
© 2017. Vipan Kakkar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Scheduling Techniques for Operating Systems for Medical and IoT
Devices: A Review

 By Vipan Kakkar
 Shri Mata Vaishno Devi University

Abstract- Software and Hardware synthesis are the major subtasks in the implementation of
hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for
Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple
Microprocessors and Signal Processors, allowing designing complex hardware and software
systems, yet flexible with respect to the delivered performance and executed application. An
important technique, which affect the macroscopic system implementation characteristics is the
scheduling of hardware operations, program instructions and software processes. This paper
presents a survey of the various scheduling strategies in process scheduling. Process
Scheduling has to take into account the real-time constraints. Processes are characterized by
their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc.
The affect of these characteristics on scheduling decisions has been described in this paper.

Keywords: process scheduling, hardware software synthesis, implantable medical devices (IMD),
internet of things (IoT) devices, dynamic voltage and frequency scaling (DVFS), multiprocessor,
fault tolerant scheduling.

GJCST-A Classification: J.3

SchedulingTechniquesforOperatingSystemsforMedicalandIoTDevicesAReview

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: A
Hardware & Computation
Volume 17 Issue 1 Version 1.0 Year 2017
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Scheduling Techniques for Operating Systems
for Medical and IoT Devices: A Review

Vipan Kakkar

Keywords: process scheduling, hardware software
synthesis, implantable medical devices (IMD), internet of
things (IoT) devices, dynamic voltage and frequency
scaling (DVFS), multiprocessor, fault tolerant scheduling.

i. Introduction

he scheduling problem in p o r tab le a nd
mob i l e sys tems has many facets [1] [2].
Scheduling algorithms have been developed in

both the operation research and computer science
community, with different models and objectives. The
techniques that are applicable today to the design of
hardware and software systems draw ideas from both
communities.

Generally speaking, hardware and software
scheduling problems differ not just in the formulation
but in the i r overa l l goa ls . Nevertheless, some
hardware scheduling algorithms are based on
techniques used in the software domain, and some
recent system-level process scheduling methods
have leveraged ideas in hardware sequencing.
 Scheduling can be loosely defined as
assigning an execution start time to each task in a set,
where tasks are linked by some relations (e.g.,
dependencies, priorities, etc.). The tasks can be
elementary operations (like hardware operations or
computer instructions) or can be an ensemble of
elementary operations (like software programs). The
tasks can be periodic or aperiodic, and task execution
may be subject to real time constraints or not.

Author:

Shri Mata Vaishno Devi University, Katra.
e-mail: vipan.kakar@smvdu.ac.in

Scheduling under timing constraints

is

common

for hardware circuits, and for software
applications

in

embedded

control systems. Task
execution

requires the

use of resources, which can be
limited in

number, thus

causing the serialization of
some task execution. Most scheduling problems are
computationally intractable, and thus their

solutions are

often

based on

heuristic techniques. Scheduling
algorithms

as

applied

to

design of

operating systems
are explained below.

Scheduling

in

High-Level Synthesis (HLS)

is

an

optimization

problem [3]. The

different

entities

that

should be

optimized here

are speed,

cost

(area

or

resources)

and

power consumption. By making

use of
these entities, scheduling problems can be listed as (i)
time constrained scheduling (ii)

resource constrained
scheduling (iii)

feasible constrained scheduling and

(iv)

power constrained scheduling. There are also other

factors that are important in

evaluating designs such

as

pin

limitations,

package selection,

testability, variety of
latches, library of cells, clock skew etc.

These

are not
discussed here.

 ii.

Scheduling in

Different

Operating Systems

Process scheduling is the

problem

of
 determining when

processes execute and includes

 handling synchronization and mutual exclusion
 problem [3]. Algorithms

for process scheduling are

important constituents

of operating systems and run-
time schedulers.

 The

model

of

the scheduling problem

is

 more general

than the one previously considered.

Processes have a coarser granularity and their overall
 execution

time may not

be known. Processes may

maintain a separate

context through local

storage

and

associated control information. Scheduling objectives
may also vary. In a multitasking operating system,
scheduling primarily addresses increasing processor
utilization and reducing response time.

On

the

other

 hand, scheduling in real-time operating systems

(RTOS)

 primarily addresses the satisfaction of

timing
constraints.

First consider the scheduling without

real-time

 constraints. The scheduling

objective involves

usually

T

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

9

Y
e
a
r

20
17

 (

)
A

Abstract- Software and Hardware synthesis are the major
subtasks in the implementation of hardware/software systems.
Increasing trend is to build SoCs/NoC/Embedded System for
Implantable Medical Devices (IMD) and Internet of Things (IoT)
devices, which includes multiple Microprocessors and Signal
Processors, allowing designing complex hardware and
software systems, yet flexible with respect to the delivered
performance and executed application. An important
technique, which affect the macroscopic system
implementation characteristics is the scheduling of hardware
operations, program instructions and software processes. This
paper presents a survey of the various scheduling strategies in
process scheduling. Process Scheduling has to take into
account the real-time constraints. Processes are characterized
by their timing constraints, periodicity, precedence and data
dependency, pre-emptivity, priority etc. The affect of these
characteristics on scheduling decisions has been described in
this paper.

variety of goals, such as maximizing CPU utilization and
throughput as well as minimizing response time.
Scheduling algorithms may be complex, but they are
often rooted on simple procedures [97] such as
shortest job first (SJF) or round robin (RR). The SJF is
a priority-based algorithm that schedules processes
according to their priorities, where the shorter the
process length (or, more precisely, its CPU burst
length) the higher the priority as shown in Fig. 1. This
technique arranges the processes with the least burst
time in head of the queue and longest burst time in tail
of the queue. This requires advanced knowledge or
estimations about the time required for a process to
complete. This algorithm would give the minimum
average time for a given set of processes, their (CPU-
burst) lengths were known exactly. In practice,
predictive formulas are used. Processes in a SJF may
allow preempting other processes to avoid starvation.

Fig. 1: Shortest Job First (SJF) Scheduling

The round robin scheduling algorithm as
shown in Fig. 2, uses a circular queue and it
schedules the processes around the queue for a time
interval up to a predefined quantum. The queue is
implemented as a first-in/first-out (FIFO) queue and new
processes are added at the tail of the queue. The
scheduler pops the queue and sets a timer. If the
popped process terminates before the timer, the
scheduler pops the queue again. Otherwise it performs
a context switch by interrupting the process, saving
the state, and starting the next process on the FIFO.

Fig. 2: Round Robin (RR) Scheduling

Different goals and algorithms characterize
process scheduling in real-time operating system.

Schedules may or may not exist that satisfy the given
timing constraints. In general, the primary goal is to
schedule the tasks such that all deadlines are met: in
case of success (failure) a secondary goal is
maximizing earliness (minimizing tardiness) of task
completion. An important issue is predictability of the
scheduler, i.e., the level of confidence that the scheduler
meets the constraints.

The different paradigms for process
scheduling in RTOS can be grouped as static or
dynamic. In the former case, a schedule ability
analysis is performed before run time, even though
task execution can be determined at run time based
on priorities. In the latter case, feasibility is checked at
run time. In either case, processes may be considered
periodic or aperiodic. Most algorithms assume periodic
tasks and tasks are converted into periodic tasks when
they are not originally so.

Rate monotonic (RM) analysis is one of the
most celebrated algorithms for scheduling periodic
processes on a single processor. RM is a priority-
driven preemptive algorithm. Processes are statically
scheduled with priorities that are higher for processes
with higher invocation rate, hence the name. Liu and
Lay land showed that this schedule is optimum in the
sense that no other fixed priority scheduler can
schedule a set of processes, which cannot be
scheduled by RM. The optimality of RM is valid under
some restrictive assumptions, e.g., neglecting context-
switch time. Nevertheless, RM analysis has been
the basis for more elaborate scheduling
algorithms. Deadline Monotonic (DM) executes at any
time instant the instance of the ready task with the
shortest deadline, first. If two or more tasks have the
same deadline, then DM randomly selects one for
execution next. DM becomes equivalent to the RM
algorithm when the deadlines of tasks are equal to their
period [95].

Process scheduling plays an important role in
the design of mixed hardware/software systems,
because it handles the synchronization of the tasks
executing in both the hardware and software
components. For this reason, it is currently a subject
of intensive research. A description on process
scheduling is given in the next chapter.

iii. Process Scheduling

This section presents various process
scheduling algorithms available in the literature. Section
3.1 gives an overview of Real-time system and its
characteristics have been given in section 3.2.
Definition and the terminology used in process
scheduling are given in section 3.3. Section 3.4 details
various approaches taken for real-time scheduling.
Various scheduling schemes have been compared.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

10

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

New

Waiting

Running

Exit

 release

First requested Process

1/0 or event completion[/0 or event completion

Added as per
Burst time

New

Waiting Exit

Running

 release

added at the tail

event wait

After execution the remaining burst time of process

>time slice den added to tail of ready queqe

requested process acc to time silce

I

Also, many references have been suggested for every
scheduling scheme for an interested reader to get
more details.
a) Real-time System

Real-time systems are broadly classified into
soft real-time systems and hard real-time systems. In
soft real-time systems, the tasks have either soft
deadlines or do not have deadlines at all. Scheduler performs task scheduling as fast as possible. If the task with soft deadline finishes late, it does not lead to serious problems, but results in degraded system performance. On the other hand, in hard real-time systems, tasks have timing constraints and if these
timing constraints are not met, the outcomes may be
fatal. Missing the deadline of critical tasks leads to system malfunction or breakdown. Therefore,
scheduling algorithm employed for task scheduling in a hard real-time system has to work satisfactorily and
ensure that every task completes before its deadline.
In practice, hard real-time systems invariably have many soft real-time jobs and vice versa.

Clearly, scheduling pure soft real-time tasks is a trivial job and scheduling hard real- time tasks is quite complex. In the remainder of this paper,
scheduling in hard real-time systems is considered
only. It is good to note that task scheduling is among
the most important and critical services real-time
operating system should provide. Task scheduling in
hard real-time can be static or dynamic as will be seen
in this paper.

b)

Characteristics

of

the Real-Time Tasks

i.

Timing Constraints

Their

timing

constraints, precedence
constraints and resource requirements typically
characterize real-time tasks. Real-time

tasks

should

 have the

information

about

their timing constraints so

that

they can be scheduled and managed efficiently.

Various timing parameters used to characterize

the

hard

real-time tasks are given below:
 Deadline:

Deadline

of a request for a task is defined

to

be the time

of

the next request for a task. This is

the

time by which the task must finish.

Response

time:

The response time

of

the

task

is
 the

time span between

the request and the

end of the

 response to that request.
Arrival time or Release time (r):

It is

the

time

at

which a

task

is

invoked

in

the system.

However,

in

many real

 time systems,

we do not

know the exact instant ri

at

 which the task Ji

will be

released. We only know,

ri

is

in the range [ri
- ri

+],

that is,

ri

can be as early as ri

-

and

 as late as

ri

+. This range

of

r is sometimes called as

release

time

jitter or

simply jitter.

Relative Deadline:

Relative deadline

is

the

maximum

 allowable response time

of the job.

 Ready time: It

is

the earliest

time at

which

the

task can begin execution. Obviously, the ready time

of

a task is equal to or greater than the arrival time.

Execution time:

It is

the

amount

of

time required

to

complete the execution

of

a task when it executes
alone and has

all

the resources it

requires. The actual

amount

of time taken may however differ for many
reasons. The

actual execution for a task

is known

only
after

it

finishes. Hence,

the execution

time

is
mentioned as

minimum

and maximum execution

times. Knowing

the

maximum execution

time

is

enough for determining whether the task meets its

deadline. Therefore, in many hard real time systems,
the execution time specifically means its maximum
execution time. In hard real-time systems, tasks can be
periodic, sporadic or aperiodic

in nature.

Slack time:

Time difference between execution time and
the deadline

 ii.

Periodic Task Model
 The

periodic

task

model

is a well-known

 deterministic

workload

model. With

its various
 extensions, the

model characterizes accurately many

traditional hard real-time applications.

Many scheduling

algorithms based on this model have good
performance and well-understood

behavior. In this

 model,

each

computation

and data transmission that
is

repeated at regular or semi

regular intervals in

 order to provide a function

of

the system

on a
continuing basis

is

modeled

as a periodic

task.

Specifically, each periodic task,

denoted by Ti

is a

sequence

of

jobs. The period

pi

of the

periodic

task

Ti

 is

the

minimum length

of all

time

intervals between
release times of

consecutive

jobs

in

Ti. Its execution

time is

the maximum execution

time

of all

the jobs

in

it.

 We

use

ei

to denote

the execution

time

of

the

periodic

 task Ti, as well as

that of all

the

jobs

in

it.

At all

times,

the period and execution

time

of every periodic task in

the system are known.
 iii.

Aperiodic and Sporadic Tasks

Aperiodic and sporadic tasks are used to
characterize the external events to the real- time

 system. Aperiodic and sporadic tasks are the streams
of aperiodic and sporadic jobs

respectively.

The

 release times

for aperiodic and sporadic tasks are not

 known

a priori.

 Real-time system has to respond to

the
 external

events

while

it

is executing

some other tasks.

Real-time system executes certain

routines

in
 response to

the external events. These

routines

or

 tasks

to

be executed

in response to

an external

event

 may have soft or hard timing constraints. If the task
has soft deadline or no deadline, we call it as

an

 aperiodic task.

Since the

aperiodic tasks have

soft

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

11

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

deadline, we want that the real-time system to be

 responsive in a sense that

it

completes

the

job

as

 soon

as possible.

Although late response is annoying,
it

is

tolerable, so the need is to

optimize the
responsiveness of

the system

for aperiodic tasks, but

 never at

the expense of

the

hard real-time tasks whose

 deadlines must be met at all times.

 iv.

Precedence Constraints and Data Dependency

v. Functional Parameters

a. Preemptive Jobs

b. Priority of Jobs
Priority of the job is the measure of the

criticality or importance of the job with respect to
other jobs in the system. Higher the priority, the
larger its importance. Tasks scheduling algorithm
decisions are mainly based on the priority of the tasks
and hence the priority assignment to the task is
very important. As we will see, scheduling algorithms
uses static and dynamic priority assignment
schemes for assigning priority to the tasks. Assigning
priorities to the tasks so that all tasks meet their
deadline is a difficult problem and usually some sort of
heuristic is employed.

c. Energy Aware Scheduling
The trend in the industry towards Dynamic

Power Management (DPM), where hardware
technologies for dynamic frequency scaling (DVS) and
dynamic voltage scaling (DVS) are being used to reduce
the power consumption of individual processing
elements (PE) at run-time. However, crucial to the
success of this approach is a presence of intelligent
software that adjusts the system performance level to
maximize energy savings while still meeting application
real-time deadlines.

Moreover, another trend is to build SoCs/ NoC/
Embedded System for Implantable Medical Devices
(IMD) and Internet of Things (IoT) devices, which
includes multiple PEs (Microprocessors+DSPs),
allowing designing complex systems, yet flexible with
respect to the delivered performance and executed
application. The energy management of multi-PE SoCs
should manage several elements with shared resources,
each running their own OS, and a plurality of both real-
time and non real-time applications.

Therefore, there is a need to directly address
the energy problem. Intelligent energy management has
impact on the hardware as well as on the software
architecture of system, both implementing an
infrastructure for energy management.

The objective of this energy-aware scheduling is
to design a Generic Adaptive Power optimized design,
which can be used in IoT and IMD devices. Its main
purpose is to enable intelligent as well as adaptive
power management, including the ability to make
dynamic changes to the voltages and frequencies being
applied to these devices. Peng et.al (2010) presented a
novel wireless integrated power management design for
biomedical telemetry systems. They designed a model
such that it draws ultra-low standby current [30]. Gaurav
et.al (2008) evaluated the effectiveness of power
management using DVFS from a system level energy
savings perspective [100]. However, simple policies
they justified their work using benchmarks ranging from
memory intensive workloads to CPU intensive
workloads.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

12

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

If the task has hard real-time constraints, it
has to meet its deadline. Failure in meeting deadlines
lead to catastrophic results. Task of recovering from
transient fault in time, for example, should complete
before system goes down. The jobs that execute in
response to these events have hard deadlines. Tasks
containing jobs that are released at random time
instants and have hard deadlines are sporadic
tasks. Sporadic jobs may arrive at any instant, even
immediately after each other. Moreover their execution
times may vary widely, and their deadlines are arbitrary.
In general, it is impossible for some sporadic jobs to
meet their deadlines no matter what algorithm we use
to schedule them. The only alternatives are (1) to reject
the sporadic jobs that cannot complete in time or (2) to
accept all sporadic jobs and allow some of them to
complete them. Primary concern for sporadic tasks is
to ensure that their deadlines are always met;
minimizing their response times is of secondary
concern.

Jobs are said to be independent of each other
if they can execute in any order without affecting the
end result. In practice, however, jobs wait for the control
and data inputs from other jobs and hence cannot
execute independently. Therefore, control and data
dependencies constrain the order in which the
jobs can execute. Presence of dependency
complicates the job scheduling, especially on a
multiprocessor system.

Though scheduling and resource access-
control decisions are generally taken without
considering the functional characteristics of the task,
several functional parameters do affect these decisions.
Therefore, task workload model should explicitly
mention the relevant functional parameters. Following
functional parameters are generally described in the
task workload model:

Preemption of the task is provided in the real-
time systems to suspend the execution of the current
job for giving processor to a higher priority or urgent
task. However, some jobs need to be executed from
start to finish without interruption to avoid errors in the
system and to keep the switching overheads to a
minimum. Such jobs are said to be non-preemptive.

In order to introduce intelligence in any system,
different learning techniques have been developed so
far such as TD-learning and Q-learning, which are two
powerful in terms of saving power. The “wake-up”
operation after sleep mode creates a significant power-
draw from the battery supply (energy overhead). To deal
with this issue Siyu et.al (2012) proposed a hybrid power
supply using continuous Q-Learning and Discrete Q-
Learning for reinforcement learning respectively [101]
with good improvement in efficiency.

Umair and Bernard (2012) proposed a novel,

model-free RL (reinforcement learning) Technique for
the power management of a portable traffic monitoring
system having the computer hardware which is the
major contributor to the entire power consumption.
Unlike the previous works they have proposed to use
Timeout policy for RL in sleep as well as idle state [102].
They used MLANN (Multi-layer artificial neural network)
for the workload estimation as shown in Fig. 3. In
addition to this they used multiple state update in idle as
well as sleep modes to increase the convergence speed
of the algorithm. Their work proves that using Timeout
policy in idle as well as sleep state is more efficient than
using Timeout in idle state and N-policy in sleep state.

Although the DPM techniques effectively reduce
the power consumption, they do not provide an optimal
policy to extend the battery service lifetime of the
battery. Maryam et.al (2013) proposed a power
management policy claiming to extend the battery
service lifetime by 35% compared to previous methods
[103] as shown in Fig. 4. They have presented a model-
free reinforcement learning technique used to define the
optimal battery threshold value for a closed loop policy
and used the same to specify the system active mode.
Their power manager automatically adjusts the power
management policy by learning the optimal timeout
value. It performs power management in an “event-
driven” and “continuous-time” manner. Their algorithm
has a fast convergence rate and has less reliance on the
Markovian property.

Fig. 3:

ML-ANN based Workload Estimator

Fig. 4: Model-free Reinforcement Learing based
Energy saving

M. Triki et.al (2015) proposed a novel, online, as
well as adaptive RL based hierarchical approach to
directly schedule the service request traffic that reaches
the power managed components through SFC [104],
using the technique is robust and has a faster
convergence rate, the authors performed continuous
time and event driven power management using the
same. They were able to achieve a maximum energy
saving of almost 63% during testing.

Based on the literature survey it is seen that a
lot of work has been done in DPM for portable systems.
Various low power design techniques have been used at
circuit level to manage power consumption in IMDs in
[18][20][27]. However no or very less work has been
done in Power Management in IMDs at architectural
level. Hence, there is a scope to work in this area.

c) Process Scheduling Techniques
Process scheduling involves allocating the

tasks (ready for execution) to the available hardware
resources. As the available hardware resources are
often less in number than the tasks, tasks compete
for it and the winner is scheduled for execution.
Optimal task scheduling algorithm is a one that always
keeps the available hardware resources occupied with
tasks. The basic goal of any scheduling algorithm is
to maximize the processor utilization. If the processor
utilization is equal to or less than 1, then the schedule
is said to be feasible.

The complexity of the scheduling algorithm
increases when many tasks are to be scheduled on
a large number of processing elements. In such
systems, complexity of the scheduling algorithm
decides the overall system performance.
 Scheduling the tasks on more than one
processor is a NP-complete problem and no optimal
solution exists for such a system. Therefore, heuristics
are applied.
 i. Terminology used in Scheduling

 a. Scheduler
Scheduler is a module that schedules tasks

using some scheduling algorithms and resource

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

13

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

access-control protocols.

Next arrival

 Periods

Output LayerHidden LayerInput Layer
𝑦𝑦𝑚𝑚

Z
𝑦𝑦𝑚𝑚−1

𝑋𝑋1

1

𝑦𝑦2

𝑦𝑦𝑉𝑉𝑖𝑖𝑖𝑖

𝑋𝑋𝑜𝑜

𝑋𝑋𝑘𝑘
𝑋𝑋𝑘𝑘 +1

𝑋𝑋𝑛𝑛

𝑋𝑋𝑛𝑛−1

0.08

0.075

0.07

0.07

0.07

0.07

0.07

0.065

0.065

0.065

0.065

0.065

0.06

0.055

0.05

0.045

0.04

0.04
0.06 0.07 0.08 0.08 0.1 0.11 0.12

Basic RL-Based DPM Experiment 1

-

Enhanced RL- Based Dpm

SoC

degradation

A
ve

ra
ge

 L
at

en
cy

 P
er

 R
eq

ue
st

𝑊𝑊𝑖𝑖

 b. Schedule
By schedule it means assignment of

the

jobs

 to the available processors

as per the guidelines from
the scheduler.

 c.

Feasible Schedule
A feasible schedule is a one that schedules the

set of tasks meeting their deadlines. The feasible
schedule is represented by timed labeled transition
system.

d.

Optimal Scheduling or Scheduler

A scheduling algorithm

or scheduler (static or
dynamic) is said

to

be

optimal if

it always constructs a
feasible schedule for every task that has feasible
schedule.

 A static scheduling algorithm

is said

to

be
 optimal if, for any set of tasks, it always produces the

feasible schedule whenever any other algorithm can
do so.

 A dynamic

scheduling algorithm

is said to

be

 optimal

if

it

always produces a feasible schedule
whenever a static scheduling

algorithm

with

complete

 prior

knowledge

of

all the possible tasks can do so.

 An

aperiodic scheduling algorithm

is

optimal if

 it

minimizes

wither

the response time of

the

aperiodic

 job

or

the average

response time

of

all

the aperiodic

 jobs

for a given task set.

 An

algorithm

for

scheduling sporadic

jobs

is

 optimal

if

it

accepts each

sporadic job newly offered

to

the system and schedules the

job

to complete

in

 time

if and only if the new job can be correctly
scheduled.

e.

Static Scheduling Algorithm

A scheduling algorithm

is said

to

be static

if
 priorities are assigned to tasks once and for all. A

static priority algorithm

is said

to

be fixed-priority
scheduling algorithm also.

f. Dynamic Scheduling Algorithm

A scheduling algorithm is said to be dynamic if
priorities of tasks might change from request to request.

g. Mixed Scheduling Algorithm
A scheduling algorithm is said to be mixed

scheduling algorithm if the priorities of some of the
tasks are fixed yet the priorities of the remaining tasks
vary from request to request.

 ii. Definition of Scheduling Problem
Task Scheduling involves determining the

schedule, for a set of given tasks, such that the timing
constraints, precedence constraints and resource
requirements for the tasks are met and to compute the
schedule if it is found to exist.

Real-time system has a mix of periodic and
non-periodic (aperiodic and sporadic) tasks. Out of
which periodic and sporadic tasks have hard

deadlines to follow while aperiodic tasks have soft
deadlines. The basic aim of any scheduling algorithm
or scheme is to model these task characteristics
with various changing parameters. Therefore,
scheduling scheme should provide following things:
1. Assumptions made for the tasks.
2. Scheduling of non-periodic tasks that include soft

aperiodic and hard sporadic tasks.
3. Schedulability test and analysis.
4. Performance analysis.

a. Schedulability Analysis
Its required to analyze schedulability to

determine whether a set of tasks meets its timing
constraints.

One way to analyze schedulability is to
compute the worst case response time (WCRT) of
each task as proposed in Balarin, L. Lavagno, Murthy
and Vincentelli [2]. A task’s WCRT is the maximum
possible length of an interval that begins with the task
being enabled and ends with the task completing its
execution. It includes both the task’s runtime and
interference from other tasks. The WCRT concept is
useful regardless of the scheduling approach.

However, finding WCRT for a real life
embedded system is a difficult task due to the
presence of varying parameters like runtimes,
dependency between tasks, and non- periodic events
in the environment.

b. Performance Analysis of Scheduling Algorithms
Performance analysis of scheduling algorithm

is required to find out its effectiveness in scheduling the
set of tasks. The most often used measure of the
performance is the ability of the scheduling algorithm to
find out the feasible schedule for a set of tasks
provided such a schedule exists. Schedulable
utilization and fast response time to urgent tasks are
also used as main performance measures. Other
commonly used performance measures include
maximum and average tardiness, lateness, and
response time and the miss, loss, and invalid rates.
Generally, only the relevant performance measures are
used in the performance analysis of a particular
scheduling algorithm. This depends on the task
characteristics and the environment.

d) Approaches Taken to Real-Time Scheduling
The approaches taken to real-time scheduling

can be broadly classified into three categories:
clock-driven scheduling, round robin scheduling and
priority-driven scheduling. Priority driven scheduling can
be further classified into fixed and dynamic priority
scheduling. The scheduling scheme may support
either preemptive or non-preemptive scheduling etc.
The scheduling algorithms found in the literature target
the topic of scheduling the hybrid of real-time

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

14

Y
e
a
r

20
17

(
)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

periodic and non-periodic (aperiodic and sporadic)
tasks with hard or soft deadlines respectively. In
literature the work of scheduling covers specific cases
of uniprocessor, multiprocessor and distributed
systems (with identical or heterogeneous processors).
Each scheduling algorithm assumes certain task
characteristics. Some assumptions are often made for
the real-time task [9] that may include:

The real time tasks with hard deadlines are periodic.
The tasks are independent i.e. the tasks

release time does not depend on the initiation or
completion of other tasks.

Run-time for each task remain constant; run-
time here means the time taken by the processor to
execute the task.

Any non-periodic

(aperiodic and sporadic)

 tasks are special cases; they are initialization and
failure-recovery routines; and do not have hard
deadlines. All

parameters

of

the

periodic jobs

are

known

 a priori. In particular, variations

in the inter-release
times in any periodic job are negligibly small.

Different scheduling algorithms try to relax one

or more of the above assumptions so as to make the
task model more realistic. The way the aperiodic and
sporadic tasks are scheduled distinguishes various
scheduling schemes.

i. Static and Dynamic Task Scheduling
Task scheduling in hard real-time system can

be either static or dynamic. In static task scheduling,
the schedule for the tasks is prepared offline and
requires complete prior knowledge of the task
characteristics. In dynamic task scheduling, on the
other hand, tasks are accepted for scheduling during
run-time (if a feasible schedule is obtained). If the
tasks’ characteristics are well known and doesn’t
vary, static scheduling schemes always produce
feasible schedule. We can use complex static
scheduling scheme, as schedule is computed offline.
However, static scheduling schemes are inflexible and
cannot adapt to changing environment. The schedule
needs to be recomputed if the system is reconfigured.
In contrast, dynamic schemes have high run-time cost
as the schedule is found on the fly. However, they
are flexible and can easily adapt to the changes in the
environment.

 ii. Preemptive vs. Non-preemptive Scheduling
Most of the scheduling algorithms assume

that the tasks are preemptive. However, non-
preemptive scheduling of a set of periodic and sporadic
tasks on a uniprocessor is important for variety of
reasons such as:

In many practical real-time scheduling
problems such as I/O scheduling, properties of
device hardware and software either make
preemption

impossible

or prohibitively expensive.

easier

to

implement than preemptive algorithms, and
can exhibit dramatically lower overhead at runtime.

The

problem

of scheduling

all

tasks

without

preemption

forms

the

theoretical basis for

more
general tasking models that include shared

resources.

 Jeffay

et

al. [17]

focus

on

scheduling

a

set

 of periodic

or sporadic

tasks

on

a uniprocessor

 without

preemption and without

inserted

idle

time.
The

paper gives necessary and sufficient

set

of

 conditions C for a set

of periodic

or sporadic

tasks

to
be schedulable for arbitrary release time

of

the tasks.
They have shown that a set of periodic or sporadic
tasks that

satisfy C can be scheduled with an earlier-
deadline-first (EDF) scheduling algorithm. For a set of

 sporadic tasks

with specified release times conditions
C are necessary and sufficient for schedulability.
However, for sets

of periodic tasks with

specified

release

times,

conditions

C

are sufficient

but

not
necessary.

iii.

Clock-driven Scheduling
 In clock-driven

scheduling,

the

jobs are

scheduled by the scheduler

at

specific

time instants.

These time instants

are chosen a priori before the
system starts execution. The

timing instants

may or

may not

be at regular intervals.

All

the parameters of

hard real-time

jobs

should

be

fixed and known

before

 hand. In other words, the

clock driven scheduling is
possible for a system

that is by and large deterministic.

To

keep the information

ready for the scheduler,

 the schedule for the jobs is computed off-line and is
 stored in

the form of a table for use at run-time. Each

entry in

this table gives time instant at which a
scheduling decision

is made. Scheduler makes use

of

 a timer.

Upon

receiving a timer

interrupt,

the
 scheduler sets

the

timer

to expire

at

the next decision

 instant (from

the

table

entry). When

the

timer expires

 again,

scheduler repeats this operation.

iv. Weighted Round Robin Scheduling

The round robin approach is commonly used
for scheduling time-shared applications. When jobs are
scheduled on a round robin basis, every job joins a

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

15

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

The overhead of preemptive algorithms is
more difficult to characterize and predict than that of
non-preemptive algorithms. Since scheduling overhead
is often ignored in scheduling models, an
implementation f a non-preemptive scheduler will be
closer to the formal model than an implementation of a
preemptive scheduler.

Non-preemptive scheduling on a uniprocessor
naturally guarantees exclusive access to shared
resources and data, thus eliminating both the
needs for synchronization and its associated overhead.

Non-preemptive scheduling algorithms are

First-in-first-out (FIFO) queue when it becomes ready
for execution. The job at the head of the queue
executes for at most one time slice. If the job does
not complete by the end of the time slice, it is
preempted and placed at the end of the queue to wait
for its next turn. When there are n ready jobs in the
queue, each job gets one time slice every n time
slices, that is every round. In essence, each job gets
1/nth share of the processor when there are n jobs
ready for execution. The problem with round robin
scheduling is that it provides poor service to urgent
tasks. It is possible that even the most urgent task
needs to wait for all other tasks to execute before it
gets its turn. Thus to satisfy the timing constraints a
very fast processing unit may be necessary, which
may not be available. Then round robin may not
produce the feasible schedule.

Therefore, weighted round robin scheduling
scheme is used. It builds basic round robin scheme.
Rather than giving all the ready jobs equal shares of
the processor, different jobs may be given different
weights. Here, the weight of a job refers to the fraction
of processor time allocated to the job. By adjusting the
weight of the jobs, we can speed up or retard the
progress of each job toward its completion.

If round robin scheme is used to schedule
precedence constrained jobs; the response time of a
chain of jobs can be unduly large. For this reason, the
weighted round robin approach is not suitable for
scheduling such jobs. On the other hand, a successor
job may be able to incrementally consume what a
predecessor produces. In this case, weighted round
robin scheduling is a reasonable approach, since a
job and its successors can execute concurrently in a
pipelined fashion.

v. Priority Driven Scheduling
The term priority-driven algorithms refer to a

large class of scheduling algorithms that never leave
any processor idle intentionally. Priority driven
algorithms assign priorities to the tasks either statically
or dynamically. Scheduling decisions are taken when
events such as releases and completions of jobs occur
and hence priority-driven algorithms are also known as
event-driven. As any scheduling decision time, the jobs
with the highest priority are scheduled and executed on
the available processors.

Compared with the clock-driven approach, the
priority-driven scheduling approach has many
advantages. Many well-known priority-driven
algorithms use very simple priority assignments, and

for these algorithms, the run-time overhead due

to maintaining a priority queue of ready jobs can be

made very small. A clock-driven scheduler requires the

information on the release times and execution times
of the jobs a priori in order to decide when to schedule

them. In contrast, a priority-driven scheduler does not
require most of this information, making it much better
suited for applications with varying time and resource
requirements.
 Despite its merits, the priority-driven approach
has not been widely used in hard real- time systems,
especially safety-critical systems, until recently. The
major reason is that the timing behavior of a priority-
driven system is non-deterministic when job
parameters vary. Consequently, it is difficult to validate
that the deadlines of all jobs scheduled in a priority-
driven manner indeed meet their deadlines when
the job parameters vary.

vi. Static or Fixed Priority Scheduling Algorithms
One way of building hard real-time systems is

from a number of periodic and sporadic tasks and a
common way of scheduling such tasks is by using a
static priority pre- emptive scheduler; at runtime the
highest priority runnable job is executed. Rate-
Monotonic scheduling scheme proposed by Liu
and Layland [9] and Deadline- Monotonic scheme
proposed by Leung [62] are used to assign static
priorities to the real-time jobs. In this section, both
these scheduling schemes are explained and how they
are used to schedule periodic and non-periodic jobs is
covered.

a. Rate Monotonic Priority Assignment
Liu and Layland [9] in 1973 proposed a fixed

priority scheduling scheme known as Rate Monotonic
Scheduling. In rate monotonic priority assignment,
priorities are assigned to tasks according to their
request rates, independent of their runtimes.
Specifically, tasks with higher request rates will have
higher priorities. They also derived a schedulability
analysis that determines if a given task set will always
meet all deadlines under all possible release
conditions. However, original rate monotonic scheme
had several restrictions:
All tasks are independent to each other and they cannot
interact.
All tasks are periodic.
No task can block waiting for an external event.
All tasks share a common release time (critical instant).
All tasks have a deadline equal to their period.

Liu & Layland’s work has had a wide impact on
research in real-time computing and embedded
systems. However, every assumption of their model is
violated to some extent in the design of embedded
systems.

Tasks are rarely independent and generally
events in the environment or execution of other tasks

invoke them. In many systems, request for tasks do
not arrive at regular periods. Only some constraints

on the request rate are known. In many low-cost

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

16

Y
e
a
r

20
17

(
)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

embedded systems preemption cost is not affordable
due to context switch overhead. In addition, tasks’
runtime is almost never constant. It may vary with
different input patterns as well as with the state of the
task.

Because of all the above real life issues,
research community has come up with more realistic
models in which some of the assumptions of Liu and
Layland have been relaxed.

The first assumption that tasks cannot interact
has been removed by Sha et al. [31]. Sha also
provided a test to incorporate processes that
synchronize using semaphores in [47]. Sha [31]
addresses the issue of priority inversion
(if synchronization primitives like semaphores, monitors
and ada task model [47] are directly applied). Two
priority inheritance protocols called the basic priority
inheritance protocol and Priority Ceiling Protocol (PCP)
have been presented. This protocols also shown to
avoid deadlocks. Baker [15] proposes a Stack
Resource Policy (SRP) which is a resource allocation
policy that permits processes with different priorities to
share a single runtime stack. SRP is a refinement of
PCP [31], which strictly bound priority inversion and
permits simple schedulability analysis. The related
work on this topic can also be found in [12, 48, 49].

Sha [61] reported work that includes test to
allow aperiodic processes to be included in the theory.

Rajkumar [58] used external blocking (i.e.

when a task is blocked awaiting an external event)

with the Rate Monotonic approach to model the

operation of a multiprocessor priority ceiling protocol

[12] and provided schedulability analysis to bound its
effects.

The restriction that tasks are assumed to

share a common critical instant has been relaxed by
Audsley [57].

Leung [62]

suggested a Deadline-Monotonic

priority assignment that removed

the constraint

that

the deadline and period

of a process

must

be

equal.

Audsley et

al. [7] provided schedulability test for the
scheme proposed by Leung.

b.

Deadline Monotonic Priority Assignment

In deadline-monotonic scheduling theory,
processes

to

be scheduled

are

characterized by the

following relation:

Computation time <= deadline <= period

Deadline

monotonic

priority assignment is

similar

in

concept

to

rate-monotonic priority
assignment.

Priorities assigned

to

processes are

inversely proportional

to

the length

of

the deadline

[62].

Thus,

the process with

the

shortest deadline

is

assigned the

highest

priority and the longest deadline

process

is

assigned

to

lowest priority. This priority

assignment defaults to a rate-monotonic assignment
when period = deadline.

Deadline monotonic priority assignment is
shown to be optimal static priority scheme [62]. The
implication of this is that if any static priority
scheduling algorithm can schedule a process set
where process deadlines are unequal to their
periods an algorithm using deadline-monotonic priority
ordering for processes will also schedule that process
set.

Audsley et al. [7] also showed that since
deadline-monotonic scheme guarantees that
computation time is less than or equal to deadline, it is
possible to schedule sporadic tasks within the existing
periodic framework. They also discussed problems
involved for guaranteeing deadlines of sporadic
processes using sporadic servers within the rate-
monotonic scheduling framework.

c. Related Work
Lehoczky [14] considers the problem of fixed

priority scheduling of periodic tasks with arbitrary
deadlines and an exact schedulability criterion has
been developed. A worst case bound for the case of
rate-monotonic scheduling is developed generalizing
the original bounds of Liu and Layland in that the tasks
are allowed to have deadlines D = ∆T for any ∆ > 0.
The bounds show that when one additional period
(∆ = 2) is given to tasks to complete their computation
requirement, the worst case schedulable utilization
increases from 0.693 to 0.811. Also, average
schedulable utilization is shown to have increased from
0.88 to over 0.95 that often goes to 1.00.

Audsley et al. [20] have given exact
schedulability analysis for real-time systems scheduled
at runtime with static priority preemptive scheme.
Exact analysis of sporadic tasks is given and analysis
extended to include release jitter. Schedulability
analysis to predict worst case response times for a set
of periodic and sporadic tasks under any given priority
assignment and scheduled by a static priority
preemptive scheduler can be found in [20].

Lehoczky et al [63] provides an exact
characterization and stochastic analysis for a randomly
generated set of periodic tasks scheduled by rate-
monotonic algorithm.

Shih et al. [65] presents modified rate-
monotonic algorithm for scheduling periodic jobs with
deferred deadlines. The deadline of the request in any
period of a job with deferred deadline is some time
instant after the end of the period. The paper describes
a semi-static priority-driven algorithm for scheduling
periodic jobs with deferred deadlines: each job is
assigned two priorities, the higher one of the old request
and the lower one for the current request. The
optimal schedulability analysis and the applications

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

17

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

where the algorithm will be useful are also discussed.

 Predictive

periodic

and non-periodic algorithms

 are given by Singh [64]. A predictive preemptive
scheduling algorithm avoids unnecessary

preemption

 while

a

non-preemptive algorithm

is

predictive

in a

sense that

it

looks

for

future task arrival

times and
schedules them non-preemptively.

Recent

work

on scheduling has focussed

on
 scheduling of flexible applications

(or imprecise

 computation). The

work

in [28,30,38-46,54]

provides
 sufficient

material for the interest reader.

d.

Scheduling Non-Periodic Tasks in Fixed Priority
Real-Time Systems

Till

now, the focus was only on

the scheduling

 of periodic tasks. In practice, real- time systems
comprise of a hybrid

of hard periodic

jobs and

soft/hard aperiodic

jobs. The

mixed scheduling
 problem is

important, because many real-time

 systems have substantial aperiodic task workloads.
Aperiodic job and sporadic job scheduling

algorithms are solutions to the following problems:
1. Sporadic job scheduler decides whether to

accept or reject the newly arrived sporadic job
depending on its execution time and the deadline.
If it accepts a job, it schedules a job such that
all other hard deadline periodic tasks and
previously accepted sporadic tasks meet their
deadlines. Here the problem lies in determining
how to do acceptance test and how to schedule
accepted sporadic jobs.

2. Aperiodic job scheduler tries to complete each
aperiodic job as early as possible. The problem
with this scheduler is to do so without causing
other hard periodic and sporadic tasks to miss
their deadline. Obviously, average response time
is a measure of performance of these schedulers.

Within the framework of fixed priority
preemptive scheduling, a number of approaches
have been developed for scheduling mixed task sets.
The simplest and perhaps least effective of these is
background scheduling of aperiodic tasks. In
background scheduling, soft deadline tasks are
executed at a lower priority than any hard deadlines
tasks. Clearly, this method always produces correct
schedules and is simple to implement. However, the
execution of aperiodic jobs may be delayed and their
response times prolonged unnecessarily. An obvious
way to make the response times of aperiodic jobs as
short as possible is to make their execution interrupt
driven.

Whenever an aperiodic job arrives, the
execution of periodic tasks is interrupted, and the
aperiodic job is executed. However, if aperiodic tasks
always execute as fast as possible, periodic tasks may

miss some deadlines. Another approach for
scheduling aperiodic tasks is to use a periodic task
that looks for the ready aperiodic tasks in an aperiodic
task queue. Such a periodic task is called as polling
server. A polling server has a fixed priority level (usually
the highest) and an execution capacity. The capacity
of the server is calculated off-line and is normally
set to the maximum possible, such that the hard task
set, including server, is schedulable. At run-time, the
polling server is released periodically and its capacity is
used to service soft real-time tasks. Once this capacity
has been exhausted, execution is suspended until it
can be replenished at the server’s next release. The
polling server will usually significantly improve the
response times of soft tasks over background
processing. However, if the ready soft tasks exceed the
capacity of the server, then some of them will have to
wait until its next release, leading to potentially long
response times. Conversely, no soft tasks may be
ready when the server is released, wasting its high
priority capacity.

This drawback is avoided by the Priority
Exchange, Deferrable server [60, 67, 68] and Sporadic
servers [61,68] algorithms. These are all based on
similar principles to the polling server. However, they
are able to preserve capacity if no soft tasks are
pending when they are released. Due to this property,
they are termed as “bandwidth preserving algorithms”.
These three algorithms differ in the ways in which
the capacity of the server is preserved and replenished
and in the schedulability analysis needed to determine
their maximum capacity.

In general, all three offer improved
responsiveness over the polling approach. However,
there are still disadvantages with these more complex
server algorithms. They are unable to make use of
slack time that may be present due to the often
favorable phasing of periodic tasks. Further, they
tend to degrade to providing essentially the same
performance as the polling server at high loads. The
deferrable and sporadic servers are also unable to
reclaim spare capacity gained, when for example,
hard tasks require less than their worst case
execution time. This spare capacity termed gain time,
can however be reclaimed by the extended priority
exchange algorithm [69].

Chetto [66] and Lehoczky [18] proposed the
slack stealing algorithm. This algorithm uses the
strategy to make use of the available slack times of
periodic and sporadic jobs to complete aperiodic jobs.
The slack stealing algorithm suffers from none of the
above disadvantages. It is optimal in the sense that it
minimizes the response times of soft aperiodic tasks
amongst all algorithms that meet all hard periodic task
deadlines. The slack stealer services aperiodic

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

18

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

requests by making any spare processing time
available as soon as possible. In doing so, it
effectively steals slack from the hard deadline periodic
tasks.

In [22], Davis et al. presents new analysis
that allows the slack available on hard deadline
periodic and hard deadline sporadic tasks to be
calculated. The analysis caters for tasks that have
release time jitter, synchronization, stochastic
execution times and arbitrary deadlines. Further
extension to the basic slack stealing work can be found
in [21,25].

vii. Dynamic Priority Scheduling Algorithms: EDF, LST

Now

the turn comes to

the

study of dynamic

scheduling algorithms

that we call

the deadline driven

scheduling algorithm.

As said earlier, processor
utilization

increases by use of

the dynamic scheduling

schemes. In this section, the dynamic priority
assignment scheduling schemes used in the

literature is

studied.

Liu and Layland [9], proposed

an Earlier-
Deadline-First EDF scheduling scheme. Using

this

algorithm, priorities are assigned to tasks according
to

the deadlines of their current requests. Specifically,

a task will

be assigned the highest priority if

the
deadline

of

its current request is

the nearest, and will

be

assigned the lowest priority if the deadline of

its

current request is

the

furthest. Such

a method

of

assigning priorities to

the tasks is a dynamic

one, in

contrast to a static assignment in

which priorities of

tasks do not change with

time. Schedulability analysis

to determine whether a given task

set can be

scheduled by EDF is given in

[9].

An

EDF algorithm is

optimal

for

scheduling preemptive

jobs

on

one

processor. However,

it

is

non- optimal when jobs are
non-preemptive or when there is more than one
processor [96].

Another

well-known dynamic-priority algorithm

is

the Least-Slack-Time-First (LST) [48] algorithm.

At

time

t,

slack of a job

whose

remaining execution

time

is x and whose deadline

is d is equal to d - t - x.

The

LST scheduling algorithm checks

the slacks

of all

the

ready jobs each time a new job

is

released and orders

the new job and the existing

jobs

on

the basis

of

their

slacks: the smaller the slack,

the higher the priority.

Like EDF, LST algorithm

is also optimal for scheduling

preemptive

periodic jobs [95]

on one

processor

but

non-optimal for

scheduling

non-preemptive

jobs

or

multiprocessor scheduling.

As dynamic priority-driven scheduling schemes
makes a better processor utilization, many approaches
have been reported in the literature that cover the
problem of scheduling the soft / hard aperiodic jobs
in the dynamic priority-driven framework. Chetto and
Chetto [66] studied the localization and duration of
idle times and proposed an algorithm for
scheduling hard aperiodic tasks. Chetto’s algorithm
requires that the periodic task deadlines be equal to
their periods, and assumes that when any hard
aperiodic task arrives and is required to run, all the
aperiodic tasks previously accepted have completed
their execution. Schwan and Zhou [70] relax the above
assumptions and propose a joint algorithm in
which every task, whether periodic or aperiodic, is
subject to an acceptance test upon arrival.

Work has been carried out for dynamic priority
versions of deferrable server, sporadic servers and
other bandwidth preserving algorithms, as is found in
the fixed priority schemes. Three server mechanisms
under EDF have been proposed by Ghazalie and
Baker [68]. The authors describe a dynamic version
of the known Deferrable and Sporadic servers [61],
called Deadline Deferrable server and Deadline
Sporadic Server respectively. Then, the later is
extended to obtain a simpler algorithm called Deadline
Exchange Server. Later, Spuri and Buttazzo [72,73],
presented five new online algorithms for servicing soft
aperiodic tasks scheduled using EDF. They presented
following algorithms:
1. Dynamic Priority Exchange, an extension of previous

work under RM.
2. A new bandwidth-preserving algorithm called as

Total Bandwidth Server.
3. Earliest-Deadline-Last (EDL) Server.
4. Improved Priority Exchange with less runtime

overhead and
5. Dynamic Sporadic Server (DSS) Algorithm.

Spuri et al in [29], extended the Total
Bandwidth Sever algorithm to handle hard aperiodic
tasks and to deal with overload situations. Total
Bandwidth approach was further expanded toward
optimality by Buttazzo and Sensini [51,74]. They
provided a general method for assigning deadlines to
soft aperiodic requests.

Homayoun et al [56] combine the EDF
algorithm for scheduling periodic tasks with the
deferrable server for servicing aperiodic tasks. An online
algorithm for scheduling sporadic tasks with shared
resources in hard real-time systems has been
presented in [75]. Jeffay [75] describes a method,
the Dynamic Deadline Modification (DDM) protocol,
for scheduling sporadic tasks with shared

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

19

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

a. Earlier- Deadline- First (EDF) Scheduling
Algorithm

b. Least- Slack- Time- First (LST) Scheduling
Algorithm

c. Scheduling Non-Periodic Tasks in Dynamic
Priority Systems

resources under the Earliest Deadline First (EDF)
scheduling algorithm. Baker [15] proposed a general
resource access protocol, the Stack Resource Policy
(SRP), which can be used under fixed as well as
dynamic priority assignments. Group Priority Earliest
Deadline First (GPEDF) performs schedulability test
prior to grouping a particular job. In the GPEDF, jobs
with short execution time are executed first in the group,
which leaves more time for other jobs to execute. This
allows more jobs to be completed, the response is
reduced. [96].

In [71], Caccomo et al extended the
analysis to deal with dynamic deadline
modifications, in order to use the tunable Total
Bandwidth server [51,74], for improving aperiodic
responsiveness in the presence of resource constraints.

Kim et al [76-78], discuss two scheduling
algorithms known as Alternative Priority Scheduling
(APS) and Critical Task Indication (CTI) algorithms.

Buttazzo [50] proposes a variant of earliest
deadline first scheduling algorithm which exploits skips
to minimize the response time of aperiodic requests in
a firm real-time system.
 viii. Scheduling in Multiprocessor Systems

a. Introduction
Thus far we have seen about the scheduling

algorithms without considering the case where the real-
time system has more than one processor.
A multiprocessor system is classified into the shared-
memory and distributed-memory systems. A shared-
memory multiprocessor model is a centralized system
as the processors are located at a single point in the
system and the inter-processor communication cost is
negligible compared to the processor execution cost.
The distributed-memory multiprocessor model, also
known as distributed system, is one in which the
processors are distributed at different points in the
system and the inter-processor communication cost is
not negligible compared to the processor execution
cost. A local area network is an example of such
system.

Scheduling scheme for multiprocessor
systems has to provide solutions for the problems
that arise in the multiprocessor environments. Firstly,
task assignment is an important problem in
multiprocessor systems. Most hard real-time systems
built to date are static, that is jobs or tasks are
partitioned and statically bound to processors. The
task assignment problem is concerned with how to
partition the system of tasks and passive resources
into modules and how to assign the modules to
processors. Second problem is the inter-processor
synchronization. Some kind of synchronization protocol
is needed to ensure that precedence constraints
of jobs on different processors are always satisfied.

Finally, in a distributed real-time system, tasks may
arrive unevenly at the nodes (processors) in the system
and / or processing power may vary from node to
node, thus getting some nodes temporarily
overloaded while leaving others idle or under-loaded.
Many load sharing (LS) algorithms have been
proposed in the literature to counter this problem.

Scheduling schemes for multiprocessor system
has to take into account the following important
factors: memory and resource utilization, deadlock
avoidance, precedence constraints, and
communication delay. Because of all these
complicating factors, the development of appropriate
scheduling schemes for multiprocessor real-time
systems is problematic, it is known that optimal
scheduling for multiprocessor systems is NP hard. It is
therefore necessary to look for ways of simplifying
the problem and algorithms that give adequate sub-
optimal results.

b. Scheduling Problem Definition for Multiprocessor
Systems
The problem of multiprocessor scheduling is

to determine when and on which processor a given
task executes. This can be done either statically or
dynamically. In static algorithms, the assignment of
tasks to processors and the time at which the tasks start
execution are determined a priori. Static algorithms
[19], [37] are often used to schedule periodic tasks
with hard deadlines. The main advantage is that, if a
solution is found, then one can be sure that all
deadlines will be guaranteed. However, this approach
is not applicable to aperiodic tasks whose
characteristics are not known a priori. Scheduling
such tasks in a multiprocessor real-time system
requires dynamic scheduling algorithms. In dynamic
scheduling [4], [53], when new tasks arrive, the
scheduler dynamically determines the feasibility of
scheduling these new tasks without jeopardizing the
guarantees that have been provided for the
previously scheduled tasks. Thus, for predictable
executions, schedulability analysis must be done
before a task’s execution is begun.

Dynamic scheduling algorithms can be
either distributed or centralized. In a distributed
dynamic scheduling scheme, tasks arrive
independently at each processor. When a task arrives
at a processor, the local scheduler at the processor
determines whether or not it can satisfy the constraints
of the incoming task. The task is accepted if they can
be satisfied, otherwise, the local scheduler tries to find
another processor which can accept the task. In a
centralized scheme, all the tasks arrive at a central
processor called the scheduler, from where they are
distributed to other processors in the system for
execution.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

20

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

c. Inter-Processor Synchronization Protocols
Synchronization protocol is a protocol that

governs when the schedulers on different processors
release the jobs of sibling subtasks. A synchronization
protocol is said to be correct if it (1) never releases jobs
in any first subtask before the end-to-end release times
of the jobs and (2) never allows the violation of any
precedence constraint among sibling subtasks. Four
types of synchronization protocols are reported in the
literature. Those are Greedy Synchronization Protocol,
Phase Modification (PM) Protocol, Modified Phase-
Modification (MPM) Protocol and the Release-Guard
(RG) Protocol [8,80]. Rajkumar et al [12] extend the
priority inheritance protocol for uniprocessors [31] to
multiprocessors.

d. Load Sharing Algorithms
In load sharing scheme, if a node cannot

guarantee a task or some of its existing guarantees
are to be violated as a result of inserting a task into its
schedule, it has to determine candidate receiving
processor(s) for the task(s) to be transferred. Two
issues need to be considered when choosing a
receiving processor(s).

Most of the work concentrates on 1 and
chooses the most desirable receiving processor
based on the state information collected from
periodic/aperiodic state broadcasts [87,88, 98] or state
probing/bidding [89]. Moreover, implied in this work is
the assumption of homogeneous workload
distribution among nodes. This assumption does not
always hold, because the distribution that governs task
arrivals at different nodes may vary greatly over time
and thus the workload distribution is not homogeneous
among the nodes. Therefore both 1 and 2 above
should be considered in guaranteeing tasks on a
heterogeneous system.

Hou and Shin [81] propose a load-sharing
algorithm for real-time applications, which takes into
account the future task arrivals.

e. Fault Tolerant Scheduling
In many real-time systems, a fault tolerance is

an important issue. A system is fault tolerant if it
produces correct results even in the presence of
faults. When a fault occurs, extra time is required
during task execution to handle fault detection and
recovery. For real-time systems in particular, it is
essential that the extra time be considered and
accounted for prior to execution. Methods explicitly

developed for fault tolerance in real-time systems must
take into consideration the number and type of faults,
and ensure that the timing constraints are not violated.

In a multiprocessor system fault tolerance can
be provided by scheduling multiple copies of tasks on
different processors [81,82] and the high-performance
computation power from multiple cores on the platforms
[99]. A primary / backup (PB) approach and triple
modular redundancy (TMR) approach are two basic
approaches that allow multiple copies of task to be
scheduled on different processors [83]. One or more
of these copies can be run to ensure that the task
completes before its deadline. In TMR, multiple copies
are usually run to achieve error checking by
comparing results after completion. In PB approach, if
correct results are generated from the primary task,
the backup task is activated. Ghost et al [84] study
techniques for providing fault tolerance for non-
preemptive, aperiodic, dynamic real-time tasks using
the PB approach. Maode et al [85] proposed a
strategy called as task reassignment fault tolerance
(TRFT) scheduling scheme. The basic idea in [85] is
that when a fault appears in the system, it means that a
node has no capability to handle tasks and it can not
accept other tasks any more. The tasks that have
been assigned to it not successfully done should be
reassigned to other node which is ready to accept
new batch of tasks. Liberto et al [86], focus on global
scheduling where tasks can migrate across processors.
Two varieties of global multiprocessor scheduling
schemes, frame- based scheduling and periodic
scheduling, are discussed.

In the frame-based scheduling model, an
aperiodic task set is scheduled to create a template
(frame), and that schedule may be executed
periodically. In the periodic model, each task in the
set has a separate period, and is executed with no
explicitly predetermined schedule.

f. Related Work
Tasks can be statically bounded to a

processor i.e. once tasks are allocated to
processors; each processor runs the same set of
tasks. Each task thus runs on its host processor.
Dhall and Liu [79] have shown that the rate monotonic
algorithm, which performs well on uniprocessors,
behaves poorly for multiprocessor with dynamic
binding. They considered the problem of assigning a
set of independent periodic tasks to a minimal
number of processors. They proposed two heuristic
algorithms, called the Rate-monotonic-First-Fit (RMFF)
and Rate-Monotonic-Next-Fit (RMNF) algorithms
respectively. They showed that in the worst-case,
the assignment produced by the RMFF algorithm uses
no more than 2.33 times the optimal number of
processors, while RMNF uses no more than 2.67

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

21

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

1. Minimization of the probability of transferring a task
to an incapable node.

2. Avoidance of task collisions and / or excessive task
transfers, and minimization of the possibility of a
task’s guarantee being violated due to future tighter-
laxity task arrivals.

times. Davari and Dhall [90] considered another
variation of the heuristic, called First-Fit-Decreasing-
Utilization-Factor (FFDUF) algorithm, which improves
the worst-case performance to 2 times the optimal
number of processors. Davari and Dhall then devised
an on-line algorithm, called Next-Fit-M algorithm [91] which has a worst-case performance ratio of 2.2838. Baruah et al [92,93] devised new dynamic-
priority schemes that result in optimal multiprocessor schedulers for hard real-time periodic tasks. Authors
[92] proved that any task set whose combined weights
is at most m can be scheduled in a pfair manner on m
processors, and presented a scheduling algorithm that would achieve this. In [93], they provided a more efficient algorithm. Kwon et al. proposed an optimal algorithm for
parallelizing and scheduling a task set with multiple
parallelization options on multiple processor systems
[10]. The algorithm presented in [10] is a global strategy
while our proposed algorithm is a partitioning strategy.

iv. Summary and Conclusion

Different goals and algorithms characterize process scheduling in real-time operating system.
Schedules may or may not exist that satisfy the given
timing constraints. In general, the primary goal is to schedule the tasks such that all deadlines are met: in
case of success (failure) a secondary goal is maximizing earliness (minimizing tardiness) of task completion. An important issue is predictability of the
scheduler, i.e., the level of confidence that the scheduler
meets the constraints.

In this

section, various scheduling schemes
and their schedulability tests have been given. Recent
work in process scheduling for

multiprocessor and

distributed systems is also covered.
 The

scheduling problem for the

design of

 hardware/software systems is explained in this report.
Here it has defined the scheduling in the scenario of

 embedded systems. Generally speaking, hardware and
 software scheduling problems

differ

not

just

in

the

formulation

but

in

their

overall goals. Nevertheless,

some hardware scheduling algorithms are based on
 techniques used

in

the

software domain, and some

 recent system-level

process

scheduling

methods

 have leveraged

ideas

in

hardware sequencing.

Scheduling algorithms as applied to

design of
hardware, compilers,

and operating systems were

explained in chapters 2, 3 and 4 respectively.
Various process scheduling algorithms have

been described. Process Scheduling has to take into account the real-time constraints. Processes are
characterized by their timing constraints, periodicity,
precedence and data dependency, pre-emptivity,
priority etc. The way in which these characteristics
affect scheduling decisions has been described.

Broadly, the approaches taken to real-time

 task scheduling are classified into

three categories:

clock-driven scheduling, round-robin

scheduling

and

 priority-driven scheduling. Priority driven scheduling

 can be further classified into fixed and dynamic

 priority scheduling. Also, scheduling schemes are

 differentiated

as preemptive and non-preemptive
scheduling scheme. The scheduling algorithms

found
in the literature target the topic of scheduling

the hybrid
of real-time periodic and non- periodic

(aperiodic and
sporadic) tasks

with

hard

or soft

deadlines

respectively. In literature the work of scheduling covers
specific cases of uniprocessor, multiprocessor and
distributed systems (with identical or heterogeneous
processors).

 Clock-driven scheduler schedules the

jobs at
specific and pre-defined time instants. So, clock-driven
scheduling

is

possible for a system that is by and large

 deterministic. In round

robin

scheduling, every process

 gets

its

share of

the

processor (depending on its

 weight

or

priority) when there are n

jobs ready for

 execution. Round robin scheduling

is

very

simple

to

 implement

but

is

not

suitable for

the

jobs

with
precedence constraints.

Moreover, it may require a
very fast

processing unit to satisfy timing constraints.
Priority-driven scheduling algorithms are mostly used
because they never leave any processor idle

 intentionally and therefore often results

into better
processor

utilization. Priorities

to

the

tasks

can

be

 assigned

statically or dynamically. Rate

Monotonic

 (RM) and Deadline

Monotonic (DM) scheduling
schemes are static priority scheduling schemes and
Earlier-Deadline-First (EDF) and Least-Slack-Time- First
(LST) are the examples of dynamic priority scheduling
schemes.

Scheduling scheme for

multiprocessor
systems has

to provide

solutions for

the problems
that

arise

in

multiprocessor environments.

The

 problems that need to

be tackled by the

 multiprocessor scheduling schemes are: task

 assignment to a processor, Synchronization

protocol,

 load-balancing etc. Also,

scheduling

scheme

for
multiprocessor system has to

take

into account

the

 following

important

factors: memory and resource

 utilization,

deadlock avoidance, precedence
constraints, and communication

delay. Because

of

 these conflicting requirements, development

of
scheduling scheme for multiprocessor system is difficult.

References

References Referencias

1.

G.D.

Micheli and R.K.

Gupta, Hardware/Software
 Codesign, Proceedings of

the IEEE, vol.85, no.3,

pp. 349-365, March, 1997
 2.

D.D. Gajski and F. Vahid, Specification and Design

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

22

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

of Embedded Hardware/Software Systems, IEEE

Design and Test

of

Computers,

vol.11,

no.3,

pp.44-54, 1994
 3.

F. Balarin, L. Lavango,

P.

Murthy, a n d A.S.-

Vincentelli, Scheduling for Embedded

Real-Time

 Systems, IEEE

Design and

Test of Computers,
 vol.12,

no.1, Jan.-March, 1998

 4.

K.

Ramamritham, J. A.

Stankovic,

P. Shiah,
 “Efficient

scheduling algorithms

for real-time

 multiprocessor systems”, COINS Technical Report
89-37, April 13, 1989.

 5.

O.

Plata, F. F. Rivera, “Dynamic Scheduling on
Distributed- Memory Multiprocessors”, University

of

 Malaga,

Technical

Report

No: UMA-DAC-95/12,
June 1995.

6.

K.

Ramamritham, J. A.

Stankovic,

“Scheduling
 algorithms

and

operating systems support for Real-

Time Systems”, University

of Massachusetts.

7.

N.

C.

Audsley

A. Burns M. F. Richardson A. J.
Wellings, “Hard Real-Time Scheduling:

The

 Deadline-Monotonic

Approach”. Proceedings of
 the 8th IEEE Workshop on Real-time Operating

Systems and Software, pp. 127 – 132, 1991.
 8. Bettati, R., “End-to-end scheduling to meet

deadlines in distributed systems,” Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana- Champaign, 1994.
9. Liu and Layland, “Scheduling Algorithms for

Multiprogramming in a Hard-Real- Time
Environment”, 1973.

10. Philip J. Christopher, Apostolos Dollas,
“Knowledge Based Process Scheduling on
Symmetric Multiprocessors”, Proceedings of the
IEEE, Nov. 1991.

11. Babak Hamidzadeh, Lau Ying Kit, David J. Lilja,
“Dynamic Task Scheduling Using Online
Optimization”, IEEE Transactions on parallel and
distributed systems, vol. 11, no. 11, Nov. 2000.

12. Ragunathan Rajkumar, Lui Sha, John P. Lehoczky,
“Real-Time Synchronization Protocols for
Multiprocessors”, Proceedings of the 1988
Real-Time Systems Symposium, 1988.

13. Kwang S. Hong, Joseph Y-T Leung, “On-line
Scheduling of Real-Time Tasks”, IEEE Transactions
on Computers 41, 1998.

14. John P. Lehoczky, “Fixed Priority Scheduling of

Periodic Task Sets with Arbitrary Deadlines”,
Proceedings of the Real-Time Systems
Symposium, pp. 201-209, 1990.

15.

T. P.

Baker, “A Stack-Based Resource

Allocation Policy

for Real-Time Processes”,

Proceedings of IEEE

Real-Time Systems
Symposium, 1990.

16.

Chao-Ju Hou, Kang G. Shin, “Load Sharing with

Consideration

of Future Task Arrivals

in

Heterogeneous Distributed Real-Time Systems”,
IEEE Trans. Computers, 43(9): 1076-90, 1991.

17. Kevin Jeffay, Donald F. Stanat, Charles U.
Martel, “On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks”, Proceedings of
the 12th

 IEEE Symposium on Real-Time Systems,
pp. 129-139,1991.

18. John P. Lehoczky, Sandra Ramos-Thuel, “An
Optimal Algorithm for Scheduling soft-Aperiodic
Tasks in Fixed-Priority Preemptive Systems”,
Proceedings 13th

 Real- Time Systems Symposium,
pp. 110-123, 1992.

19. K. Ramamritham, “Allocation and Scheduling of
Precedence-Related Periodic Tasks,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 4,
pp. 412-420, Apr. 1995.

20. N. Audsley, A. Burns, M. Richardson, K. Tindell,
A.J. Wellings, “Applying new scheduling theory to
static priority pre-emptive scheduling”, Software
Engineering Journal, 1993.

21. Sandra Ramos-Thuel, John P. Lehoczky, “On-line
Scheduling of Hard Deadline Aperiodic Tasks in
Fixed-Priority Systems”, Proceedings of 14th

 Real-
Time Systems Symposium, pp. 160-171, 1993.

22. R. I. Davis, K. W. Tindell, A. Burns, “Scheduling
Slack Time in Fixed Priority Pre-emptive Systems”,
Proceedings of Real-Time Systems Symposium,
1993.

23. A. Burns, A. J. Wellings, “Dual Priority
Assignment: A Practical Method for Increasing
Processor Utilization”, Real-Time Systems
Symposium, 1993.

24. Jun Sun, Riccardo Bettati, Jane W. S. Liu, “An End-
to-End Approach to Schedule Tasks with Shared
Resources in Multiprocessor Systems”,
Proceedings of the 11th IEEE Workshop on Real-
Time Operating Systems and Software, 1994.

25. Sandra R. Thuel, John P. Lehoczky, “Algorithm for
Scheduling Hard Aperiodic Tasks in Fixed-Priority
Systems using Slack Stealing”, IEEE Real-Time
Systems Symposium, pp. 22-33, IEEE Computer
Society Press, 1994.

26. Too-Seng Tia, Jane W. S. Liu, “Task and
Resource Assignment in Distributed Real-Time
Systems”, Parallel and Distributed Real-Time
Systems, 1994.

27. Robert Davis, Andy Wellings, “Dual Priority
Scheduling”, IEEE Real-Time Systems
Symposium, 1995.

28. Sanjay K. Baruah, “Fairness in periodic real-time
scheduling”, Proceedings of 16th

 Real-Time Systems
Symposium, 1995.

29. Marco Spuri, Fiorgio Buttazzo, Fabrizio Sensini,
“Robust Aperiodic Scheduling under Dynamic
Priority Systems”, IEEE Real-Time Systems

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

23

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

Symposium, 1995.

 30.

Haken Aydin, Rami Melhem, Daniel

Mosse,

 Pedro Mejia-Alvarez,

“Optimal Reward-Based

 Scheduling

of Periodic Real-Time

Tasks”,

IEEE

 Transactions

on Computers, Vol. 50. No. 2, Feb.
2001.

 31.

Sha L.,

R.

Rajkumar, J.

P. Lehoczky,

“Priority

 Inheritance

Protocols:

An Approach

to Real-Time

 Synchronization”, IEEE Transactions

on

Computer,

 Vol.

39, No. 9, Sep. 1999.

 32.

Satoshi Fujita,

Hui Zhou,

“Multiprocessor
Scheduling Problem

with

Probabilistic Execution
Costs”, IEEE 2000.

 33.

J.M. Lopez, M. Garcia, J.L. Diaz, D.F. Garcia,

 “Worst-Case

Utilization Bound

for EDF Scheduling

 on Real-Time Multiprocessor Systems”,
Proceedings

of

the

12th

Euromicro Conference on
Real-Time Systems (EUROMICRO-RTS 2000), 2000.

 34.

Sanjay

K. Baruah, “Scheduling Periodic Tasks

 on

Uniform

Multiprocessors”, Proceedings of the

 12th

Euromicro Conference

on Real-Time Systems

 (EUROMICRO- RTS 2000), 2000.

 35.

Shu-Ling Lee,

Chao-Tung Yang, Shian-Shyong
Tseng, Chang-Jiun

Tsai, “A Cost Effective

 Scheduling with Load Balancing for Multiprocessor
Systems”, IEEE 2000.

 36.

Babak

Hamidzadeh, Yacine

Atif, “Dynamic

 Scheduling

of Real-Time Tasks, by Assignment”,
IEEE Concurrency 1998.

 37.

J. Xu and L. Parnas, “Scheduling Processes with
Release Times, Deadlines, Precedence, and
Exclusion Relations,” IEEE Trans. Software Eng.,
vol.

16,

no.

3,

pp. 360-369,

Mar. 1990.

 38.

G. Bernat

and

A. Burns,

™Combining (n, m) Hard

 Deadlines

and Dual Priority Scheduling, Proc. 18th

 IEEE Real-Time Systems Symp. pp. 46-57, Dec.
1997.

 39.

A. Bertossi and L.V. Mancini,

™Scheduling
Algorithms for Fault-Tolerance

in Hard-Real-Time

 Systems, Real-Time Systems, vol. 7, no. 3, pp. 229-
245, 1994.

 40.

J. -Y.

Chung, J.W.-S. Liu, and K. -J. Lin,

 ™Scheduling Periodic Jobs

that

Allow Imprecise
Results, IEEE Trans. Computers, vol. 19, no. 9, pp.
1156-1173, Sept. 1990.

 41.

W. Feng and J.W.-S. Liu,

™Algorithms for

 Scheduling

Real-Time Tasks

with Input Error and
End-to-End Deadlines, IEEE Trans. Software

Eng.,

 vol.

23,

no.

2,

pp.

93-106, Feb. 1997.

 42.

M.

Hamdaoui and P.

Ramanathan, ™A Dynamic

 Priority Assignment Technique for

Streams with (m,
k)-Firm Deadlines, IEEE Trans. Computers,

vol.

44,

 no.

12,

pp.

1443-1451, Dec. 1995.

 43.

J.K. Dey, J. Kurose,

D.

Towsley, C.M.

Krishna,

 and M.

Girkar, ™Efficient

on- line Processor

 Scheduling for a Class of IRIS Increasing Reward

with Increasing Service) Real-Time

Tasks, Proc.

ACM

SIGMETRICS

Conf.

Measurement and
Modeling of Computer Systems, pp. 217-228,
May 1993.

44.

K. -J. Lin, S. Natarajan, and J.W.-S. Liu,

™Imprecise Results:

Utilizing Partial Computations

in Real-Time Systems, Proc.

Eighth IEEE Real-
Time Systems Symp. pp. 210-217, Dec. 1987.

45.

J.W.-S. Liu,

K. -J. Lin, W. -K.

Shih,

A.C.-S.

Yu,

C.

Chung, J. Yao, and W. Zhao, ™Algorithms

for

Scheduling Imprecise

Computations,

Computer,

vol.

24,

no.

5,

pp.

58-68, May 1991.

46.

W. -K.

Shih, J.W.-S. Liu, and J. -Y.

Chung,

™Algorithms

for

Scheduling Imprecise
Computations

with

Timing

Constraints, SIAM

J.

Computing,

vol.

20,

no.

3, pp. 537-552, July 1991.

47.

Sha L., J. B. Goodenough, “Real-Time

Scheduling Theory and Ada”,

IEEE Computer,
1990.

48.

Mok,

A.

K., “Fundamental Design Problems of

Distributed Systems

for the Hard Real-Time

Environment”, Ph.D. Thesis, MIT, 1983.

49.

Chen, M.I.,

and K. J. Lin, “Dynamic priority
ceiling: A concurrency control protocol for real-
time systems”, Real-Time System Journal,

vol

2,

no.

4,

pp.

325-346, Dec. 1990.

 50.

Giorgio C. Buttazzo “Minimizing Aperiodic

 Response Times

in a Firm

Real-Time Environment”,

 IEEE Transactions

On

Software

Engineering,

 Vol.

25,

No. 1, January/February 1999

 51.

Giorgio C. Buttazzo, F. Sensini, “Optimal Deadline

 Assignment for Scheduling Soft

Aperiodic

Tasks

 in Hard

Real-Time

Environment”, Proceedings

of
 3rd

IEEE Conference

on Engineering

of

Complex

 Computer

Systems

(ICECCS’97), pp.

39-48,

1997.

 52.

M.L. Dertouzos and A.K.

Mok,

“Multiprocessor

On-Line Scheduling of Hard Real-Time Tasks,”
IEEE Trans. Software Eng., vol.

15,

no.

12,

pp.

 1,497-1,506,

Dec. 1989.

 53.

M.

Silly-Chetto, “Dynamic Acceptance of Aperiodic

Tasks with Periodic Tasks Under Resource

Sharing

Constraints”, IEEE Proc.

On

Software Engg. , Vol

 146,

No. 2, Apr. 1999.

 54.

Dey, J. K., J. Kurose, and D.

Towsley, “On-line

 scheduling policies for a class of IRIS (Increasing
Reward with Increasing Service) real-time tasks,”
IEEE Transactions on Computers, vol. 45, no.7, July
1996.

 55.

Gutierrez, J. C.

P., J. J. G. Garcia, and M. G.

Harbour,

“On

the schedulability analysis

for
 distributed hard real-time systems,”

Proceedings of

 Euromicro Workshop on Real-Time Systems, pp.
136–143, June 1997.

56. Homayoun, N., and P. Ramanathan, “Dynamic

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

24

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

priority scheduling of periodic and aperiodic tasks

in

hard real-time systems,” Real-Time Systems
 Journal, vol

6,

no.

2, pp. 207–232, 1994.

 57.

Audsley

N.

C.,

“Optimal priority assignment and

feasibility of static priority tasks with

arbitrary start

times”, Report YCS 164,

Dept.

of

Comp.

Sci.,
 University

of York, Dec. 91.

 58.

Rajkumar

R, “Real-Time Synchronization

 Protocols

for Shared Memory Multiprocessors”,
IEEE Proc. on Dist. Computing systems, Jun 1990.

 59.

Joseph

M. and Pandya

P., “Finding response

times

in

a real-time systems”, Computing
 Journal, 1986.

 60.

Lehoczky J. P.,

Sha L., stronides J. K.,

 “Enhancing aperiodic responsiveness in hard real-
time environment”, IEEE Proc.

Real-Time systems

Symp. Dec 1987.
 61.

Sprunt, B, L. Sha,

and J. P. Lehoczky, “Aperiodic

 task scheduling

for hard real- time systems,”

Real-

Time Systems Journal, vol 1, no. 1, pp. 27–60, 1989.
 62.

Leung, J. Y.

T., and J. Whitehead,

‘On the

complexity of fixed-priority scheduling of periodic
 real-time tasks,” Performance

Evaluation, vol. 2, pp.

37–250, 1982.
 63.

Lehoczky J. P.,

Sha L.,

Ding Y.,

“The

Rate

 Monotonic

Scheduling Algorithm: Exact
Characterization and Average Case Behavior”,
Proceedings

of

the

10th

IEEE Symposium on Real-

Time Systems, pp. 166-171, 1989.
 64.

Singh

H.,

“Scheduling Techniques for Real-

Time

Application Consisting of Periodic

Task

Sets”, IEEE 1994.
 65.

Shih W. K., Liu J. W. S., Liu C. L.,

“Modified Rate-

Monotonic Algorithm

for Scheduling

Periodic Jobs

 with

Deferred Deadlines”, IEEE Transactions

on
 Software Engineering, Vol 19, No. 12, Dec 1993.

 66.

Chetto, H., and M. Chetto, “Some results of

the

 earliest deadline scheduling algorithm,” IEEE
Transactions

on

Software

Engineering, vol.

15,

no.

 10,

pp.

1261–1269,

October 1989.

 67.

Strosnider, Lehoczky, and L.Sha,

“The deferrable

server algorithm

for enhanced aperiodic
responsiveness in hard real-time environments,”

 IEEE Transactions on Computers, vol 44, issue 1,
 Jan 1995.

 68.

Ghazalie, T. M., and T. P. Baker, “Aperiodic

 servers

in deadline scheduling environment,”
Real-Time Systems Journal, vol. 9, no. 1, pp. 31–68,
1995.

 69.

Sprunt B, Lehoczky J. P. and Sha L., “Exploiting

 Unused Periodic

Time for Aperiodic Service

Using

the Extended Priority Exchange Algorithm”,
Proceedings IEEE Real-Time Systems Symposium,
Dec 1988.

 70.

K.

Schawan and H. Zhou, “Dynamic

Scheduling of

 Hard Real-Time

Tasks and Real-Time Threads,”

IEEE Trans. Software Eng., vol. 18, pp. 736-747,
Aug. 1992.

 71.

Caccamo M., Lipari

G.,

Buttazzo G., “Sharing

Resources among Periodic and Aperiodic Tasks
with Dynamic

Deadlines”, Proceedings

of

the

20th

 IEEE Real-Time Systems Symposium.
72.

M. Spuri, and G.C. Buttazzo,

“Efficient Aperiodic

 Service under Earliest Deadline Scheduling”, Proc.
IEEE Real-Time Systems Symp. 1994.

 73.

M.

Spuri, and G.C. Buttazzo,

“Scheduling

Aperiodic Tasks in Dynamic Priority Systems”,
Journal on Real-Time Systems,

vol 10, no. 2, 1996.

 74.

Buttazzo,

G.C.; Sensini, F.,

“Optimal deadline

 assignment for scheduling soft aperiodic tasks in
 hard real-time environments”, IEEE

Transactions

 on,

Volume:

48 Issue:

10 , Oct. 1999, Page(s):
1035 –1052

 75.

Jeffay K., “Scheduling sporadic tasks with

 shared resources in

hard real-time systems”,
Proceedings

of

the

13th IEEE Real-Time

Systems

Symposium,

Phoenix, AZ, December 1992, pp.
89-99.

76.

Kim

H. I., Lee S.

Y., Lee J.W., “A soft

Aperiodic

 Task Scheduling Algorithm

in Dynamic Priority
Systems”, Proceedings

of

the 2nd

International

 Workshop

on

Real- Time Computing Systems and

Applications, 1995.
 77.

Kim

H. I., Lee S.

Y., Lee J. W.,

“Scheduling

of

 hard Aperiodic Requests in Dynamic Priority
Systems”, IEEE 1995.

 78.

Kim

H. I., Lee S.

Y., Lee J. W.,

“Alternative

 Priority Scheduling in Dynamic Priority Systems”,
Proceedings of

the 2nd IEEE International

 Conference

on Engineering of Complex Computer
Systems

(ICECCS’96), 1996.

 79.

Dhall S.

K., Liu C. L., “On a

Real-Time

 Scheduling

Problem”,

Operations

Research,

vol

26. no. 1, 1978.
 80.

Sun J, Liu J., “Synchronization

Protocols in

 Distributed

Real-Time Systems”, 16th

International

 Conference on Distributed Computing Systems,
1996.

81. Liestman A. L., Campbell R. H. ‘A Fault-Tolerant

Scheduling Problem”, IEEE Trans. Software Engg.
vol 12, no 11, 1988.

82. Oh Y., Son S., “Multiprocessor Support for
Real-Time Fault Tolerant Scheduling”, Proc. IEEE
1991 Workshop Architectural Aspects of Real-Time
Systems, 1991.

83. Pradhan D. K., “Fault-Tolerant Computing: Theory
and Techniques”, Englewood Cliffs, N.J: Prentice
Hall, 1986.

84. Ghosh S., Melhem R., Mosse D., “Fault-
Tolerance Through Scheduling of Aperiodic

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

25

Y
e
a
r

20
17

 (

)
A

Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

Tasks on Hard Real-Time Multiprocessor
Systems”, IEEE Trans. On Parallel and Distributed
Systems, vol. 8, no. 3, 1997.

85. Maode M., Babak H., “A Fault-tolerant Strategy for
Real-Time Task Scheduling on Multiprocessor
System”, Proceedings of the 1996 International
Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN ’96), 1996.

86. Liberto F., Lauzac S., Melhem R., Mosse D.,
“Fault Tolerant Real-Time Global Scheduling on
Multiprocessors”, IEEE Proceedings of the 11th
Euromicro Conference on Real-Time Systems, 1999.

87. Shin K. G., Hou C. -J., “Design and evaluation
of effective load sharing in distributed real-time
systems”, Proc. IEEE Symp. On Parallel and
Distributed Processing, 1991.

88. Shin K. G., Chang Y. -C., “Load Sharing in
distributed real-time systems with state change
broadcasts”, IEEE Trans. On Computers, vol
C-38, no. 8, 1989.

89. Eager D. L., Lazowska E. D., Zahorjan J.,
“Adaptive load sharing in homogeneous
distributed systems”, IEEE Trans. On Software
Engineering, vol. SE-12, no. 5, 1986.

90. Davari S., Dhall S., “On a Real-Time Task
Allocation Problem”, Proc. of 19th Annual
International Conference on System Sciences, 1986

91. S. Davari and S.K. Dhall, An On Line Algorithm for
Real-Time Tasks Allocation, IEEE Real-Time
Systems Symposium, 1986

92. S.K. Baruah, N.K. Cohen, C.G. Plaxton, D.A. Varvel,
“Proportionate Progress: A Notion of Fairness in
Resource Allocation”, ACM Symposium on
Theory of Computing, 1994.

93. S. Baruah, J. Gehrke, and C. G. Plaxton. “Fast
scheduling of periodic tasks on multiple
resources”, Proceedings of the 9th International
Parallel Processing Symposium, pages 280-288,
April 1995.

94. Ghosh S., Melhem R., Mosse D., “Fault-Tolerant
Scheduling on a Hard Real- Time Multiprocessor
System”, International Parallel Processing Symp.,
1994.

95. W. Li, K. Kavi, and R. Akl, “A non-preemptive
scheduling algorithm for soft real-time systems”,
Computers and Electrical Engineering, vol.33, no. 1,
pp. 12–29, 2007.

96. Li, Q. & Ba, W, “A group priority earliest deadline
first scheduling algorithm”, Frontiers of Computer
Science October 2012, Volume 6, Issue 5, pp
560–567

97. Arshjot Kaur, Supriya Kinger, International Journal of
Computer Science and Information Technologies,
Vol. 5 (4) , 2014, 4886-4890

98. J. Kwon, K.-W. Kim, S. Paik, J. Lee, and C.-G. Lee.
Multicore scheduling of parallel real-time tasks with

multiple parallelization options. In IEEE 21st

Real-
Time and Embedded Technology and Applications
Symposium (RTAS), pages 232–244, April 2015.

 99.

L. Zeng, P. Huang, and L. Thiele. Towards the
design of fault-tolerant mixed-criticality systems on
multicores. In Proceedings of the International
Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES ’16,
ACM. pages 6:1–6:10, New York, NY, USA, 2016.

 100.

G. Dhiman, K. K. Pusukuri and T. Rosing, "Analysis
of Dynamic voltage scaling for system level energy
management," in Proc. UNISEX Workshop Power
Aware Comput. Syst, 2008.

 101.

S. Yue, D. Zhu, Y. Wang and M. Pedram,
"Reinforcement Learning Based Dynamic Power
Management with a Hybrid Power Supply,"
Computer Design (ICCD), 2012 IEEE 30th
International Conference, pp. 81-86, 2012.

 102.

U. khan and B. Rinner, "A reinforcement learning
framework for dynamic power management of a
portable, multi-camera traffic monitoring system," in
Green Computing and Communications
(GreenCom), IEEE, 2012, pp. 557-564.

 103.

M. Trikil, A. C. Ammari, Y. Wang and M. Pedram,
"Reinforcement Learning-Based Dynamic Power
Management of a Battery-Powered System
Supplying Multiple Active Modes.," European
Modelling Symposium (EMS),, pp. 437-442, 2013.

 104.

M. Triki, Y. Wang, A. Ammari and M. Pedram,
"Hierarchical power management of a system with
autonomously power-managed components using
reinforcement learning.," Elsevier, 2015.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
I
V
er
sio

n
I

26

Y
e
a
r

20
17

 (

)

© 2017 Global Journals Inc. (US)1

A
Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

	Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review
	Author
	Keywords
	I. Introduction
	II. Scheduling inDifferentOperating Systems
	III. Process Scheduling
	a) Real-time System
	b) Characteristics of the Real-Time Tasks
	i. Timing Constraints
	ii. Period ic Task Model
	iii. Aperiodic and Sp oradic Tasks
	iv. Pre cedence Constraints and Data Dependency
	v. Functional Parameters
	a. Preemptive Jobs
	b. Priority of Jobs
	c. Energy Aware Scheduling

	c) Process Scheduling Techniques
	i . Terminology used in Scheduling
	a . Scheduler
	b . Schedule
	c.Feasible Schedule
	d. Optimal Scheduling or Scheduler
	e. Static Scheduling Algorithm
	f. Dynamic Scheduling Algorithm
	g. Mixed Scheduling Algorithm

	ii . Definition of Scheduling Problem
	a. Schedulability Analys is
	b. Performance Analysis o f Scheduling Algorithm s

	d) Approaches Taken to Real-Time Scheduling
	i. Static and Dynamic Task Scheduling
	ii . P reemptive vs. Non-preemptive Scheduling
	iii. Clock-driven Scheduling
	iv. Weighted Round Robin Scheduling
	v. Priority Driven Scheduling
	vi. Static or Fixed Priority Scheduling Algorithms
	a. Rate Monotonic Priority Assignment
	b. Deadline Monotonic Priority Assignment
	c. Related Work
	d. Scheduling Non-Periodic Tasks in Fixed PriorityReal-Time Systems

	vii. Dynamic Priority Scheduling Algorithms: E DF, LST
	a. Earlier- Deadline- First (EDF) SchedulingAlgorithm
	b. Least- Slack- Time- First (LST) SchedulingAlgorithm
	c. Scheduling Non-Periodic Tasks in DynamicPriority Systems

	viii. Scheduling in Multiprocessor Systems
	a. Introduction
	b. Scheduling Problem Definition for MultiprocessorSystems
	c. Inter-Processor Synchronization Protocols
	d. Load Sharing Algorithms
	e. Fault Tolerant Scheduling
	f. Related Work

	IV. Summary and Conclusion
	ReferencesReferences Referencias

