thus can reduce the energy consumption under the fault-free

scenario. This can be further illustrated using the following example.

Consider the simple real-time job set, shown in Table 3.1 and Figure 3.1.

Table 3.1: A real-time system with three jobs
ai ci di

J1 0 1 9
J2 7 3 15
J3 13 1 20

Let α = 2, Pind = 0.02 and Cef = 1. For simplicity, the timing and energy over-

head are considered negligible. We can calculate that the fault recovery schedule

37

by MLPEDF (Figure 3.1(a)) consumes less energy than that by EMLPEDF (Fig-

ure 3.1(b)), i.e. 5.41 vs. 5.56. However, the fault-free schedule by MLPEDF (Figure

3.1(c)) consumes much more energy than that by EMLPEDF (Figure 3.1(d)), i.e.

3.08 vs. 2.48 (20% more). Since the fault rate is usually very low in practice,

EMLPEDF can have a much better energy saving performance than MLPEDF.

(a) Fault recovery schedule under
MLPEDF

(b) Fault recovery schedule under
EMLPEDF

(c) Fault free schedule under
MLPEDF

(d) Fault free schedule under
EMLPEDF

Figure 3.1: MLPEDF vs. EMLPEDF. K is set to 1, a dark grey rectangle represents
a reserved recovery block and a shaded rectangle indicates that a recovery block
becomes active, i.e. a fault has been encountered. Figure 3.1(a) and 3.1(b) show
the schedules when the fault affects the job with the longest execution time, i.e.J2

under MLPEDF and EMLPEDF, respectively. The reserved recovery blocks are not
shown in the fault-free schedules.

To ensure the deadlines, when removing a critical interval and updating the

arrivals or deadlines of remaining jobs in each iteration (similar to each round of

Step 1 and Step 2 in LPEDF), we assume that all K faults will affect the longest job

in the critical interval under the worst case. This assumption is rather pessimistic

because each critical interval demands computing resources reserved for tolerating K

faults, which may potentially cause a feasible job set infeasible. We use an example

to illustrate this problem.

Consider a system with two jobs specified in Figure 3.2 and at most one fault to

be tolerated. For ease of presentation, we set the overheads of fault detections to 0.

According to EMLPEDF, the first critical interval is interval [3,7] with intensity 1

38

Figure 3.2: Monotonicity violation example

based on equation (3.6). After the removal of interval [3,7] along with job J2, d1 is

updated as 3 and the second critical interval is [0,3] with intensity 2. We have the

schedule drawn in Figure 3.2, where I1 and I2 denote the first and second critical

interval, respectively. We can see that se(I2) is larger than se(I1)(we refer to this

situation as the monotonicity violation). Moreover, se(I2) exceeds the highest

speed available in the system (smax = 1), so the required speed is unachievable.

However, it is not hard to see that the job set is in fact feasible under constant

speed 1. From the above discussion, it is clear that the energy minimization problem

with fault tolerance requirement cannot be solved by simply modifying the LPEDF

solution. Provisions are required during the scheduling process to ensure that the

resulting schedule is valid.

To handle monotonicity violations, we observed that any critical interval that

violates monotonicity must be adjacent to the critical interval found in the previous

iteration. Specifically, we have the following lemma.

Lemma 3.3.3. Let Ii and Ii−1 be two critical intervals identified by EMLPEDF

from ith and (i − 1)th iteration1, respectively. If se(Ii) > se(Ii−1), Ii and Ii−1 are

adjacent.

1Each iteration of EMLPEDF refers to one round of the Step 1-2 in LPEDF except
the intensity function is defined in equation (3.6)

39

Proof. When removing interval Ii−1, the workload distribution is not changed in

the intervals that have no overlap with Ii−1. Only the intervals overlapping Ii−1 are

shortened by ∆, 0 < ∆ ≤ L(Ii−1); therefore, they may experience an increase in

intensity in the next iteration.

As implied in the proof of Lemma 3.3.3, a monotonicity violation occurs when

the removed critical interval contains slacks that need to be reserved as recoveries

for jobs in its overlapping intervals. Therefore, the execution space for these jobs

are shortened due to its removal. To eliminate such monotonicity violations, we can

incorporate these jobs into the previously found critical interval. We formulate this

conclusion in Lemma 3.3.4.

Lemma 3.3.4. Let Ii and Ii−1 be two critical intervals identified by EMLPEDF from

ith and (i − 1)th iteration, respectively. If se(Ii) > se(Ii−1), the minimum constant

speed to maintain feasibility of jobs contained in Ii and Ii−1 is se(Ii−1).

Proof. Before removing the critical interval Ii−1 (i > 1), all the remaining jobs in

J (jobs left after first i−2 iterations) are feasible under the constant speed se(Ii−1).

Therefore, the combined jobs in Ii and Ii−1 are definitely feasible under this speed.

Lemma 3.3.3 and Lemma 3.3.4 help us to keep track of the monotonicity violation

and remove it whenever it occurs.

Up to now, we can formulate our EMLPEDF algorithm in Algorithm 1. Line 4

identifies the current critical interval and its speed. Lines 5-8 check if the current de-

sired speed is less than the minimal available speed, and terminate the iteration if so.

Lines 9-12 remove monotonicity violation whenever it occurs. Line 14 backs up the

timing information of jobs in case a rollback operation is needed. Lines 15-17 remove

40

the critical interval and update the job set. The complexity of EMLPEDF mainly

comes from calculations of critical intervals (line 4), i.e. O(n2) with a straightfor-

ward implementation. The overall complexity of EMLPEDF is same as LPEDF, i.e.

O(n3).

Algorithm 1 EMLPEDF algorithm

Require:
1) Job set : J = {J1, J2, ...Jn};
2) Number of faults: K
3) minimum frequency available: smin

1: si = smax, for i = 1, 2, ..., n;
2: p = 1; {the critical interval index}
3: while J 6= ∅ do
4: Identify the next critical interval I∗p = [ts, tf] and its intensity se,p based on

equation (3.6);
{se,p: the intensity of pth critical interval}

5: if se,p < smin then
6: si = smin,∀Ji ∈ J ;
7: break;
8: end if
9: if se,p > se,p−1 AND p > 1 then

10: Restore the timing information from the previous iteration;
11: Merge the interval I∗p with I∗p−1;
12: p−−;{Roll back the critical interval index}
13: end if
14: Back up the timing information;
15: si = se,p, ∀Ji ∈ J (Ip);
16: remove all jobs in Ip from J ;
17: update timing information of remaining jobs according the step 2 in

LPEDF[127]
18: p+ +;
19: end while
20: return {s1, s2, ..., }

We have the following theorem regarding the lowest constant speed that guar-

antees the feasibility of a job set.

Theorem 3.3.5. Let se1, se2, se3, ... be the intensities for the critical intervals from

iteration 1, 2, 3... in EMLPEDF. se1 is the lowest constant speed that can be em-

41

ployed throughout the entire job set without causing any deadline miss as long as no

more than K faults happen.

Proof. This theorem can be proved directly in light of Theorem 3.3.2. During the

first iteration of EMLPEDF, we have W (I)
se1
≤ W (I)

se(I)
for each interval I, since se1 ≥

se(I) considering the definition of critical interval. Take equation (3.6) into the

right-hand side of the above inequality and add Wft(I) to both sides. We have

W (I)
se1

+Wft(I) ≤ L(I). Therefore, the job set is feasible under constant speed se1.

Moreover, assume se1 is the resulting intensity from interval I1, i.e. se1 =

W (I1)
L(I1)−Wft(I1)

and s∗ is the lowest constant speed that maintains the feasibility of

the job set and s∗ < se1. We have the scaled workload in I1 as W (I1)
s∗

+ Wft(I1) >

W (I1)
se1

+ Wft(I1) = L(I1), which violates the feasibility condition in Theorem 3.3.2.

In addition, by applying Algorithm 1, we have the following theorem regarding

the characteristics of critical interval speeds.

Theorem 3.3.6. Let se1, se2, ...sem be the intensities for the critical intervals from

iteration 1, 2, ...m in EMLPEDF. We have se1 ≥ se2... ≥ sem.

Proof. Because all monotonicity violations are eliminated in Algorithm 1, the non-

increasing relationship between subsequent critical intervals can be easily deter-

mined.

More importantly, if EMLPEDF can be successfully applied for a job set, then

the feasibility of the result DVFS schedule is guaranteed. This is summarized in the

following theorem.

Theorem 3.3.7. EMLPEDF can guarantee that all jobs can meet their deadlines

as long as the following two constraints are satisfied : (1) no more than K faults

occur; (2) ∀i ∈ [1,m], where m is the total number of iterations, we have sei ≤ 1.

42

Proof. In EMLPEDF, a critical interval Ii is exclusively reserved for executing jobs

and their recovery copies in the interval. For any higher priority job (e.g. Jh)

with possible execution overlapping with Ii, it is forced to finish before the Ii in

EMLPEDF. Similarly, for any lower priority job (e.g. Jl) with possible execution

overlapping with Ii, the interval Ii is excluded for its execution by adjusting its

arrival time and deadline in EMLPEDF. Therefore, to prove the theorem, we only

need to prove that if we set the processor speed to be sei, i.e. the intensity of Ii,

throughout Ii, then the schedulability of all jobs in Ii is guaranteed in the worst

case (i.e. against K faults), as long as sei ≤ 1.

We prove this by contradiction. Let Jc = (rc, cc, dc) ∈ J (Ii) miss its deadline

when processor speed is set to sei. Then we must be able to find a time t ≤ rc,

such that for interval I ′ = [t, dc], we have W (I′)
sei

+ Wft(I
′) > L(I ′). Since s′ =

W (I′)
L(I′)−Wft(I′)

> sei and I ′ ⊆ Ii. This violates the assumption that Ii is a critical

interval.

Since all jobs are associated with a critical interval in EMLPEDF and all jobs

within a critical interval are schedulable when the corresponding speed is applied,

we prove the theorem.

While EMLPEDF can guarantee the feasibility of a real-time job set under

maximum K faults, and can also achieve better energy saving performance than

MLPEDF, each critical interval needs to reserve computing resource separately for

timely recovery when faults happen. It is desirable that different critical intervals

can share the reserved resources and conceivably the energy saving performance

can be further improved. We develop a new algorithm for this purpose, which is

introduced next.

43

3.4 Fault-tolerant speed schedule with shared recovery slacks

(a) Speed schedule by EMLPEDF

(b) Speed schedule by LPSSR

Figure 3.3: EMLPEDF vs. LPSSR

This section presents an improved approach to the development of energy effi-

cient fault tolerant schedule for a given job set J . We call this algorithm LPSSR.

Specifically, LPSSR improves upon EMLPEDF by allowing different critical inter-

vals to share reserved computing resources. We also execute recovery under smax in

LPSSR and focus on determining the speed schedule S for regular jobs. Before we

introduce the algorithm in details, we first use an example to motivate our research.

Consider a simple job set with two jobs specified in Figure 3.3. Note that, we set

the overheads of fault detection to 0 for easy presentation. The speed schedule by

EMLPEDF is shown in Figure 3.3(a). Note that in Figure 3.3(a), interval R1 (i.e.

interval [4, 7]) and interval R2 (i.e. interval [10, 13]) are the recovery blocks used for

fault recovery. However, since K = 1, at most one of the recovery blocks can be

used. If the fault occurs during J1’s execution, R1 will be used for recovery. In that

case, R2 will never be used since no fault will happen during J2’s execution. Same

problem occurs if the fault affects J2’s execution.

44

A better fault tolerant schedule is shown in Figure 3.3(b). Note that, when the

fault affects J1, the interval [7, 10] can serve as the reserved block to run the backup of

J1, and J2 can be executed at interval [10, 13]. If the fault affects J2, since there is no

fault during J1’s execution, J2 can be executed at interval [7, 10], and later recovered

at interval [10, 13] if necessary. For either case, the system is always feasible. By

sharing the recovering slacks, the speed of J1 is reduced to 3/7. Using the same

system parameters as in the previous example, the energy consumption of the new

schedule is more than 30% lower than that by EMLPEDF. The example clearly

shows that significant energy savings can be obtained without compromising the

system feasibility if the reserved computing resource can be shared. The problem

is how to judiciously share the reserved resource to maximize the energy saving

performance. In what follows, we develop an approach to explore the shared slacks

to improve the energy efficiency.

When removing a critical interval in EMLPEDF, its reserved slacks can only be

shared by jobs that have potential execution overlaps with it. To ease our presen-

tation, we classify these jobs into the following categories as defined below.

Definition 3.4.1. For a given interval I = [ts, tf] a job Ji is referred to as deadline

overlapping with I if ai 6∈ [ts, tf] and di ∈ [ts, tf], and arrival overlapping with

I if ai ∈ [ts, tf] and di 6∈ [ts, tf], and fully overlapping with I if I ⊆ [ai, di].

Specifically, for interval I, we denote all deadline overlapping jobs, arrival over-

lapping jobs, and fully overlapping jobs as J do
I and J ao

I , and J fo
I , respectively.

In EMLPEDF, when a critical interval is identified, it is removed with all jobs

inside it to make sure that the interval is exclusively used for running jobs and their

backups that are completely located within the interval. Also, the arrival times and

deadlines of the others are updated to the boundary of the interval such that their

executions will never interfere with jobs in the critical interval. In LPSSR, we allow a

45

job to share the reserved slacks in the critical interval by “extending” its deadline or

arrival time “into” the critical interval. We discuss each category of jobs separately

as follows. Let I∗ = [ts, tf] be a critical interval with length L(I∗), and intensity

se(I
∗), which is calculated the same way (i.e. equation (3.6)) as that in EMLPEDF.

Let Rmax(I
∗) = Wr(I

∗), Rmin(I∗) = K ×min{Rj + TOj|Jj ∈ J (I∗)} be the upper

and lower bound of the reserved slacks. Also, let Ji be a job with execution interval

(i.e. [ai, di]) partially or fully overlapped with I∗, the overlap length is represented

as L(Iopi). Additionally, the maximum amount of reserved slack shared by a job Ji

is denoted by RS(Ji). Consider the following three cases:

• Ji ∈ J do
I∗ : To share the reserved slack, the deadline of Ji will be extended

into interval I∗. Specifically, instead of ts, di is set to ts + RS(Ji) where

RS(Ji) = min(K × (Ri + TOi), K ×Rmin(I∗), L(Iopi)).

• Ji ∈ J ao
I∗ : In this case, the new arrival time of Ji will be extended into interval

I∗ in order to share the reserved slack. To share the slacks, after removing

the critical interval I∗ (only subinterval [ts, tf −RS(Ji)] is effectively removed,

where RS(Ji) = min(K × (Ri + TOi), K × Rmin(I∗), L(Iopi))), we set Ji’s

deadline as di = di − L(I∗) +RS(Ji), and update ai to ts.

• Ji ∈ J fo
I∗ : In this case, all the reserved slacks in I∗ can be potentially used

by Ji. To share the slack, after removing the critical interval I∗, we set Ji’s

deadline as di = di − L(I∗) + RS(Ji), where RS(Ji) = min(Rmax(I
∗), K ×

(Ri + TOi)).

Accordingly, we formulate a new algorithm (i.e. LPSSR), as shown in Algo-

rithm 2. Without loss of generality, we ignore the overheads of fault detections.

The work flow of Algorithm 2 is similar to EMLPEDF, i.e. iteratively identifying

46

Algorithm 2 LPSSR algorithm

Require:
1) Job set : J = {J1, J2, ...Jn};
2) Number of faults: K

1: si = smax, for i = 1, 2, ..., n;
2: p = 1;{critical interval index}
3: while J 6= ∅ do
4: Identify the critical interval Ip = [ts, tf] and its intensity se,p based on equation

(3.6);
{se,p: the intensity of pth critical interval}

5: if se,p < smin then
6: si = smin,∀i ∈ J ;
7: break;
8: end if
9: if se,p > se,p−1 AND p > 1 then

10: Restore the timing information from the previous iteration;
11: Merge the interval Ip with Ip−1;
12: p−−;{Roll back the critical interval index}
13: end if
14: L(Ip) = tf − ts;
15: for all Ji ∈ J do
16: Backup timing information of Ji;
17: RS(Ji) = min(K × (Ri + TOi), K × Rmin(Ip), L(Iopi));//Rmin(Ip) is the

minimum recovery time for jobs in J
18: if Ji ∈ JdoIp then
19: di ← min{di, ts +RS(Ji)};
20: else if Ji ∈ JaoIp then
21: di ← di − (L(Ip)−RS(Ji))
22: ai ← ts;
23: else if Ji ∈ JfoIp then
24: RS(Ji) = min(K × (Ri + TOi), K ×Rmax(Ip));
25: di ← di − (L(Ip)−RS(Ji));
26: else
27: ai ← ai − L(Ip);
28: di ← di − L(Ip);
29: end if
30: for all Jq|[aq, dq] ⊆ Ip do
31: sq = se,p;
32: J ← J − J (Ip);
33: end for
34: end for
35: p+ +;
36: end while
37: return {s1, s2, ..., }

47

critical intervals, removing the critical interval and the jobs inside the critical inter-

val, and then updating the timing parameters for the rest of the jobs, until the job

queue becomes empty. Different from EMLPEDF, we apply our sharing technique

when updating the timing parameters and eliminate monotonicity violation when-

ever it occurs. In Algorithm 2, line 4 identifies pth critical interval for the current

real-time job set. Lines 5 to 8 are simply the application of Theorem 3.3.5. Lines

9 to 13 roll back to the previous iteration and merge the current critical interval

with the previous one once monotonicity violation is found. Lines 16 to 29 backup

and update the timing parameters of each remaining jobs according to the sharing

technique discussed above. At last, lines 30 to 33 remove all jobs inside the critical

interval.

The main computation complexity per iteration comes from identifying the crit-

ical interval, which is O(n2), where n is the number of jobs. The outer loop can at

most repeat n times. Therefore, the complexity of Algorithm 2 is O(n3). In what

follows, we first use an example to illustrate the procedures of LPSSR. We then

prove that the algorithm can guarantee the schedulability of all jobs under K faults.

Consider a system with 5 jobs whose timing information is given in Figure 3.4(a).

We assume that K = 1. We use ↑ and ↓ to denote a job’s arrival time and deadline,

respectively. The fault-detection overheads are considered negligible in this example.

For each step, the critical interval is identified with intensity function in equation

(3.6) and is shown as | ↔ |. For the first iteration in Figure 3.4(a), the critical

interval is identified as [5,10] with intensity se([5, 10]) = c1+c2
10−5−R2

= 1. When we

remove interval [5,10], J1 and J2 are removed and speed 1 is assigned to both jobs,

and then we need to update the timing information of the remaining jobs.

48

(a) first iteration of LPSSR (b) second iteration of LPSSR

(c) third iteration of LPSSR (d) fault-free schedule under the
speeds from LPSSR

Figure 3.4: An example of LPSSR

Note that J3 is a fully overlapping job with respect to the critical interval, and

all the slacks that reserved in interval [5,10] can be used by J3. Therefore, RS(J3) =

min(Rmax[5, 10], R3) = min(2, 3) = 2. Consequently, we have d3 = d3 − L([0, 5]) +

RS(J3) = 17. For J4, it is deadline overlapping with the critical interval and thus

RS(J4) = min(R4, Rmin([5, 10]), Lopi) = min(2, 1, 2) = 1. As a result, d4 is set to 6,

i.e. the boundary of the critical interval(5) plus the slacks that can be shared by J4.

For J5, which is a arrival overlapping job with respect to the critical interval, the

slacks that be shared by J5 is RS(J5) = min(R5, Rmin([5, 10]), Lopi) = min(2, 1, 2) =

1 and its arrival and deadline are set to 5 and 12, respectively. The resulting job set

is illustrated in Figure 3.4(b).

Based on the new job set, we identify the critical interval as [0,6] with intensity

2/3. After the assign speed 2/3 to J4 and remove the critical interval and repeat the

same procedures as discussed in the previous iteration, we have a consequent job set

as shown in Figure 3.4(c). Finally, the last critical interval is [1,14] with intensity 1/2

and J3 and J5 are removed after being allocated a speed 1/2. The LPSSR algorithm

49

Figure 3.5: (a)d′i is deadline to be assigned after the removal of critical interval,
which is ts + RS(Ji), ti is the finishing time of Ji or its recoveries. (b) t∗ is the
completion time of all the jobs and recoveries in J (I∗), a′i is extended into I∗ by
RS(Ji).

terminates and we have the resulting speed schedule S = {1, 1, 1/2, 2/3, 1/2}. The

final schedule is shown in Figure 3.4(d), and it can be verified that no matter when

the failure occurs, there is no deadline miss with this schedule.

Moreover, the feasibility of the schedule output from Algorithm 2 is guaranteed,

which is formulated in Theorem 3.4.2.

Theorem 3.4.2. Given a real-time job set J and a constant K, all the jobs in J

can meet their deadlines if they are executed based on the processor speeds determined

by Algorithm 2 and no more than K faults occur.

Proof. The proof of Theorem 3.4.2 is similar to that of Theorem 3.3.7. Let I∗ =

[ts, tf] be the critical interval and se(I
∗) be its speed. We consider the three types

of jobs separately.

Case 1 : let Ji ∈ J do
I∗ and d′i denote the deadline after the removal of the critical

interval I∗, i.e, d′i = ts + RS(Ji). If Ji and its recovery workload finishes at ts or

earlier, it has no impact to the execution for jobs in J (I∗). Hence all jobs in J (I∗)

are schedulable under K faults in the worst case. If Ji and its recovery workload

finishes at d′i, this means that all K faults must occur before d′i. Otherwise, one more

fault occurs at d′i will cause Ji to miss deadlne. As a result, there will be no faults

occurring in interval I∗. Since d′i − ts = RS(Ji) ≤ K × Rmin(I∗), this implies that

the slack time occupied by Ji is smaller than the minimum amount of reserved slack

50

in interval I∗ that can be exploited by every job to execute the recovery workload.

Therefore, all jobs in J (I∗) must be schedulable. The question now becomes what

if Ji and its recoveries finishes at ti, where ts < ti < ts + RS(Ji), refer to Figure

3.5-(a).

We consider the following two cases.

• Case 1-a: Ri + TOi >= Rmin(I∗).

Then there are at most K ′ faults, where K ′ = b(d′i− ti)/(Ri +TOi)c left after

t > ti. Otherwise, if more than K ′ faults occurring at (or after) ti will cause

Ji to miss its deadline. In other words, there must be K −K ′ faults occurred

before ti. Note that Ji consumes a slack of ti − ts from I∗. In the meantime,

each job at least has an additional slack of (K−K ′)×Rmin(I∗) to spare. Since

K ×Rmin(I∗) ≥ d′i − ts = RS(Ji), we have

(K −K ′)×Rmin(I∗) ≥ (K − b(d′i − ti)/(Ri + TOi)c)×Rmin(I∗)

≥ (K − (d′i − ti)/(Ri + TOi))Rmin(I∗)

≥ d′i − ts − (d′i − ti)/Rmin(I∗)×Rmin(I∗)

= ti − ts.

Therefore, all jobs in J (I∗) can be schedulable.

• Case 1-b: Ri + TOi < Rmin(I∗).

Then there are at least K ′ faults, where K ′ = d(ti − ts)/(Ri + TOi)e before

ti. Otherwise, assume that there are K ′ − 1 faults before ti, then there can

be K − K ′ + 1 faults after(or at) ti, we have (K − K ′ + 1)(Ri + TOi) >

(K − (ti − ts)/(Ri + TOi))(Ri + TOi) ≥ RS(Ji) − (ti − ts) = d′i − ti, which

causes Ji to miss its deadline according to Theorem 3.3.2. Since K ′ faults have

already occurred before ti, this implies that each job in J (I∗) at least has an

51

additional slack of K ′ ×Rmin(I∗) to spare. Since

K ′ ×Rmin(I∗) = d(ti − ts)/(Ri + TOi)e ×Rmin(I∗)

≥ (ti − ts)/(Ri + TOi)×Rmin(I∗)

≥ ti − ts,

all jobs in J (I∗) are schedulable.

From the above discussions, we can then conclude that d′i is a valid deadline for

any Ji ∈ J do
I∗ .

Case 2 : let Ji ∈ J ao
I∗ and a′i represent the new arrival time, a′i = ts and d′i the

updated deadline, i.e. d′i = di − L(I∗) + RS(Ji). Note that Ji has lower priority

than all the jobs in J (I∗). Therefore, we only need to show the changes made

to the arrival time and deadline of Ji will not compromise the resource savings to

guarantee the schedulability of Ji.

If all the jobs in J (I∗) and their recoveries finish at or before t = tf − RS(Ji),

then Ji will not experience any interference from jobs in J (I∗) and its feasibility

will not be affected. Now the question becomes what if all jobs in J (I∗) and their

recoveries, if any, finish at t∗, where tf −RS(Ji) < t∗ ≤ tf , see Figure 3.5-(b).

We consider the following two cases.

• Case 2-a: Ri + TOi >= Rmin(I∗). Then there are at least K ′ faults, where

K ′ = d(t∗ + RS(Ji) − tf)/Rmine before t∗. Otherwise, similar to the proof of

Case 1-b, more than K −K ′ faults occurring at t = t∗ will cause at least one

job in J (I∗) to miss its deadline. In the meantime, this implies that Ji at

least has an additional slack of K ′ × (Ri + TOi) to spare. We have

K ′ × (Ri + TOi) = d(t∗ +RS(Ji)− tf)/Rmin(I∗)e × (Ri + TOi)

≥ t∗ +RS(Ji)− tf .

52

This ensures that Ji has reserved enough resource for fault recovery.

• Case 2-b: (Ri + TOi) < Rmin(I∗). Then there are at most K ′ faults, where

K ′ = b(tf − t∗)/Rmin(I∗)c that may occur after t∗. Otherwise, one more fault

at tf will cause some job(s) in J (I∗) to miss deadline(s). In other words, there

must be at least K−K ′ faults that occurred before t∗. A portion of the shared

slacks with the amount of t∗ + RS(Ji) − tf is used by the jobs(recoveries) in

J (I∗). However, job Ji reclaims an additional slack of (K −K ′)× (Ri + TOi)

to spare. Since K × (Ri + TOi) ≥ RS(Ji), we have

(K −K ′)×Ri ≥ (K − b(tf − t∗)/Rminc)× (Ri + TOi)

≥ (K − (tf − t∗)/(Ri + TOi))(Ri + TOi)

≥ RS(Ji)− (t′f − t∗)/(Ri + TOi)× (Ri + TOi)

= t∗ +RS(Ji)− tf .

Therefore, Ji also reserves enough resource.

Case 3 : let Ji ∈ J fo
I∗ . Similarly we want to prove that the change of deadline

for Ji will not compromise the resource savings to guarantee its schedulability with

the possible of maximum K faults. Since there are K ×Rmax(I
∗) slacks reserved in

I∗, it just requires additional slacks of max(0, K × (Ri + TOi)−K ×Rmax(I
∗)) for

Ji with the sharing mechanism.

We consider two cases below.

• Case 3-a: (Ri + TOi) > Rmax(I
∗). In this case, additional slacks of K × (Ri +

TOi)−K×Rmax(I
∗) is reserved for Ji. Assume that K ′ faults occurred during

the critical interval I∗. Ji can immediately claim the unused reserved slacks

of (K −K ′)Rmax(I
∗) in I∗ to spare. Since there will be at most K −K ′ faults

53

striking Ji and we have the remaining reserved resources for Ji as

(K −K ′)Rmax(I
∗)+(K × (Ri + TOi)−K ×Rmax(I

∗))

= K × (Ri + TOi)−K ′Rmax(I
∗)

≥ (K −K ′)(Ri + TOi).

This ensures that Ji has reserved enough resources for fault recovery.

• Case 3-b: (Ri + TOi) ≤ Rmax(I
∗). Then there is no additional slacks needed

for Ji. Assume that there are K ′ faults in I∗. This implies Ji can reclaim

(K − K ′)Rmax(I
∗) from the critical interval I∗ to spare. In addition, there

will be at most K − K ′ faults affecting Ji. Since (K − K ′)Rmax(I
∗) >=

(K −K ′)(Ri + TOi), Ji has enough resources for its execution and recovery.

Since all jobs are associated with a critical interval in LPSSR and all jobs within

a critical interval are schedulable when the corresponding speed is applied and the

feasibility of the remaining jobs is not affected after the removal of a critical interval,

we prove the theorem.

Algorithm 2 allows reserved slacks to be shared by different critical intervals

and thus can achieve better energy efficiency. By far, both EMLPEDF and LPSSR

assume that speeds can be continuously varied between [smin, smax]. In the next

section, we extend our LPSSR algorithm to systems with only a limited number of

frequencies.

3.5 Other considerations of the proposed methods

In this section, we relax our assumptions about system and fault model and explicitly

address some practical issues in modern processors.

54

3.5.1 Dealing with the limitations of practical processors

Up to now, we assume that the processor speed can be varied continuously. However,

current commercial variable voltage processors only have a finite number of speeds

[122],[111]. In addition, it takes time for a processor to change its running modes.

These factors must be taken into consideration to provide a practical, valid and

efficient voltage schedule.

One intuitive way to deal with discrete frequency levels is to round up the re-

quired frequency to the next available level. Unfortunately, this can be extremely

pessimistic and energy inefficient, especially for processors with only a few frequen-

cies available. In fact, we can adopt the similar approach as in the work [92] to deal

with both the problem of discrete levels of working frequencies and non-zero timing

overhead. As shown in [92], non-zero timing overhead can cause monotonicity

violation similar to the scenario when we insert recovery blocks for fault tolerance.

Therefore, the transition overhead can be efficiently handled by adding it to the

reserved blocks. For discrete frequency levels, we can take this factor into consid-

eration when constructing critical intervals. Specifically, when a critical interval is

found according to Algorithm 2, its speed needs to be raised to the next level avail-

able. Once a higher than necessary speed is used, idle slacks will be generated in the

critical interval. Then we reduce the idle slacks by identifying the latest finishing

time of the critical interval.

Given the jobs in the interval and a higher speed than required, we can find the

latest finishing time of the workload including recoveries under the worst case as

follows. Let I∗ = [ts, tf] be the critical interval and sh be its speed. In addition, the

set of jobs in I∗ is denoted by J (I∗) and Jhp(i) is the set of jobs of priority higher

than that of job Ji. Therefore, the latest finishing time(LFT (I∗)) is obtained by

55

equation (3.7),

LFT (I∗) = max
∀Ji∈J (I∗)

{ ci
sh

+
∑

∀Jj∈Jhp(i)∩dj>ai

cj
sh

+K ×Re(i) + ai} (3.7)

where the first part denotes the execution requirement from Ji itself and the second

and third part represent the interference from the higher priority jobs and the worst

case recovery time, i.e. Re(i) = max{Rp + TOp|Jp ∈ {Ji} ∪ Jhp(i)} that Ji can

suffer, respectively. Note that not all the workload from higher priority jobs are

considered because only those with deadlines after the arrival of Ji, i.e. ai may

delay the execution of Ji. Therefore, the actual critical interval to be removed is

[ts,min(tf , LFT (I∗))].

To update our LPSSR to deal with discrete frequency levels, we only need to

calculate the latest finishing time and update the ending point of the critical interval

before line 14. Similarly, this technique can be incorporated into MLPEDF and

EMLPEDF as well.

3.5.2 System reliability and imperfect fault coverage

Our proposed approach enhances the system reliability by ensuring the K-fault-

tolerance capability of the system through advanced backup policies. Let the system

reliability be defined in 3.5.1.

Definition 3.5.1. The reliability of the system, denoted as Rsys, is the probability

that the system functions correctly during an operational cycle (its length is repre-

sented by Lcyc) of the system.

Let Pr(q, Lcyc) denote the probability that exactly q faults occur during Lcyc and

ρ denote the fault coverage of the given fault detection method, i.e. 0 < ρ ≤ 1. To

ensure the system to function correctly, two conditions have to be met: 1) no more

56

than K faults occur during Lcyc; 2) all failures are appropriately detected. As the

event of fault occurrence is independent of the process of fault detection, the system

reliability Rsys can be calculated in equation (3.8),

Rsys =
K∑
q=1

Pr(q, Lcyc) · Prdet(q), (3.8)

where Prdet(q) = ρq, i.e. the probability that q faults are detected. If the failure

distribution is modeled as a Possion process with a failure rate λ as in [136, 134, 133],

then the reliability function is shown in equation (3.9),

Rsys =
K∑
q=1

(λLcyc)
q · e−λLcyc
q!

· ρq (3.9)

As can be seen from both equation (3.8) and (3.9), the larger the number of

faults, i.e. K that the system can tolerate, the higher the system reliability. Note

that, this reliability model is not limited to any particular failure distribution, as

long as Pr(q, Lcyc) is well defined, it can be readily applied. Given a reliability goal

and the length of an operational cycle of the system, a corresponding K can be

determined under any given fault detection technique.

From equation 3.9, the fault coverage factor can play an important role in system

reliability. To study the tradeoffs between different fault coverage techniques is an

interesting research problem and will be our future work.

3.6 Simulation results

In this section, we compare the performance of four algorithms: NPM, MLPEDF,

EMLPEDF, and LPSSR. NPM represents the speed schedule with no power man-

agement involved, i.e. all jobs or recoveries are executed under smax and is used

as a reference schedule. MLPEDF and EMPLEDF are fault tolerant algorithms

57

discussed in Section 3.3 and LPSSR is the algorithm presented in Section 3.4. All

energy consumptions plotted were normalized to NPM.

We assumed that α = 2, Cef = 1, Pind = 0.05, and smin was set to 0.25. We

tested our algorithm with job sets randomly generated as follows: for each job, the

arrival time ai is uniformly distributed in the interval [0s,100s] while its relative

deadline rdi is in [50s,100s]. Therefore, the absolute deadline was calculated as

di = ai + rdi. In addition, the worst case execution time ci was less than rdi and

also randomly generated. For each job, the timing and energy overhead of fault

detection is set to 10% of its worst case execution time and its energy consumption,

respectively. The choices of K were based on the characteristics of the task sets

and typical fault arrival rates. As indicated in [130], the typical fault arrival rate

in safety-critical real-time system is in the range of 10−10 to 10−5/hour. However,

for systems that operate in harsh environment, the fault arrival rate can be much

higher, in the range of 10−2 to 102/hour. Only the job sets running at smax that are

feasible under K faults are of interest to us.

Two sets of simulations were conducted to study the performance of our algo-

rithm in terms of energy savings under continuously varied speeds and discrete speed

levels, respectively.

3.6.1 System with continuous speeds

First, we studied how energy saving performance changes with the number of jobs.

We set the fault rate to be 10−5 and varied the number of jobs from 10 to 50. For

simulations with the same number of jobs, we generated at least 1000 different test

cases. With our settings, the number of fault in our job set is no more than 1.

Therefore, we set K = 1. For each job set, we collected the energy consumption

58

Figure 3.6: Energy savings with different numbers of jobs, K = 1

of the speed schedule by each of the four approaches. The result is illustrated in

Figure 3.6.

From Figure 3.6, we can see that the energy consumption of LPSSR, EMLPEDF

and MLPEDF increases as the job set becomes larger. This is reasonable since the

workload is increasing while the slacks that can be used for DVFS are diminishing.

LPSSR always dominates the other three algorithms because, by sharing reserved

slacks, LPSSR reserves fewer resources for fault recovery and uses more for slowing

down the execution of jobs. When the workload is very low, i.e., only 10 jobs, the

energy savings achieved by all three algorithms are almost the same, this is due to

the fact that most of the test cases are feasible under constant speed smin. When

the workload is high enough, most of the slacks are used for fault recovery and no

room is left for DVFS. Moreover, if the number of jobs is increased to a certain

point, no fault-tolerant speed schedule can be found. In average, additional 13%

and 10% energy saving can be achieved by LPSSR when comparing with MLPEDF

and EMLPEDF, respectively.

In our second set of simulations, we wanted to investigate how the number of

faults affects the performance of our algorithm. In this simulation, the number of

59

Figure 3.7: Energy savings with increasing number of faults, # of jobs = 15

jobs is fixed to 15 and the fault rates to be tolerated varies from 10−2 to 102/h, i.e.

K changes from 1 to 5. Again, no less than 1000 different test cases were generated

for simulations with the same fault numbers. The average results are shown in

Figure 3.7.

From Figure 3.7 we can see that the energy consumptions by MLPEDF and

EMLPEDF increase rapidly as the increase of the number of faults. The energy

consumption by LPSSR, on the other hand, grows but less dramatically. From

Figure 3.7, the energy consumption difference is around 6% between tolerating 1

fault and 5 faults under LPSSR. This is due to the fact that the recovery slacks are

shared to the maximum extent by employing the sharing mechanism in LPSSR. On

the contrary, MLPEDF(EMLPEDF) is affected significantly by the increasing num-

ber of faults in the system and more than 40%(33%) additional energy is consumed

when fault occurrences increase from 1 to 5.

60

Figure 3.8: Energy savings with increasing number of jobs under PentiumM, K=1,

Figure 3.9: Energy savings with increasing number of faults under PentiumM, # of
jobs = 15

3.6.2 System with discrete speed levels

In this section, we also evaluate the four algorithms using two different sets of

simluations. The technique discussed in Section 3.5.1 is used to deal with discrete

speed levels.

We adopt PentiumM processor with 8 frequency levels (1.00, 0.86, 0.76, 0.67,

0.57, 0.47, 0.38, 0.28) as our target system as used in [88]. Two simulations under

the same configuration as those in Section 3.6.1 are performed and their results are

shown in Figure 3.8 and Figure 3.9, respectively. Again, four algorithms with limited

number of speeds are evaluated, which are NPM, D-MLPEDF, D-EMLPEDF and

61

D-LPSSR, respectively. To better illustrate the performance of our algorithm under

discrete speed levels, we compare it with that of continuous speeds, which is denoted

by C-LPSSR.

The advantages of our algorithm D-LPSSR over the other two in terms of energy

savings are manifested in Figure 3.8, and the additional energy savings only drops

around 3% compared with continuous varied speeds. In average, the difference

between D-LPSSR and C-LPSSR is only 5%.

Moreover, for the second simulation, algorithm LPSSR performs even better as

shown in Figure 3.9. This is due to the fact that it extensively explores the slacks

that can be shared among different critical intervals and significantly reduce the

amount of recoveries. Therefore, increasing the number of faults has little impact

on the resulting speed schedule. Comparing with C-LPSSR, only 3% more energy

is consumed for tolerating 1 to 5 faults.

3.6.3 Real-life periodic task sets

In this section, we verify the proposed algorithms using three real-life periodic task

sets, which are a CNC task set, an inertial navigation system(INS) task set, and a

generic aviation platform(GAP) task set, respectively. The specifications of these

task sets can be found in [130] and omitted here due to space limitation. Based

on our simulations, no task set can tolerate more than 2 faults. Therefore, only

the results of K = 1, 2 are recorded and are normalized to NPM. Processors with

continuous frequencies and discrete frequency levels are considered, separately.

As shown in Table 3.2, all three algorithms can achieve energy savings compared

with NPM while maintaining the feasibility of the task sets, where A1, A2 and A3

stand for MLPEDF, EMLPEDF and LPSSR, respectively. The two algorithms, i.e.

62

Table 3.2: Energy-performance comparison for CNC, INS, and GAP
Continuous frequencies PentiumM

Task Set K A1(%) A2 (%) A3 (%) A1(%) A2 (%) A3 (%)

CNC
1 69.9 60.4 59.9 72.8 62.6 61.9
2 86.4 80.5 71.4 91.8 84.8 77.4

INS
1 96.3 93.0 88.5 98.7 96.2 92.1
2 NF NF NF NF NF NF

GAP
1 91.5 89.4 87.2 98.4 96.9 93.3
2 100 100 92.2 100 100 96.8

EMLPEDF and LPSSR have similar performance when tolerating 1 fault, because

the shared slacks are negligible considering a relatively small execution time to

period ratio. For all three algorithms, we noticed a consequent increase in energy

consumption when K increases. This increase mostly comes from the first iteration

of the algorithm, the intensity of the first critical interval is much higher for a

larger K, especially for a task set with large utilization where slacks are already

scarce. However, when K = 2, LPSSR stills attains another 8.5%(12%) energy

reduction compared with EMLPEDF (MLPEDF), which is a strong demonstration

of the benefits from slack-sharing. Under a processor with a limited number of

frequencies, i.e. PentiumM in Section 3.6.2, the performance of our algorithms is

slightly degraded as expected.

3.6.4 Further validation of LPSSR

To our best knowledge, there is no other existing works in the literature addressing

the exactly same problem. However, to demonstrate the efficacy of our LPSSR,

we compared LPSSR against the method fault-tolerant uniform checkpointing with

DVFS (FTUniChK) from the work [90] that studied the fault-tolerant energy reduc-

tion for periodic task sets scheduled under EDF on a single processor. FTUniChK

first identified the the checkpointing interval and then derived a constant speed

63

Figure 3.10: LPSSR vs FTUniCk

to execute the entire task set, but it is only applicable when no more than one

fault can occur, i.e. K = 1. Note that, our LPSSR exploits the slacks that can be

shared among different jobs and acts on top of any checkpointing scheme. Therefore,

we directly adopted the uniform checkpointing scheme from [90] before employing

LPSSR.

The simulation parameters were set as follows. We had α = 2, Cef = 1,

Pind = 0.05, and smin was set to 0.25. Each task set consisted of 10 periodic tasks,

whose periods were uniformly generated in the range of [5s 50s]. The checkpointing

overhead of each task was set to 5% of its worst case execution time under smax.

The total utilization of the task set was varied from 0.2 to 0.95 with a step of 0.05.

For each utilization value, we generated 1000 different task sets according to UU-

NISORT in [17], and the average energy consumption of one LCM was reported.

We again normalized the energy consumption with respect to that of NPM.

According to Figure 3.10, our LPSSR consistently outperforms FTUniChK.

When the processor is light-loaded, both methods use close-to-minimum speed to

execute the task set, therefore the energy performance is close. However, as the uti-

lization increase, LPSSR can reduce the amount of slacks reserved for fault-tolerance

and use more for energy reduction compared to FTUniChK. For instance, when the

utilization is 0.8, LPSSR achieves around 10% more energy savings.

64

Through extensive simulations, we have shown that the three proposed algo-

rithms can save a significant amount of energy comparing with NPM. Specifically,

our LPSSR algorithm is more energy efficient by reserving the least amount of slacks.

3.7 Summary

In this chapter, we investigate the problem of minimizing energy consumption when

scheduling a set of real-time jobs in presence of up to K transient faults under EDF

policy. We explore the reserved slacks in the system and maximize its utility by pro-

viding a slack sharing mechanism. Under the notion of shared recovery slacks, we

propose an algorithm that reduces the energy consumption and maintains feasibility

under the worst case, i.e. up to K faults occur during one operational cycle of the

system. We then extend our algorithm to systems with discrete speed levels to pro-

vide practical and energy efficient solutions. Theoretical validation of our approach

is provided and the simulation results have shown that our approach consistently

results in lower energy consumption compared with other algorithms.

65

CHAPTER 4

ENERGY MINIMIZATION FOR FAULT TOLERANT REAL-TIME

APPLICATIONS ON MULTI-CORE PLATFORMS USING

CHECKPOINTING

In the previous chapter, we study the problem of fault-tolerant real-time schedul-

ing for EDF-scheduled real-time tasks on a single-core platform. As more and more

real-time systems are adopting multi-core architecture as the underlying structure,

it is imperative that we develop energy-efficient fault-tolerant scheduling on multi-

core platforms. Thereby, in this chapter, we study the energy minimization problem

for real-time applications on multi-core platforms while tolerating K transient faults

using checkpointing.

A key to solve this problem is to make the judicious tradeoffs between the number

of checkpoints for each task and the amount of reserved resources for fault recovery.

In this chapter, we first study the problem on how to identify the appropriate num-

bers of checkpoints for tasks on a single core to minimize the worst case response

time. Based on the results, we then develop an efficient method to optimize the en-

ergy consumption for a real-time application while ensuring that K transient faults

can be tolerated.

The rest of the chapter is organized as follows. We first review the related

works in Section 4.1. Section 4.2 introduces the system models and notations used

throughout this chapter. Section 4.3 presents our method to minimize the worse case

latency for real-time tasks on a single-core processor. We then present our energy

efficient fault-tolerant algorithm in section 4.4. The effectiveness and efficiency of

our algorithms are evaluated in Section 4.5. Finally, section 4.6 summarizes the

chapter.

66

4.1 Related works

A plethora of techniques has been presented in the literature on real-time schedul-

ing with both fault tolerance and energy minimization requirements. For example,

Zhang et al. [130] introduced a static combination of checkpointing and DVFS

scheme for fixed-priority tasks for tolerating K transient faults while minimizing

energy consumption. This approach was extended by Wei et al. [124] to ex-

plore run-time slacks for further reducing energy consumption. Zhao et al. [134]

considered the negative effects of DVFS on transient fault rate and proposed a task-

level reliability model. They developed algorithms to determine DVFS schedules

and resource-reservation schemes to minimize energy consumption while meeting

task-level reliability requirements. All these approaches are restricted to single-core

platforms.

As more and more transistors are integrated to the same chip, and due to prob-

lems such as the power/thermal issues and limitations in instruction level parallelism

[7], multi-core platforms are becoming mainstream. As a result, most of the research

efforts are turned to multi-core platforms.

Pop et al. [97] presented a constraint logic programming method to design low-

power fault-tolerant hard real-time applications on distributed heterogeneous plat-

forms. They assumed that the task allocation is fixed and known a priori, and an

entire task needs to be re-executed when a transient fault occurs. Qi et al. [101]

derived a reliability-aware global scheduling scheme aiming at reducing the sys-

tem energy consumption for a set of frame-based tasks running on a homogeneous

multi-core platform. They assumed that different tasks can share the same reserved

sources to recover when faults happen. Again, the entire task has to be re-executed

in case of faults, which can greatly affect the energy efficiency of the system. Pop

67

et al. [96] proposed a more comprehensive approach to the synthesis of fault toler-

ant schedule for applications on heterogeneous distributed systems. They used the

combination of checkpointing and active replication to deal with the fault tolerance

problem. A meta-heuristic (Tabu search) is constructed to decide the fault-tolerance

policy, the placement of checkpoints and the mapping of tasks to processing cores,

but energy consumption is not considered in their approach.

We are interested in the problem of minimizing energy consumption while tol-

erating up to K transient faults with checkpointing scheme for a real-time system

running on a homogeneous multi-core platform. In the following, we introduce some

important preliminaries on our research and explain the notations used throughout

this chapter.

4.2 Preliminaries

In this section, we present the background pertinent to our research. Specifically,

we introduce the models and notations that are critical to our research.

4.2.1 Application model

The real-time applications considered in this chapter consist of n independent tasks,

denoted as Γ = {τ1, τ2, ..., τn}. All tasks in Γ have the same deadline D, but with

different execution requirements. We denote the execution time of τi as ci. The

utilization of task τi is represented as ui = ci
D

. The system utilization U is therefore

calculated as Utotal =
∑n

i=1
ci
D

.

68

4.2.2 Fault model and checkpointing

In this chapter, we only consider transient faults that can be tolerated by backward

rollback recoveries. We assume that the system needs to tolerate K faults, and the

faults can happen on any of the processing cores and at any time, even in a burst

manner. Run-time faults are countered by rolling back to the latest checkpoints

and re-executing the corrupted segments. Checkpointing is considered to be self

fault-tolerant.

The timing and energy overhead of inserting one checkpoint to task τi (saving

the fault-free state) are denoted by oi and eoi, respectively. In addition, we use

ri (eri) to denote the time (energy) it takes to retrieve the information needed to

rollback to the latest checkpoint when a fault happens during the execution of τi.

Fault detection is performed at each checkpoint to ensure the correctness of the

saved state. The timing and energy overhead for such an operation are represented

as qi and eqi, respectively. Assuming mi checkpoints inserted into τi, fault detections

will be performed for total (mi + 1) times (including one fault detection at the end

of τi’s execution). Therefore, the fault-free execution time of τi with mi number of

checkpoints, denoted as c′i(mi), can be specified as shown in equation (4.1a). The

recovery time of τi with a single failure, denoted as Ri(mi), is shown in equation

(4.1b).

c′i(mi) = ci +mi(oi + qi) + qi (4.1a)

Ri(mi) = ri +
ci

mi + 1
+ qi (4.1b)

4.2.3 Platform and energy model

We consider a homogeneous multi-core platform Ψ withm cores, i.e. Ψ = {ψ1, ..., ψm}.

We assume all the cores are identical in terms of processing frequency and power

69

characteristics. For the ease of presentation, we assume the speed/frequency of a

core can be changed continuously in [fmin, fmax] with 0 ≤ fmin ≤ fmax = 1. As

discussed later in this chapter, this constraint can be easily relaxed to accommodate

the fact that most practical processors support a set of discrete levels of frequencies.

Our system-level power model is similar to that in [88] by distinguishing the

dynamic and leakage power components. Specifically, the overall power consumption

P can be formulated as

P = Pleak + Pdyn = Pleak + Ceff
α (4.2)

where Pleak is the constant leakage power and can be only eliminated by turning

down the processing core. Cef is the effective switching capacitance. α is a constant

usually larger than 1. Pdyn is the dynamic power consumed when the device changes

logic states. Hence, the energy consumption of a task τi with mi checkpoints running

under the frequency fi can be expressed as:

Ei(fi) = (Pleak + Ceff
α
i) · ci

fi

+mi(eoi + oiPleak) + (mi + 1)(eqi + qiPleak), (4.3)

which includes the energy consumption incurred by executing task τi and the energy

overheads caused by checkpointing and fault detections. Similar to [130], we consider

checkpointing, fault detections and checkpoint retrievals are frequency independent,

but leakage power is still consumed during their operations. As Ei(fi) is a convex

function, the minimum system energy is achieved when fi is as small as possible,

provided it is larger than so-called critical frequency (fc = α

√
Pleak

(α−1)Cef
) [88].

We use Γj to represent the set of tasks assigned to the core ψj. The energy

consumption of core ψj can be calculated using equation (4.4).

E(Γj) =
∑
τi∈Γj

Ei(fi). (4.4)

The total energy consumption of the system is thus E(Γ) =
∑m

j=1E(Γj).

70

4.3 Optimal checkpointing scheme for minimizing the worst

case latency on a single core

Our goal is to develop a method that can minimize the energy consumption while

ensuring the K-fault tolerance using checkpointing. A key to solve this problem is

to make judicious decisions on inserting checkpoints to each task. As shown in the

previous section, increasing the numbers of checkpoints for real-time tasks incurs

larger checkpointing overhead which may compromise the feasibility and/or energy

efficiency of real-time systems. On the other hand, however, increasing the check-

point numbers decreases the needs of larger resource reservation for fault recovery,

which can be in favor of both system feasibility and energy efficiency. As a result,

the number of checkpoints (or the checkpointing interval) must be carefully chosen

to balance the checkpointing overhead with the fault recovery cost.

As a closely related work, Zhang et al. [130] showed that the optimal number of

checkpoints to minimize the worst case latency of a single task τi, denoted as m∗i ,

can be calculated as

m∗i =

 d
√

K∗ci
oi+qi

− 1e if ci >
(m−i +1)(m−i +2)(oi+qi)

K

b
√

K∗ci
oi+qi

− 1c if ci ≤ (m−i +1)(m−i +2)(oi+qi)

K

where m−i = b
√

K∗ci
oi+qi

− 1c. However, when considering multiple tasks that share

recovery resources on a single-core processor, the individual optimal checkpointing

configuration does not necessarily lead to the global optimal result. Pop et al. [96]

resorted to meta-heuristic (i.e. Tabu search) to search for the global optimal so-

lution. It is desirable that a more efficient and effective method can be developed

to identify the optimal global checkpointing settings, especially during the design

space exploration process.

71

Assuming all tasks on the same core share the same recovery resources, to tol-

erate K faults, we must reserve enough CPU time, i.e. K × SR, to re-execute the

corresponding program segments, where SR = max
i=1,...n

{Ri(mi)}, mi is the number

of checkpoints for τi, and Ri(mi) is defined in equation (4.1b). We call SR as the

shared recovery block. Considering the task set Γ = {τ1, τ2, ..., τn} is allocated to the

same core, the worst case latency of task set Γ with shared recovery block of SR,

denoted as L(Γ, SR), can be formulated in equation (4.5)

L(Γ, SR) =
n∑
i=1

ci +
n∑
i=1

(mi ∗ oi +mi ∗ qi + qi) +K ∗ SR. (4.5)

To find the optimal checkpointing scheme that minimize the worst case latency, i.e.

L(Γ, SR), we have the following theorem.

Theorem 4.3.1. If {m1,m2, ...,mn} is the optimal checkpointing configuration to

minimize L(Γ, SR), then we have ∀i,mi ≤ m∗i , where m∗i is the optimal number of

checkpoints to run a task τi individually.

Proof. We prove this theorem by contradiction.

Let {m1,m2, ...,mn} be the optimal checkpointing configuration but ∃i ∈ [1, n],mi >

m∗i . Let {m1,m2, ...,m
∗
i , ...mn} be another configuration that distinguishes the for-

mer one only by the number of checkpoints for task τi. SR and SR′ denote the sizes

of the shared recovery blocks under two configurations, respectively. δ represents

the difference between the two worst case latencies, i.e. δ = L(Γ, SR)− L(Γ, SR′).

Then, we have δ = mi(oi + qi) + K ∗ SR − (m∗i (oi + qi) + K ∗ SR′) according to

equation (4.5).

Note that SR can be potentially increased after reducing mi to m∗i , we discuss

the two possible scenarios separately in the following.

72

• Case 1: Ri(m
∗
i) ≤ SR. In this case, reducing mi to m∗i does not change the

size of the shared recovery block, i.e. SR′ = SR. Because mi > m∗i , we know

δ > 0.

• Case 2: Ri(m
∗
i) > SR. This means that the share recovery block is increased

due to the decrease in the checkpointing number of task τi and SR′ = Ri(m
∗
i).

Since SR ≥ Ri(mi), if we replace SR (SR′) with Ri(mi) (Ri(m
∗
i)), respectively,

we have

δ ≥ mi(oi + qi) +K ∗Ri(mi)− (m∗i (oi + qi) +K ∗Ri(m
∗
i)). (4.6)

Note that the right hand side of equation (4.6) represents the difference of two

worst case latencies when running τi individually using two different checkpointing

schemes. Since m∗i is the optimal checkpoint solution, we must have δ > 0.

For both cases, we have δ > 0. This contradicts our assumption that M is

optimal.

Theorem 4.3.1 helps to prune the search space for the checkpointing configura-

tions. However, a brute-force method based on Theorem 4.3.1 still has a very high

computational complexity, i.e.
∏n

i=1m
∗
i , which can be computationally prohibitive

for large task sets with a considerable amount of possible values of m∗i . In what

follows, we introduce a novel approach to further prune the search space.

Since SR = max
i=1,...n

{Ri(mi)}, from equation (4.1b), for a given SR, we have

mi = d ci
SR− (ri + qi)

− 1e. (4.7)

Therefore, equation (4.5) can be transformed to

L(Γ, SR) =
n∑
i=1

(ci + qi) +
n∑
i=1

d ci
SR− (ri + qi)

− 1e(oi + qi)

+K ∗ SR (4.8)

73

Therefore, to search for the optimal checkpointing configurations, we only need to

search the optimal value of SR that can optimize L(Γ, SR). To achieve this purpose,

we first introduce the following lemma.

Lemma 4.3.2. If M = {m1,m2, ...,mn} is the optimal checkpointing configuration

for task set Γ = {τ1, τ2, ..., τn}, then the size of the shared recovery block SR under

configuration M is no less than max
i=1,...n

{Ri(m
∗
i)}.

Proof. The proof of Lemma 4.3.2 is similar to that of Theorem 4.3.1. We also

prove it by contradiction. The configuration M is assumed to be optimal but the

resulting SR < max
i=1,...n

{Ri(m
∗
i)}. Let task τk have the longest recovery time, i.e.

Rk(m
∗
k) = max

i=1,...n
{Ri(m

∗
i)}. According to equation (4.7), the number checkpoint of

τk is calculated as mk = d ck
SR−(rk+qk)

− 1e > d ck
Rk(m∗k)−(rk+qk)

− 1e = dm∗ke. This

contradicts Theorem 4.3.1.

From Lemma 4.3.2, we can immediately set up a lower bound for SR as

SR ≥ max
i=1,...n

{ ci
m∗i + 1

}. (4.9)

Moreover, based on the properties of ceiling(floor) functions and equation (4.8), we

can set an upper bound and a lower bound as follows:

Lupper(T , SR) =
n∑
i=1

(ci + qi) +
n∑
i=1

ci
SR− φmax

(oi + qi) +K ∗ SR (4.10a)

Llower(T , SR) =
n∑
i=1

(ci − oi) +
n∑
i=1

ci
SR− φmin

(oi + qi) +K ∗ SR (4.10b)

where φmax = max
i=1,2,...,n

(ri + qi) and φmin = min
i=1,2,...,n

(ri + qi).

Note that the two curves defined in equation (4.10a) and (4.10b) constrain the

optimal SR as shown in Figure 4.1. Moreover, from equation (4.10a), we can readily

calculate the minimum upper bound by setting

∂Lupper(Γ, SR)

∂SR
= 0. (4.11)

74

S
c
h

e
d

u
le

 le
n

g
th

 (L
)

L1

low high

SR

Lupper

Llower

Figure 4.1: Upper and lower bounds of L(Γ, SR)

As can be seen from Figure 4.1, the optimal SR can only be located in the shaded

range between [low, high], beyond which L is always greater than L1, which is the

solution of equation (4.11). The exact values of low and high can be calculated

accordingly by solving the following equation

Llower(Γ, SR) = L1. (4.12)

Algorithm 3 OPT CHK(Γ, K)

1: obtain m∗i , for i = 1, 2, ..., n according to [96]
2: Lmin = INF ;
3: S = {SRi,k|SRi,k = Ri(k), i = 1, ..., n; k = 1, ...m∗i };
4: Prune S based on equation (4.9) and solutions of equation (4.12);
5: for i = 1; i ≤ sizeof(S); i+ + do
6: calculate L(Γ,S(i)) according to equation (4.8);
7: if L(Γ,S(i)) < Lmin then
8: Lmin = L(Γ,S(i));
9: SRopt = S(i);

10: end if
11: end for
12: mi = d ci

SRopt−(ri+qi)
− 1e ∀i = 1, ...n;

13: return Lmin, SRopt,M = mi, i = 1, ...n

As such, equation(4.9) and solutions of equation (4.12) can be effectively used for

pruning the solution space for the optimal checkpoint configurations. We summarize

75

the procedures in Algorithm 3. It is not difficult to see that the complexity of

Algorithm 3 is linear to the possible values of SR. In section 4.5, we use experimental

results to test the efficiency of our approach.

4.4 Energy-aware fault-tolerant task allocation

With our analysis results and algorithm to search for the optimal checkpointing

scheme on a single-core processor, we are now ready to present our algorithm to

minimize the overall energy consumption while tolerating K transient faults on

multi-core platforms.

Without fault tolerance requirement, one intuitive method is to spread the work-

load among multi-core platforms as even as possible [4]. When fault tolerance re-

quirements are taken into consideration, however, extra care must be taken since

both resource reservation and DVFS compete for system slack time. Aggressively

packing as many tasks as possible into one core helps to reduce the resource reserva-

tion since the reserved resource can be shared by all tasks in the same core. However,

with too much workload stacked in one core, it becomes difficult for a core to scale

down the processing speed. On the contrary, spreading tasks around helps to bal-

ance the workload among different cores and thus effectively reduces the processing

speed. The problem is that potentially more resources need to be reserved since

tasks allocated to different cores cannot share the same reserved resources. More-

over, as indicated in our analysis results before, different sets of tasks may lead to

totally different optimal checkpointing results, i.e. resource-reservation schemes.

It is well known that the multi-objective task allocation problem is a NP-hard

problem in the strong sense [4]. Therefore, we focus our effort on developing an

effective heuristic solution for this problem. Our task allocation scheme for energy

76

Algorithm 4 EATA(Γ, Ψ, K)

1: obtain m∗i , for i = 1, 2, ..., n according to [96]
2: Etotal = 0;
3: Γj = NULL, for j = 1, 2, ...,m;
4: for i = 1; i ≤ n; i+ + do
5: ∆E =∞;
6: assigned = 0;
7: Mnew = NULL;
8: for j = 1; j ≤ m; j + + do
9: {Ltemp, SRtemp, Mtemp} = OPT CHK(Γj ∪ {τi}, K);

10: Etemp = E(Γi ∪ {τi})
11: if Ltemp ≤ D and Etemp < ∆E then
12: assigned = j;
13: ∆E = Etemp, Mnew = Mtemp

14: end if
15: end for
16: if assigned == 0 then
17: return “not feasible”;
18: else
19: Γassigned ← Γassigned ∪ {τi};
20: M = Mnew;
21: Etotal ← Etotal + ∆E;
22: end if
23: end for
24: return {Γ1, ...,Γm}, Etotal,M

77

minimization with K fault tolerance guarantee is developed based on the algorithm

OPT CHK. Specifically, when allocating a new task τi, we assign τi to the core

that leads to the minimum energy consumption increase. Note that, when assigning

τi to a core (e.g. ψj), the optimal checkpoint configurations can be obtained using

algorithm OPT CHK. We assume that the re-execution of a faulty task is always

performed at the highest speed and the checkpointing overhead is independent to

the core’s running mode. Then the core speed for ψj, i.e. fj, can be determined by

fj = max(

∑
τi∈Γj

ci

D −
∑
τi∈Γj

c′i(mi)−K ∗max
τi∈Γj

Ri(mi)
, fc) (4.13)

where fc is the critical speed, c′∗(∗) and R∗(∗) are obtained through equations (4.1a)

and (4.1b), respectively. Also, the energy consumption of core ψj, i.e E(Γj), can

be calculated according to equation (4.4). Note that even though we assume the

frequency of a core can be continuously varied, we can still adopt the traditional ap-

proach [70] to deal with the scenario when only a set of discrete levels of frequencies

are available. Specifically, if the desired constant frequency, i.e. fi, is not available,

we identify two available neighboring frequencies of fi to run the task set Γj on ψj.

The overall algorithm is described in Algorithm 4. It is not difficult to see that the

overall complexity of Algorithm 4 is O(n × m × |S|), where |S| is the worst case

possible values of the shared reservation block on a core.

4.5 Experimental results

In this section, we study the effectiveness and efficiency of our proposed algorithms.

To our best knowledge, there is no existing approach targeting the exact same prob-

lem. As a result, to study the energy saving performance of EATA, we compared

it with two well-known fault-oblivious approaches, i.e. Best-Fit(BF) and Worst-

78

Fit(WF). Especially, WF is a commonly used energy optimization heuristic and

has been shown to be quite effective in the absence of processor faults due to its

load-balancing characteristic [4]. To maintain the feasibility under the K faults for

both BF and WF, the reserved resource on each core was considered as part of the

workload, and different tasks can share the reserved resource. BF(WF) allocates

a task to a feasible core with the least(most) remaining capacity. Individual op-

timal number of checkpoints was inserted to each task under these two heuristics.

We then evaluate how many speedups that EATA can achieve with the techniques

proposed in Section 4.3 to prune the search space of OPT CHK. To evaluate the

energy saving performance, we set up the simulation platforms as follows. For a

fixed number (m) of cores, we varied the average utilization, i.e. Utotal
m

from 0.1(light

load) to 1 (heavy load). The utilization of each task τi was uniformly distributed in

the range [0.01, 0.6]. The deadline of the application, i.e. D, was set to 100. The

fault detection, checkpointing and state retrieval overhead was identically set to 0.5,

1 and 1 respectively for each task. The corresponding energy overhead was set to

0.05, 0.1 and 0.1. In addition, we set Pleak = 0.1, Cef = 1 and α = 3 and we assumed

the existence of four normalized frequency levels given by {0.4, 0.6, 0.8, 1.0}.

Due to page limits, we only show three sets of experimental results with different

numbers of tasks, cores and total transient faults. Figure 4.2 shows the energy

consumption for 20 tasks and 4-core processors with K=1. Each point in the figure

was averaged over 1000 test cases. As we can see, the energy consumption increases

when the system workload becomes heavier for all three techniques, but our approach

EATA always outperforms the other two. For instance, when the core average

utilization is 0.55, 12%(46%) energy saving is achieved by EATA over WF(BF). In

average, our algorithm reduces energy consumption by 11% (59%) compared to WF

(BF).

79

Figure 4.2: 20 tasks on a 4-core processor, K = 1

Figure 4.3: 40 tasks on a 8-core processor, K = 2

The energy savings are more substantial in Figure 4.3, with 8-core processors

and 40 tasks to tolerate maximum 2 faults, with over 16% and 62% energy savings

in average compared to WF and BF, respectively.

Similar results are observed for the case of 16-core processors and 80 tasks with at

most 4 faults as shown in Figure 4.4, where 19% and 65% energy savings are achieved

over WF and BF respectively. In general, we can see that our approach can achieve

better energy savings for test cases with higher system utilizations, larger numbers

of tasks and cores. This is due to the fact that our approach tries to find the best

combination of task allocation, checkpointing scheme and speed assignment at each

80

Figure 4.4: 80 tasks on a 16-core processor, K = 4

(300,4) (400,8) (500,12) (600,16) (700,20) (800,24) (900,28) (1000,32)
0

50

100

150

200

250

300

350

400

450

500

system configuration (n,m)
n: the number of tasks, m: the number of processors

si
m

ul
at

io
n

tim
e

(s
)

EATA with speedup

EATA

Figure 4.5: Performance of two speed-up techniques

step. High energy savings are achieved by reserving as less resources as possible and

leaving more slacks for DVFS.

Next, we evaluated the benefits of our approach proposed in Section 4.3. The

complexity of EATA heavily depends on that of OPT CHK. Therefore, the com-

putational efficiency of OPT CHK is critical to the success of EATA. To study the

computational efficiency ofEATA brought by the speedup techniques forOPT CHK,

we set the average utilization, i.e. Utotal
m

to be 0.8. The utilization of each task was

randomly generated to be uniformly distributed in [0.01, 0.06]. The deadline, i.e.

D was set to 100. The timing overhead of checkpointing, fault detection and state

retrieval were considered as 1% of the average task execution time. We varied the

numbers of tasks and cores and recorded the results in Figure 4.5. In each step, we

81

increase the number of tasks by 100 and the number of cores by 4. As we can see, as

the system size grows, the time consumed by both simulations increase. However,

our approach proposed in section 4.3 can easily achieve a speed up of at least 10X. As

the number of tasks and cores increases, the efficiency of the two speed-up technique

becomes more prominent and make the algorithm EATA efficiently scalable.

4.6 Summary

As IC technology continues its evolution into the deep sub-micron domain, the expo-

nentially increased energy consumption and the deteriorated reliability have become

serious concerns in computer system design. In this chapter, we study the energy

minimization problem for a real-time application on a multi-core platform that can

tolerate K transient faults using the checkpointing method. We first develop an ef-

ficient method to determine the checkpointing scheme that can minimize the worst

case response time for a task set that shares the reserved resources for fault re-

covery on a single-core processor. We then present a task assignment algorithm to

minimize the overall energy while guaranteeing the fault-tolerance capability. Our

experimental results also demonstrate the effectiveness and efficiency of our pro-

posed approach.

82

CHAPTER 5

ENERGY MINIMIZATION FOR FAULT-TOLERANT SCHEDULING

OF PERIODIC FIXED-PRIORITY APPLICATION ON

MULTI-CORE PLATFORMS

Despite the fact that the techniques proposed in the previous chapter can achieve

significant energy savings while enabling the system to tolerate transient faults. It

can only be applied to frame-based tasks, i.e. all tasks share the same deadline.

In this chapter, we study the problem of energy minimization for scheduling gen-

eral periodic fixed-priority applications on multi-core platforms with fault-tolerance

requirements. Specifically, We first introduce an efficient method to determine the

checkpointing scheme that guarantees the schedulability of an application under the

worst-case scenario, i.e. up to K faults occur, on a single-core processor. Based on

this method, we then present a task allocation scheme aiming at minimizing energy

consumption while ensuring the fault-tolerance requirement of the system.

The rest of this chapter is organized as follows. Existing works that are related to

our research problem are discussed in Section 5.1. Section 5.2 introduces the system

models and notations used throughout this chapter. We introduce our efficient

algorithm for obtaining a feasible checkpointing solution for a given task set on

a single-core processor in Section 5.3. We then present our energy efficient fault-

tolerant task-allocation algorithm in section 5.4. The effectiveness and efficiency

of our algorithms are evaluated in Section 5.5. Finally, section 5.6 summarizes the

chapter.

5.1 Related works

When dealing with both energy conservation and fault tolerance, one big challenge is

how to balance the resource usage between the two, since energy conservation strate-

83

gies need additional resources for lowering down system speed, and fault tolerance

strategies need additional resources for fault detection and recovery.

There are also several papers published that are closely related to our research.

Pop et al. [97] presented a constraint logic programming method to develop fault-

tolerant DVFS schedules for real-time tasks with precedence constraints on dis-

tributed heterogeneous platforms. The task allocation is assumed to be known a

priori. Fault tolerance is achieved by reserving passive backup(s) for a task on the

same core and activating it in case of failure. With the slacks mostly being occupied

by reserved recoveries, the space for DVFS is severely limited. Haque et al. [60]

proposed a stand-sparing technique for fixed-priority applications on a dual-core

platform. Active replication with delayed starting time is employed for the pur-

pose of maintaining task reliability and reducing energy consumption. Again, an

entire task needs to be re-executed in presence of a failure and active replication

can consume extra energy even under fault-free scenario. Han et al [56] proposed

an optimal checkpointing scheme for minimize the worst case response time of an

application on a single-core processor and developed a task allocation scheme for

energy minimization. However, this approach is limited to frame-based task sets,

hence it does not apply to a much more complicated fixed-priority periodic task

model.

In this chapter, we study the problem of minimizing the energy consumption for

periodic fixed-priority hard real-time systems running on homogeneous multi-core

platforms while ensuring that the systems can tolerate up to K transient faults.

We adopt the widely used DVFS and checkpointing as the energy management

method and the fault-tolerance policy, respectively. We focus our efforts on fixed-

priority scheduling due to its simpler implementation and better practicability [39]

84

compared with dynamic priority-based scheduling. In what follows, we introduce

some preliminaries that are essential to our research.

5.2 Preliminaries

In this section, we introduce the pertinent background of our research problem and

present the system models and notations.

5.2.1 Application model

The real-time application considered in this chapter consists of n independent spo-

radic tasks, denoted as Γ = {τ1, τ2, ..., τn}. Each task is characterized by a tuple (Ci,

Di, Ti). Ci denotes the worst-case execution time of a task τi, whereas Di and Ti

represent its deadline and minimum inter-arrival time (period), respectively. Each

task can generate an infinite number of instances or jobs, we use these two terms

interchangeably in this chapter. The utilization of task τi is represented as ui = Ci
Ti

.

The system utilization U is therefore calculated as Utotal =
∑n

i=1
Ci
Ti

.

5.2.2 Fault model and checkpointing

In this chapter, we assume that there are at most K transient faults within one

least common multiple (LCM) of all the task periods in Γ but we do not make

any assumptions regarding the fault pattern. In other words, the transient faults

can strike any task instance at any time, and multiple faults may affect the same

task instance. Once a fault is detected, the task instance being affected rolls back

to the last saved checkpoint and re-executes the faulty segment. We consider the

checkpoint to be self fault-tolerant.

85

We assume all the jobs of the same task have the identical number of checkpoints.

Inserting one checkpoint to an instance of task τi refers to the operation of saving

its current state and condition to memory, with its the timing and energy overhead

denoted as oi and eoi, respectively. Before inserting a checkpoint, a fault detection

is always performed to ensure the sanity of the to-be-saved state. We use qi and eqi

to denote the timing and energy overhead for such an operation. Moreover, once a

fault is detected during the execution of an instance of task τi, it needs to rollback to

the latest checkpoint, i.e. to retrieve the latest-saved correct information. The time

and energy overhead of this operation are represented by ri and eri, respectively.

The fault-free execution time of an instance of task τi is a function of the number

of checkpoints, and is formulated in equation (5.1a). Note that, with mi checkpoints,

the fault detections are performed mi + 1 times including the one at the end of the

job’s execution. The recovery time of τi with mi checkpoints under a single failure

includes three parts, namely the time to rollback to the latest checkpoint, the time

to re-execute the faulty segment and the time to perform a fault detection operation

at the end. We denote it as Fi(mi) and formulate it in equation (5.1b).

Ci(mi) = Ci +mioi + (mi + 1)qi (5.1a)

Fi(mi) = ri +
Ci

mi + 1
+ qi (5.1b)

Since a lower priority task τi is subject to the workload interference (including

recoveries) from higher priorities tasks, the worst case recovery time for τi is the

longest recovery time among all tasks with higher priority and τi itself. Specifically,

we denote it as

MRi = max(F1, F2, ..., Fi). (5.2)

Regarding τ ′is schedulability, adding more checkpoints to its higher priorities

tasks increases the interference caused by fault-free workloads, which may under-

86

mine τ ′is schedulability. However, it may decrease the recovery time needed for τi,

i.e. MRi, which is in favor of τ ′is schedulability. Therefore, to determine the appro-

priate number of checkpoints for scheduling real-time tasks under the fault tolerance

constraint is not a trivial task.

5.2.3 Platform and energy model

We assume that there are a total number of φ cores on a homogeneous multi-

core platform Ψ, i.e. Ψ = {ψ1, ..., ψφ} and there exist a set of L-level discrete

speeds/frequencies for each core, which is denoted as FR = {f1, f2, ..., fL}. Without

loss of generality, we assume 0 ≤ fL ≤ fL−1 ≤ ... ≤ f1 = 1.

We adopt the power model in [56, 133] by considering the frequency-independent

and frequency-dependent power components. Specifically, the overall power con-

sumption P can be formulated as

P = Pind + Pdep = Pind + Ceff
α, (5.3)

where Pind is the frequency-independent power, including the power consumed by

off-chip devices such as main memory and external devices and constant leakage

power. Cef is the effective switching capacitance. α is a constant usually no smaller

than 2. Pdyn is the dynamic power consumed by switching transistor state. As a

result, the fault-free energy consumption of a job from task τi with mi checkpoints

executed under speed fi is calculated as:

Ei(fi) = (Pind + Ceff
α
i) · Ci

fi

+mi(eoi + oiPind) + (mi + 1)(eqi + qiPind), (5.4)

where the first part is the energy consumed by executing the job (the scaled exe-

cution time of task τi under frequency fi is Ci
fi

), and the second and the third part

87

represent the energy overhead from checkpointing and fault detections, respectively.

Similar to [130, 56], we assume that checkpointing, fault detections and checkpoint

retrievals are not affected by processing frequency. Note that, during those oper-

ations, the frequency-independent power is still consumed. As Ei(fi) is a convex

function, one intuition to save energy is to lower the operating frequency as much as

possible, provided it is larger than so-called critical frequency (fc = α

√
Pind

(α−1)Cef
) [88].

Γj is used to denote the set of tasks assigned to the core ψj. As we only study the

energy consumption within one LCM of the task periods, the energy consumption

of core ψj is formulated in equation (5.5).

E(Γj) =
∑
τi∈Γj

LCM

Ti
Ei(fi). (5.5)

The total energy consumption of the system is thus E(Γ) =
∑φ

j=1E(Γj).

5.3 Feasible checkpointing configuration for fixed-priority

tasks on a single-core processor

Our goal is to minimize the energy consumption while being able to tolerate, in the

worst case, K faults when scheduling a fixed-priority task set on a multi-core plat-

form. One key to this problem is to choose an appropriate number of checkpoints

for each task. Adding more checkpoints to tasks may reduce the recovery over-

heads, which is in favor of system schedulability. However, excessive checkpointing

overheads may outweigh the benefits of decreasing recovery overheads, which might

undermine the schedulability of the system. Therefore, to determine the number of

checkpoints for each task is not a trivial problem and must be carefully studied.

As a closely related work, Zhang et al. [130] showed that the optimal number of

checkpoints to minimize the worst case latency of a single task τi, denoted as m∗i ,

88

can be calculated as

m∗i =

 d
√

K∗ci
oi+qi

− 1e if ci >
(m−i +1)(m−i +2)(oi+qi)

K

b
√

K∗ci
oi+qi

− 1c if ci ≤ (m−i +1)(m−i +2)(oi+qi)

K

where m−i = b
√

K∗ci
oi+qi

− 1c. However, when considering multiple fixed-priority tasks

on a single-core processor, the individual optimal checkpointing configuration does

not necessarily lead to a feasible checkpointing configuration for a task set.

To this end, Zhang et al. [130] proposed a recursive approach for identifying a

feasible checkpointing scheme for a given fixed-priority task set on a single-core pro-

cessor. Specifically, the recursive algorithm, i.e. (ZCP(p,q)), takes two parameters

p and q as inputs, where p and q are the indexes for the first and last task in the

sub-task set with checkpoint numbers to be determined. The algorithm works as

follows:

1. Initially, let mi = 0 and obtain m∗i for 1 ≤ i ≤ n. Set p = 1, q = n.

2. ZCP(p,q): Starting from the first task τp, evaluates the schedulability of each

task in decreasing order of task priorities, and finishes successfully if all tasks

are determined schedulable.

3. If task τj, j ∈ [p, q] is not schedulable, the task τh, h ∈ [1, j] with the longest

recovery is found and one more checkpoint is added to it, i.e. mh = mh + 1 to

reduce its recovery time, i.e. Fh = Fh(mh). Since the addition of checkpoints

to τh affects the schedulability of the tasks from τh to τj, we need to set

p = h, q = j and recursively call ZCP(p,q).

4. ZCP(p,q) terminates and reports that the task set is unschedulable if, for each

task τi, i ∈ [1, p], the number of checkpoints is larger than m∗i , i.e. the optimal

value for a single task.

89

This approach works well only for small task sets and/or tasks with small optimal

checkpoint numbers. Otherwise, it can be extremely time consuming. Note that, a

task τi is considered unschedulable only when the checkpoint numbers of all tasks in

{τ1, τ2, ..., τi} exceed their individual optimal numbers. In addition, each time when

a checkpoint is added to a task τi, the schedulability of task τi along with all the

lower-priority tasks has to be re-evaluated. These two factors contribute the most to

the excessive running time of ZCP and make it extremely computational expensive

for design space explorations for our multi-core energy-efficient fault-tolerant real-

time scheduling problem, which is NP-hard in nature.

It is therefore desirable that a more efficient and effective method can be devel-

oped to rapidly determine the checkpointing configuration for tasks on a single core.

In what follows, we introduce several theorems, and based on which, we develop a

much more efficient algorithm.

Theorem 5.3.1. Given a checkpointing configuration M = {m1, ...,mp, ...,mn},

assume that there exists a task τp with mp > m∗p. Let M ′ = {m1, ...,m
∗
p, ...,mn}.

Then if the task set Γ is unschedulable under M ′, it must also be unschedulable under

M .

Proof. Reducing the number of checkpoints of τp does not affect the schedulability

of the tasks with higher priorities than τp. We only need to consider each task

τi, i ∈ [p, n]. To ease our proof, we use W∗(t) and W ′
∗(t) to denote the total workload

demand before t for task τ∗ under the checkpointing scheme M and M ′, respectively.

Since τi is schedulable under M , then there must exist at least one time instance

t ∈ [0, Di] such that

Wi(t) =
i∑

j=1

d t
Tj
eCj(mj) +K ×MRi ≤ t. (5.6)

90

Let MR′i denote the longest recovery overhead affecting τi under M ′. Since the

number of checkpoints in M is no smaller than that in M ′, according to equation

(5.1b) and (5.2), it is clear that MR′i ≥MRi. We consider two cases separately.

Case 1:MR′i = MRi. In this case, we have

W ′
i (t) =

i∑
j=1,j 6=p

d t
Tj
eCj(mj)

+ d t
Tp
eCp(m∗p) +K ×MR′i

< Wi(t) ≤ t, (5.7)

as a result, τi must be schedulable.

Case 2:MR′i > MRi. In this case, reducing mp to m∗p leads to an increase in

fault recovery overhead for τi. In other words, τp become the task with the longest

recovery, i.e. MR′i = Fp(m
∗
p). Let κi = oi + qi,∀i. Additionally, we know that

MRi ≥ Fp(mp) and mpκp + K × Fp(mp) ≥ m∗pκp + K × Fp(m∗p) because m∗p is the

optimal number of checkpoints for τp when considered individually. Consequently,

let δ = Wi(t)−W ′
i (t), we have

δ = d t
Tp
e(mpκp −m∗pκp)

+K ×MRi −K ×MR′i

≥ mpκp −m∗pκp +K ×MRi −K × Fp(m∗p)

≥ mpκp +K × Fp(mp)− (m∗pκp +K × Fp(m∗p))

≥ 0;

Thus, W ′
i (t) ≤ Wi(t) ≤ t and τi must be schedulable.

Theorem 5.3.1 implies that, if the task set is not schedulable when the number

of checkpoints of any task has already exceeded its individual optimal number, this

91

task set is deemed to be unschedulable. As a result, there is no need to increase

the numbers of checkpoints for other tasks until all of them exceed their individ-

ual optimal numbers, as in ZCP algorithm stated above. With larger task sets

and larger optimal checkpoint numbers for each tasks, Theorem 1 can improve the

computational efficiency tremendously.

In addition, changing the number of checkpoints of a higher priority task also

changes its preemption impacts to the low priority tasks and thus results in time-

consuming schedulability checking operations. The following theorem helps to greatly

reduce the computational cost for schedulability checking.

Theorem 5.3.2. Let τq be the unschedulable task with the highest priority under

the checkpointing configuration M = {m1, ...,mq, ...,mn}. Assume that τq becomes

schedulable under a new configuration M ′ = {m′1, ...,m′q, ...,m′n}, ∀i,m′i ≥ mi when

gradually adding checkpoints to tasks with the largest recovery cost. Then, for any

higher priority task τi, where i ∈ [1, q), if it is schedulable under M then it must be

schedulable under the new configuration M ′.

Proof. If checkpoints are increased only for tasks with priorities lower than τi, i.e.

∀j, j ∈ [1, i],mj = m′j, then τi’s schedulability is not affected.

Now consider the case where there are checkpoints added to tasks with priorities

higher than τi. Let the checkpoint configuration before increasing the checkpoints

of τi and any task with higher priorities than τi be M̃ = {m̃1, m̃2, ..., m̃n}. We have

mj = m̃j, j = 1, ..., i and mj ≤ m̃j ≤ m′j, j = i + 1, ..., q, and M̃Ri = ˜MRq, where

M̃Ri and ˜MRq are the longest recovery overhead under the checkpointing scheme M̃

for τi and τq, respectively. Note that τq is not schedulable under M̃ but schedulable

under M ′.

For ease of our proof, we let W ′
∗(t) and ˜W∗(t) denote the total workloads before

t for task τ∗ under the scheme M ′ and M̃ , respectively.

92

We prove this theorem by contradiction. We assume that τi is schedulable under

M but not schedulable under M ′. Let MR′i be the longest recovery overhead for τi

under M ′. Then, with t1 ∈ [0, Di] we have

W ′
i (t1) =

i∑
j=1

d t1
Tj
eCj(m′j) +K ×MR′i > t1. (5.8)

Since τi is schedulable under M̃ and without loss of generality, we let

˜Wi(t1) =
i∑

j=1

d t1
Tj
eCj(m̃j) +K × M̃Ri ≤ t1. (5.9)

Subtracting equation (5.9) from equation (5.8) and letting H∗(t) = W ′
∗(t)− ˜W∗(t)

and κi = oi + qi,∀i, we obtain the following result

Hi(t1) =
i∑

j=1

d t1
Tj
e(m′j − m̃j)κj +K ×MR′i −K × M̃Ri > 0 (5.10)

Similarly, because τq is schedulable under M ′, we know

W ′
q(t2) =

q∑
j=1

d t2
Tj
eCj(m′j) +K ×MR′q ≤ t2, (5.11)

where t2 is an time instance in [0, Dq] and MR′q denotes the longest recovery for τq

under M ′.

In what follows, we consider two cases regarding t2.

Case 1: t2 ≤ Di. In this case, it can be seen that W ′
i (t2) ≤ W ′

q(t2) ≤ t2, since

i < q and MR′i ≤ MR′q. Therefore, τi must be schedulable under M ′, which is

contradictory to our assumption.

Case 2: t2 > Di. As a result, we have t2 > t1. Furthermore, since τq is not

schedulable under the scheme M̃ , we have the following condition,

q∑
j=1

d t2
Tj
eCj(m̃j) +K × ˜MRq > t2. (5.12)

93

Subtracting equation (5.12) from equation (5.11), we have

Hq(t2) =

q∑
j=1

d t2
Tj
e(m′j − m̃j)κj +K ×MR′q −K × ˜MRq ≤ 0 (5.13)

Since i < q, MR′i ≤ MR′q and M̃Ri = ˜MRq, the following contradiction can be

readily derived,

0 < Hi(t1) ≤ Hq(t2) ≤ 0. (5.14)

Thus far, this theorem is proved.

According to Theorem 2, for the first task τq that misses its deadline under a

checkpoint scheme, if we are able to incrementally add checkpoints to its higher-

priority tasks or itself to make it schedulable, all tasks with priorities higher than

τq are guaranteed to be schedulable. This theorem can eliminate the computational

efforts for re-evaluating the schedulability of higher priority tasks when inserting the

checkpoints to them. Based on Theorem 5.3.1 and 5.3.2, we formulate an efficient

and effective algorithm for finding a feasible checkpointing configuration for fixed-

priority tasks on a single core, as shown in Algorithm 5.

ECHK evaluates the schedulability of each task from the highest priority to

the lowest. If an unschedulable task τi is encountered, ECHK searches for the

checkpointing configuration to make τi schedulable by repeatedly adding checkpoints

to a higher priority task or τi that currently contributes the most to τ ′is recovery, an

termination condition is set according to Theorem 5.3.1. If an feasible checkpointing

configuration is found, then the schedulability of all the tasks with higher priorities

than τi is guaranteed based on Theorem 5.3.2.

Algorithm 5 greatly simplifies the process of searching for a feasible checkpoint-

ing combination for a given task set on a single core. The complexity of ZCP is

O(
∏n

i=1m
∗
i · nT), where T is the longest time for evaluating the schedulability of a

94

Algorithm 5 ECHK(Γ, K)

Require:
1) Task set : Γ = {τ1, τ2, ...τn};
2) Number of faults: K

1: flag = “task set schedulable”
2: obtain m∗i , for i = 1, 2, ..., n according to [96]
3: ∀i, i =, 1, 2..., n, initialize mi to 0;
4: for (i = 1; i < n+ 1; i+ +) do
5: while τi is not feasible do
6: Fh = max(F1, ..., Fi);
7: mh = mh + 1;
8: if mh > m∗h then
9: flag = “task set unschedulable”

10: return flag
11: end if
12: end while
13: end for
14: return flag, M = {m1,m2, ...,mn}

task using exact response time analysis, whereas our ECHK has a complexity of at

most O(
∑n

i=1m
∗
i · nT). Moreover, given that our algorithm can determine a task

set to be unschedulable as soon as the number of checkpoints of any task exceeds

its individual optimal value, ECHK is much more efficient in practice.

5.4 Energy-aware task allocation

Based on our algorithm ECHK that guarantees the single-core fault tolerance, we

now present an algorithm determining the task allocation and the corresponding

DVFS schedule on multi-core platforms to minimize the overall energy consumption.

Without the fault tolerance requirement, one intuitive method is to balance the

workload among multi-core platforms as much as possible [4] such that each core can

run at a relatively low speed. When we take fault tolerance into account, however,

extra care must be taken since both recovery reservation and energy management

95

compete for system resources. The amount of reserved resources heavily depends

on the feasible checkpointing scheme that can be obtained for a given task set. Bal-

ancing the workload does not necessarily leads to a favorable checkpointing scheme,

since the system utilization itself does not provide any information regarding the

fault-tolerant schedulability of a task set. On the other hand, packing as many

tasks as possible into one core helps to reduce the number of cores to be utilized,

but leaves less space for slowing down the processing core.

In what follows, we focus our effort on developing an effective heuristic for jointly

determining the task allocation, checkpointing configuration and DVFS schedule for

fixed-priority task sets scheduled on multi-core platforms, as it is a NP-Hard problem

in strong sense [96].

Our task allocation scheme for energy minimization with K-fault tolerance ca-

pability is developed based on the algorithm ECHK. The overall algorithm is

described in Algorithm 6. Specifically, when allocating a new task τi, we tentatively

assign τi to each core and determine whether a feasible checkpointing can be ob-

tained. For each feasible candidate core ψj, we search for the lowest constant speed

that can guarantee the schedulability of all the tasks assigned to it according to

Algorithm 7. As excessive frequency switching can cause significant overhead, we

use a constant speed for each core. Then, τi is allocated to the core with the lowest

possible speed among all the feasible candidates.

In Algorithm 7, we reduce the speed of a core one level at a time until the

lowest speed that yields a feasible checkpointing scheme is reached. Therefore, the

complexity of our algorithm greatly hinges on that of ECHK. We assume that the

re-execution of a faulty task is always performed at the highest speed, given the

probability of failure is low. The checkpointing overhead is considered independent

of the core’s running mode.

96

Algorithm 6 TACHK(Γ, Ψ, K)

1: Γj = NULL, for j = 1, 2, ..., φ;
2: for i = 1; i ≤ n; i+ + do
3: feasible speedi = fmax;
4: assigned = 0;
5: for j = 1; j ≤ φ; j + + do
6: {flag,Mtemp} = ECHK(Γj ∪ τi, K);
7: if (!flag) then
8: continue;
9: end if

10: speedtemp = determine core speed(Γj ∪ τi, K);
11: if speedtemp < feasible speed then
12: assigned = j;feasible speedi = speedtemp;
13: end if
14: end for
15: if assigned == 0 then
16: return “not schedulable”;
17: else
18: Γassigned ← Γassigned ∪ {τi};
19: end if
20: end for
21: calculate the energy consumption Etotal according to equation (5.4) and (5.5);
22: return {Γ1, ...,Γφ}, Etotal

Algorithm 7 determine core speed(Γ, K)

1: lowest feasible speed = fmax;
2: sort the available discrete speeds of the cores,i.e. FR in decreasing order;
3: for i = 1; i ≤ |FR|; i+ + do
4: Γtemp: temporary task set resulting from Γ scaled by frequency FR[i];
5: flag = ECHK(Γtemp, K);
6: if (!flag) then
7: break;
8: else
9: lowest feasible speed = FR[i];

10: end if
11: end for
12: return lowest feasible speed

97

It is not difficult to see that the overall complexity of Algorithm 7 isO(nL
∑n

i=1m
∗
i ·

T), where L is the number of available processor frequencies and T is the longest

time for evaluating the schedulability of a task using exact response time analysis.

Furthermore, the complexity of Algorithm 6 is O(n2 · φ · L
∑n

i=1m
∗
i · T).

5.5 Experimental results

In this section, we use simulations to verify the effectiveness and efficiency of our

proposed algorithms.

5.5.1 Timing complexity evaluation

Firstly, we evaluate the timing complexity of our algorithm ECHK against the

method proposed in [130], i.e. ZCP, on a single-core platform.

We set the system utilization to be 0.8. Note that, we fixed the system utilization

to a high value such that the task set generated was not schedulable under faults

without checkpointing. The period of each task was randomly selected in the range

[10,1000]. The rest of the task parameters were generated according to UUNIFAST

in [17]. In our experiments, ZCP can easily fail even with a small number of task

when the execution ratio, i.e. Cmax
Cmin

is very large (e.g. > 100), where Cmax and

Cmin are the longest and shortest execution time in the task set, respectively. This

is due to the fact that it may keep adding checkpoints to the task with a number

of checkpoints already larger than its optimal value and thus incurs unnecessary

recursions. Therefore, we first modified the ZCP according to Theorem 5.3.1. The

running times of ECHK and ZCP greatly rely on the following three factors: the

number of tasks, checkpointing overhead and the number of faults. We conducted

98

Figure 5.1: Varying the number of tasks

Figure 5.2: Varying the number of tasks

experiments regarding each factor and recorded the results as shown in the following

figures. The result of each test case is the average from over 1000 task sets.

In Figure 5.1, we set K = 2 and the checkpointing overhead of each task τi as

3% of its worst case execution time, i.e. Ci. The number of tasks was varied from

20 to 320 with a step of 50. As can be seen from the figure, our approach ECHK

significantly outperforms the method ZCP. ECHK can achieve a speedup with the

maximum of 38X and 20X in average.

Next we evaluated the impact of increasing K on running time of ECHK and ZCP,

respectively. The number of tasks was set to 200 and the checkpointing overhead of

each task τi was fixed at 3% of its worst case execution time, i.e. Ci. As expected,

99

Figure 5.3: Varying checkpoint overhead

our ECHK performs much better in terms of timing complexity. In this case, ECHK

can achieve a maximum speedup of 37X and an average speedup of 30X.

Finally, we studied the effects of increasing checkpointing overhead. The check-

pointing overhead was varied from 1% to 11% of the worst case execution of each

task, and the numbers of faults and tasks were set to 2 and 200, respectively. As

shown in Figure 5.3, when the checkpointing overhead increases, the individual opti-

mal number of checkpoints for each task decreases, hence the search space becomes

smaller. While running time of both algorithms decrease, our algorithm can achieve

a speedup of 16X in average.

In conclusion, our algorithm ECHK is significantly more efficient than ZCP and

more scalable in terms of task numbers, the number of faults and checkpoint over-

head.

5.5.2 Energy performance evaluation

Next, we evaluated the effectiveness of our algorithm TACHK.

To our best knowledge, there is no existing approach that solves the exact same

problem. Therefore, we evaluated our algorithm against two widely used fault-

100

oblivious approaches, i.e. Best-Fit (BF) and Worst-Fit (WF). In particular, WF is

well-known for its effectiveness in fault-oblivious energy reduction as it balances the

workload among different cores [4].

To make BF and WF fault-tolerant, we propose a two-step approach. The

first step is to identify a feasible task allocation solution. Similar to our approach

TACHK, we tentatively allocate the current task to each core. We use ECHK to

check if a core is a feasible candidate. BF (WF) allocates a task to a feasible core

with the least (most) remaining capacity, i.e. the spare utilization. After obtain-

ing a feasible allocation solution, Algorithm 7 is used to find the lowest constant

speed for each core and then the total energy consumption is calculated. The energy

consumptions of TACHK and WF are normalized with respect to that of BF.

To evaluate the energy saving performance, we set up the simulation platform

as follows. For a fixed number (φ) of cores, we varied the average utilization, i.e.

Utotal
φ

from 0.2 (light load) to 0.8 (heavy load). The period of each task τi was

uniformly distributed in the range [10, 1000]. The rest of task parameters were

generated according to UUNIFAST [17]. The fault detection, checkpointing and

state retrieval overhead were identically set to 1%, 3% and 3% respectively for each

task. The corresponding energy overheads were set to 1%, 3% and 3% of the dynamic

energy under fmax for each task. In addition, we set Pind = 0.1, Cef = 1 and α = 3

[56] and we assumed the existence of the normalized frequency in the range of [0.2,

1] with a step of 0.05.

We present three sets of experimental results with various numbers of tasks, cores

and total transient faults. Each value reported in the figure is averaged over 1000 test

cases. Figure 5.4 shows the energy consumption for a 4-core processor with 40 tasks

and K=2. We can see the energy consumption increases for all three techniques as

the system workload becomes heavier, but our approach TACHK always outperforms

101

Figure 5.4: 40 tasks on 4-core processors, K = 2

Figure 5.5: 80 tasks on 8-core processors, K = 5

102

Figure 5.6: 160 tasks on 16-core processors, K = 10

the other two. For instance, when the processor average utilization is 0.65, 12%(34%)

energy saving is achieved by TACHK over WF (BF). Our algorithm achieves a energy

reduction of 7.5% (38.4%) in average when comparing with WF (BF). The energy

savings are more substantial in Figure 5.5, on a 8-core processor with 80 tasks that

can tolerate 5 faults,

TACHK in average saves 10% and 46% energy over WF and BF, respectively.

Similarly, for the case of a 16-core system with 160 tasks that can tolerate at most

10 faults as shown in Figure 5.6, 13% and 59% energy savings are achieved over

WF and BF, respectively. In general, we can see that our approach becomes more

effective when system utilizations and/or the number of tasks/cores become larger.

The reason is that at each step, our approach TACHK tries to determine the best

combination of task allocation, checkpointing configuration and speed assignment.

5.6 Summary

With relentless technology scaling and mass integration of transistors into a sin-

gle chip, the exponentially increased power consumption and the severely degraded

reliability have become first-class design issues in modern computing systems. In

103

this chapter, we study the energy minimization problem for hard real-time fixed-

priority systems running on multi-core platforms that can tolerate up to K transient

faults. We propose a solution to this problem by jointly considering the task alloca-

tion, checkpoint configuration and speed assignment. We first develop an efficient

method to judiciously determine the checkpointing scheme that can guarantee the

schedulability of a task set on a single-core processor. From our theoretical anal-

ysis and simulation results, we can see that this algorithm is much more efficient

than the state-of-art technique. We then present an algorithm that comprehensively

takes the task allocation, checkpointing scheme and speed assignment into account

for designing systems with high energy-efficiency and fault-tolerance requirements.

Its efficiency and effectiveness are clearly validated by extensive simulation results.

104

CHAPTER 6

ENHANCED FIXED-PRIORITY FAULT-TOLERANT SCHEDULING

OF HARD REAL-TIME TASKS ON MULTI-CORE PLATFORMS

In the previous two chapters, we have developed real-time scheduling algorithms

to minimize energy consumption for real-time tasks—from frame-based tasks to

more general fixed-priority tasks—on multi-core platforms. Specifically, we have de-

veloped algorithms to judiciously set up the checkpoints for each task and the heuris-

tics to partition real-time tasks to different processing cores accordingly. When we

group and allocate real-time tasks to different cores, we simply employ the stan-

dard bin-packing heuristics such as such as First-fit (FF), Best-fit (FF), Worst-fit

(WF), which does not take real-time tasks characteristics into considerations. Ex-

isting work [43, 73] has clearly shown that, by appropriately incorporating real-time

task characteristics such as periods into task partitioning phase, the performance of

real-time scheduling on multi-core platforms can be greatly improved. Therefore,

we intend to study the problem on how to take task specifications into considera-

tions when scheduling real-time tasks with fault-tolerance constraints on multi-core

platforms.

The rest of the chapter is organized as follows. Section 6.1 discusses the related

works in the literature. Section 6.2 introduces the preliminaries and notations used

throughout this chapter. Section 6.3 studies the schedulability of rate-monotonic

fault-tolerant tasks. Two partitioning techniques are presented in Section 6.5. In

Section 6.6, we extend our partitioning algorithm to incorporate the checkpointing

feature to further enhance system schedulability. Simulation studies are conducted

in Section 6.7. Finally, we summarize our chapter in Section 6.8.

105

6.1 Related work

Searching for the optimal task partitioning is essentially a design space exploration

problem. The key to the success of a partitioned algorithm is to efficiently and

accurately evaluate a design alternative, i.e. a task allocation. A task allocation

is considered to be feasible if the timing constraints of all tasks can be guaranteed

under the influence of faults. To determine if such condition can be met, a number

of fault-tolerant schedulability analysis techniques are proposed.

Pandya et al. [95] developed an utilization bound of 0.5 for hard real-time tasks

scheduled under RMS policy on single-core platforms when at most one failure

can occur. It is an efficient condition to test the schedulability of tasks under the

influence of a failure. However, 0.5 is far from being a tight bound of the system

utilization and the constraint that the system can only experience one failure is

too stringent. Burns et al. [25] extended the traditional Worst Case Response

Time Analysis (WCRT) for fixed-priority tasks to incorporate run-time faults. A

necessary and sufficient schedulability test was derived. However, they considered

failure as a special sporadic task that each failure is separated by a minimum inter-

arrival time. This assumption severely limits the applicability of this approach.

Zhang et al. [130] relaxed the constraints regarding the fault pattern and proposed

an exact timing analysis based on the WCRT for fixed-priority tasks subject to a

maximum number of faults. Despite of the accuracy of the exact timing analysis,

it is computationally prohibitive and is not suitable for design space explorations.

These aforementioned approaches are either too computationally expensive or too

pessimistic, and are unsuitable for design space explorations.

Task partitioning is well-known as a NP-complete problem [40]. Therefore, de-

veloping effective and efficient heuristics to achieve sub-optimal results is reasonable

106

and practical. A plethora of papers have been published on partitioned multi-core

scheduling of fixed-priority periodic tasks.

Andersson et al. [6] showed that the maximum utilization a fixed-priority multi-

core scheduling can achieve on each core is no more than 50%. AlEnawy et al.

[4] studied the schedulability and energy performance for periodic tasks scheduled

on a homogeneous multiprocessor platform with different allocation methods, e.g.

Best-Fit, Worst-Fit and First-Fit and speed assignments. They concluded that the

overall performance of Best-Fit dominates the other well-known heuristics in terms

of schedulability. Task partitioning under multiple resource constraints was studied

in [32] and efficient heuristics were proposed to improve system schedulability con-

sidering resource assignment. Fan [43] et al. exploited the fact that harmonic tasks

(tasks that have periods being integer multiples of each other) can achieve higher

system utilization and developed a metric to quantify how harmonic a task set is.

Based on this metric, they proposed an partition approach by grouping the most

harmonic tasks together and showed that it can significantly outperform traditional

bin-packing approaches. Unfortunately, these approaches are fault-oblivious.

There are only a few papers which are closely related to our research. Pop et

al. [96] investigated the problem of guaranteeing the schedulability and reliability

of tasks with precedence constraints on a heterogenous multi-core platform. They

used the combination of checkpointing and active replication to deal with the fault

tolerance problem. A meta-heuristic approach, i.e. Tabu search was adopted to

search for the best task allocation and fault-tolerance policy for each task. How-

ever, this approach is computational inhibitive and it is not scalable with increasing

number of tasks and cores. Guo et al. [49] developed a standby-sparing technique to

tolerate faults by replicating task schedules on spare cores. This approach requires

extra processing cores and the aim is to save energy rather than to improve system

107

schedulability. Our research focuses on improving the system feasibility by judi-

ciously partitioning tasks, and later in this chapter, we discuss how this approach

can be integrated into our approach for tasks with multiple checkpoints.

In what follows, we first introduce some preliminaries crucial to this chapter and

use an example to motivate our research. Then we formulate our research problem

formally.

6.2 Preliminaries

In this section, we introduce some basic concepts and notations used throughout

this paper.

6.2.1 Application and system model

The application under investigation is modeled as a periodic task set Γ with n tasks,

i.e. Γ = {τ1, τ2, ..., τn}. Each task τi is associated with a tuple (Ci, Di, Ti) where

Ci, Di and Ti denote the worst case execution time, relative deadline and minimum

inter-arrival time (period) of τi, respectively. We consider implicit-deadline tasks,

i.e. D = T in this paper. Each task can release an infinite number of jobs. We

assume that Γ is sorted by non-decreasing period order, i.e. for ∀τi, τj ∈ Γ, Ti ≤ Tj

if i < j. We use ui = Ci
Ti

to denote the utilization of task τi. The total utilization of

task set Γ is represented by

U(Γ) =
∑
τi∈Γ

Ci
Ti
. (6.1)

108

We consider a multi-core platform that consists of M homogenous preemptive

cores, i.e. P = {P1, P2, ..., PM}. The system average utilization is denoted as

Uavg =
U(Γ)

M
(6.2)

Partitioned scheduling is adopted in this paper and the tasks assigned to each

core are scheduled according to RMS. We let ΓPj denote the set of tasks assigned

to core Pj.

6.2.2 Fault-tolerance/reliability requirement

In this paper, we focus our efforts on tolerating transient/soft errors that do not

cause permanent damage to a processing core. Transient/soft errors are the predom-

inant type of failures in modern computing systems [30]. In particular, we consider

that the system is subject to a maximum of K faults during one operation cycle of

the system (its length is the least common multiple (LCM) of all task periods and

is denoted by L). We adopt this K-fault model for the following three reasons: 1) it

is a widely accepted fault model and well studied in the literature [124, 57, 54, 130];

2) it is more general in a sense that it does not assume any particular fault pattern;

3) it can be readily translated to the statistical reliability requirement, as explained

in [57].

To deal with the fault, we first consider the option to re-execute the entire task

once a fault is detected at the end of the execution. Then the worst case recovery

time for τi under a single failure is denoted as

Fi = max
j=1,...,i

Cj. (6.3)

The max() function is used since a lower priority job of task τi can be preempted

by job(s) from any higher priority task τj, j ∈ [1, i − 1]. Therefore, the worst-case

109

Table 6.1: Example I: a task set with five real-time periodic tasks arranged in
decreasing priority on a 2-core processor with K =1

τi Ci Ti ui

1 3.5 10 0.35
2 3.1 10 0.31
3 6 19 0.32
4 3 19 0.16
5 4 19 0.21

delay it may suffer due to a failure is the longest re-execution of a job among all

higher-priority tasks and τi itself.

6.2.3 Problem formulation

With the system models defined above, we formally formulate our research problem

as follows.

Problem 6.2.1. Given a task set Γ scheduled under RMS on a multi-core platform

P, develop efficient and effective task partitioning methods such that all tasks in Γ

can meet their deadlines when no more than K faults occur.

6.2.4 Motivation example

Problem 6.2.1 is a traditional NP-complete problem even without the fault-tolerance

requirements. To understand the unique challenges of Problem 6.2.1, we first present

a motivate example.

Consider a 2-core platform and a task set consists of 5 tasks, the task parameters

are shown in Table 6.1. Assume that in order to satisfy the reliability requirement

of the task set, the task set needs to tolerate 1 fault in the worst case scenario. It

is a well-known fact that, when real-time tasks are scheduled according to RMS,

110

Figure 6.1: Task partition based on HAPS. Task τ2 misses deadline under the worst
case.

Figure 6.2: An alternative partition, all tasks are schedulable under the worst case.

111

allocating the harmonic tasks to the same processor can achieve the maximum uti-

lization of 1. As shown in [43], algorithm HAPS takes advantage of this fact and, by

grouping harmonic tasks together, it can significantly improve the system schedu-

lability. Note that the sub task set {τ3, τ4, τ5} and {τ1, τ2} are perfect harmonic.

Therefore, one intuitive approach is to assign {τ3, τ4, τ5} to one core and {τ1, τ2} to

a different core, as shown in Figure 6.1.

As shown in Figure 6.1(a), processing core 1 is fully utilized when the worst case,

i.e. a fault strikes τ3, occurs. Still, all tasks can meet their deadlines. However, as

shown in Figure 6.1(b), if a fault strikes τ1, τ2 will miss its deadline.

An alternative partition is to assign tasks τ1 and τ3 to core-2 and the rest to

core-1. As shown in Figure 6.2, even though τ1 and τ3 are not entirely harmonic,

neither are τ2, τ4 and τ5, it can be readily verified that with this partition, all tasks

can meet their deadlines under the worst case as shown in Figure 6.2.

The above motivation example implies that, while harmonic task sets can achieve

high system utilization, making partition decisions without considering fault-tolerance

requirements may undermine the schedulability of a system. In what follows, we first

conduct the feasibility analysis for real-time tasks with fault-tolerance requirements

and see how we can enhance the real-time system schedulability by partitioning

tasks appropriately.

6.3 Fault-tolerant schedulability analysis for fixed-priority

task sets

While it is a common sense that harmonic task sets can better utilize processor

resource, as indicated in our motivation example above, grouping harmonic tasks

together does not necessarily always lead to the best solution when fault-tolerance

112

requirement is considered. To uncover the fundamental reason for this problem,

we start with the feasibility analysis for tasks with fault-tolerance requirements

since the key to a successful partitioning algorithm is to evaluate a partition result

effectively in a efficient manner. One advantage of partitioning algorithms over

global algorithms is that well-established single-core scheduling methods (e.g. RMS)

can be readily adopted in partitioned settings. In what follows, we first introduce

an existing method with pseudo-polynomial running timing for determining the

schedulability of RMS-scheduled real-time tasks under the influence of transient

faults. Then, we present a much more efficient schedulability test by exploiting the

implicit harmonic relations between task periods.

For a task set Γ with K-fault-tolerance requirement, its feasibility can be de-

termined using the traditional exact worst case timing analysis. Specifically, the

following theorem is established in [124] for this purpose.

Theorem 6.3.1. A task τi ∈ Γ is schedulable if and only if there exists a scheduling

point t ∈ [0, Ti], such that

Ci +
i−1∑
j=1

d t
Tj
e · Cj +K · Fi ≤ t, (6.4)

where t is defined in the set {tx|tx = n ·Tj, n ∈ [1, b Ti
Tj
c], j ∈ [1, i]}. Therefore, a task

set Γ is schedulable if ∀τi, τi ∈ Γ is schedulable.

Note that, while the exact worst case response time analysis in Theorem 6.3.1

helps to identify the exact schedulability of a given real-time task set, it does not

provide any guidance, except for being applied in traditional heuristics such as bin-

packing methods, on which tasks should be grouped together and assigned to the

same core to improve the system schedulability. In addition, since the complexity of

this test is pseudo-polynomial, it is not suitable for design space explorations when

designing large and complex systems.

113

As a harmonic task set is schedulable if its total utilization is no more than 1

[53], the computational complexity for schedulability checking is greatly reduced.

Similarly, for a harmonic task set with K-fault-tolerance requirement, the feasibil-

ity condition can also be greatly simplified as shown in the following lemma and

theorem.

Lemma 6.3.2. Given a harmonic task set Γ, a task τi is schedulable with no more

than K fault occurrences if and only if the following condition is met,

Ci +
i−1∑
j=1

dTi
Tj
e · Cj +K · Fi ≤ Ti (6.5)

Proof. We prove this lemma in two steps.

Sufficient condition :if equation (6.5) is met, then τi must be schedulable

according to Theorem 6.3.1.

Necessary condition : if task τi is schedulable, there must exist a scheduling

point t such that equation (6.4) is satisfied. Furthermore, according to the definition

of scheduling points, t must be some arrival time(s) of higher priority task(s). As

a result, Ti must be some integer multiple of t, we denote it by Ti = a · t where

a is an arbitrary integer. Moreover, Ti can be divided by any period Tj, j ∈ [1, i].

Therefore, we have the following property,

Ci +
i−1∑
j=1

dTi
Tj
e · Cj +K · Fi = Ci +

i−1∑
j=1

Ti
Tj
· Cj +K · Fi

≤ a · Ci + a ·
i−1∑
j=1

d t
Tj
e · Cj + a ·K · Fi

≤ a · t = Ti.

In other words, if task τi is feasible, then equation (6.5) must be met. Thus far, this

lemma is proved.

114

Theorem 6.3.3. A harmonic task set Γ is schedulable with no more than K fault

occurrences if and only if the following condition holds,

max
i=1,...,n

(Ueff,i + UFi) ≤ 1 (6.6)

where Ueff,i =
∑i

j=1 uj and UFi = K · Fi
Ti

denotes the effective utilization and

the recovery utilization of task τi, respectively.

The proof of this Theorem 6.3.3 can be readily obtained from Lemma 6.3.2 and

is therefore omitted. Thus far, we develop an efficient and effective schedulability

tests for harmonic task sets. However, it is a very stringent constraint for tasks to

be strictly harmonic. Therefore, we relax this constraint and extend our method

to more general task sets in this section. For a given task set Γ, a corresponding

transformed harmonic task set Γ′i is defined as follows.

Definition 6.3.4. Given a task set Γ = {τ1, ..., τi, ..., τn} where τi = (Ci, Ti) is the

base task, then

Γ′i = {τ ′1,i, ..., τi, ..., τ ′n,i} (6.7)

is a transformed harmonic task set with τ ′j,i = (C ′j,i, T
′
j,i), ∀j 6= i where C ′j,i = Cj

and T ′j,i is the largest possible period that is less than Tj and can form a harmonic

relationship with all the other task periods. For two arbitrary tasks, i.e. τ ′j,i and τ ′k,i

and j < k, the period T ′j,i divides T ′k,i (denoted as T ′j,i|T ′k,i). The utilization of task

τ ′j,i is denoted as u′j,i =
C′j,i
T ′j,i

.

In this paper, we adopt the DCT algorithm [53] to construct harmonic task sets

from an arbitrary task set Γ. Note that our algorithms proposed in this paper are

not restricted to any transformation method. To make this paper self-contained, we

reiterate the steps of the DCT algorithm as below,

• sort task set Γ with non-decreasing period;

115

• using each τi ∈ Γ, transform Γ to Γ′i

T ′j,i =

T ′j+1,i/(dT ′j+1,i/Tje), ifj < i

Tj, ifj = i

T ′j−1,i · bTj/T ′j−1,ic, ifj > i

(6.8)

Under DCT, task execution times and task orderings remain the same, but task

periods become smaller. Therefore we can determine the schedulability of task set Γ

from that of its transformed harmonic task sets, which is formulated in the theorem

below.

Theorem 6.3.5. Given a task set Γ with n tasks and its transformed harmonic task

set through DCT, i.e. Γ′i, 1 ≤ i ≤ n, if there exists i, such that Γ′i is schedulable with

the maximum of K fault-occurrences, then Γ is also schedulable with the maximum

of K fault-occurrences.

Theorem 3 can be readily proved noting that periods for tasks in the transformed

task set is no larger than that in the original task set. A straightforward implemen-

tation of Theorem 6.3.3 has a computational complexity of O(n). Therefore, the

computational complexity to check the schedulability based on Theorem 6.3.5 is

O(n2), which is usually much smaller than that of Theorem 6.3.1.

6.4 Compatibility index and its properties

The feasibility analysis results presented above clearly reveal the reason why allocat-

ing harmonic tasks to the same core can in fact lead to inferior solutions. Note that,

from equation (6.6), the schedulability of a harmonic task set with fault-tolerance

requirement depends not only on the task set utilization itself but also recovery uti-

lization as well. Therefore, to partition tasks with fault-tolerance requirements, we

116

need to consider not only if tasks are harmonic but also if they are “compatible”.

To this end, we design a new metric to quantify the compatibility of tasks to be

allocated to the same processing core.

Definition 6.4.1. Given an arbitrary task set Γ and its transformed harmonic task

set Γ′i as defined in Definition 6.3.4, then the compatibility index of task τj,

τj ∈ Γ measured under configuration Γ′i is defined as

COMP (τj,Γ
′
i) = ∆Hj,i + ∆EFj,i, (6.9)

where ∆Hj,i = u′j,i − uj and ∆EFj,i = K · Fj−Cj
T ′j,i

denote the harmonic distance of

task τj to its counterpart in Γ′i and the extra recovery utilization task τj has to

endure considering all the higher-priority tasks in Γ.

In what follows, we study the impacts of each factor exclusively. A harmonic

distance ∆Hj,i [43] quantifies how much utilization of a task τj needs to be increased

in order to transform a task set Γ to a harmonic task set Γ′i. In other words, it

measures how harmonic the task τj is with respect to all the remaining tasks in Γ.

The less the harmonic distance for each task is, the better the system schedulability

is. We formally formulate this property in the following theorem.

Theorem 6.4.2. Consider a task set Γ and its two transformed harmonic task set

Γ′p and Γ′q (using τp and τq as base tasks, respectively), where ∆EFi,p = ∆EFi,q and

∆Hi,p ≤ ∆Hi,q, for ∀τi. The task set Γ′p must be schedulable if Γ′q is schedulable.

Proof. If the task set Γ′q is schedulable, then for each task τ ′i,q ∈ Γ′q, the following

condition must be satisfied according to Theorem 6.3.3,

Ci
T ′i,q

+
i−1∑
j=1

Cj
T ′j,q

+K · Fi
T ′i,q
≤ 1. (6.10)

117

Since ∆EFi,p = ∆EFi,q and ∆Hi,p ≤ ∆Hi,q, ∀τi, we have

u′i,p ≤ u′i,q ⇐⇒ T ′i,p ≥ T ′i,q. (6.11)

Then equation (6.10) can also be satisfied with a larger period T ′i,p, which means

that task set Γ′p is schedulable.

The extra recovery utilization represents the extra recovery overheads that task

τj needs to tolerate when it is subject to preemptions from all higher-priority tasks in

Γ. A task is more likely to be schedulable when there is less extra recovery overhead.

Therefore, with less extra recovery overhead for each task, the system can potentially

achieve better schedulability. We summarize this property in Theorem 6.4.3.

Theorem 6.4.3. Given two harmonic task sets Γ1 and Γ2 with identical number

of tasks, let τj,1 and τj,2 be their jth task in Γ1 and Γ2, respectively. Assume that

∀j, uj,1 = uj,2 and ∆EFj,1 ≤ ∆EFj,2. If Γ2 is schedulable, then Γ1 must also be

schedulable.

Proof. If the task set Γ2 is schedulable, then for each task τj,2 ∈ Γ2, the following

condition must be satisfied according to Theorem 6.3.3,

uj,2 +

j−1∑
i=1

ui,2 +K · Fj,2
Tj,2
≤ 1. (6.12)

Since uj,1 = uj,2, and ∆EFj,1 ≤ ∆EFj,2, we have

∆EFj,1 −∆EFj,2 = K · Fj,1 − Cj,1
Tj,1

−K · Fj,2 − Cj,2
Tj,2

= K · Fj,1
Tj,1
−K · Fj,2

Tj,2
−K · (uj,1 − uj,2)

= K · Fj,1
Tj,1
−K · Fj,2

Tj,2
≤ 0.

118

Therefore, for each task τj,1 ∈ Γ1, the following condition is met,

uj,1 +

j−1∑
i=1

ui,1 +K · Fj,1
Tj,1
≤ 1. (6.13)

In other words, Γ1 is schedulable. Thus far, this theorem is proved.

The above two theorems show that both of the factors in compatibility index,

i.e. harmonic distance and extra recovery utilization, can play significant roles in re-

flecting the schedulability of a task set. We consider both factors equally important,

and we define the compatibility index of a task set as follows.

Definition 6.4.4. The compatibility index of a task set Γ consisting of n tasks

is defined as

COMPTS(Γ) = min
i=1,...,n

n∑
j=1

COMP (τj,Γ
′
i), (6.14)

where COMP (τj,Γ
′
i) is formulated in Definition 6.4.1. The less the value COMPTS(Γ)

is, the more compatible Γ is.

This metric measures not only the harmonicity of a task set but also the fault-

compatibility among all tasks. Let us use the example in Section 6.2.4 to il-

lustrate the efficacy of this metric. We have COMPTS({τ1, τ2}) = 0.04 where

COMPTS({τ1, τ3}) = 0.018. Then τ1 and τ3 are deemed to be more compatible,

though their periods are not strictly harmonic.

6.5 Fault-tolerant task partitioning

In light of Section 6.4, task sets with lower “compatibility index” (more compatible)

are more likely to be schedulable under the influence of transient faults.

We are now ready to present our multi-core partition algorithm “Compatibility

Aware Task Partition (CATP)” in Algorithm 8.

119

Algorithm 8 CATP(Γ, P , K)

Require:
Γ - task set with n tasks, P - multi-core platform with m cores, K- number of
faults.

1: sort tasks in non-increasing utilization order;
2: for i = 1 to n do
3: p index = 0; c min = +∞;
4: for j = 1 to M do
5: if τi can be assigned to Pj then
6: if COMPTS({τi,ΓPj}) < c min then p index = j
7: end if
8: end for
9: if core index == 0 then return“FAILURE”;

10: else τi → Pp index ;
11: end for
12: return “SUCCESS” and partition results;

The task set Γ is first arranged in non-increasing utilization fashion (Line 1). The

algorithm allocates one task at a time. Within each step, it tentatively assigns the

current task to each core and measures how compatible the task is with the existing

tasks on the core (Lines 3-8). If the current task can not be allocated to any of the

cores, the algorithm reports that a feasible allocation can not be found (Line 9).

Otherwise, the task is assigned to the core with the minimum compatibility value

(Line 10). The partition result is returned if all tasks can be successfully allocated.

Algorithm 8 is simple yet effective. It is a greedy approach as it intends to find

the best candidate core in each step when assigning a task. However, the limitation

of assigning task one at time comes at the ignorance of the fact that a task to be

assigned in later stage may not be packed with the most compatible tasks due to

schedulability constraints.

Let us revisit Example 1. By running Algorithm CATP, a feasible partition can

be found with tasks τ1, τ4, τ5 assigned to core-1 and tasks τ2 and τ3 to core-2. If we

add another task τ6 with parameters C6 = 2.6 and T6 = 19, it can be verified that

120

τ6 can not be allocated to neither of the core, which results in a FAILURE. With a

careful examination, we can see that the most compatible tasks are τ1 and τ3 with

a COMPTS({τ1, τ3}) = 0.018, if we first group these two tasks together and assign

them to core-1, the rest of the tasks with a COMPTS({τ2, τ4, τ5, τ6}) = 0.053 to

core-2, all tasks are schedulable under the worst case.

Next, we present our “Group-wise Compatibility Aware Task Partition (G-

CATP)” method in Algorithm 9.

Algorithm 9 G-CATP(Γ, K)

Require:
Γ - task set with n tasks, P - multi-core platform with m cores, K- number of
faults.

1: sort tasks in non-decreasing period order;
2: while isNOTempty(Γ) AND isNOTempty(P) do
3: Γopt = ∅;
4: for i = 1 to |Γ| do
5: Transform Γ into Γ′i with base task τi;
6: Find a subset Γ′sub from task set Γ′i (corresponding to Γsub from Γ) such

that
1. Γ′sub is schedulable;
2. U(Γ′sub) is maximized;
3. COMPTS(Γ′sub) is minimized.

7: if U(Γsub) > U(Γopt) then Γopt = Γsub;
8: end for
9: if U(Γopt) == ∅, then return “FAILURE”;

10: else Γ = Γ− Γopt; Γopt → an empty core;
11: end while
12: if isNOTempty(Γ) then return “FAILURE”;
13: else return “SUCCESS” and partition results

Different from Algorithm 8, in each step, Algorithm 9 assigns a group of tasks

together to a core. Under each harmonic transformation, determining the most

compatible subset of tasks while simultaneously guaranteeing all three conditions at

Line 6 is not a trivial task. A brute-force exhaustive search is apparently computa-

tionally inhibitive and impractical. Therefore, we use the heuristic as follows. With

121

a given base task τi, we first assign τ ′i to Γ′sub. Then, we scan all the remaining tasks

in Γ′i and find the task that results in the minimum increase of COMPTS(Γ′sub) if

it is assigned to Γ′sub. We repeat the process until no more tasks can be added to

Γ′sub. After a group of tasks with the largest total original utilization (utilizations

before harmonic transformation) are determined (Lines 3-8), they will be assigned

to the first available core and removed from Γ (Line 10). The algorithm reports

“SUCCESS” if all tasks can be assigned but otherwise report “FAILURE”.

Next, we extend our partitioning algorithms to incorporate the checkpointing

feature to further enhance system schedulability.

6.6 Task set with checkpointing

Till now, we assume that an entire job is re-executed once a fault is detected. As

shown in [55], checkpointing with roll-back recovery is a very efficient technique to

reduce recovery overhead and improve system schedulability. To our best knowledge,

there is no work that targets on improving system schedulability for fixed-priority

tasks on multi-core platforms based on exploring the combination of task parti-

tioning and checkpointing. Different task partitions can result in different check-

pointing configurations. Moreover, without the knowledge of task partitioning, a

predefined checkpointing scheme will most likely lead to poor schedulability perfor-

mances. Therefore, it is not a trivial problem to search for the best combination

of checkpointing and task allocation. In what follows, we endeavor to develop effi-

cient and effective heuristics with the joint consideration of checkpointing and task

allocation in order to maximize system schedulability. Specifically, we extend our

partitioning algorithms, i.e. CATP and G-CATP, to incorporate the checkpointing

scheme. We first introduce some basics on checkpointing for ease of presentation.

122

Under checkpoint scheme, instead of rolling back to the beginning of the execu-

tion of a job, the last saved checkpoint is retrieved and the job is executed thereafter.

For a task τi with mi number of checkpoints, the length of a re-execution segment

is Ci
mi+1

. Therefore, the worst case recovery time for a job of τi is modified to

Fi = max
j=1,...,i

(
Ci

mi + 1
). (6.15)

Additionally, as inserting checkpoints incurs overhead, the worst case exsection

time of τi with mi checkpoints (its overhead is denoted by oi) is denoted as

Ci(mi) = Ci +mi · oi. (6.16)

With the new execution time and recovery for each task τj ∈ Γ, the two factors,

i.e. harmonic distance and extra recovery overhead, in the compatibility index

defined in Definition 6.4.1 are modified accordingly to

∆Hj,i =
Cj(mj)

T ′j,i
− Cj(mj)

Tj,i
(6.17)

and

∆EFj,i = K ·
Fj − Cj

mj+1

T ′j,i
, (6.18)

respectively.

To find a feasible checkpoint scheme for a set of fixed-priority tasks, we adopt

the method ECHK in Chapter 4.6. ECHK iteratively inserts checkpoints to the

task which has a higher or equal priority than the first unschedulable task and the

largest recovery overhead. The algorithm ECHK returns either the checkpointing

configuration if a feasible one can be found or a failure status indicating that the

task set is unschedulable.

Then, algorithm CATP can be directly extended to integrate the checkpointing

scheme. Tasks are assigned one at a time, and a task-to-core mapping is considered

123

feasible only when there exists a feasible checkpointing configuration for the task

set (including the to-be-assigned task) on that core. Given a checkpointing scheme,

the corresponding updated task-set compatibility index can be readily obtained.

Among all the feasible cores (mappings), the one with the least task-set compati-

bility index is selected. This process is repeated until all tasks are assigned or no

core can accommodate any more tasks. We denote this algorithm as CATP-CHK.

CATP-CHK essentially utilizes “compatibility index” to evaluate the fitness of task

allocation and checkpointing, as “compatibility index” has been shown to be very

effective in reflecting system schedulability.

Similarly, we modify algorithm G-CATP to incorporate the checkpointing scheme.

Different from CATP, G-CATP tries to find the most compatible group of tasks

with the largest total utilization in each step. However, this problem with the in-

tegration of checkpointing becomes more complicated, as different checkpointing

configurations can lead to large variations of the “compatibility index” of a task set.

Therefore, developing efficient and effective heuristics to solve this problem is prac-

tical. Following the same procedures in Algorithm 9, we search the most compatible

group of tasks under each harmonic transformation, and the group is initialized with

only the base task, i.e. the task used for harmonic transformation. The rationale of

choosing the base task as the first task in the group is that the group will have the

least amount of task-set “compatibility index”, i.e. 0, at the beginning. Then, we

add tasks to the group one at a time. A task can be combined into the group only

when ECHK returns a feasible checkpointing configuration. Among all the tasks

that can be assigned to the group, the task which leads to the minimum increase of

“compatibility index” is selected. This process repeats until no more tasks can be

added to the group without jeopardizing its schedulability. We denote this algorithm

as G-CATP-CHK.

124

In the following section, we use extensive simulations to demonstrate the effec-

tiveness of our proposed algorithms.

6.7 Simulation results

In this section, we use simulations to evaluate the performance of our proposed

partition algorithms. Specifically, we first study the impacts of different parameters,

i.e. the number of tasks and cores, system average utilization, and the maximum

number of faults on system schedulability. Then, we investigate the effectiveness of

incorporating checkpointing scheme to improve system schedulability.

As explained in [40], a widely adopted metric to evaluate a partition algorithm

is the acceptance ratio. First, a number of synthetic task sets are generated, and

the acceptance ratio is calculated as the number of successfully partitioned task sets

divided by the total number of task sets as shown in equation (6.19).

acceptance ratio =
The number of schedulable task sets

The total number of tasks sets
, (6.19)

Four algorithms are evaluated in this section, namely, G-CATP, CATP, HAPS and

Best-Fit Decreasing (BFD). The first two are proposed and explained in Section 6.5.

The details of the algorithm HAPS is elaborated in [43], where the algorithm uses

the harmonic distance (equation (9,14) without considering the term extra recovery

utilizaiton) as the guideline when tasks are partitioned. HAPS has been shown to

be quite effective in improving system utilization for fault-oblivious systems. BFD

orders the tasks in a non-increasing utilization fashion and assigns a task to the core

with the minimum remaining utilization.

The experimental setup is listed in details as follows. Task sets were generated

according to the algorithm UUniFast in [17]. UUniFast is an algorithm designed

for single-core platform. In order to generate a task set with a total utilization,

125

Figure 6.3: 32 tasks on 4-core platform, K=2.

i.e. Utotal larger than 1, we need to execute this algorithm M times with the target

utilization of Utotal
M

during each run. We discarded the test cases where an individual

task utilization exceeds 1
K+1

since a task with a larger utilization than this can not

even be scheduled by itself under the worst case scenario, i.e. K faults occur. The

period of each task τi, i.e. Ti was randomly generated in the range of [10, 1000], and

its execution time Ci was calculated as ui · Ti.

6.7.1 Experiment 1, acceptance ratio vs. system average

utilization.

In this set of experiments, we study the relationships between system average uti-

lization and acceptance ratio. We fixed the the number of tasks and varied the

system average utilization in the range [0.5, 1] with a step of 0.05. We considered

a 4-core platform with 32 real-time tasks. A maximum number of 2 faults was

assumed in order to satisfy the system reliability constraint. For each utilization

value, we generated 1000 task sets and the acceptance ratio was recorded in Figure

6.3. As we can see, the acceptance ratios for all four algorithms drop as the system

average utilization increases. This is reasonable since task sets with high utilizations

are difficult to be scheduled, especially when fault-tolerance is considered. BFD has

126

Figure 6.4: 64 tasks on 8-core platform, K=2.

the worst performance since it does not take the characteristics of tasks (e.g. har-

monicity or compatibility) into consideration. With a system utilization of 0.5, BFD

can only achieve an acceptance ratio less than 20%. In the remaining experiments,

we excluded BFD for comparison unless otherwise specified. Both of our proposed

algorithms outperforms HAPS, due to the fact that our algorithms utilize a more

accurate metric to capture how compatible tasks are during the partition process.

In general, CATP has a better performance than HAPS. For example, with a sys-

tem average utilization of 0.55, CATP has an acceptance ratio of 80% while HAPS

only achieves 52%, which is an approximate 60% improvements. G − CATP has

the best performance as it tries to search for the most compatible group of tasks in

each step. For instance, when the system average utilization is 0.65, G − CATP

still achieves an acceptance ratio of 41%, while CATP and HAPS only have an

acceptance ratio less than 20%. In average, CATP obtains a 24% improvement over

HAPS, and G− CATP manages to get a further 40% enhancement over CATP.

Next, we evaluated these algorithms on a 8-core platform with 64 tasks. Ad-

ditionally, a maximum of 2 faults was assumed and the system average utilization

was varied in the range [0.5, 1] with a step of 0.05. The superiority of our proposed

algorithms over HAPS is illustrated in Figure 6.4, 1000 task sets were generated for

each point on the x− axis.

127

Figure 6.5: 32 tasks on 4-core platform, system average utilization is 0.5.

As the number of cores and tasks increase, all three algorithms exhibit higher

acceptance ratio. This is because with a higher number of tasks, each task is likely

to be associated with a smaller utilization given a fixed system average utilization

and they are easier to be scheduled. CATP still exhibits significant improvement

over HAPS. When the system average utilization is 0.6, HAPS has an acceptance

ratios of 30%, while CATP achieves twice the value, i.e. 60%. G-CATP still has the

dominated performance among all three algorithms. In average, CATP attains a 48%

improvement in performance over HAPS whereas G-CATP further enhances CATP

by an approximate 45%. Both our algorithms tend to have better performances for

systems with more tasks and cores, since they aggressively find the most compatible

tasks in each step.

6.7.2 Experiment 2, acceptance ratio vs. the number of

faults.

In this section, we investigate the relationships between acceptance ratio and the

number of faults that a system needs to tolerate. We fixed the system average

utilization as 0.5 with a 4-core platform consisting of 32 tasks. We varied the

128

Figure 6.6: 32 tasks on 4-core platform, checkpoint overhead is 5 percent of execution
time, K=2.

number of faults from 1 to 4, i.e. K ∈ [1, 4]. The result is shown in Figure 6.5, 1000

task sets were generated for each configuration.

As the number of fault increases, the acceptance ratio decreases dramatically

for all three algorithms. However, both of our algorithms, i.e. CATP and G-CATP

outperform the algorithm HAPS. When K = 2, HAPS has an acceptance ratio of

70% while CATP and G-CATP can achieve 92% and 95%, respectively. Our G-

CATP algorithm still exhibits the best performance, it manages to achieve 40%

acceptance ratio while CATP and HAPS only have an acceptance ratio less than

20% when K = 3.

The experimental results clearly demonstrate the effectiveness of our proposed

algorithms in terms of improving system schedulability under failures. By grouping

compatible tasks and assigning them to the same core, we significantly enhance

system utilization and leave more space for the remaining tasks.

6.7.3 Experiment 3, acceptance ratio vs. checkpointing

In this section, we study the effects of checkpointing on system schedulability. Since

there is no existing work in the literature that solves the exact same problem, we

129

first extend the BFD to incorporate the checkpointing feature. The tasks are sorted

in non-increasing order of utilization, the algorithm allocates one task at a time and

use algorithm ECHK [55] to search for a feasible checkpointing scheme for this task

and tasks on each candidate core. Among all feasible cores (a core is considered

feasible if there exists a feasible checkpointing configuration among the tasks on the

core and the task to be allocated), the task is assigned to the core with the least

remanning utilization. BFD reports “FAILURE” is a task can not be assigned. We

denote this algorithm as BFD-CHK. The performances of BFD-CHK and our two

algorithm CATP-CHK and G-CATP-CHK were evaluated.

We considered 32 tasks on a 4-core platform. The maximum number of faults,

i.e. K, was set to 2 and the checkpointing overhead was assumed to be 5% of the

worst case execution time for each task. System average utilization was varied from

0.5 to 1 with a step of 0.05. 1000 task sets were generated for each test case and

the acceptance ratios were plot in Figure 6.6.

Compared with Figure 6.3, the acceptance ratios are increased significantly. For

instance, CATP-CHK and G-CATP-CHK and can still achieve 60% and 70% ac-

ceptance ratios under a relatively high system average utilization of 0.8 (zero un-

der CATP and G-CATP), respectively. This is due to the fact that checkpointing

can considerably reduce the recovery overhead of each task and enhance the system

schedulability under faults. As can be seen, our algorithms substantially outperform

BFD-CHK. With a utilization of 0.5, CATP-CHK and G-CATP-CHK both achieve

an acceptance ratio of 100% whereas BFD-CHK only achieves 40%. Among all

three algorithms, G-CATP-CHK still exhibits the best performance since it always

tries to search for the most compatible tasks in each step. When system average

utilization is 0.85, G-CATP-CHK has an acceptance ratio about 40%, while that of

CATP-CHK is less than 10%. Once again, the simulation results demonstrate that

130

compatibility index is an accurate metric to quantify how “compatible” a task set

is and can guide task partitioning correctly.

6.8 Summary and future directions

As the computing paradigm shifts toward multi-core platforms, the need for effective

and efficient multi-core scheduling is ever-growing. Also, facing the unprecedented

reliability challenges brought forth by relentless transistor miniaturizations and mass

integrations of transistors into a single chip, traditional multi-core scheduling with-

out explicitly considering system reliability is becoming obsolete. In this paper, we

first present an efficient test to evaluate the schedulability of tasks scheduled ac-

cording to rate-monotonic method under faults. Then, we develop a novel metric

to quantify the “compatibility” among tasks, which is a direct indication of sys-

tem schedulability. In light of this metric, we develop two partitioning approaches

CATP and G-CATP. While algorithm CATP assigns one task at a time to the most

compatible core, G-CATP searches for the most compatible group of tasks in each

step and assigns them to one core. We further extend our algorithms to incorporate

the checkpointing scheme to further improve system utilization. Simulation results

have shown that our proposed algorithms can achieve substantial improvements over

other related approaches.

Adopting the concept of “compatibility index” for various fault-tolerant real-

time task models and studying the corresponding partitioning problem on multi-core

platforms are very interesting research directions. For example, when considering

constrained-deadline tasks (Di ≤ Ti,∀i) instead of implicit-deadline tasks (Di =

Ti, ∀i), RMS is not optimal anymore. What’s worse, the harmonic distance and

the extra recovery utilization that are defined solely based task execution times

131

and periods may become inaccurate to quantify how “compatible” a set of task is.

Adding the third dimension, i.e. deadline, to “compatibility index” and judiciously

make partitioning decisions are not trivial problems and require careful investigation.

Another interesting direction is to extend the approaches in this paper to het-

erogenous multi-core platforms. Different from homogenous multi-core platform, the

execution profile for each task may vary widely from core to core. To improve task

set schedulability, one intuitive approach is to assign “heavy tasks” to fast cores.

However, a task may take less execution time on one core but is more compatible

with the tasks on the other core. How to make tradeoffs between execution speed

and compatibility is worth careful studying.

132

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we first summarize our contributions presented in this disserta-

tion. We then discuss the possible directions for our future research work.

7.1 Summary

Nowadays, real-time computing systems are prevalent in our daily lives. They are

growing rapidly in both scale and complexity thanks to the advancements of IC

technology, in particular, the transistor scaling and mass integration. However, these

progresses have brought unprecedented challenges for designing real-time systems

that are subject to a variety of constraints, e.g. timing, power, and reliability. In this

dissertation, we focused our efforts on developing efficient and effective techniques

for hard real-time systems with the purpose of providing deterministic guarantees

to timing constraints under transient faults while optimizing other design metrics

such as power consumption and the number of cores required for a feasible schedule.

Specifically, we started by studying the combinatorial problem of energy effi-

ciency and fault tolerance for EDF-scheduled real-time tasks on a single-core plat-

form. Since both energy management (i.e. DVFS) and fault recovery require system

slacks, the challenge lies in how to judiciously make tradeoffs between these two fac-

tors, such that the deadlines of all real-time tasks can be met while the system

energy consumption can be minimized. In this regard, we presented three algo-

rithms, namely MLPEDF, EMLPEDF, and LPSSR. The first two algorithms were

extensions of a popular fault-oblivious DVFS scheduling. LPSSR further improves

the former two approaches by exploiting shared recovery reservations. By sharing

the reserved resources between different tasks/jobs instead of reserving a backup

for each job, system resources can be efficiently utilized and DVFS can be utilized

133

more aggressively without jeopardizing system schedulability. The simulations re-

sults have demonstrated the efficacy of our proposed methods when compared to

other related works.

Next, we ventured into the field of multi-core scheduling with multiple design

constraints as there is strong evidence showing that multi-core architectures are

becoming mainstream in modern computing systems. We first investigated the

problem of scheduling frame-based tasks, i.e. all tasks share the same deadline, on

homogenous multi-core platforms with the joint consideration of energy minimiza-

tion and fault tolerance. We adopted checkpointing as our fault-recovery mechanism

as it is known to be very effective in reducing fault-recovery overheads. We first de-

veloped a checkpointing scheme that is efficient and optimal in terms of minimizing

the overall schedule length, i.e. OPT CHK, for a set of tasks scheduled on the

same core. Then, based on this technique, we proposed an efficient task-allocation

method, i.e. EATA, that tries to find the best combination of task allocation, check-

pointing scheme, and speed assignment at each step. The efficiency of OPT CHK

in reducing the computational complexity of searching for the optimal number of

checkpoints for multiple tasks and the effectiveness of EATA in energy reductions

have been demonstrated using extensive simulation results, respectively.

Furthermore, we relaxed the deadline constraints in the previous problem and

studied the fault-tolerant scheduling of general fixed-priority tasks on multi-core

platforms with the consideration of energy minimization. Similarly, checkpointing

and DVFS were adopted as the fault-recovery and energy-management technique,

respectively. Different from the previous problem, it is extremely difficult, if not

impossible, to find the optimal checkpointing numbers for fixed-priority tasks with

arbitrary deadlines. Instead, we proposed an algorithm, i.e. ECHK, to efficiently

identify a feasible checkpointing configuration for a set of fixed-priority tasks sched-

134

uled on the same core. Based on this technique, we proposed a task-partitioning

technique where, in each step, a task is assigned to the core with the most favor-

able checkpointing configuration and the lowest feasible processing speed. Again,

the significant improvements of all these proposed methods over existing related

approaches were validated using extensive simulations.

Finally, we investigated the problem of maximizing system schedulability un-

der the influence of transient faults through partitioning RMS-scheduled real-time

tasks on multi-core platforms. Motivated by the fact that harmonic task sets (task

periods are integer multiples of each other) can result in higher system utilization

[43], we explored the implicit relations between tasks and derived a metric named

“compatibility index” to quantify how “compatible” a task set is. We theoretically

proved that this metric can help determine the system schedulability effectively.

Therefore, by grouping tasks with lower compatibility index (more compatible), the

system is more likely to be schedulable. Specifically, we proposed two partitioning

techniques, namely CATP and G-CATP. In CATP, tasks are allocated one at a time

to the core with the lowest compatibility index whereas G-CATP first identifies a

group of most compatible tasks and assigns them together to one core. Then, we

further extended these two methods to incorporate the checkpointing feature. Ac-

cording to the simulation results, CATP and G-CAPT can significantly outperform

the existing methods, such as traditional bin-packing, i.e. BF,WF and FF and a

harmonic-aware technique [43].

7.2 Future work

In this dissertation, we primarily focus on developing reactive methods for fault

tolerance. In other words, we put an emphasis on how to deal with run-time faults

135

when they occur. Recently, another line of research has thrived to address the system

reliability from a different perspective, i.e. prolonging system lifetime. It is becoming

evidently important for systems that operate in a harsh or remote environment. For

instance, for a real-time safety-critical system, such as avionic controls in space

crafts with the requirement of at least 25 years of service life, maximizing system

lifetime reliability is of paramount importance as meeting other restrictions, e.g.

real-time constraints. It is a well-known fact that system lifetime reliability is highly

influenced by temperature, a 10 − 15◦C difference in temperature can result in a

2 − 3× difference in the lifespan of a device [120, 113]. Unfortunately, aggressive

scaling in semiconductor technology and increasing of transistor counts result in

high power density and hence high temperature, which in turn pose unprecedented

challenges on system lifetime reliability [93, 51].

We are interested in extending our research to address the problem of how to

develop real-time scheduling algorithms to maximize the system lifetime while guar-

anteeing timing constraints and optimizing other performance metrics, e.g. energy

consumption and throughput. In what follows, we present some preliminary results

of our research on studying the impacts of real-time scheduling on system lifetime

reliability.

7.2.1 Lifetime and fault model

In this section, we introduce three major metrics for evaluating system lifetime

reliability [104] and discuss their relationships.

136

Reliability function

First, we will introduce several definitions and notations for ease of presentation.

Definition 7.2.1. The observed time to failure(TTF) is a value of the random vari-

able θ which represents the lifetime of the device, and its probability density function

(PDF) is denoted as fθ(t). Consequently, its cumulative distribution function(CDF)

is Fθ(t) = P (θ ≤ t) and termed as unreliability at time t, which represents the

probability of failure in the interval [0, t]. Therefore, the reliability function is

Rθ(t) = P (θ > t) =

∫ ∞
t

fθ(x)dx = 1− Fθ(t), (7.1)

where reliability denotes the probability of no failures in the interval [0, t] or equiva-

lently, the probability of failure after t.

Note that we implicity assume that random variable θ is continuous, which is

true most of the time. For simplicity, we use f(t), F (t) and R(t) to represent the

PDF of the random variable θ, unreliability, and reliability at time t, respectively.

Once we have the knowledge of the distribution of the random variable θ, we can

calculate the reliability at any time t.

Failure rate

At times, specifying the distribution function of θ directly from the information that

is available proves difficult. The conditional density function h(t) which is referred

to as the hazard function or failure rate is useful in these situations.

Definition 7.2.2. Given an interval [t, t + dt], the conditional failure rate during

this interval is defined as the conditional probability of failure in the interval (given

that there is no failure before t) divided by the length of the interval. It is formally

137

defined by the following equation [75]:

P (t < θ < t+ dt|θ > t)

dt
=
R(t)−R(t+ dt)

R(t)dt
. (7.2)

Definition 7.2.3. The instantaneous failure rate at t is the limit of the equation

(7.2) as dt→ 0. That is,

h(t) = lim
dt→0

R(t)−R(t+ dt)

R(t)dt
=
−R′(t)
R(t)

=
−d(lnR(t))

dt
. (7.3)

Based on the the above equation, with some simple mathematical manipulations,

we have

R(t) = exp(−
∫ t

0

h(x)dx) (7.4)

Furthermore, since f(t) = −dR(t)
dt

, we know h(t) = f(t)
R(t)

. Therefore, with the knowl-

edge of any one of the three functions(h(t), f(t) and R(t)), we can directly derive

the others.

Mean time to failure (MTTF)

MTTF is widely used as an indicator of the system life span.

Definition 7.2.4. The MTTF is the expected time to failure for a component or

system.

Mathematically, it is formulated as:

MTTF = E(θ) =

∫ ∞
0

tf(t)dt =

∫ ∞
0

t(
−dR(t)

dt
)dt

= −tR(t)|∞0 +

∫ ∞
0

R(t)dt =

∫ ∞
0

R(t)dt,

if lim
t→∞

tR(t) = 0, which is true for a distribution whose mean exists [75]. Moreover,

for many of the popular probability density functions, it is not necessary to perform

the integration since their means are already known.

138

Failure models

In what follows, we explain in details the four wear-out failure mechanisms that are

related to system reliability and are presently dominant in integrated circuits.

Electromigration refers to the transfer of metal as a result of the gradual

movement of ions in the conducting path caused by the momentum tranfer between

conducting electrons and diffusing metal atoms. The MTTF due to EM is given by

the following equation [72]:

MTTFEM =
AEM
Jn

e
EaEM
κT , (7.5)

where AEM and n are empirically determined constant. J is the current density in

interconnect, and EaEM is the activation energy for electormigration. κ is Boltz-

mann’s constant, and T is the absolute temperature in Kelvin.

Time Dependent Dielectric Breakdown is a wear-out mechanism of gate

oxide (or dielectric). It causes permanent failure when a conductive path forms in

the dielectric. This effect is strongly influenced by temperature and is becoming

worse with the advent of thin and ultra-thin gate oxides [1]. The model for the

MTTF due to TDDB is defined as [72]:

MTTFTDDB = ATDDB(
1

V
)(a−bT)e(

X+Y
T

+ZT

κT
), (7.6)

where a,b,X,Y and Z are fitting parameters. ATDDB is a empirically determined

constant, and V is the supply voltage. Again, κ and T are the Boltzmann’s constant

and temperature respectively.

Stress Migration, much like EM, refers to the migration of metal atoms in the

interconnect. It is caused by mechanical stress due to different thermal expansion

rates of different materials in the device. The MTTF resulting from SM is given by

the following equation [72]:

MTTFSM = ASM |T0 − T |−ne
EaSM
κT , (7.7)

139

where ASM is an empirically determined constant, and T0 is the metal deposition

temperature(stress free temperature) during fabrication. T is the operating tem-

perature, and n and EaSM are material dependent constants. κ is Boltzmann’s

constant.

Thermal Cycling is caused by mismatched coefficients of thermal expansions

for metallic and dielectric materials. It can result in inelastic deformations that

eventually create cracks, fractures, and other related failures. The number of cycles

to failure NTC can be calculated using a Coffin-Mason equation [35]:

NTC = ATC(δT − Tth)−be
EaTC
κTmax , (7.8)

where ATC is an empirically determined constant and δT is the the thermal cycle

amplitude. Tth is the temperature at which inelastic deformation begins. EaTC and

b are material related constants. Tmax denotes the maximum temperature during

a thermal cycle. Unlike the other three mechanisms, TC not only depends on

temporal temperature but temperature variances, which make it even harder to

study analytically.

Note that, given a set of operating parameters (in particular, operating temper-

ature T and supply voltage V , etc.), the instantaneous MTTFs due to each failure

mechanism can be immediately obtained.

7.2.2 Preliminary results

In this section, we provide some of our research’s preliminary results. Figure 7.1

presents the overview of our simulation framework. Basically, this simulation plat-

form consists of two major parts, 1) temperature modeling, 2) reliability modeling.

For temperature modeling, given a system architecture specification with a group

of industrial benchmarks, timing simulators can gather the information of the uti-

140

Figure 7.1: Simulation framework

lization trace on each core. With the utilization of each core and the specific DVFS

scheme to be employed, power simulators, such as Wattch [22], can approximate

the power consumption of each component in the system. Note that, for extensive

simulations, synthetic task sets are randomly generated most of the time. On the

other hand, we can use an analytic power modeling to directly derive the informa-

tion regarding power consumption [121]. Then, after obtaining the power trace,

we are able to get the corresponding thermal profiles either by using simulators like

HotSpot [67] or by adopting analytic methods in [119, 121]. These methods are very

accurate and much faster than HotSpot simulations. Therefore, in our simulations,

we exclusively use analytic temperature calculation methods.

For reliability modeling, we first model components with respect to each failure

mechanism given a selected distribution model (e.g. Exponential [113], Lognormal,

and Weibull [126] etc.). Run-time temperature variations are then incorporated

141

to obtain the distribution parameters [126, 65]. Consequently, we can complete

the system reliability calculation. For a simple distribution, such as Exponential

Distribution, sum-of-failure-rate (SOFR) can be used to get the system MTTF

[113, 38] while for much complicated distributions, e.g Weibull and Lognormal,

Monte Carlo simulation needs to be conducted [126].

First, we set the parameters of each failure mechanism according to [114] and

the proportionality constants, e.g. AEM , ASM , and ATDDB, were calculated such

that the MTTF due to each failure mechanism is 30 years at 70◦C.

Figure 7.2: MTTF VS. Temperature

In Figure 7.2, we simply investigated the sensitivity of each failure mechanism

to the change of temperature (TC was not considered since it also depends on

temperature variations). For each failure type, the MTTFs was normalized to its

reference MTTF at the ambient temperature, i.e. 35◦C. As can be seen, the lifetime

reliability of a system with respect to each failure mechanism drops significantly as

the temperature increases. Additionally, EM is the most sensitive failure mechanism

with respect to temperature.

We adopted the method in [65, 126] to account for varying operating conditions

(e.g. temperature, supply voltage) for obtaining system lifetime distribution. From

142

(a) Schedule1 (b) Schedule2

Figure 7.3: Speed Schedule

this point forward, we solely focused on EM since TDDB and SM can be dealt with in

a similar manner. Next, we studied the impacts of power management on processor

lifetime. For illustration purposes, we ran our experiments on a 2-core platform, and

the thermal-related parameters were derived directly from HotSpot [67]. We used

our technique in [121] to calculate the steady-state thermal profile of the system

given a speed schedule. For example, we have a system of two cores where both

cores are executing an identical periodic task with a period (deadline) of 1000ms and

an execution time of 500ms. We utilized different two-speed schedules to execute

the tasks. High speed and low speed were set to 1 and 0.4 (speeds are normalized

to the highest speed available in the system), respectively. The interval length of

each speed mode was determined in a way such that the task could finish exactly at

its deadline. In the first schedule, both cores run simultaneously in high(low) speed

mode in Figure 7.3(a) whereas the running modes on two cores are exactly opposite

in Figure 7.3(b). We plotted the thermal profiles for both cores under these two

different speed schedules in Figure 7.4, respectively.

As shown in Figure 7.4, for the first case, two cores have identical temperature

values. On the contrary, the temperature traces oscillate differently in the second

143

(a) Schedule1 (b) Schedule2

Figure 7.4: Thermal profiles

case. Further, the former schedule has a peak temperature about 2.5◦C higher than

that of the latter.

Different thermal dynamics may have different lifetime reliability. As shown

in Figure 7.5, the reliability of core 1(2) diminishes much faster under the second

schedule due to the unfavorable temperature dynamics. Consequently, it results in

a shorter MTTF.

Using the same example, we extended the “m-oscillation” technique that is well

studied for peak-temperature reductions on single-core processors [61]. The main

idea is to oscillate the speed of a core between high and low mode by m times. We

changed the number of oscillations from 1 to 15 and started the two processors in

different running mode. The results have been plotted in Figure 7.6(a) and 7.6(b).

Note that, in Figure 7.6(b), MTTFs were normalized with respect to the system

MTTF when m = 1.

As the figure shows, without careful provisions of the speed schedule on each

core, increasing the number of oscillations does not lead to significant improvements

in terms of reliability. Actually, the peak-temperature reduction improvement is not

obvious either.

144

Figure 7.5: Reliability distribution for core 1(2)

TC is different from the other three failure mechanisms, and it strongly depends

on temperature variances. With the aid of our temperature modeling technique in

[121], we can efficiently obtain the steady-state temperature profiles, and we are

able to study the TC mechanism effectively and accurately. The technique in [126]

for calculating system MTTF due to TC was employed, and Rain Flow Counting

was used to account for the thermal cycles within a thermal trace. Following the

above example, the MTTF under schedule 2 is 1.5x of that of schedule 1. Again, we

studied the impact of m-oscillation on system reliability, considering the TC mech-

anism exclusively. As evident in equation (7.8), the damage caused by temperature

variations is determined by the constant exponent b which is material related. As

shown in [72], the range of b is 1-3 for ductile metal, 3-5 for hard metal alloys, and

as high as 6-9 for Si and dielectrics. We set b to 2 and 6, respectively. In this exper-

iment, we again varied the number of oscillations. As can be observed, increasing

the number of oscillation actually degrades the system reliability. This is due to the

145

(a) Reliability distribution for core 1(2)
under m-oscillation

(b) MTTF for core 1(2) VS. m-
oscillation

Figure 7.6: Impacts of m-oscillation on system reliability

Figure 7.7: MTTF of TC vs. the number of oscillations

lack of efficiency of this simple m-oscillation scheme on multi-core platforms which

encompasses oscillating the cores simultaneously and setting the speed randomly.

With more available speeds and non-uniform workloads on each core, the problem

becomes more complicated. Considering the fact that frequent speed switchings

146

may lead to an increasing number of thermal cycles, we need to explore effective

scheduling techniques to more substantially reduce thermal cycle amplitudes.

In summary, a simple variation of speed patterns of each core can dramatically

impact the reliability of the system (Figure 7.5). Traditional techniques that are

effective in reducing peak temperature and can implicitly improve the system reli-

ability are becoming ineffective, if not detrimental, for the development of reliable

multi-core platforms. This signifies the need of developing advanced techniques that

explicitly take the lifetime reliability into account while considering other design

constraints, e.g. timing and power.

147

BIBLIOGRAPHY

[1] Critical reliability challenges for the international technology roadmap for
semiconductors (ITRS). Technical report, International SEMATECH, 2003.

[2] Behind the birth of m3. IHS iSuppli, 2012.

[3] Embedded system market - global industry analysis, size, share, growth, trends
and forecast. Transparency Market Research, 2013.

[4] T. AlEnawy and H. Aydin. Energy-aware task allocation for rate monotonic
scheduling. In Real Time and Embedded Technology and Applications Sympo-
sium, 2005. RTAS 2005. 11th IEEE, pages 213–223, March.

[5] AMD. Amd g-series.

[6] B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair
static-priority scheduling on multiprocessors are 50. In Real-Time Systems,
2003. Proceedings. 15th Euromicro Conference on, pages 33–40, July 2003.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, K. Keutzer, D. A. Pat-
terson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick, M. J. Demmel,
W. Plishker, J. Shalf, S. Williams, and K. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical report, TECHNICAL
REPORT, UC BERKELEY, 2006.

[8] H. Aydin. Exact fault-sensitive feasibility analysis of real-time tasks. IEEE
Trans. Comput., 56(10):1372–1386, Oct. 2007.

[9] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware schedul-
ing for periodic real-time tasks. Computers, IEEE Transactions on, 53(5):584
– 600, may 2004.

[10] S. Baruah. Partitioned edf scheduling: a closer look. Real-Time Systems,
49(6):715–729, 2013.

[11] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. Implementa-
tion of a speedup-optimal global edf schedulability test. In Real-Time Systems,
2009. ECRTS ’09. 21st Euromicro Conference on, pages 259–268, July 2009.

[12] S. Baruah and N. Fisher. Global deadline-monotonic scheduling of arbitrary-
deadline sporadic task systems. In E. Tovar, P. Tsigas, and H. Fouchal, editors,

148

Principles of Distributed Systems, volume 4878 of Lecture Notes in Computer
Science, pages 204–216. Springer Berlin Heidelberg, 2007.

[13] S. Baruah and N. Fisher. The partitioned dynamic-priority scheduling of
sporadic task systems. Real-Time Systems, 36(3):199–226, 2007.

[14] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Real-Time Systems Symposium, 1990.
Proceedings., 11th, pages 182–190, Dec 1990.

[15] R. Bergamaschi, G. Han, A. Buyuktosunoglu, H. Patel, I. Nair, G. Dittmann,
G. Janssen, N. Dhanwada, Z. Hu, P. Bose, and J. Darringer. Exploring power
management in multi-core systems. In Design Automation Conference, 2008.
ASPDAC 2008. Asia and South Pacific, pages 708–713, March 2008.

[16] A. A. Bertossi, L. V. Mancini, and A. Fusiello. Fault-tolerant deadline-
monotonic algorithm for scheduling hard real-time tasks. In In Proceedings of
the 11th International Parallel Processing Symposium, pages 133–138. Belling-
ham, SPIE Press, 1997.

[17] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Syst., 30(1-2):129–154, May 2005.

[18] W. L. Bircher and L. K. John. Analysis of dynamic power management on
multi-core processors. In Proceedings of the 22Nd Annual International Con-
ference on Supercomputing, ICS ’08, pages 327–338, New York, NY, USA,
2008. ACM.

[19] S. Borkar. Thousand core chips: A technology perspective. In Proceedings
of the 44th Annual Design Automation Conference, DAC ’07, pages 746–749,
New York, NY, USA, 2007. ACM.

[20] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu,
J.-D. Wellman, V. Zyuban, M. Gupta, and P. Cook. Power-aware microarchi-
tecture: design and modeling challenges for next-generation microprocessors.
Micro, IEEE, 20(6):26–44, Nov 2000.

[21] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Architec-
ture, 2000. Proceedings of the 27th International Symposium on, pages 83–94,
June 2000.

149

[22] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Computer Architec-
ture, 2000. Proceedings of the 27th International Symposium on, pages 83–94,
2000.

[23] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for assigning
real-time tasks to multiprocessor systems. Computers, IEEE Transactions on,
44(12):1429–1442, Dec 1995.

[24] A. Burns. Scheduling hard real-time systems: a review. Software Engineering
Journal, 6(3):116–128, May 1991.

[25] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-tolerant
real-time task sets. In Real-Time Systems, 1996., Proceedings of the Eighth
Euromicro Workshop on, pages 29–33, Jun 1996.

[26] A. Burns, R. Davis, P. Wang, and F. Zhang. Partitioned edf scheduling
for multiprocessors using a c=d task splitting scheme. Real-Time Systems,
48(1):3–33, 2012.

[27] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Systems:
Predictability vs. Efficiency (Series in Computer Science). Plenum Publishing
Co., 2005.

[28] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling
Algorithms And Applications (Real-Time Systems Series). Springer-Verlag
TELOS, Santa Clara, CA, USA, 2004.

[29] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah.
A categorization of real-time multiprocessor scheduling problems and algo-
rithms. 2004.

[30] X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivation and calibration
of a transient error reliability model. IEEE Trans. Comput., 31:658–671, July
1982.

[31] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick. Enhancing multicore re-
liability through wear compensation in online assignment and scheduling. In
Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’13, pages 1373–1378, San Jose, CA, USA, 2013. EDA Consortium.

150

[32] B. Chattopadhyay and S. Baruah. Partitioned scheduling of implicit-deadline
sporadic task systems under multiple resource constraints. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2012 IEEE 18th
International Conference on, pages 144–153, Aug 2012.

[33] V. Chaturvedi, H. Huang, and G. Quan. Leakage aware scheduling on maxi-
mum temperature minimization for periodic hard real-time systems. In Com-
puter and Information Technology (CIT), 2010 IEEE 10th International Con-
ference on, pages 1802–1809, June 2010.

[34] J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng. Real-time task repli-
cation for fault tolerance in identical multiprocessor systems. Real-Time and
Embedded Technology and Applications Symposium, IEEE, 0:249–258, 2007.

[35] M. Ciappa, F. Carbognani, and W. Fichtner. Lifetime prediction and design
of reliability tests for high-power devices in automotive applications. Device
and Materials Reliability, IEEE Transactions on, 3(4):191–196, 2003.

[36] S. R. Corporation. International technology roadmap for semiconductors.
2010.

[37] S. R. Corporation. International technology roadmap for semiconductors.
2013.

[38] A. K. Coskun, T. Simunic, K. Mihic, G. D. Micheli, and Y. Leblebici. Analysis
and optimization of mpsoc reliability. J. Low Power Electronics, 2(1):56–69,
2006.

[39] R. I. Davis and A. Burns. Controller area network (can) schedulability analy-
sis: Refuted, revisited and revised. Refuted, Revisited and Revised. Real-Time
Systems, 35:239–272, 2007.

[40] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comput. Surv., 43(4):35:1–35:44, Oct. 2011.

[41] F. Eisenbrand, K. Kesavan, R. Mattikalli, M. Niemeier, A. Nordsieck,
M. Skutella, J. Verschae, and A. Wiese. Solving an avionics real-time schedul-
ing problem by advanced ip-methods. 6346:11–22, 2010.

[42] A. Ejlali, B. M. Al-Hashimi, and P. Eles. A standby-sparing technique with low
energy-overhead for fault-tolerant hard real-time systems. In Proceedings of

151

the 7th IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS ’09, pages 193–202, New York, NY,
USA, 2009. ACM.

[43] M. Fan, Q. Han, G. Quan, and S. Ren. Multi-core partitioned scheduling
for fixed-priority periodic real-time tasks with enhanced rbound. In Quality
Electronic Design (ISQED), 2014 15th International Symposium on, pages
284–291, March 2014.

[44] M. Fan and G. Quan. Harmonic-fit partitioned scheduling for fixed-priority
real-time tasks on the multiprocessor platform. In Embedded and Ubiquitous
Computing (EUC), 2011 IFIP 9th International Conference on, pages 27–32,
Oct 2011.

[45] M. Fan and G. Quan. Harmonic semi-partitioned scheduling for fixed-priority
real-time tasks on multi-core platform. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’12, pages 503–508, San Jose,
CA, USA, 2012. EDA Consortium.

[46] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global real-time
scheduling on multicore systems. pages 131–140, April 2009.

[47] L. George and J.-F. Hermant. A norm approach for the partitioned edf schedul-
ing of sporadic task systems. In Real-Time Systems, 2009. ECRTS ’09. 21st
Euromicro Conference on, pages 161–169, July 2009.

[48] Y. Guo, D. Zhu, and H. Aydin. Reliability-aware power management for par-
allel real-time applications with precedence constraints. In Green Computing
Conference and Workshops (IGCC), 2011 International, pages 1–8, July 2011.

[49] Y. Guo, D. Zhu, and H. Aydin. Generalized standby-sparing techniques for
energy-efficient fault tolerance in multiprocessor real-time systems. In Em-
bedded and Real-Time Computing Systems and Applications (RTCSA), 2013
IEEE 19th International Conference on, pages 62–71, Aug 2013.

[50] R. Gupta. Dynamic voltage scaling for systemwide energy minimization in
real-time embedded systems. In Low Power Electronics and Design, 2004.
ISLPED ’04. Proceedings of the 2004 International Symposium on, pages 78–
81, Aug 2004.

[51] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and P. Bon-
not. Reliability challenges of real-time systems in forthcoming technology

152

nodes. In Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pages 129–134, 2013.

[52] C.-C. Han, K. Shin, and J. Wu. A fault-tolerant scheduling algorithm for real-
time periodic tasks with possible software faults. Computers, IEEE Transac-
tions on, 52(3):362 – 372, march 2003.

[53] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test for
real-time fixed-priority scheduling algorithms. In Proceedings of the 18th IEEE
Real-Time Systems Symposium, RTSS ’97, pages 36–, Washington, DC, USA,
1997. IEEE Computer Society.

[54] Q. Han, M. Fan, L. Niu, and G. Quan. Energy minimization for fault tolerant
scheduling of periodic fixed-priority applications on multiprocessor platforms.
2015.

[55] Q. Han, M. Fan, L. Niu, and G. Quan. Energy minimization for fault tolerant
scheduling of periodic fixed-priority applications on multiprocessor platforms.
In Design, Automation and Test in Europe, DATE, March 2015.

[56] Q. Han, M. Fan, and G. Quan. Energy minimization for fault tolerant real-time
applications on multiprocessor platforms using checkpointing. In Low Power
Electronics and Design (ISLPED), 2013 IEEE International Symposium on,
pages 76–81, Sept 2013.

[57] Q. Han, L. Niu, G. Quan, S. Ren, and S. Ren. Energy efficient fault-tolerant
earliest deadline first scheduling for hard real-time systems. Real-Time Sys-
tems, 50(5-6):592–619, 2014.

[58] M. Haque, H. Aydin, and D. Zhu. Energy-aware standby-sparing technique
for periodic real-time applications. In Computer Design (ICCD), 2011 IEEE
29th International Conference on, pages 190–197, Oct 2011.

[59] M. Haque, H. Aydin, and D. Zhu. Energy management of standby-sparing sys-
tems for fixed-priority real-time workloads. In International Green Computing
Conference (IGCC), June 2013.

[60] M. Haque, H. Aydin, and D. Zhu. Energy management of standby-sparing
systems for fixed-priority real-time workloads. In Green Computing Conference
(IGCC), 2013 International, pages 1–10, June 2013.

153

[61] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu. Throughput maxi-
mization for periodic real-time systems under the maximal temperature con-
straint. ACM Trans. Embed. Comput. Syst., 13(2s):70:1–70:22, Jan. 2014.

[62] H. Huang, M. Fan, and G. Quan. On-line leakage-aware energy minimiza-
tion scheduling for hard real-time systems. In Design Automation Conference
(ASP-DAC), 2012 17th Asia and South Pacific, pages 677–682, Jan 2012.

[63] H. Huang and G. Quan. Leakage aware energy minimization for real-time
systems under the maximum temperature constraint. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, pages 1–6, March 2011.

[64] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll. Analysis and op-
timization of fault-tolerant task scheduling on multiprocessor embedded sys-
tems. In Proceedings of the Seventh IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’11, pages 247–256, New York, NY, USA, 2011. ACM.

[65] L. Huang, F. Yuan, and Q. Xu. Lifetime reliability-aware task allocation
and scheduling for mpsoc platforms. In Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., pages 51 –56, april 2009.

[66] L. Huang, F. Yuan, and Q. Xu. On task allocation and scheduling for lifetime
extension of platform-based mpsoc designs. Parallel and Distributed Systems,
IEEE Transactions on, 22(12):2088–2099, Dec. 2011.

[67] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotspot: a compact thermal modeling methodology for early-stage
vlsi design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 14(5):501–513, 2006.

[68] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
Thermal-aware task allocation and scheduling for embedded systems. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe - Vol-
ume 2, DATE ’05, pages 898–899, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[69] Intel. Intel xeon processor.

[70] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically vari-
able voltage processors. In Proceedings of the 1998 international symposium

154

on Low power electronics and design, ISLPED ’98, pages 197–202, New York,
NY, USA, 1998. ACM.

[71] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and modeling
of computer reliability as affected by system activity. ACM Trans. Comput.
Syst., 4:214–237, August 1986.

[72] JEDEC Solid State Technology Association. Failure mechanisms and models
for semiconductor devices. Technical Report JEP122C, March 2006.

[73] A. Kandhalu, K. Lakshmanan, J. Kim, and R. Rajkumar. pcompats: Period-
compatible task allocation and splitting on multi-core processors. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2012 IEEE
18th, pages 307–316, April 2012.

[74] J. Kang and S. Ranka. Dynamic slack allocation algorithms for energy min-
imization on parallel machines. J. Parallel Distrib. Comput., 70(5):417–430,
May 2010.

[75] K. C. Kapur and L. R. Lamberson. Reliability in Engineering Design. John
Wiley & Sons, New York, 1977.

[76] D. Katcher, H. Arakawa, and J. Strosnider. Engineering and analysis of fixed
priority schedulers. Software Engineering, IEEE Transactions on, 19(9):920–
934, Sep 1993.

[77] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on mul-
tiprocessors. In Real-Time and Embedded Technology and Applications Sym-
posium, 2009. RTAS 2009. 15th IEEE, pages 23–32, April 2009.

[78] D. Khudia and S. Mahlke. Harnessing soft computations for low-budget fault
tolerance. In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM In-
ternational Symposium on, pages 319–330, Dec 2014.

[79] J. Kim, K. Lakshmanan, and R. R. Rajkumar. R-batch: Task partitioning
for fault-tolerant multiprocessor real-time systems. In Proceedings of the 2010
10th IEEE International Conference on Computer and Information Technol-
ogy, CIT ’10, pages 1872–1879, Washington, DC, USA, 2010. IEEE Computer
Society.

155

[80] T.-W. Kuo and A. Mok. Load adjustment in adaptive real-time systems. In
Real-Time Systems Symposium, 1991. Proceedings., Twelfth, pages 160–170,
Dec 1991.

[81] S. Lauzac, R. Melhem, and D. Mosse. An efficient rms admission control and
its application to multiprocessor scheduling. In Parallel Processing Sympo-
sium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged International
... and Symposium on Parallel and Distributed Processing 1998, pages 511–
518, Mar 1998.

[82] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition, 1990.

[83] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
exact characterization and average case behavior. In Real Time Systems Sym-
posium, 1989., Proceedings., pages 166–171, Dec 1989.

[84] P. Leteinturier. Multi-core processors: Driving the evolution of automotive
electronics architectures. In embedded.com, 2007.

[85] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks. Performance Evaluation, 2(4):237 – 250, 1982.

[86] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20:46–61, January 1973.

[87] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

[88] Y. Liu, H. Liang, and K. Wu. Scheduling for energy efficiency and fault
tolerance in hard real-time systems. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pages 1444 –1449, march 2010.

[89] F. Many and D. Doose. Scheduling analysis under fault bursts. Real-Time and
Embedded Technology and Applications Symposium, IEEE, 0:113–122, 2011.

[90] R. Melhem, D. Mosse, and E. Elnozahy. The interplay of power management
and fault recovery in real-time systems. Computers, IEEE Transactions on,
53(2):217–231, Feb 2004.

156

[91] B. Mochocki, X. Hu, and G. Quan. A unified approach to variable voltage
scheduling for nonideal dvs processors. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 23(9):1370 – 1377, sept. 2004.

[92] B. Mochocki, X. Hu, and G. Quan. A unified approach to variable voltage
scheduling for nonideal dvs processors. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 23(9):1370 – 1377, sept. 2009.

[93] S. Nassif, N. Mehta, and Y. Cao. A resilience roadmap. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2010, pages 1011–1016, 2010.

[94] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks on multiprocessor
systems. Real-Time Syst., 9(3):207–239, Nov. 1995.

[95] M. Pandya and M. Malek. Minimum achievable utilization for fault-tolerant
processing of periodic tasks. IEEE Trans. on Computers, 47:1102–1112, 1994.

[96] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization of time-
and cost-constrained fault-tolerant embedded systems with checkpointing and
replication. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 17(3):389–402, March 2009.

[97] P. Pop, K. H. Poulsen, V. Izosimov, P. Eles, and M. M. Dept. Scheduling and
voltage scaling for energy/reliability trade-offs in fault-tolerant time-triggered
embedded systems, CODES+ISSS’ 2007.

[98] D. K. Pradhan, editor. Fault-tolerant computing: theory and techniques; vol.
1. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[99] D. K. Pradhan, editor. Fault-tolerant computer system design. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

[100] X. Qi, D. Zhu, and H. Aydin. Global scheduling based reliability-aware power
management for multiprocessor real-time systems. Real-Time Syst., 47:109–
142, March 2011.

[101] X. Qi, D. Zhu, and H. Aydin. Global reliability-aware power management
for multiprocessor real-time systems. In Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2010 IEEE 16th International Confer-
ence on, pages 183–192, Aug.

157

[102] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processors. In Proceedings of the 38th annual
Design Automation Conference, DAC ’01, pages 828–833, New York, NY,
USA, 2001. ACM.

[103] G. Quan and L. Niu. Fixed priority scheduling for reducing overall energy on
variable voltage processors. In In 25th IEEE Real-Time System Symposium,
pages 309–318. IEEE Computer Society, 2004.

[104] M. Rausand and A. Hoyland. System Reliability Theory: Models, Statistical
Methods, and Applications, 2nd Edition. WILEY, December 2003.

[105] K. Shin and P. Ramanathan. Real-Time Computing: A New Discipline of
Computer Science and Engineering. Proc. IEEE, 82(1):6–24, Jan. 1994.

[106] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In De-
pendable Systems and Networks, 2002. DSN 2002. Proceedings. International
Conference on, pages 389 – 398, 2002.

[107] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In De-
pendable Systems and Networks, 2002. DSN 2002. Proceedings. International
Conference on, pages 389–398, 2002.

[108] A. Shye, J. Blomstedt, T. Moseley, V. Reddi, and D. Connors. Plr: A software
approach to transient fault tolerance for multicore architectures. Dependable
and Secure Computing, IEEE Transactions on, 6(2):135–148, April 2009.

[109] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures. pages
168–178, 2009.

[110] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-
time systems. Real-Time Systems, 1(1):27–60, 1989.

[111] R. Sridharan and R. Mahapatra. Reliability aware power management for
dual-processor real-time embedded systems. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 819 –824, june 2010.

158

[112] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The impact of technology
scaling on lifetime reliability. In Dependable Systems and Networks, 2004
International Conference on, pages 177 – 186, june-1 july 2004.

[113] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The impact of technology
scaling on lifetime reliability. In Dependable Systems and Networks, 2004
International Conference on, pages 177–186, 2004.

[114] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. Exploiting structural dupli-
cation for lifetime reliability enhancement. In Computer Architecture, 2005.
ISCA ’05. Proceedings. 32nd International Symposium on, pages 520 – 531,
june 2005.

[115] J. Srinivasan, A. S.V., B. P., R. J., and C.-K. Hu. Ramp: A model for
reliability aware microprocessor design. IBM Research Report, RC23048, 2003.

[116] Q. Tang, S. Gupta, and G. Varsamopoulos. Energy-efficient thermal-aware
task scheduling for homogeneous high-performance computing data centers:
A cyber-physical approach. Parallel and Distributed Systems, IEEE Transac-
tions on, 19(11):1458–1472, Nov 2008.

[117] U. Tech. 2014 embedded marked study. UBM Tech Electronics’s Annual
Survey of The Embedded Markets Worldwide, 2014.

[118] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for
analyzing fixed priority hard real-time tasks. Real-Time Syst., 6(2):133–151,
Mar. 1994.

[119] I. Ukhov, M. Bao, P. Eles, and Z. Peng. Steady-state dynamic temperature
analysis and reliability optimization for embedded multiprocessor systems. In
Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages
197–204, June 2012.

[120] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, M. Group, and
I. Corp. Thermal performance challenges from silicon to systems, 2000.

[121] T. Wang, M. Fan, G. Quan, and S. Ren. Heterogeneity exploration for peak
temperature reduction on multi-core platforms. In Quality Electronic Design
(ISQED), 2014 15th International Symposium on, pages 107–114, March 2014.

159

[122] T. Wei, X. Chen, and S. Hu. Reliability-driven energy-efficient task scheduling
for multiprocessor real-time systems. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 30(10):1569 –1573, oct. 2011.

[123] T. Wei, P. Mishra, K. Wu, and H. Liang. Fixed-priority allocation and schedul-
ing for energy-efficient fault tolerance in hard real-time multiprocessor sys-
tems. Parallel and Distributed Systems, IEEE Transactions on, 19(11):1511
–1526, nov. 2008.

[124] T. Wei, P. Mishra, K. Wu, and J. Zhou. Quasi-static fault-tolerant schedul-
ing schemes for energy-efficient hard real-time systems. J. Syst. Softw.,
85(6):1386–1399, June 2012.

[125] Wikipedia. Moore’s law.

[126] Y. Xiang, T. Chantem, R. Dick, X. Hu, and L. Shang. System-level reliability
modeling for mpsocs. In Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on, pages
297 –306, oct. 2010.

[127] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In Foundations of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 374 –382, oct 1995.

[128] F. Zhang and A. Burns. Schedulability analysis for real-time systems with edf
scheduling. Computers, IEEE Transactions on, 58(9):1250–1258, Sept 2009.

[129] S. Zhang, K. S. Chatha, and G. Konjevod. Near optimal battery-aware energy
management. In ISLPED, pages 249–254, 2009.

[130] Y. Zhang and K. Chakrabarty. A unified approach for fault tolerance and
dynamic power management in fixed-priority real-time embedded systems.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 25(1):111 – 125, jan. 2006.

[131] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault toler-
ance in fixed-priority real-time embedded systems. In Proceedings of the 2003
IEEE/ACM international conference on Computer-aided design, ICCAD ’03,
pages 209–, Washington, DC, USA, 2003. IEEE Computer Society.

[132] B. Zhao, H. Aydin, and D. Zhu. Enhanced reliability-aware power manage-
ment through shared recovery technique. In Proceedings of the 2009 Interna-

160

tional Conference on Computer-Aided Design, ICCAD ’09, pages 63–70, New
York, NY, USA, 2009. ACM.

[133] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy man-
agement for real-time embedded applications. In Design Automation Confer-
ence (DAC), 2011 48th ACM/EDAC/IEEE, pages 381 –386, june 2011.

[134] B. Zhao, H. Aydin, and D. Zhu. Energy management under general task-level
reliability constraints. In Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2012 IEEE 18th, pages 285 –294, april 2012.

[135] D. Zhu and H. Aydin. Energy management for real-time embedded systems
with reliability requirements. In Computer-Aided Design, 2006. ICCAD ’06.
IEEE/ACM International Conference on, pages 528 –534, nov. 2006.

[136] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on reli-
ability in real-time embedded systems. In Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, ICCAD ’04, pages 35–40,
Washington, DC, USA, 2004. IEEE Computer Society.

161

VITA

QIUSHI HAN

2009 B.S., Software Engineering
Beijing Jiaotong University
Beijing, China

2015 Ph.D. candidate, Electrical Engineering
Florida International University
Florida, USA

PUBLICATIONS

Qiushi Han, Ming Fan, Shaolei Ren, Gang Quan, (2015). Temperature-Constrained
Feasibility Analysis for Multicore Scheduling, IEEE transaction on Computers (sec-
ond round review).

Qiushi Han, Linwei Niu, Gang Quan, Shaolei Ren, Shangping Ren, (2014). Energy
efficient fault-tolerant earliest deadline first scheduling for hard real-time systems,
Journal,Real-Time Systems, Volume 50, Issue 5-6, Pages 592-619, Springer US.

Ming Fan, Qiushi Han, Gang Quan, Shangping Ren, (2014). Enhanced fixed-priority
real-time scheduling on multi-core platforms by exploiting task period relationship,
Journal of Systems and Software, Volume 99, Pages 85-96, Elsevier.

Qiushi Han, Tianyi Wang, Gang Quan, (2015). Enhanced Fault-Tolerant Fixed-
Priority Scheduling of Hard Real-Time Tasks on Multi-Core Platforms, 21st IEEE
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications (Accepted).

Qiushi Han, Ming Fan, Linwei Niu, Gang Quan, (2015). Energy minimization for
fault tolerant scheduling of periodic fixed-priority applications on multiprocessor plat-
forms, Proceedings of the 2015 Design, Automation & Test in Europe Conference
(DATE), 830-835.

Ming Fan, Qiushi Han, Shuo Liu, Gang Quan, (2015). On-line reliability-aware dy-
namic power management for real-time systems, Quality Electronic Design (ISQED),
2015 16th International Symposium on, 361-365.

162

Ming Fan, Qiushi Han, Gang Quan, Shangping Ren, (2014). Multi-core partitioned
scheduling for fixed-priority periodic real-time tasks with enhanced RBound, Quality
Electronic Design (ISQED), 2014 15th International Symposium on, 284-291.

Qiushi Han, Ming Fan, Gang Quan, (2013). Energy minimization for fault tolerant
real-time applications on multiprocessor platforms using checkpointing, IEEE Inter-
national Symposium on Low Power Electronics and Design (ISLPED), 76–81. (best
paper nomination)

163

	Florida International University
	FIU Digital Commons
	6-26-2015

	Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems
	Qiushi Han
	Recommended Citation

	Energy-Aware Fault-Tolerant Scheduling For Hard Real-Time Systems

