39 research outputs found

    Q-Learning Inspired Self-Tuning for Energy Efficiency in HPC

    Full text link
    System self-tuning is a crucial task to lower the energy consumption of computers. Traditional approaches decrease the processor frequency in idle or synchronisation periods. However, in High-Performance Computing (HPC) this is not sufficient: if the executed code is load balanced, there are neither idle nor synchronisation phases that can be exploited. Therefore, alternative self-tuning approaches are needed, which allow exploiting different compute characteristics of HPC programs. The novel notion of application regions based on function call stacks, introduced in the Horizon 2020 Project READEX, allows us to define such a self-tuning approach. In this paper, we combine these regions with the Q-Learning typical state-action maps, which save information about available states, possible actions to take, and the expected rewards. By exploiting the existing processor power interface, we are able to provide direct feedback to the learning process. This approach allows us to save up to 15% energy, while only adding a minor runtime overhead.Comment: 4 pages short paper, HPCS 2019, AHPC 2019, READEX, HAEC, Horizon2020, H2020 grant agreement number 671657, DFG, CRC 91

    Performance and Power Analysis of HPC Workloads on Heterogenous Multi-Node Clusters

    Get PDF
    Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes, allowing for application optimizations. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. In particular, we show how the same analysis techniques can be applicable on different architectures, analyzing the same HPC application on a high-end and a low-power cluster. The former cluster embeds Intel Haswell CPUs and NVIDIA K80 GPUs, while the latter is made up of NVIDIA Jetson TX1 boards, each hosting an Arm Cortex-A57 CPU and an NVIDIA Tegra X1 Maxwell GPU.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-Blanc projects [17], grant agreements n. 288777, 610402 and 671697. E.C. was partially founded by “Contributo 5 per mille assegnato all’Università degli Studi di Ferrara-dichiarazione dei redditi dell’anno 2014”. We thank the University of Ferrara and INFN Ferrara for the access to the COKA Cluster. We warmly thank the BSC tools group, supporting us for the smooth integration and test of our setup within Extrae and Paraver.Peer ReviewedPostprint (published version

    Progressive Load Balancing in Distributed Memory

    Get PDF

    Self-Aware Thermal Management for High-Performance Computing Processors

    Get PDF
    Editor's note: Thermal management in high-performance multicore platforms has become exceedingly complex due to variable workloads, thermal heterogeneity, and long, thermal transients. This article addresses these complexities by sophisticated analysis of noisy thermal sensor readings, dynamic learning to adapt to the peculiarities of the hardware and the applications, and a dynamic optimization strategy. - Axel Jantsch, TU Wien - Nikil Dutt, University of California at Irvine

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    Automatic Loop Kernel Analysis and Performance Modeling With Kerncraft

    Full text link
    Analytic performance models are essential for understanding the performance characteristics of loop kernels, which consume a major part of CPU cycles in computational science. Starting from a validated performance model one can infer the relevant hardware bottlenecks and promising optimization opportunities. Unfortunately, analytic performance modeling is often tedious even for experienced developers since it requires in-depth knowledge about the hardware and how it interacts with the software. We present the "Kerncraft" tool, which eases the construction of analytic performance models for streaming kernels and stencil loop nests. Starting from the loop source code, the problem size, and a description of the underlying hardware, Kerncraft can ideally predict the single-core performance and scaling behavior of loops on multicore processors using the Roofline or the Execution-Cache-Memory (ECM) model. We describe the operating principles of Kerncraft with its capabilities and limitations, and we show how it may be used to quickly gain insights by accelerated analytic modeling.Comment: 11 pages, 4 figures, 8 listing
    corecore