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i. Introduction 

he scheduling problem in  p o r tab le  a nd  
mob i l e  sys tems  has many facets [1] [2]. 
Scheduling algorithms have been developed in 

both the operation research and computer science 
community, with different models and objectives. The 
techniques that are applicable today to the design of 
hardware and software systems draw ideas from both 
communities. 

Generally speaking, hardware and software 
scheduling problems differ not just in the formulation 
but in  the i r  overa l l  goa ls .  Nevertheless, some 
hardware scheduling algorithms are based on 
techniques used in the software domain, and some 
recent system-level   process   scheduling   methods   
have   leveraged   ideas   in   hardware sequencing. 
 Scheduling can be loosely defined as 
assigning an execution start time to each task in a set, 
where tasks are linked by some relations (e.g., 
dependencies, priorities, etc.). The tasks can be 
elementary operations (like  hardware  operations  or  
computer instructions)  or  can be an ensemble of 
elementary operations  (like  software programs).  The 
tasks can be periodic or aperiodic, and task execution 
may be subject to real time constraints or not. 
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Scheduling under timing constraints

 

is

 
common

 

for hardware circuits, and for software 
applications

 

in

 

embedded

 

control systems. Task 
execution

 

requires the

 

use of resources, which can be 
limited in

 

number, thus

 

causing the serialization of 
some task execution. Most scheduling problems are 
computationally intractable, and thus their

 

solutions  are 

 
often 

 

based  on 

 

heuristic techniques. Scheduling 
algorithms

 

as

 

applied

 

to

 

design of

 

operating systems 
are explained below.

 
Scheduling

 

in

 

High-Level Synthesis (HLS)

 
is

 

an

 

optimization

 

problem [3]. The

 

different

 

entities

 
that

 

should be

 

optimized here

 

are speed,

 

cost

 

(area

 

or

 
resources)

 

and

 

power consumption. By making

 

use of 
these entities, scheduling problems can be listed as (i) 
time constrained scheduling (ii)

 

resource constrained 
scheduling (iii)

 

feasible constrained scheduling and

 

(iv)

 
power constrained scheduling. There are also other

 
factors that are important in

 

evaluating designs such

 

as

 
pin

 

limitations,

 

package selection,

 

testability, variety of 
latches, library of cells, clock skew etc.

 

These

 

are not 
discussed here. 

 ii.
 

Scheduling in
 
Different 

Operating Systems 

Process scheduling is the
 

problem
 

of
 determining when

 
processes execute and includes

 handling synchronization and mutual exclusion
 problem [3]. Algorithms

 
for process scheduling are 

important constituents
 

of operating systems and run-
time schedulers.

 The
 

model 
 
of 

 
the  scheduling  problem 

 
is 

 more  general 
 
than  the  one  previously considered.  

Processes have a coarser granularity and their overall
 execution

 
time may not

 
be known. Processes may 

maintain a separate
 
context through local

 
storage

 
and 

associated control   information. Scheduling objectives 
may also vary. In a multitasking operating system, 
scheduling primarily addresses increasing processor 
utilization and reducing response time.

 
On

 
the

 
other

 hand, scheduling in real-time operating systems
 
(RTOS)

 primarily addresses the satisfaction of
 

timing 
constraints. 

First consider the scheduling without
 
real-time

 constraints. The scheduling
 

objective involves
 

usually 

T 
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Abstract- Software and Hardware synthesis are the major 
subtasks in the implementation of hardware/software systems. 
Increasing trend is to build SoCs/NoC/Embedded System for 
Implantable Medical Devices (IMD) and Internet of Things (IoT) 
devices, which includes multiple Microprocessors and Signal 
Processors, allowing designing complex hardware and 
software systems, yet flexible with respect to the delivered 
performance and executed application. An important 
technique, which affect the macroscopic system 
implementation characteristics is the scheduling of hardware 
operations, program instructions and software processes. This 
paper presents a survey of the various scheduling strategies in 
process scheduling. Process Scheduling has to take into 
account the real-time constraints. Processes are characterized 
by their timing constraints, periodicity, precedence and data 
dependency, pre-emptivity, priority etc. The affect of these 
characteristics on scheduling decisions has been described in 
this paper.



 

 

variety of goals, such as maximizing CPU utilization and 
throughput as well as minimizing response time. 
Scheduling algorithms may be complex, but they are 
often rooted on simple procedures [97]  such as 
shortest job first (SJF) or round robin (RR). The SJF is 
a priority-based algorithm that schedules processes 
according to their priorities, where the shorter the 
process length (or, more precisely, its CPU burst 
length) the higher the priority as shown in Fig. 1. This 
technique arranges the processes with the least burst 
time in head of the queue and longest burst time in tail 
of the queue. This requires advanced knowledge or 
estimations about the time required for a process to 
complete. This algorithm would give the minimum 
average time for a given set of processes, their (CPU-
burst) lengths were known exactly. In practice, 
predictive formulas are used. Processes in a SJF may 
allow preempting other processes to avoid starvation. 

 

Fig. 1: Shortest Job First (SJF) Scheduling 

The round robin scheduling algorithm as 
shown in Fig. 2, uses a circular queue and it 
schedules the processes around the queue for a time 
interval up to a predefined quantum. The queue is 
implemented as a first-in/first-out (FIFO) queue and new 
processes are added at the tail of the queue. The 
scheduler pops the queue and sets a timer. If the 
popped process terminates before the timer, the 
scheduler pops the queue again. Otherwise it performs 
a context switch by interrupting the process, saving 
the state, and starting the next process on the FIFO. 

 

Fig. 2: Round Robin (RR) Scheduling 

Different goals and algorithms characterize 
process scheduling in real-time operating system. 

Schedules may or may not exist that satisfy the given 
timing constraints. In general, the primary goal is to 
schedule the tasks such that all deadlines are met: in 
case  of  success  (failure)  a  secondary  goal  is  
maximizing  earliness  (minimizing tardiness) of task 
completion. An important issue is predictability of the 
scheduler, i.e., the level of confidence that the scheduler 
meets the constraints. 

The different paradigms for process 
scheduling in RTOS can be grouped as static or 
dynamic. In the former case, a schedule ability 
analysis is performed before run time, even though 
task execution can be determined at run time based 
on priorities. In the latter case, feasibility is checked at 
run time.  In either case, processes may be considered 
periodic or aperiodic. Most algorithms assume periodic 
tasks and tasks are converted into periodic tasks when 
they are not originally so.  

Rate monotonic (RM) analysis is one of the 
most celebrated algorithms for scheduling periodic   
processes on a single processor.  RM is a priority-
driven preemptive algorithm.  Processes are statically 
scheduled with priorities that are higher for processes 
with higher invocation rate, hence the name. Liu and 
Lay land showed that this schedule is optimum in the 
sense that no other fixed priority scheduler can 
schedule a set of processes, which cannot be 
scheduled by RM. The optimality of RM is valid under 
some restrictive assumptions, e.g., neglecting context-
switch time. Nevertheless,  RM  analysis  has  been  
the  basis  for  more  elaborate  scheduling 
algorithms. Deadline Monotonic (DM) executes at any 
time instant the instance of the ready task with the 
shortest deadline, first. If two or more tasks have the 
same deadline, then DM randomly selects one for 
execution next. DM becomes equivalent to the RM 
algorithm when the deadlines of tasks are equal to their 
period [95]. 

Process scheduling plays an important role in 
the design of mixed hardware/software systems, 
because it handles the synchronization of the tasks 
executing in both the hardware and software 
components.  For this reason, it is  currently  a  subject  
of intensive research. A description on process 
scheduling is given in the next chapter. 

iii. Process Scheduling 

This section presents various process 
scheduling algorithms available in the literature. Section 
3.1 gives an overview of Real-time system and its 
characteristics have been given in section 3.2.   
Definition and the terminology used in process 
scheduling are given in  section  3.3. Section 3.4  details  
various  approaches  taken  for  real-time scheduling. 
Various   scheduling  schemes  have  been  compared. 
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Also, many references have been suggested for every 
scheduling scheme for an interested reader to get 
more details. 
a) Real-time System 

Real-time systems are broadly classified into 
soft real-time systems and hard real-time systems. In 
soft real-time systems, the tasks have either soft 
deadlines or do not have deadlines at all.  Scheduler performs task scheduling as fast as possible.  If the task with soft deadline finishes late, it does not lead to serious problems, but results in degraded system performance. On the other hand, in hard real-time systems, tasks have timing constraints and if these 
timing constraints are not met, the outcomes may be 
fatal. Missing  the  deadline  of  critical  tasks  leads  to  system  malfunction  or breakdown.  Therefore, 
scheduling algorithm employed for task scheduling in a hard real-time system has to work satisfactorily and 
ensure that every task completes before its deadline. 
In practice, hard real-time systems invariably have many soft real-time jobs and vice versa. 

Clearly, scheduling pure soft real-time tasks is a trivial job and scheduling hard real- time tasks is quite complex. In the remainder of this paper, 
scheduling in hard real-time systems is considered 
only. It is good to note that task scheduling is among 
the most important and critical services real-time 
operating system should provide. Task scheduling in 
hard real-time can be static or dynamic as will be seen 
in this paper.  

b)
 

Characteristics
 
of

 
the Real-Time Tasks 

i.
 
Timing Constraints 

Their
 

timing
 

constraints, precedence 
constraints and resource requirements typically 
characterize real-time tasks.  Real-time

 
tasks

 
should

 have the
 
information

 
about

 
their timing constraints so 

that 
 
they can be scheduled and managed efficiently. 

Various timing parameters used to characterize
 
the

 
hard 

real-time tasks are given below:
 Deadline:

 
Deadline

 
of a request for a task is defined 

to
 

be the time
 
of

 
the next request for a task.  This is 

the
 
time by which the task must finish. 

Response
 

time:
 

The response time
 

of
 

the
 

task
 

is
 the

 
time span between

 
the request and the

 
end of the

 response to that request. 
Arrival time or Release time (r):

 
It is

 
the

 
time

 
at

 
which a 

task
 
is

 
invoked

 
in

 
the system.  

 
However,

 
in

 
many real

 time systems,
 
we do not

 
know the exact instant ri

 
at

 which the task Ji

 
will be

 
released.  We only know,

 
ri
 
is 

in the range [ri
- ri

+],
 
that is,

 
ri
 
can be as early as ri

-

 
and

 as late as
 
ri

+.  This range
 
of

 
r is sometimes called as 

release
 
time

 
jitter or

 
simply jitter. 

Relative Deadline:
 
Relative deadline

 
is

 
the

 
maximum

 allowable response time

 

of the job.

 Ready  time:  It 

 

is 

 

the  earliest 

 

time  at 

 

which 

 

the 

 
task  can  begin  execution. Obviously, the ready time

 

of

 
a task is equal to or greater than the arrival time. 

Execution time:

 

It is

 

the

 

amount

 

of

 

time required

 

to

 
complete the execution

 

of

 

a task when it executes 
alone and has

 

all

 

the resources it

 

requires.  The actual

 
amount

 

of time taken may however differ for many 
reasons.  The

 

actual execution for a task

 

is known

 

only 
after

 

it

 

finishes.  Hence,

 

the execution

 

time

 

is 
mentioned as

 

minimum

 

and maximum execution

 
times. Knowing

 

the

 

maximum execution

 

time

 

is

 
enough for determining whether the task meets its

 
deadline.  Therefore, in many hard real time systems, 
the execution time specifically means its maximum 
execution time. In hard real-time systems, tasks can be 
periodic, sporadic or aperiodic

 

in nature. 

Slack time:

 

Time difference between execution time and 
the deadline

 ii.
 

Periodic Task Model
 The

 
periodic

 
task

 
model

 
is a well-known

 deterministic
 

workload
 

model. With
 

its various
 extensions, the

 
model characterizes accurately many 

traditional hard real-time applications.
 
Many scheduling 

algorithms   based   on   this   model   have   good 
performance and  well-understood 

 
behavior. In this

 model,
 

each
 

computation
 

and data transmission that 
is

 
repeated at regular or semi

 
regular intervals in

 order to provide a function
 

of
 

the system
 

on a 
continuing basis

 
is

 
modeled

 
as a periodic

 
task. 

Specifically, each periodic task,
 

denoted by Ti

 
is a 

sequence
 
of

 
jobs. The period

 
pi

 
of the

 
periodic

 
task

 
Ti

 is
 

the
 

minimum length
 

of all
 

time
 

intervals between 
release times of

 
consecutive

 
jobs

 
in

 
Ti. Its execution 

time is
 
the maximum execution

 
time

 
of all

 
the jobs

 
in

 
it.

 We
 
use

 
ei

 
to denote

 
the execution

 
time

 
of

 
the

 
periodic

 task Ti, as well as
 
that of all

 
the

 
jobs

 
in

 
it.

 
At all

 
times, 

the period and execution
 
time

 
of every periodic task in 

the system are known.
 iii.

 
Aperiodic and Sporadic Tasks 

Aperiodic and sporadic tasks are used to 
characterize the external events to the real- time

 system. Aperiodic and sporadic tasks are the streams 
of aperiodic and sporadic jobs

 
respectively. 

 
The

 release times
 
for aperiodic and sporadic tasks are not

 known
 
a priori.

 Real-time system has to respond to
 

the
 external

 
events

 
while

 
it
 
is executing

 
some other tasks. 

Real-time system executes certain
 

routines
 

in
 response to

 
the external events. These

 
routines

 
or

 tasks
 
to

 
be executed

 
in response to

 
an external

 
event

 may have soft or hard timing constraints.  If the task 
has soft deadline or no deadline, we call it as

 
an

 aperiodic task. 
 

Since the
 

aperiodic tasks have
 

soft
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deadline, we want that the real-time system to be



 

 

  
  

 responsive in a sense that

 

it

 

completes

 

the

 

job

 

as

 soon

 

as possible. 

 

Although late response is annoying, 
it

 

is

 

tolerable, so the need is to

 

optimize the 
responsiveness of

 

the system

 

for aperiodic tasks, but

 never at

 

the expense of

 

the

 

hard real-time tasks whose

 deadlines must be met at all times. 

 
  

  

 

  
 

 

 

 
 

 

 
 iv.

 
Precedence Constraints and Data Dependency 

      
   

     
     

  
 

  
 

v. Functional Parameters 

 
 

 
  

 

 

a. Preemptive Jobs 
   

   
 

      
         

  
   

b. Priority of Jobs  
Priority of the job is the measure of the 

criticality or importance of the job with respect to 
other  jobs in the system.   Higher the priority, the 
larger its importance. Tasks scheduling algorithm 
decisions are mainly based on the priority of the tasks 
and hence  the  priority  assignment  to  the  task  is  
very  important. As we will  see, scheduling  algorithms  
uses  static  and  dynamic  priority  assignment  
schemes  for assigning priority to the tasks. Assigning 
priorities to the tasks so that all tasks meet their 
deadline is a difficult problem and usually some sort of 
heuristic is employed. 

c. Energy Aware Scheduling  
The trend in the industry towards Dynamic 

Power Management (DPM), where hardware 
technologies for dynamic frequency scaling (DVS) and 
dynamic voltage scaling (DVS) are being used to reduce 
the power consumption of individual processing 
elements (PE) at run-time. However, crucial to the 
success of this approach is a presence of intelligent 
software that adjusts the system performance level to 
maximize energy savings while still meeting application 
real-time deadlines.  

Moreover, another trend is to build SoCs/ NoC/ 
Embedded System for Implantable Medical Devices 
(IMD) and Internet of Things (IoT) devices, which 
includes multiple PEs (Microprocessors+DSPs), 
allowing designing complex systems, yet flexible with 
respect to the delivered performance and executed 
application. The energy management of multi-PE SoCs 
should manage several elements with shared resources, 
each running their own OS, and a plurality of both real-
time and non real-time applications. 

Therefore, there is a need to directly address 
the energy problem. Intelligent energy management has 
impact on the hardware as well as on the software 
architecture of system, both implementing an 
infrastructure for energy management. 

The objective of this energy-aware scheduling is 
to design a Generic Adaptive Power optimized design, 
which can be used in IoT and IMD devices. Its main 
purpose is to enable intelligent as well as adaptive 
power management, including the ability to make 
dynamic changes to the voltages and frequencies being 
applied to these devices. Peng et.al (2010) presented a 
novel wireless integrated power management design for 
biomedical telemetry systems. They designed a model 
such that it draws ultra-low standby current [30]. Gaurav 
et.al (2008) evaluated the effectiveness of power 
management using DVFS from a system level energy 
savings perspective [100]. However, simple policies 
they justified their work using benchmarks ranging from 
memory intensive workloads to CPU intensive 
workloads. 
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If the task has hard real-time constraints, it
has to meet its deadline. Failure in meeting deadlines
lead to catastrophic results. Task of recovering from
transient fault in time, for example, should complete
before system goes down. The jobs that execute in
response to these events have hard deadlines. Tasks
containing jobs that are released at random time
instants and have hard deadlines are sporadic
tasks. Sporadic jobs may arrive at any instant, even
immediately after each other. Moreover their execution
times may vary widely, and their deadlines are arbitrary. 
In general, it is impossible for some sporadic jobs to
meet their deadlines no matter what algorithm we use
to schedule them. The only alternatives are (1) to reject
the sporadic jobs that cannot complete in time or (2) to
accept all sporadic jobs and allow some of them to 
complete them. Primary concern for sporadic tasks is
to ensure that their deadlines are always met; 
minimizing their response times is of secondary
concern.

Jobs are said to be independent of each other
if they can execute in any order without affecting the 
end result.  In practice, however, jobs wait for the control
and data inputs from other jobs and hence cannot
execute independently. Therefore, control and data 
dependencies constrain the order in which the 
jobs can execute. Presence of dependency
complicates the job scheduling, especially on a
multiprocessor system.

Though scheduling and resource access-
control decisions are generally taken without 
considering the functional characteristics of the task,
several functional parameters do affect these decisions. 
Therefore, task workload model should explicitly
mention the relevant functional parameters. Following 
functional parameters are generally described in the 
task workload model:

Preemption of the task is provided in the real-
time systems to suspend the execution of the current
job for giving processor to a higher priority or urgent
task. However, some jobs need to be executed from
start to finish without interruption to avoid errors in the
system and to keep the switching overheads to a
minimum. Such jobs are said to be non-preemptive.



 

 

In order to introduce intelligence in any system, 
different learning techniques have been developed so 
far such as TD-learning and Q-learning, which are two 
powerful in terms of saving power. The “wake-up” 
operation after sleep mode creates a significant power-
draw from the battery supply (energy overhead). To deal 
with this issue Siyu et.al (2012) proposed a hybrid power 
supply using continuous Q-Learning and Discrete Q-
Learning for reinforcement learning respectively [101] 
with good improvement in efficiency.

 
Umair and Bernard (2012) proposed a novel, 

model-free RL (reinforcement learning) Technique for 
the power management of a portable traffic monitoring 
system having the computer hardware which is the 
major contributor to the entire power consumption. 
Unlike the previous works they have proposed to use 
Timeout policy for RL in sleep as well as idle state [102]. 
They used MLANN (Multi-layer artificial neural network) 
for the workload estimation as shown in Fig. 3. In 
addition to this they used multiple state update in idle as 
well as sleep modes to increase the convergence speed 
of the algorithm. Their work proves that using Timeout 
policy in idle as well as sleep state is more efficient than 
using Timeout in idle state and N-policy in sleep state. 

Although the DPM techniques effectively reduce 
the power consumption, they do not provide an optimal 
policy to extend the battery service lifetime of the 
battery. Maryam et.al (2013) proposed a power 
management policy claiming to extend the battery 
service lifetime by 35% compared to previous methods 
[103] as shown in Fig. 4. They have presented a model-
free reinforcement learning technique used to define the 
optimal battery threshold value for a closed loop policy 
and used the same to specify the system active mode. 
Their power manager automatically adjusts the power 
management policy by learning the optimal timeout 
value. It performs power management in an “event-
driven” and “continuous-time” manner. Their algorithm 
has a fast convergence rate and has less reliance on the 
Markovian property.  

 

Fig. 3:

 

ML-ANN based Workload Estimator

 

 

 

Fig. 4: Model-free Reinforcement Learing based    
Energy saving 

M. Triki et.al (2015) proposed a novel, online, as 
well as adaptive RL based hierarchical approach to 
directly schedule the service request traffic that reaches 
the power managed components through SFC [104], 
using the technique is robust and has a faster 
convergence rate, the authors performed continuous 
time and event driven power management using the 
same. They were able to achieve a maximum energy 
saving of almost 63% during testing. 

Based on the literature survey it is seen that a 
lot of work has been done in DPM for portable systems. 
Various low power design techniques have been used at 
circuit level to manage power consumption in IMDs in 
[18][20][27]. However no or very less work has been 
done in Power Management in IMDs at architectural 
level. Hence, there is a scope to work in this area. 

c) Process Scheduling Techniques 
Process scheduling involves allocating the 

tasks (ready for execution) to the available hardware  
resources.  As the available hardware resources are 
often less in number than  the  tasks,  tasks  compete  
for  it  and  the  winner  is  scheduled  for  execution. 
Optimal task scheduling algorithm is a one that always 
keeps the available hardware resources occupied with 
tasks. The basic goal of any scheduling algorithm  is  
to maximize the processor utilization.  If the processor 
utilization is equal to or less than 1, then  the  schedule  
is  said  to  be  feasible.  

The  complexity  of  the  scheduling algorithm  
increases  when many tasks  are to be scheduled  on  
a  large  number  of processing  elements. In  such  
systems,  complexity  of  the  scheduling  algorithm 
decides the overall system performance.
 Scheduling the tasks on more than one 
processor is a NP-complete problem and no optimal 
solution exists for such a system. Therefore, heuristics 
are applied. 
      i.   Terminology used in Scheduling  

         a.    Scheduler  
Scheduler is a module that schedules tasks 

using some scheduling algorithms and resource 

© 2017   Global Journals Inc.  (US)
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access-control protocols.

Next arrival 
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        b.   Schedule  
By schedule it means assignment of

 

the

 

jobs

 to the available processors

 

as per the guidelines from 
the scheduler.

 c.

  

Feasible Schedule  
A feasible schedule is a one that schedules the 

set of tasks meeting their deadlines. The feasible 
schedule is represented by timed labeled transition 
system. 

d.

 
Optimal Scheduling or Scheduler  

A scheduling algorithm

 

or scheduler (static or 
dynamic) is said

 

to

 

be

 

optimal if

 

it always constructs a 
feasible schedule for every task that has feasible 
schedule.

 A static scheduling algorithm
 

is said
 

to
 

be
 optimal if, for any set of tasks, it always produces the 

feasible schedule whenever any other algorithm can    
do so.

 A dynamic
 
scheduling algorithm

 
is said to

 
be

 optimal
 

if
 

it
 

always produces a feasible schedule 
whenever a static scheduling

 
algorithm

 
with

 
complete

 prior
 
knowledge

 
of

 
all the possible tasks can do so.

 An
 
aperiodic scheduling algorithm

 
is

 
optimal if

 it
 
minimizes

 
wither

 
the response time of

 
the

 
aperiodic

 job
 
or

 
the average

 
response time

 
of

 
all

 
the aperiodic

 jobs
 
for a given task set.

 An
 
algorithm

 
for

 
scheduling sporadic

 
jobs

 
is

 optimal
 

if
 
it
 

accepts each
 
sporadic job newly offered 

to
 
the system and schedules the

 
job

 
to complete

 
in

 time
 

if and only if the new job can be correctly 
scheduled.

 
e.

 
Static Scheduling Algorithm  

A scheduling algorithm
 
is said

 
to

 
be static

 
if
 priorities are assigned to tasks once and for all.  A 

static priority algorithm
 

is said
 

to
 

be fixed-priority 
scheduling algorithm also.

 
f.  Dynamic Scheduling Algorithm  

A scheduling algorithm is said to be dynamic if 
priorities of tasks might change from request to request. 

g.  Mixed Scheduling Algorithm  
A scheduling algorithm is said to be mixed 

scheduling algorithm if the priorities of some of the 
tasks are fixed yet the priorities of the remaining tasks 
vary from request to request. 

     ii.    Definition of Scheduling Problem  
Task Scheduling involves determining the 

schedule, for a set of given tasks, such that the timing 
constraints, precedence constraints and resource 
requirements for the tasks are met and to compute the 
schedule if it is found to exist. 

Real-time system has a mix of periodic and 
non-periodic (aperiodic and sporadic) tasks.  Out of 
which periodic and sporadic tasks have hard 

deadlines to follow while aperiodic tasks have soft  
deadlines.   The basic aim of any scheduling algorithm 
or scheme  is  to  model  these  task  characteristics  
with  various  changing  parameters. Therefore, 
scheduling scheme should provide following things: 
1. Assumptions made for the tasks. 
2. Scheduling of non-periodic tasks that include soft 

aperiodic and hard sporadic tasks. 
3. Schedulability test and analysis. 
4. Performance analysis. 

a. Schedulability Analysis 
Its required to analyze  schedulability  to  

determine  whether  a  set  of  tasks  meets  its  timing 
constraints. 

One way  to  analyze  schedulability  is  to  
compute  the  worst  case  response  time (WCRT) of 
each task as proposed in Balarin, L. Lavagno, Murthy 
and Vincentelli [2]. A task’s WCRT is the maximum 
possible length of an interval that begins with the task 
being enabled and ends with the task completing its 
execution.  It includes both the task’s runtime and 
interference from other tasks. The WCRT concept is 
useful regardless of the scheduling approach. 

However, finding WCRT for a real life 
embedded system is a difficult task due to the 
presence of varying parameters like runtimes, 
dependency between tasks, and non- periodic events 
in the environment.  

b. Performance Analysis of Scheduling Algorithms 
Performance analysis of scheduling algorithm 

is required to find out its effectiveness in scheduling the 
set of tasks.  The most often used measure of the 
performance is the ability of the scheduling algorithm to 
find out the feasible schedule for a set of tasks 
provided such a schedule exists.  Schedulable 
utilization and fast response time to urgent tasks are 
also used as main performance measures. Other 
commonly used performance measures include 
maximum and average tardiness, lateness, and 
response time and the miss, loss, and invalid rates. 
Generally, only the relevant performance measures are 
used in the performance analysis of a particular 
scheduling algorithm.  This depends on the task 
characteristics and the environment. 

d) Approaches Taken to Real-Time Scheduling 
The approaches taken to real-time scheduling 

can be broadly classified into three categories:   
clock-driven scheduling, round robin scheduling and 
priority-driven scheduling. Priority driven scheduling can 
be further classified into fixed  and dynamic priority 
scheduling.  The scheduling scheme may support 
either preemptive or non-preemptive scheduling etc.  
The scheduling algorithms found in the literature target  
the  topic  of  scheduling  the  hybrid  of  real-time  
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periodic  and  non-periodic (aperiodic and sporadic) 
tasks with hard or soft deadlines respectively. In 
literature the work of scheduling covers specific cases 
of uniprocessor, multiprocessor and distributed 
systems  (with identical or heterogeneous processors). 
Each scheduling algorithm assumes certain task 
characteristics.  Some assumptions are often made for 
the real-time task [9] that may include: 

The real time tasks with hard deadlines are periodic. 
The tasks are independent i.e. the tasks 

release time does not depend on the initiation or 
completion of other tasks. 

Run-time for each task remain constant; run-
time here means the time taken by the processor to 
execute the task. 

Any  non-periodic 
 
(aperiodic  and  sporadic) 

 tasks  are  special  cases;  they  are initialization and 
failure-recovery routines; and do not have hard 
deadlines. All

 
parameters

 
of

 
the

 
periodic jobs

 
are

 
known

 a priori.  In particular, variations
 

in the inter-release 
times in any periodic job are negligibly small.

 
Different scheduling algorithms try to relax one 

or more of the above assumptions so as to make the 
task model more realistic. The way the aperiodic and 
sporadic tasks are scheduled distinguishes various 
scheduling schemes. 

i. Static and Dynamic Task Scheduling 
Task scheduling in hard real-time system can 

be either static or dynamic.   In static task scheduling, 
the schedule for the tasks is prepared offline and 
requires complete prior knowledge of the task 
characteristics.  In dynamic task scheduling, on the 
other hand, tasks are accepted for scheduling  during 
run-time (if a feasible schedule is obtained). If  the  
tasks’  characteristics  are  well  known  and  doesn’t  
vary,  static scheduling schemes always produce 
feasible schedule.   We can use complex static 
scheduling scheme, as schedule is computed offline. 
However, static scheduling schemes are inflexible and 
cannot adapt to changing environment. The schedule 
needs to be recomputed if the system is reconfigured.  
In contrast, dynamic schemes have high  run-time cost 
as the schedule is found on the fly. However, they 
are flexible and can easily adapt to the changes in the 
environment. 

      ii.   Preemptive vs. Non-preemptive Scheduling  
Most of the scheduling algorithms assume 

that the tasks are preemptive.  However, non-
preemptive scheduling of a set of periodic and sporadic 
tasks on a uniprocessor is important for variety of 
reasons such as: 

In  many  practical  real-time  scheduling  
problems  such  as  I/O  scheduling, properties of  
device  hardware and software either make 
preemption

 

impossible

 

or prohibitively expensive. 

easier

 

to

 

implement than preemptive algorithms, and 
can exhibit dramatically lower overhead at runtime. 

 
       

   
  

  
    

 
The

 

problem

 

of scheduling

 

all

 

tasks

 

without

 
preemption

 

forms

 

the

 

theoretical basis for

 

more 
general tasking models that include shared

 

resources.

 Jeffay 

 

et 

 

al.  [17] 

 

focus 

 

on 

 

scheduling 

 

a 

 

set 

 of  periodic 

 

or  sporadic 

 

tasks 

 

on 

 

a uniprocessor 

 without

 

preemption and without

 

inserted

 

idle

 

time. 
The

 

paper gives necessary and sufficient

 

set

 

of

 conditions C for a set

 

of periodic

 

or sporadic

 

tasks

 

to 
be schedulable for arbitrary release time

 

of

 

the tasks.  
They have shown that a set of periodic or sporadic 
tasks that

 

satisfy C can be scheduled with an earlier-
deadline-first (EDF) scheduling algorithm.  For a set of

 sporadic tasks

 

with specified release times conditions 
C are necessary and sufficient for  schedulability. 
However, for sets

 

of periodic  tasks  with 

 

specified 

 
release 

 

times, 

 

conditions 

 

C 

 

are  sufficient 

 

but 

 

not 
necessary. 

iii.
 

Clock-driven Scheduling
 In clock-driven

 
scheduling,

 
the

 
jobs are 

scheduled by the scheduler
 
at

 
specific

 
time instants. 

These time instants
 

are chosen a priori before the 
system starts execution. The

 
timing instants

 
may or 

may not
 
be at regular intervals. 

 
All

 
the parameters of 

hard real-time
 
jobs

 
should

 
be

 
fixed and known 

 
before

 hand. In other words, the
 

clock driven scheduling is 
possible for a system

 
that is by and large deterministic. 

To
 
keep the information

 
ready for the scheduler,

 the schedule for the jobs is computed off-line and is
 stored in

 
the form of a table for use at run-time. Each 

entry in
 

this table gives time instant at which a 
scheduling decision

 
is made.  Scheduler makes use

 
of

 a timer. 
 

Upon
 

receiving a timer
 

interrupt,
 

the
 scheduler sets

 
the

 
timer

 
to expire

 
at

 
the next decision

 instant (from
 
the

 
table

 
entry).  When

 
the

 
timer expires

 again,
 
scheduler repeats this operation.

 
iv. Weighted Round Robin Scheduling 

The round robin approach is commonly used 
for scheduling time-shared applications. When jobs are 
scheduled on a round robin basis, every job joins a 

© 2017   Global Journals Inc.  (US)
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The overhead of preemptive algorithms is 
more difficult to characterize and predict than that of
non-preemptive algorithms. Since scheduling overhead
is often ignored in scheduling models, an
implementation f a non-preemptive scheduler will be 
closer to the formal model than an implementation of a
preemptive scheduler.

Non-preemptive scheduling on a uniprocessor 
naturally guarantees exclusive access  to  shared  
resources  and  data,  thus  eliminating  both  the  
needs for synchronization and its associated overhead.

Non-preemptive scheduling algorithms are 



 

 

First-in-first-out (FIFO) queue when it becomes ready 
for execution.  The job at the head of the queue 
executes for at most one time slice.  If the job does 
not complete by the end of the time slice, it is 
preempted and placed at the end of the queue to wait 
for its next turn. When there are n ready jobs in the 
queue, each job gets one time slice every n time 
slices, that is every round.  In essence, each job gets 
1/nth share of the processor when there are n jobs 
ready for execution.  The problem with round robin 
scheduling is that it provides poor service to urgent 
tasks.  It is possible that even the most urgent task 
needs to wait for all other tasks to execute before it 
gets its turn.  Thus to satisfy the timing constraints a 
very fast processing unit may be  necessary, which 
may not be available.  Then round robin may not 
produce the feasible schedule. 

Therefore, weighted round robin scheduling 
scheme is used.   It builds basic round robin scheme.   
Rather than giving all the ready jobs equal shares of 
the processor, different jobs may be given different 
weights.  Here, the weight of a job refers to the fraction 
of processor time allocated to the job.  By adjusting the 
weight of the jobs, we can speed up or retard the 
progress of each job toward its completion. 

If round robin scheme is used to schedule 
precedence constrained jobs; the response time of a 
chain of jobs can be unduly large.  For this reason, the 
weighted round robin approach is not suitable for 
scheduling such jobs.  On the other hand, a successor 
job may be able to incrementally consume  what a 
predecessor produces.   In this case, weighted  round  
robin  scheduling  is  a reasonable  approach,  since  a  
job  and  its successors can execute concurrently in a 
pipelined fashion. 

v. Priority Driven Scheduling 
The term priority-driven algorithms refer to a 

large class of scheduling algorithms that never leave 
any processor idle intentionally. Priority driven 
algorithms assign priorities to the tasks either statically 
or dynamically. Scheduling decisions are taken when 
events such as releases and completions of jobs occur 
and hence priority-driven algorithms are also known as 
event-driven.  As any scheduling decision time, the jobs 
with the highest priority are scheduled and executed on 
the available processors. 

Compared with the clock-driven approach, the 
priority-driven scheduling approach has many 
advantages. Many well-known priority-driven 
algorithms use very simple priority assignments, and   

for  these  algorithms,  the  run-time  overhead  due  

to maintaining a priority queue of ready jobs can be 

made very small. A clock-driven scheduler requires the 

information on the release times and execution times 
of the jobs a priori in order to decide when to schedule 

them. In contrast, a priority-driven scheduler does not 
require most of this information, making it much better 
suited for applications with varying time and resource 
requirements. 
  Despite its merits, the priority-driven approach 
has not been widely used in hard real- time systems, 
especially safety-critical systems, until recently. The 
major reason is that the timing behavior of a  priority-
driven system is non-deterministic when job 
parameters vary. Consequently, it is difficult to validate 
that the deadlines of all jobs scheduled  in  a  priority-
driven  manner  indeed  meet  their  deadlines  when  
the  job parameters vary. 

vi. Static or Fixed Priority Scheduling Algorithms 
One way of building hard real-time systems is 

from a number of periodic and sporadic tasks and a 
common way of scheduling such tasks is by using a 
static priority pre- emptive scheduler; at runtime the 
highest priority runnable job is executed. Rate- 
Monotonic  scheduling  scheme  proposed  by  Liu  
and  Layland  [9]  and  Deadline- Monotonic scheme 
proposed by Leung [62] are used to assign static 
priorities to the real-time jobs.  In this section, both 
these scheduling schemes are explained and how they 
are used to schedule periodic and non-periodic jobs is 
covered. 

a.  Rate Monotonic Priority Assignment 
Liu and Layland [9] in 1973 proposed a fixed 

priority scheduling scheme known as Rate Monotonic 
Scheduling. In rate monotonic priority assignment, 
priorities are assigned  to tasks  according to  their  
request  rates,  independent of  their  runtimes. 
Specifically, tasks with higher request rates will have 
higher priorities. They also derived a schedulability 
analysis that determines if a given task set will always 
meet all deadlines under all possible release 
conditions.  However, original rate monotonic scheme 
had several restrictions: 
All tasks are independent to each other and they cannot 
interact. 
All tasks are periodic. 
No task can block waiting for an external event. 
All tasks share a common release time (critical instant). 
All tasks have a deadline equal to their period. 

Liu & Layland’s work has had a wide impact on 
research in real-time computing and embedded 
systems. However, every assumption of their model is 
violated to some extent in the design of embedded 
systems. 

Tasks are rarely independent and generally 
events in the environment or execution of other tasks 

invoke them.  In many systems, request for tasks do 
not arrive at regular periods.   Only some constraints 

on the request rate are known.   In many low-cost 
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embedded systems preemption cost is not affordable 
due to context switch overhead. In addition, tasks’ 
runtime is almost never constant.  It may vary with 
different input patterns as well as with the state of the 
task. 

Because of all the above real life issues, 
research community has come up with more realistic 
models  in which some of the assumptions of Liu and 
Layland have been relaxed. 

The first assumption that tasks cannot interact 
has been removed by Sha et al. [31]. Sha also 
provided a test to incorporate processes that 
synchronize using semaphores in [47]. Sha [31] 
addresses the issue of priority inversion                   
(if synchronization primitives like semaphores, monitors 
and ada task model [47] are directly applied). Two 
priority inheritance protocols called the basic  priority 
inheritance protocol and Priority Ceiling Protocol (PCP) 
have been presented.  This protocols also shown to 
avoid deadlocks. Baker [15] proposes a Stack 
Resource Policy (SRP) which is a resource allocation 
policy that permits processes with different priorities to 
share a single runtime stack.  SRP is a refinement of 
PCP [31], which strictly bound priority inversion and 
permits simple schedulability analysis.  The related 
work on this topic can also be found in [12, 48, 49]. 

Sha [61] reported work that includes test to 
allow aperiodic processes to be included in the theory. 

Rajkumar [58] used external blocking  (i.e.  

when  a  task  is  blocked  awaiting  an external  event)  

with  the  Rate  Monotonic  approach  to  model  the  

operation  of  a multiprocessor priority ceiling protocol 

[12] and provided schedulability analysis to bound its 
effects. 

The restriction that tasks are assumed to 

share a common critical instant has been relaxed by 
Audsley [57]. 

Leung [62]
 

suggested a Deadline-Monotonic
 

priority assignment that removed
 

the constraint
 

that
 

the deadline and period
 
of a process

 
must

 
be

 
equal. 

 

Audsley et
 

al. [7] provided schedulability test for the 
scheme proposed by Leung. 

b.
 
Deadline Monotonic Priority Assignment 

In deadline-monotonic scheduling theory, 
processes

 
to

 
be scheduled

 
are

 
characterized by the

 

following relation:
 

Computation time <= deadline <= period
 

Deadline
 

monotonic 
 
priority  assignment  is 

 

similar 
 

in 
 

concept 
 

to 
 

rate-monotonic priority 
assignment. 

 
Priorities assigned

 
to

 
processes are 

inversely proportional
 
to

 
the length

 
of

 
the deadline

 
[62]. 

 

Thus,
 

the process with
 

the
 

shortest deadline
 

is
 

assigned the
 
highest

 
priority and the longest  deadline 

process
 

is
 

assigned
 

to
 

lowest priority. This  priority 

assignment  defaults  to  a  rate-monotonic  assignment  
when  period  = deadline. 

Deadline monotonic priority assignment is 
shown to be optimal static priority scheme [62].   The  
implication of this is that if any static priority 
scheduling algorithm can schedule  a  process  set  
where  process  deadlines  are  unequal  to  their  
periods  an algorithm using deadline-monotonic priority 
ordering for processes will also schedule that process 
set. 

Audsley et al. [7] also showed that since 
deadline-monotonic scheme guarantees that 
computation time is less than or equal to deadline, it is 
possible to schedule sporadic tasks within the existing 
periodic framework.  They also discussed problems 
involved for guaranteeing deadlines of sporadic 
processes using sporadic servers within the rate-
monotonic scheduling framework. 

c. Related Work 
Lehoczky [14] considers the problem of fixed 

priority scheduling of periodic tasks with arbitrary 
deadlines and an exact schedulability criterion has 
been developed. A worst case bound for the case of 
rate-monotonic scheduling is developed generalizing 
the original bounds of Liu and Layland in that the tasks 
are allowed to have deadlines D =  ∆T for any   ∆  > 0.  
The bounds show that when one additional period     
(∆ = 2) is given to tasks to complete their computation 
requirement, the worst case schedulable utilization 
increases from 0.693 to 0.811. Also, average 
schedulable utilization is shown to have increased from 
0.88 to over 0.95 that often goes to 1.00. 

Audsley et al. [20] have given exact 
schedulability analysis for real-time systems scheduled  
at  runtime  with  static  priority  preemptive  scheme. 
Exact analysis  of sporadic tasks is given and analysis 
extended to include release jitter. Schedulability 
analysis to predict worst case response times for a set 
of periodic and sporadic tasks under any given priority  
assignment and scheduled by a static priority 
preemptive scheduler can be found in [20]. 

Lehoczky et al [63] provides an exact 
characterization and stochastic analysis for a randomly 
generated set of periodic tasks scheduled by rate-
monotonic algorithm. 

Shih et al. [65] presents modified rate-
monotonic algorithm for scheduling periodic jobs with 
deferred deadlines.  The deadline of the request in any 
period of a job with deferred deadline is some time 
instant after the end of the period.  The paper describes 
a semi-static priority-driven  algorithm  for  scheduling 
periodic  jobs  with  deferred deadlines: each job is 
assigned two priorities, the higher one of the old request 
and the lower  one  for  the  current  request. The 
optimal schedulability  analysis  and  the applications 
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where the algorithm will be useful are also discussed. 



 

 

  Predictive
 
periodic

 
and non-periodic algorithms

 are given by Singh [64].  A predictive preemptive 
scheduling algorithm avoids unnecessary 

 
preemption 

 while 
 

a 
 

non-preemptive algorithm
 
is

 
predictive

 
in a 

sense that
 

it
 

looks
 

for
 

future task arrival
 

times and 
schedules them non-preemptively. 

Recent
 

work
 

on scheduling has focussed
 

on
 scheduling of flexible applications

 
(or imprecise

 computation). The
 

work
 

in [28,30,38-46,54]
 

provides
 sufficient

 
material for the interest reader.

 
d.

 
Scheduling Non-Periodic Tasks in Fixed Priority 
Real-Time Systems 

Till
 
now, the focus was only on

 
the scheduling

 of periodic tasks.  In practice, real- time systems 
comprise of a hybrid

 
of hard periodic

 
jobs and 

soft/hard aperiodic
 

jobs. The
 

mixed scheduling 
 problem is

 
important, because many real-time

 systems have substantial aperiodic task workloads. 
Aperiodic job and sporadic job scheduling 

algorithms are solutions to the following problems: 
1. Sporadic job scheduler decides  whether to  

accept or reject the newly arrived sporadic job 
depending on its execution time and the deadline.  
If it accepts a job, it schedules  a  job  such  that  
all  other  hard  deadline  periodic  tasks  and  
previously accepted sporadic tasks meet their 
deadlines.   Here the problem lies in determining 
how to do acceptance test and how to schedule 
accepted sporadic jobs. 

2. Aperiodic job scheduler tries to complete each 
aperiodic job as early as possible. The problem 
with this scheduler is to do so without causing 
other hard periodic and sporadic tasks to miss 
their deadline.  Obviously, average response time 
is a measure of performance of these schedulers. 

Within  the  framework  of  fixed  priority  
preemptive  scheduling,  a  number  of approaches 
have  been developed for scheduling mixed task sets.   
The simplest and perhaps  least  effective  of  these  is  
background  scheduling  of  aperiodic  tasks.  In 
background scheduling, soft deadline tasks are 
executed at a lower priority than any hard deadlines 
tasks.  Clearly, this method always produces correct 
schedules and is simple to implement.  However, the 
execution of aperiodic jobs may be delayed and their 
response times prolonged unnecessarily.  An obvious 
way to make the response times of aperiodic jobs as 
short as possible is to make their execution interrupt 
driven. 

Whenever an aperiodic job arrives, the 
execution of periodic tasks is interrupted, and the 
aperiodic job is executed.  However, if aperiodic tasks 
always execute as fast as possible, periodic tasks may 

miss some deadlines.  Another approach for 
scheduling aperiodic tasks is to use a periodic task 
that looks for the ready aperiodic tasks in an aperiodic 
task queue. Such a  periodic task is called as polling 
server. A polling server has a fixed priority level (usually 
the highest) and an execution capacity.  The capacity 
of the  server is calculated off-line and is normally 
set to the maximum possible, such that the hard task 
set, including server, is schedulable.  At run-time, the 
polling server is released periodically and its capacity is 
used to service soft real-time tasks.  Once this capacity 
has been exhausted, execution is suspended until it 
can be replenished at the server’s next release.  The 
polling server will usually significantly improve the 
response times of soft tasks over background 
processing.  However, if the ready soft tasks exceed the 
capacity of the server, then some of them will have to 
wait until its next release, leading to potentially long 
response times.  Conversely, no soft tasks may be 
ready when the server is released, wasting its high 
priority capacity. 

This drawback is avoided by the Priority 
Exchange, Deferrable server [60, 67, 68] and Sporadic 
servers [61,68] algorithms.  These are all based on 
similar principles to the polling server. However,  they 
are able to preserve capacity if no soft tasks are 
pending when they are released.  Due to this property, 
they are termed as “bandwidth preserving algorithms”. 
These three algorithms  differ in  the  ways  in  which  
the capacity of the server is preserved and replenished 
and in the schedulability analysis needed to determine 
their maximum capacity. 

In  general,  all  three  offer  improved  
responsiveness  over  the  polling  approach. However, 
there  are still disadvantages with these more complex 
server algorithms. They are unable to make use of  
slack time that may be present due to the often 
favorable  phasing  of  periodic  tasks. Further,  they  
tend  to  degrade  to  providing essentially the same 
performance as the polling server at high loads.   The 
deferrable and  sporadic servers  are  also  unable  to  
reclaim  spare  capacity gained,  when  for example, 
hard tasks require less than their worst case 
execution time. This spare capacity  termed  gain  time,  
can  however  be  reclaimed  by  the  extended  priority 
exchange algorithm [69]. 

Chetto [66] and Lehoczky [18] proposed the 
slack stealing algorithm.  This algorithm uses the  
strategy to make use of the available slack times of 
periodic and sporadic jobs to complete aperiodic jobs.  
The slack stealing algorithm suffers from none of the 
above disadvantages.  It is optimal in the sense that it 
minimizes the response times of soft aperiodic tasks 
amongst all algorithms that meet all hard periodic task 
deadlines. The slack stealer services aperiodic 
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requests by making any spare  processing time 
available as soon as possible.   In doing so, it 
effectively steals slack from the hard deadline periodic 
tasks. 

In [22], Davis et al. presents new analysis 
that allows the slack available on hard deadline 
periodic and hard deadline sporadic tasks to be 
calculated. The analysis caters for tasks that have 
release time jitter, synchronization, stochastic 
execution times and arbitrary deadlines.  Further 
extension to the basic slack stealing work can be found 
in [21,25]. 

vii.  Dynamic Priority Scheduling Algorithms:  EDF, LST  

Now
 
the turn comes to

 
the

 
study of dynamic

 

scheduling algorithms
 
that we call

 
the deadline driven 

scheduling algorithm. 
 

As said earlier, processor 
utilization

 
increases by use of

 
the dynamic  scheduling 

 

schemes. In this section,  the dynamic priority 
assignment scheduling schemes used in the

 
literature is 

studied. 
 

 

Liu and Layland [9], proposed
 

an Earlier-
Deadline-First EDF scheduling scheme. Using

 
this 

 

algorithm, priorities are assigned to tasks according 
to

 
the deadlines of their current requests.  Specifically, 

a task will
 

be assigned the highest priority if
 

the 
deadline

 
of

 
its current request is

 
the nearest, and will

 
be

 

assigned the lowest priority if the  deadline  of 
 

its 
 

current  request  is 
 
the 

 
furthest. Such 

 
a  method 

 
of 

 

assigning priorities to
 
the tasks is a dynamic

 
one, in

 

contrast to a static  assignment in
 

which priorities of
 

tasks do not change with
 
time. Schedulability analysis 

 

to determine whether a given task
 

set can be
 

scheduled by EDF is given in
 
[9].

 
An

 
EDF algorithm is 

 

optimal
 

for
 

scheduling preemptive
 

jobs
 

on
 

one
 

processor. However,
 

it
 

is
 

non- optimal when jobs are 
non-preemptive or when there is more than one 
processor [96].

 

 

Another
 
well-known dynamic-priority algorithm 

is
 
the Least-Slack-Time-First (LST) [48] algorithm.  

 
At

 

time
 
t,

 
slack of a job

 
whose

 
remaining execution

 
time

 

is x and whose deadline
 
is d is equal to d - t - x. 

 
The

 

LST scheduling algorithm checks
 
the slacks

 
of all

 
the

 

ready jobs each time a new job
 
is

 
released and orders 

the new job and the existing
 
jobs

 
on

 
the basis

 
of

 
their 

slacks: the  smaller the slack,
 

the higher the priority. 
 

Like EDF, LST algorithm
 
is also optimal for scheduling 

preemptive
 
periodic jobs [95]

 
on one 

 
processor 

 
but 

 

non-optimal  for 
 
scheduling 

 
non-preemptive 

 
jobs 

 
or 

multiprocessor scheduling.
 

  

As dynamic priority-driven scheduling schemes 
makes a better processor utilization, many  approaches  
have been  reported  in  the  literature  that  cover  the  
problem  of scheduling the soft /  hard aperiodic jobs 
in the dynamic priority-driven framework. Chetto  and  
Chetto  [66]  studied  the  localization  and  duration  of  
idle  times  and proposed  an  algorithm  for  
scheduling  hard   aperiodic  tasks.  Chetto’s  algorithm 
requires that the periodic task deadlines be equal to 
their periods, and assumes that when any hard 
aperiodic task arrives and is required to run, all the  
aperiodic tasks previously accepted have completed 
their execution.  Schwan and Zhou [70] relax the above  
assumptions  and  propose  a  joint  algorithm  in  
which  every  task,  whether periodic or aperiodic, is 
subject to an acceptance test upon arrival. 

Work has been carried out for dynamic priority 
versions of deferrable server, sporadic servers and 
other bandwidth preserving algorithms, as is found in 
the fixed priority schemes. Three server mechanisms 
under EDF have been proposed by Ghazalie and 
Baker [68].   The authors describe a  dynamic version 
of the known Deferrable and Sporadic  servers  [61],  
called  Deadline  Deferrable  server  and  Deadline  
Sporadic Server respectively.  Then, the later is 
extended to obtain a simpler algorithm called Deadline 
Exchange Server.   Later, Spuri and Buttazzo [72,73], 
presented five new online algorithms for servicing soft 
aperiodic tasks  scheduled using EDF. They presented 
following algorithms: 
1. Dynamic Priority Exchange, an extension of previous 

work under RM. 
2. A new bandwidth-preserving algorithm called as 

Total Bandwidth Server. 
3. Earliest-Deadline-Last (EDL) Server. 
4. Improved Priority Exchange with less runtime 

overhead and 
5. Dynamic Sporadic Server (DSS) Algorithm. 

Spuri et al in [29], extended the Total 
Bandwidth Sever algorithm to handle hard aperiodic 
tasks and to deal with overload situations. Total 
Bandwidth approach was further expanded toward 
optimality by Buttazzo and Sensini [51,74].  They 
provided a general method for assigning deadlines to 
soft aperiodic requests. 

Homayoun et al [56] combine the EDF 
algorithm for scheduling periodic tasks with the 
deferrable server for servicing aperiodic tasks. An online 
algorithm for scheduling sporadic tasks with shared 
resources in hard real-time systems has been 
presented in [75]. Jeffay [75] describes a method, 
the  Dynamic Deadline Modification (DDM) protocol,  
for  scheduling  sporadic  tasks  with  shared  
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resources  under  the  Earliest Deadline First (EDF) 
scheduling algorithm. Baker [15] proposed a general 
resource access protocol, the Stack Resource Policy 
(SRP), which can be used under fixed as well as 
dynamic priority assignments. Group Priority Earliest 
Deadline First (GPEDF) performs schedulability test 
prior to grouping a particular job. In the GPEDF, jobs 
with short execution time are executed first in the group, 
which leaves more time for other jobs to execute. This 
allows more jobs to be completed, the response is 
reduced. [96]. 

In  [71],  Caccomo  et  al  extended  the  
analysis  to  deal  with  dynamic  deadline 
modifications,  in  order  to  use  the  tunable  Total  
Bandwidth  server  [51,74],  for improving aperiodic 
responsiveness in the presence of resource constraints. 

Kim et al [76-78], discuss two scheduling 
algorithms known as Alternative Priority Scheduling 
(APS) and Critical Task Indication (CTI) algorithms. 

Buttazzo [50] proposes a variant of earliest 
deadline first scheduling algorithm which exploits skips 
to minimize the response time of aperiodic requests in 
a firm real-time system. 
    viii.   Scheduling in Multiprocessor Systems 

a. Introduction 
Thus far we have seen about the scheduling 

algorithms without considering the case where the real-
time system has more than one processor.                   
A multiprocessor system is classified  into  the  shared-
memory  and  distributed-memory  systems. A  shared- 
memory multiprocessor model is a centralized system 
as the processors are located at a single point in the 
system and the inter-processor communication cost is 
negligible compared to the processor  execution cost.   
The distributed-memory multiprocessor model,  also  
known  as  distributed  system,  is  one  in  which  the  
processors  are distributed at different points in the 
system and the  inter-processor communication cost is 
not negligible compared to the processor execution 
cost.  A local area network is an example of such 
system. 

Scheduling  scheme  for  multiprocessor  
systems  has  to  provide  solutions  for  the problems 
that arise in the multiprocessor environments.  Firstly, 
task assignment is an important problem in 
multiprocessor systems.  Most hard real-time systems 
built to date are static, that is jobs or tasks are 
partitioned and statically bound to processors. The 
task assignment problem is concerned with how to 
partition the system of tasks and passive resources 
into modules and how to assign the modules  to 
processors. Second problem is the inter-processor 
synchronization.  Some kind of synchronization protocol  
is  needed  to  ensure  that  precedence  constraints  
of  jobs  on  different processors are always satisfied.  

Finally, in a distributed real-time system, tasks may 
arrive unevenly at the nodes (processors) in the system 
and / or processing power may vary  from  node  to  
node,  thus  getting  some  nodes  temporarily  
overloaded  while leaving others idle or under-loaded.  
Many load sharing (LS) algorithms have been 
proposed in the literature to counter this problem. 

Scheduling schemes for multiprocessor system 
has to take into account the following important 
factors: memory and resource utilization, deadlock 
avoidance, precedence constraints, and 
communication delay. Because of all these 
complicating factors, the development of appropriate 
scheduling schemes for multiprocessor real-time 
systems is problematic, it is known that optimal 
scheduling for multiprocessor systems is NP hard. It is 
therefore necessary to look for ways of simplifying 
the problem and algorithms that give adequate sub-
optimal results. 

b. Scheduling Problem Definition for Multiprocessor 
Systems 
The problem  of  multiprocessor  scheduling  is  

to  determine  when  and  on  which processor a given 
task executes. This can be done either statically or 
dynamically. In static algorithms, the assignment of 
tasks to processors and the time at which the tasks start 
execution are determined a priori.  Static algorithms 
[19], [37] are often used to schedule periodic tasks 
with hard deadlines. The main advantage is that, if a 
solution is found, then one can be sure that all 
deadlines will be  guaranteed. However, this approach 
is not applicable to aperiodic tasks whose 
characteristics are  not known a priori.  Scheduling 
such tasks in a multiprocessor real-time system 
requires dynamic scheduling algorithms. In dynamic 
scheduling [4], [53], when new tasks arrive, the 
scheduler  dynamically  determines  the  feasibility  of  
scheduling  these  new  tasks without  jeopardizing  the  
guarantees  that  have  been  provided  for  the  
previously scheduled tasks. Thus, for predictable  
executions, schedulability analysis must be done 
before a task’s execution is begun. 

Dynamic scheduling  algorithms  can  be  
either  distributed  or  centralized.  In  a distributed 
dynamic scheduling scheme, tasks arrive 
independently at each processor. When a task arrives 
at a  processor, the local scheduler at the processor 
determines whether or not it can satisfy the constraints 
of the incoming task. The task is accepted if they can 
be satisfied, otherwise, the local scheduler tries to find 
another processor which can accept the task. In a 
centralized scheme, all the tasks arrive at a  central 
processor called the scheduler, from where they are 
distributed to other processors in the system for 
execution. 
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c. Inter-Processor Synchronization Protocols 
Synchronization protocol is a protocol that 

governs when the schedulers on different processors 
release the jobs of sibling subtasks.  A synchronization 
protocol is said to be correct if it (1) never releases jobs 
in any first subtask before the end-to-end release times 
of the jobs and (2) never allows  the violation of any 
precedence constraint among sibling subtasks. Four 
types of synchronization protocols are reported in the 
literature. Those are Greedy Synchronization Protocol, 
Phase Modification (PM) Protocol, Modified Phase-
Modification (MPM) Protocol and the Release-Guard 
(RG) Protocol  [8,80]. Rajkumar et al [12] extend the 
priority inheritance protocol for uniprocessors [31] to 
multiprocessors. 

d. Load Sharing Algorithms 
In load sharing scheme, if a node cannot 

guarantee a task or some of its existing guarantees 
are to be violated as a result of inserting a task into its 
schedule, it has to determine candidate receiving  
processor(s) for the task(s) to be transferred. Two 
issues need to be considered when choosing a 
receiving processor(s). 

   

 
  

  

Most of  the  work  concentrates  on  1  and  
chooses  the  most  desirable  receiving processor  
based on the state information collected from 
periodic/aperiodic state broadcasts [87,88, 98] or state 
probing/bidding [89].  Moreover, implied in this work is 
the   assumption   of   homogeneous   workload   
distribution   among nodes. This assumption does not 
always hold, because the distribution that governs task 
arrivals at different nodes may vary greatly over time 
and thus the workload distribution is not homogeneous 
among the nodes.  Therefore both 1 and 2 above 
should be considered in guaranteeing tasks on a 
heterogeneous system. 

Hou and Shin [81] propose a load-sharing 
algorithm for real-time applications, which takes into 
account the future task arrivals. 

e. Fault Tolerant Scheduling 
In many real-time systems, a fault tolerance is 

an important issue.  A system is fault tolerant if it  
produces correct results even in the presence of 
faults.   When a fault occurs, extra time is required 
during task execution to handle fault detection and 
recovery. For real-time systems in particular,  it  is 
essential that the extra time be considered and 
accounted for prior to execution. Methods explicitly 

developed for fault tolerance in real-time systems must 
take into consideration the number and type of faults, 
and ensure that the timing constraints are not violated. 

In a multiprocessor system fault tolerance can 
be provided by scheduling multiple copies of tasks on 
different processors [81,82] and the high-performance 
computation power from multiple cores on the platforms 
[99].  A primary / backup (PB) approach and triple 
modular redundancy (TMR) approach are two basic 
approaches that allow multiple copies of task to be 
scheduled on different processors [83].  One or more 
of these copies can be run to ensure that the task 
completes before its deadline.  In TMR, multiple copies 
are usually run to achieve error checking by 
comparing results after completion.  In PB approach, if 
correct results are generated from the primary task, 
the  backup task is activated. Ghost et al [84] study 
techniques for providing fault tolerance for non-
preemptive, aperiodic, dynamic real-time tasks  using  
the PB approach. Maode et al [85] proposed a 
strategy called as task reassignment fault tolerance 
(TRFT) scheduling scheme. The  basic  idea in [85] is 
that when a fault appears in the system, it means that a 
node has no capability to handle tasks and it can not  
accept  other  tasks  any  more. The  tasks  that  have  
been  assigned  to  it  not successfully done should be 
reassigned to other node which is ready to  accept 
new batch of tasks.  Liberto et al [86], focus on global 
scheduling where tasks can migrate across processors.  
Two varieties of global multiprocessor scheduling 
schemes, frame- based   scheduling   and  periodic  
scheduling,  are  discussed. 

In the frame-based scheduling model, an 
aperiodic task set is scheduled to create a template 
(frame), and that schedule may be executed 
periodically.  In the periodic model, each task in the 
set has a separate period, and is executed with no 
explicitly predetermined schedule. 

f. Related Work 
Tasks can be  statically  bounded  to  a  

processor  i.e.  once tasks  are  allocated  to 
processors; each processor runs the same set of 
tasks.  Each task thus runs on its host processor.  
Dhall and Liu [79] have shown that the rate monotonic 
algorithm, which performs well on uniprocessors, 
behaves  poorly for multiprocessor with dynamic 
binding. They considered the problem of assigning a 
set of  independent periodic tasks to a minimal 
number of processors.   They proposed two heuristic  
algorithms, called the Rate-monotonic-First-Fit (RMFF) 
and Rate-Monotonic-Next-Fit (RMNF) algorithms  
respectively. They  showed  that  in  the  worst-case,  
the  assignment produced by the RMFF algorithm uses 
no more than 2.33 times the optimal number of 
processors, while RMNF uses no more than 2.67 
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to an incapable node.

2. Avoidance of task collisions and / or excessive task 
transfers, and minimization of the possibility of a 
task’s guarantee being violated due to future tighter-
laxity task arrivals.



 

 

times. Davari and Dhall [90] considered another 
variation of the heuristic, called First-Fit-Decreasing-
Utilization-Factor (FFDUF) algorithm, which improves 
the worst-case performance to 2 times the optimal 
number of processors. Davari and Dhall then devised 
an on-line algorithm, called Next-Fit-M algorithm [91] which has a worst-case performance ratio of 2.2838. Baruah et al [92,93] devised new dynamic-
priority schemes that result in optimal multiprocessor schedulers for hard real-time periodic tasks.  Authors 
[92] proved that any task set whose combined weights 
is at most m can be scheduled in a pfair manner on m 
processors, and presented a scheduling algorithm that would achieve this.   In [93], they provided a more efficient algorithm.  Kwon et al. proposed an optimal algorithm for 
parallelizing and scheduling a task set with multiple 
parallelization options on multiple processor systems 
[10]. The algorithm presented in [10] is a global strategy 
while our proposed algorithm is a partitioning strategy. 

iv. Summary and Conclusion 

Different goals and algorithms characterize process scheduling in real-time operating system. 
Schedules may or may not exist that satisfy the given 
timing constraints. In general, the primary goal is to schedule the tasks such that all deadlines are met: in 
case  of  success  (failure)  a  secondary  goal  is  maximizing  earliness  (minimizing tardiness) of task completion. An important  issue is predictability of the 
scheduler, i.e., the level of confidence that the scheduler 
meets the constraints. 

In this
 

section, various scheduling schemes 
and their schedulability tests have been given.  Recent 
work in process scheduling for

 
multiprocessor and 

distributed systems is also covered.
 The

 
scheduling problem for the

 
design of

 hardware/software systems is explained in this report. 
Here it has defined the scheduling in the scenario of

 embedded systems. Generally speaking, hardware and
 software scheduling problems

 
differ

 
not

 
just

 
in

 
the 

formulation 
 
but 

 
in 

 
their 

 
overall  goals.  Nevertheless,  

some  hardware  scheduling algorithms are based on
 techniques used

 
in

 
the 

 
software domain, and some

 recent system-level  
 
process  

 
scheduling  

 
methods  

 have   leveraged  
 
ideas  

 
in  

 
hardware sequencing. 

Scheduling algorithms as applied to
 

design of 
hardware, compilers,

 
and operating systems were 

explained in chapters 2, 3 and 4 respectively. 
Various process scheduling algorithms have 

been described. Process Scheduling  has  to  take  into  account  the  real-time  constraints. Processes are 
characterized by their timing constraints, periodicity, 
precedence and data dependency, pre-emptivity, 
priority etc.  The way in which these characteristics 
affect scheduling decisions has been described.

 
Broadly, the approaches taken to real-time

 task scheduling are classified into

 

three categories:  

 
clock-driven scheduling,  round-robin 

 

scheduling 

 

and 

 priority-driven scheduling. Priority  driven  scheduling 

 can  be  further  classified  into  fixed  and dynamic 

 priority  scheduling. Also, scheduling schemes are 

 differentiated 

 

as preemptive and non-preemptive 
scheduling scheme.  The scheduling algorithms

 

found 
in the literature target the topic of scheduling

 

the hybrid 
of real-time periodic and non- periodic

 

(aperiodic and 
sporadic) tasks

 

with

 

hard

 

or soft

 

deadlines

 
respectively.   In literature the work of scheduling covers 
specific cases of uniprocessor, multiprocessor and 
distributed systems (with identical or heterogeneous 
processors).

 Clock-driven scheduler schedules the

 

jobs at 
specific and pre-defined time instants. So, clock-driven 
scheduling

 

is

 

possible for a system that is by and large

 deterministic. In round

 

robin

 

scheduling, every process

 gets

 

its

 

share of

 

the

 

processor (depending on its

 weight

 

or

 

priority) when there are n

 

jobs  ready for 

 execution. Round  robin scheduling 

 

is 

 

very 

 

simple 

 

to 

 implement 

 

but 

 

is 

 

not 

 

suitable  for 

 

the 

 

jobs 

 

with 
precedence constraints. 

 

Moreover, it may require a 
very fast

 

processing unit to satisfy timing constraints. 
Priority-driven  scheduling algorithms are mostly used 
because they never leave any processor idle

 intentionally and therefore often results

 

into better 
processor

 

utilization.  Priorities

 

to

 

the

 

tasks

 

can

 

be

 assigned

 

statically or dynamically. Rate

 

Monotonic

 (RM) and Deadline

 

Monotonic (DM) scheduling 
schemes are static priority scheduling schemes and 
Earlier-Deadline-First (EDF) and Least-Slack-Time- First 
(LST) are the examples of dynamic priority scheduling 
schemes. 

Scheduling  scheme  for 

 

multiprocessor  
systems  has 

 

to  provide 

 

solutions  for 

 

the problems 
that 

 

arise

 

in

 

multiprocessor environments.  

 

The

 problems that need to

 

be tackled by the

 multiprocessor scheduling schemes are: task

 assignment to a processor, Synchronization  

 

protocol,  

 load-balancing   etc. Also,  

 

scheduling  

 

scheme  

 

for 
multiprocessor  system  has  to 

 

take 

 

into  account 

 

the 

 following 

 

important 

 

factors: memory and resource

 utilization,

 

deadlock  avoidance, precedence 
constraints, and communication

 

delay. Because

 

of

 these conflicting requirements, development

 

of 
scheduling scheme for multiprocessor system is difficult.
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