

Edinburgh Research Explorer

Progressive Load Balancing in Distributed Memory

Citation for published version:
Zarins, J & Weiland, M 2020, 'Progressive Load Balancing in Distributed Memory', Advances in Parallel
Computing, vol. 36, pp. 127-136. https://doi.org/10.3233/APC200033

Digital Object Identifier (DOI):
10.3233/APC200033

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Advances in Parallel Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322484891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/michele-weiland(5cc53924-c9cf-4f7f-9c0e-a02673f5fba4).html
https://www.research.ed.ac.uk/portal/en/publications/progressive-load-balancing-in-distributed-memory(6c3584d4-8597-4aa4-a86e-839e6fa80f14).html
https://doi.org/10.3233/APC200033
https://doi.org/10.3233/APC200033
https://www.research.ed.ac.uk/portal/en/publications/progressive-load-balancing-in-distributed-memory(6c3584d4-8597-4aa4-a86e-839e6fa80f14).html

Progressive Load Balancing in Distributed
Memory

Mitigating Performance and Progress Variability in Iterative
Asynchronous Algorithms

Justs ZARINS a,1, Michèle WEILAND b

a School of Informatics, University of Edinburgh, UK
b EPCC, University of Edinburgh, UK

Abstract. System performance variability is a significant challenge to scalability of
tightly-coupled iterative applications. Asynchronous variants perform better, but an
imbalance in progress can result in slower convergence or even failure to converge,
as old data is used for updates. In shared memory, this can be countered using pro-
gressive load balancing (PLB). We present a distributed memory extension to PLB
(DPLB) by running PLB on nodes and adding a balancing layer between nodes.
We demonstrate that this method is able to mitigate system performance variation
by reducing global progress imbalance 1.08x–4.05x and time to solution variabil-
ity 1.11x–2.89x. In addition, the method scales without significant overhead to 100
nodes.

Keywords. asynchronous algorithm, load balancing, performance variability,
iterative algorithm, system noise

1. Introduction

With the ever increasing scale of high performance computing systems, there comes
an array of new challenges. Technical, architectural and economic hurdles need to be
overcome in order to build and deploy an exascale machine. However, creating the right
hardware is only half the answer; software that can run on it efficiently is an essential
part.

Any algorithm or application aiming to run on millions of parallel threads, which
may be running at varying speeds, must be able to cope with performance variability.
In such a scenario, tightly synchronising algorithms are not a suitable choice. Instead,
we consider asynchronous or “chaotic” algorithms [1] which can make progress with
stale data if some other thread has stalled. This allows for greater flexibility in adjusting
to performance variability. Nevertheless this does not mean variability can be ignored
completely. It still affects time required to reach the solution, but in a more complex
manner than with synchronous algorithms. Therefore it is interesting to consider load
balancing in the context of asynchronous algorithms.

1Corresponding Author: E-mail: j.zarins@ed.ac.uk

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200033

127

Note that in this paper we are not considering task based parallelism, where asyn-
chrony refers to replacing global synchronisation with point-to-point synchronisation to
satisfy data dependencies.

A recent approach [2] called progressive load balancing (PLB) was introduced to
address the asynchronous context. The method was shown to be able to effectively mit-
igate the effect of a slow core in a shared memory environment. PLB achieves this by
periodically moving work between CPU cores, not in order to equalise iteration rates,
but to bound progress imbalance; it is balancing load over time, not instantaneously. In
the present paper we build upon PLB and extend it to the distributed memory setting.
Specifically, this paper makes the following contributions:

• A description of an implementation strategy extending PLB to distributed memory.
• An evaluation of the application of distributed PLB (DPLB) to balance the load in
an iterative asynchronous algorithm.

2. Background

As we move towards exascale computing, synchronisation in applications is an increas-
ingly important issue. Performance of individual cores, sockets and entire nodes that, on
paper are identical, is in fact variable. This is due to factors such as energy efficiency and
temperature management [3–5], random OS noise [6], and network latency variation [7].
Increasing the number of components that an application is run on also increases the like-
lihood that performance variation will be encountered; this is an increasing issue when
considering exascale [8]. Synchronisation in applications within this hardware context
results in large loss of efficiency, even running at the rate of the slowest component.
While static load balancing can help, ultimately it is of limited use because the machine’s
performance can change at runtime.

Given the efficiency limitations of large scale synchronisation, it is natural to con-
sider algorithms that do not rely on strict synchronous execution. In asynchronous algo-
rithms, data synchronisation points are removed to allow the use of stale data if other
workers in the system have not made progress due to stalls. There exist various iterative
convergent algorithms where this is possible [1, 9–12]. Performance in asynchronous al-
gorithms is generally dictated by a tradeoff between iteration rate and convergence rate.
The former is usually improved by going asynchronous, but the latter may suffer because
of the use of stale values, at the extreme resulting in failure to converge [13]. It fol-
lows that system performance variability is still a concern because it results in “progress
variability”.

The issue of progress variability in asynchronous algorithms has previously been
tackled using a load balancing approach called progressive load balancing [2]. It is
framed as a load balancing method specific to asynchronous algorithms since they do not
require balance to be instantaneous. Instead, balancing is done over time by effectively
swapping iteration rates of different problem subdomains. In other words, balance is in
a state of dynamic (not static) equilibrium; update rates of problem subdomains keep
changing but the difference in number of updates between subdomains is bounded. This
leads to a dynamically controlled level of asynchrony in the system, which was shown to
be effective at dealing with performance variation in shared memory.

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory128

In more detail, the global problem domain (e.g. a 2D grid for solving Jacobi’s algo-
rithm in 2 dimensions) can be split into more subdomains than there are threads. Then
each thread will have multiple subdomains to continually update. The update rate per
subdomain is inversely proportional to the number of subdomains that a thread owns.
Thus the update rate of a particular subdomain can be increased or decreased by remov-
ing from or adding to the owning thread’s workload respectively. PLB uses this mech-
anism to periodically move subdomain ownership between threads in order to limit up-
date staleness without wasting CPU time spent on waiting for stragglers. In the resulting
pattern some subdomains get updated quicker for a time, using stale values, but later the
update rates are changed so that the subdomain that had raced ahead begins to iterate
slower and eventually falls behind at which point the process is reversed again. In this
paper we will later see how the scheme can be extended to distributed memory with a
separate layer to move subdomains between nodes and the PLB mechanism to integrate
the subdomains within nodes.

2.1. Related Work

The area of load balancing is an active field of research, however the majority of tech-
niques are developed for, and applied to, synchronous algorithms and so may not tran-
sition well to asynchronous algorithms or require significant changes to the techniques.
For example, work stealing is a popular and scalable method [14]. Workers process local
queues of tasks and when they run out, more work is stolen from work queues of other
workers. In this form it cannot be applied to asynchronous algorithms because work-
ers in principle never run out of work and always appear busy, so they would just use
continuously more stale values. Work stealing can be applied to semi-synchronous algo-
rithms, where a maximum staleness bound is enforced so the amount of work available
per worker does have a limit. However, our experiments showed that the method does not
work well in the semi-synchronous case because the system soon reaches a state where
there are many starved workers and not much work to steal. Hence we are focusing on
techniques that have been shown to be applicable to asynchronous algorithms, which is
a key criterion for us.

A few examples of load balancing of asynchronous algorithms in distributed mem-
ory exist. For instance, Bahi et al. show a load balancing algorithm applied to a 1D sten-
cil application [15]. This algorithm sends parts of the working array from one worker to
a less loaded neighbour. The algorithm is similar to PLB, however it seeks a static load
balance while PLB aims to create dynamic equilibrium, which can result in good balance
with coarser work adjustments. Additionally, the proposed algorithm is presented in 1
dimension only; an extension to multiple dimensions would be difficult to design and
implement.

A more passive balancing approach has been applied to large scale deep learn-
ing [10]. The application uses asynchronous stochastic gradient descent as the core al-
gorithm. Groups of synchronous workers are linked together asynchronously to update
parameter servers for the model under training. This hybrid asynchronous-synchronous
scheme balances statistical and hardware efficiency by tweaking the sizes and the number
of synchronous groups, but cannot deal with performance variation changes at runtime.

Another strategy is to ignore performance variance itself and rather deal with the
resulting staleness. There are various examples of such algorithmic corrections for stale

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory 129

values applied to asynchronous stochastic gradient descent [16,17]. A limitation of these
approaches is a lack of generalisation to other applications.

Our test problem in this work is asynchronous Jacobi’s algorithm (see Sec. 4). This
problem has been previously examined by Bethune et al. at large scale [18]. They ob-
served large variations in numbers of iterations completed by different processes. This
resulted in a significant increase in the number of iterations taken to converge. They also
document a case where a single core running at half speed doubled the runtime of a 32k
core synchronous run.

3. Extending PLB to Distributed Memory

While PLB was shown to be successful in a shared memory setting, for it to be truly
valuable it needs to be able to scale further. In this paper we extend the method and
evaluate its effectiveness in a distributed memory setting.

3.1. DPLB

To extend PLB we add a layer that moves work between nodes. This method is referred
to as distributed progressive load balancing (DPLB). In DPLB we run PLB on each
node, and add infrequent work movements across nodes. This extension is important
for situations where whole nodes are affected by noise and are significantly slower than
others.

The main steps in the algorithm are as follows:

1. Periodically, with a set frequency, nodes find out the average number of updates
performed on other nodes.

2. The difference between the highest and lowest averages are compared to a set
threshold.

3. If the difference is larger than the threshold, the least progressed node sends a
randomly chosen problem subdomain to the node that has advanced the most.

4. The node that has received the subdomain assigns it one of its cores initially, but,
since PLB is running on every node, the subdomain gets moved between cores as
is required to balance progress on the node.

The implementation details of these steps will vary based on the problem that is
being solved and the programming techniques and libraries used, but we will next explain
some of the most important implementation considerations for our example case.

3.2. Implementation

In our implementation we target iterative convergent algorithms that can be parallelised
by splitting the global problem domain into smaller subdomains. We also assume that
data is being exchanged between the subdomains using “halos”. Stencil applications
match this pattern closely, however the balancing principles presented here are not lim-
ited to this class of applications.

Distributed communications are implemented mainly using MPI single sided calls.
This communication paradigm is well suited to asynchronous algorithms, since it min-

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory130

Table 1. “Cirrus” test system details (www.cirrus.ac.uk)

System type SGI ICE XA Topology Hypercube, 282 nodes
CPU Sockets 2 L3 cache 45 MB
CPU Intel E5-2695 RAM per CPU 128 GB
Core count per CPU 18 Compiler GCC 6.2
Clock 2.1 GHz MPI library Intel 17.0
Interconnect FDR Infiniband Main compilation flags -O2

imises the need for global synchronisation. Also, the application can be more dynamic
because there is no need to match specific sends and receives. Some two sided commu-
nication still exists, but only where the matching does not interfere with asynchrony. On
node we use OpenMP threading.

Information gathering about work progress of nodes is done using a reduction imple-
mented using RMA operations. Every node publishes a small data structure containing
the average progress of its problem subdomains. Other nodes can query these structures
with a get operation when global balance is being checked.

An important part of the implementation is moving subdomains between nodes dy-
namically and adjusting communication targets. To ensure scalability, it is important to
avoid introducing a global bottleneck here, for example by using a centralised table of
subdomain physical locations. Instead, in our implementation subdomains keep track of
just their neighbours’ locations. When a subdomain moves, it leaves behind a message
with its new host rank (i.e. MPI rank). When its neighbours perform halo exchange, as
part of the halo they also receive the message that the subdomain has moved and which
is the new rank that should be queried for the desired halos.

The main component facilitating this interaction is metadata appended to halos,
specifically an ID and owner rank. Upon retrieval of a halo, the metadata is checked to
make sure it is as expected (initial locations of subdomains are known). If the metadata
rank is not the same as the rank the halo was received from, the halo and associated sub-
domain have moved (the rank that does the moving changes the halo metadata to reflect
the rank to which it has migrated). Once the new rank is known, an array of halo dis-
placements is retrieved from the target rank. The array is searched to find the physical
memory location of the target halo. The halo can now be retrieved and the ID checked
to make sure they are correct. Only the communicating neighbours were involved in this
transaction, which makes it scalable.

4. Experiments

As our test application we use Jacobi’s algorithm applied to the diffusion problem in 2
dimensions. This is an iterative convergent stencil application which is often used when
testing asynchronous algorithms due to its simplicity and numerical stability [1]. We use
a Gaussian shaped function as the boundary condition along one edge, the others being
set to zero. The problem domain is distributed across nodes in 1 dimension, along the x
axis.

We used the HPC system Cirrus for our experiments. Hardware and compiler details
are listed in Table 1.

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory 131

While there is inherent noise and imbalance in the system, for some experiments we
inject artificial noise to simulate particular scenarios in order to have repeatable exper-
iments. Noise is generated by running an additional background thread that sleeps and
busy-waits for set amounts of time. Additionally, the workers’ niceness is set to a high
value so that they have lower priority, thus yielding to the noise generating threads when
active.

We chose a noise level of 40% per CPU socket (i.e. the CPU effectively runs at 60%
of its normal clock frequency). This value is the mean of worst case clock frequency
variations due to manufacturing variability observed in [4] when limiting node power - a
factor to consider in future exascale systems with global power constraints. Also, Chun-
duri et al. report application runtime variability between 1.18x and 1.74x (38% on aver-
age) related to network congestion on a production system [19]. For experiments where
we slow down a whole node, we chose the same level to make comparisons between
experiments more direct. This can happen if both sockets are slow, the node is hot from
a previous job or if there is significant network congestion.

Each experiment was repeated multiple times on different sets of nodes. Where pos-
sible, a series of experiments with differing settings (e.g. normal, normal plus balancer,
normal plus balancer plus noise etc.) were repeated on the same node set so that differ-
ences between the experiments would be mainly due to algorithmic differences, instead
of node conditions.

In time to solution (TTS) experiments the application runs until the global l2-norm
of the residual, normalised by its initial value, reaches a threshold. We set this threshold
at 10−3. Generally the threshold is smaller in real applications, however here we wanted
to limit the total execution time and focus on performance metrics rather than the final
solution.

We use a problem size of 1000 by 1000 values per core. Thus, in the 15 node exper-
iments the global problem size is 6k by 90k and in the 100 node experiments it is 6k by
600k.

5. Evaluations

In this section we present an experimental evaluation of DPLB acting on semi-
synchronous and asynchronous Jacobi. Figures 1 to 3 show time to solution results com-
paring performance before and after applying DPLB (each bar represents 9 to 20 data
points). Less time and smaller variance is better. These figures include tables of iteration
rates (in units of 1000 iterations per second per node) and staleness (most stale halo en-
countered). The specific settings of PLB parameters were chosen to be the same as in [2]
because these were found to give good performance (nPairs = 6, lowThresh = 2,
highThresh = 6). DPLB performs balancing across nodes every 0.5 seconds with
PLB balancing each CPU socket separately every 0.001 seconds. The semi-synchronous
staleness bound is set to 30 and in both the semi-synchronous and the asynchronous
experiments each core initially holds 4 problem subdomains.

To test the method we run Jacobi on 15 nodes while growing the number of nodes
with a slow CPU socket. In order to survey the range of possible noise scenarios, a portion
of the experiments has noise placed randomly and at fixed locations. For the latter we
picked “worst case” and “best case” noise placement, based on the problem that is being

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory132

ssync ssync + DPLB
120

130

140

150

160

Ti
m

e
to

 s
ol

ut
io

n
(s

)

slow
sockets

0
1
2
3
4
5
6
7
8

sync(4) ssync(4) + DPLB
slow stale iter rate stale iter rate

0 31 10.80 34 10.75
1 31 9.86 39 10.44
2 31 9.34 39 10.38
3 31 9.25 39 10.30
4 31 9.20 40 10.18
5 31 8.97 40 10.01
6 31 9.02 39 9.96
7 31 8.90 40 9.70
8 31 8.76 39 9.49

Figure 1. Effect of DPLB on semi-synchronous Jacobi running on 15 nodes. Color indicates the number of
CPU sockets running 40% slower. The table shows median values.

async async + DPLB
120

130

140

150

Ti
m

e
to

 s
ol

ut
io

n
(s

)

slow
sockets

0
1
2
3
4
5
6
7
8

async(4) async(4) + DPLB
slow stale iter rate stale iter rate

0 1860 10.85 175 10.86
1 3122 10.75 2587 10.78
2 3339 10.65 2070 10.75
3 3493 10.55 2732 10.69
4 3628 10.45 2507 10.62
5 3593 10.35 2725 10.53
6 3657 10.26 2876 10.45
7 3723 10.16 3455 10.33
8 3731 10.06 3152 10.22

Figure 2. Effect of DPLB on asynchronous Jacobi running on 15 nodes. Color indicates the number of CPU
sockets running 40% slower. The table shows median values.

solved. The initial conditions put a Gaussian shaped source in the middle of the problem
domain, so updates in the middle contribute more towards reducing the residual than the
edges. Thus we add noise to components that are initially responsible for the middle of
the problem domain to get worst case performance and add noise to edges to get best
case performance.

Figure 1 shows results for the semi-synchronous version. Without balancing, the
time to solution gradually increases; we also observed instances of 200%–260% slow-
down when 6, 7 or 8 sockets were noisy. DPLB mitigates the noise noticeably for all
noise counts, and avoids the large outliers at higher noisy socket counts. Since progress
imbalance is capped, the performance difference comes from DPLB sustaining a higher
iteration rate. The balanced version’s median TTS is reduced by 3–10%, except for the
noiseless case where the unbalanced version is 5% faster on average. We note that the
current implementation allows the staleness bound to be overstepped slightly due to sub-
domain updates occurring while some subdomains are being transferred between nodes.

Results for the asynchronous version can be seen in Figure 2. In the table it can be
seen that iteration rate is not affected adversely by DPLB and halo staleness is reduced
1.08x–1.61x. As a result, the balanced asynchronous version converges quicker for every
noise setting, with a median reduction of up to 6%. TTS of the balanced version is larger
than that of the noiseless case, but this is to be expected even with perfect balancing since
slow components take away the total amount of available compute power in the system.
Furthermore, the worst case TTS grows at a higher rate without DPLB, which implies
reduced scalability. With DPLB the worst case TTS remains mostly flat until noise is
added to 5 or more sockets.

Because the asynchronous version shows better performance than the semi-
synchronous version overall, we test it further by slowing down whole nodes, not just

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory 133

async async + DPLB
120

140

160

180
Ti

m
e

to
 s

ol
ut

io
n

(s
)

slow
nodes

0
1
2
3
4
5
6
7
8

async(4) async(4) + DPLB
slow stale iter rate stale iter rate

0 1880 10.85 181 10.86
1 3794 10.65 3051 10.64
2 4755 10.46 1272 10.53
3 4617 10.26 1257 10.45
4 5377 10.07 1782 10.29
5 5591 9.87 1680 10.13
6 5575 9.68 1559 9.90
7 5581 9.47 1377 9.67
8 5709 9.33 1707 9.47

Figure 3. Effect of DPLB on asynchronous Jacobi running on 15 nodes. Color indicates the number of nodes
running 40% slower. The table shows median values.

individual CPU sockets. This can occur if a job is assigned a hot node or if there is a
lot of network communication from other jobs going through the node’s links. These
results can be seen in Figure 3. The overall patterns are similar to the previous case, but
more pronounced. Balancing reduces median TTS by up to 6% again, but the reduction
in worst case TTS and staleness is significantly higher at 1.24x–4.05x.

An important feature to emphasise is the excellent reduction in performance vari-
ability due to DPLB. Table 2 shows, for each noisy component count, the ratio of the
unbalanced version’s spread of TTS (distance between the boxplots’ whiskers) against
that of the balanced version. The last column of the table shows this ratio applied to the
spread of TTS across all counts of noisy components, i.e. between the highest top whisker
and lowest bottom whisker in each category. The change for the semi-synchronous code
varies between 0.06x (the balanced version is more variable) and 4.00x (the balanced
version is less variable). However, for the asynchronous code, balancing always reduces
variance, ranging from 1.14x and 11.07x. If the number of noisy components is not set at
any particular value, the balanced versions range from 1.11x to 2.89x less variant. This
increased consistency in runtime is crucial for time sensitive applications, e.g. predicting
the path of a hurricane using weather simulation. It is also important in cases such as
application scheduling on shared compute resources, benchmarking and keeping within
budget of HPC resources.

As a final test, we ran our code on 100 nodes (3600 cores) with highly variable noise
settings from run to run in order to simulate a real life scenario. For each individual
run we selected a random set of nodes to be noisy; the size of the set was also chosen
randomly between 0 and 15. The level of slowdown on each node in the set was chosen
randomly between 15% and 40%. We obtained 42 data points with the asynchronous
Jacobi code and another 42 with asynchronous Jacobi plus DPLB. The results can be seen
in Table 3. Both versions performed very similarly. The test problem, when increased in
size, proved to be highly resilient to random noise so adding load balancing in this case
did not reduce time further. However, other inputs can be more sensitive to noise and
this experiment shows that DPLB has no significant overhead in this setting and it scales
perfectly well.

On the whole, the results of the asynchronous algorithm with DPLB show greatly re-
duced variance in TTS and variability in update progress of problem subdomains. In ad-
dition, the worst case noise scenario TTS is less when DPLB is added while the best case
noise scenario is slightly higher. These observations taken together indicate that smooth-
ing noise is beneficial in the majority of the time. While reducing progress imbalance
occurring in a less critical part of the problem domain results in a small increase in TTS,

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory134

Table 2. Runtime variability ratios

slow ssync, socket async, socket async, node

0 0.06 1.14 8.12
1 1.21 1.86 1.47
2 4.00 2.42 3.50
3 2.19 3.55 3.88
4 1.81 4.24 6.26
5 1.03 3.39 7.65
6 0.83 4.37 5.06
7 0.89 1.51 5.71
8 1.71 3.41 11.07

extremes 1.11 1.51 2.89

Table 3. Runtime comparison on 100 nodes

(seconds) mean min max std. dev.

async 118.1 118.2 120.9 1.3
async + DPLB 118.1 115.2 120.7 1.4

not reducing imbalance in a more critical part results in a much larger increase in TTS.
On average, the risk of excessive runtime and progress imbalance of an asynchronous
algorithm can be noticeably reduced with DPLB.

6. Conclusions

We have presented a method (DPLB) for applying progressive load balancing to an asyn-
chronous algorithm in a distributed memory setting by adding periodic movement of
work between nodes and running PLB on the nodes. Evaluation of DPLB showed that it
is able to mitigate system performance variation by a reduction of 1.08x–4.05x in global
progress imbalance and by 1.11x–2.89x in time to solution variability. We did not ob-
serve any significant overheads even when running on 100 nodes. In future work we
plan to apply DPLB to other asynchronous iterative algorithms where there is scope for
splitting the problem domain and moving it between computing units, for example the
Schwarz method or stochastic gradient descent (SGD). This technique improves the re-
silience of asynchronous algorithms to noise and hence increase their value as compo-
nents for meeting the exascale challenge.

Acknowledgments

This work was supported by grant EP/L01503X/1 for the University of Edinburgh School
of Informatics Centre for Doctoral Training in Pervasive Parallelism (pervasiveparal-
lelism.inf.ed.ac.uk) from the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC). This work used the Cirrus UK National Tier-2 HPC Service at EPCC
(www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory 135

References

[1] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and its Applications, vol. 2, no. 2, pp.
199–222, apr 1969.

[2] J. Zarins and M. Weiland, “Progressive load balancing of asynchronous algorithms,” in Proceedings of
the Seventh Workshop on Irregular Applications: Architectures and Algorithms, ser. IA3’17. ACM,
2017, pp. 5:1–5:9.

[3] D. Hackenberg et al., “An energy efficiency feature survey of the intel Haswell processor,” in Interna-
tional Parallel and Distributed Processing Symposium Workshop. IEEE, May 2015, pp. 896–904.

[4] Y. Inadomi et al., “Analyzing and mitigating the impact of manufacturing variability in power-
constrained supercomputing,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2015, p. 78.

[5] A. Porterfield et al., “Application runtime variability and power optimization for exascale computers,” in
Proceedings of the 5th International Workshop on Runtime and Operating Systems for Supercomputers.
ACM, 2015, p. 3.

[6] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of ASCI Q,” in Supercomputing Conference. ACM/IEEE,
2003, pp. 55–55.

[7] R. Underwood, J. Anderson, and A. Apon, “Measuring network latency variation impacts to high per-
formance computing application performance,” in Proceedings of the International Conference on Per-
formance Engineering. ACM/SPEC, 2018, pp. 68–79.

[8] R. Lucas et al., “DOE ASCAC Subcommittee Report February 10, 2014,” 2014.
[9] H. Anzt et al., “A block-asynchronous relaxation method for graphics processing units,” Journal of

Parallel and Distributed Computing, vol. 73, no. 12, pp. 1613–1626, dec 2013.
[10] T. Kurth et al., “Deep learning at 15PF: Supervised and semi-supervised classification for scientific

data,” in Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17. ACM, 2017, pp. 7:1–7:11.

[11] D. A. Donzis and K. Aditya, “Asynchronous finite-difference schemes for partial differential equations,”
Journal of Computational Physics, vol. 274, pp. 370–392, oct 2014.

[12] F. Magoulès, D. B. Szyld, and C. Venet, “Asynchronous optimized Schwarz methods with and without
overlap,” Numerische Mathematik, vol. 137, no. 1, pp. 199–227, Sep 2017.

[13] D. P. Bertsekas and J. N. Tsitsiklis, “Some aspects of parallel and distributed iterative algorithms – a
survey,” Automatica, vol. 27, no. 1, pp. 3–21, 1991.

[14] J. Dinan et al., “Scalable work stealing,” in Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, Nov 2009, pp. 1–11.

[15] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Dynamic load balancing and efficient load estimators
for asynchronous iterative algorithms,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 4, pp. 289–299,
Apr. 2005.

[16] I. Mitliagkas et al., “Asynchrony begets momentum, with an application to deep learning,” in 54th
Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2016, pp.
997–1004.

[17] S. Zheng et al., “Asynchronous stochastic gradient descent with delay compensation,” in International
Conference on Machine Learning, 2017, pp. 4120–4129.

[18] I. Bethune et al., “Performance analysis of asynchronous Jacobi’s method implemented in MPI,
SHMEM and OpenMP,” Int. J. High Perform. Comput. Appl., vol. 28, no. 1, pp. 97–111, Feb. 2014.

[19] S. Chunduri et al., “A generalized statistics-based model for predicting network-induced variability,” in
10th International Workshop on Performance Modeling, Benchmarking and Simulation of High Perfor-
mance Computer Systems (PMBS’19), ser. SC’19, November 2019.

J. Zarins and M. Weiland / Progressive Load Balancing in Distributed Memory136

