45 research outputs found

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    F-formation Detection: Individuating Free-standing Conversational Groups in Images

    Full text link
    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy, we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality.Comment: 32 pages, submitted to PLOS On

    Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification

    Get PDF
    The high pace emergence in advanced software systems, low-cost hardware and decentralized cloud computing technologies have broadened the horizon for vision-based surveillance, monitoring and control. However, complex and inferior feature learning over visual artefacts or video streams, especially under extreme conditions confine majority of the at-hand vision-based crowd analysis and classification systems. Retrieving event-sensitive or crowd-type sensitive spatio-temporal features for the different crowd types under extreme conditions is a highly complex task. Consequently, it results in lower accuracy and hence low reliability that confines existing methods for real-time crowd analysis. Despite numerous efforts in vision-based approaches, the lack of acoustic cues often creates ambiguity in crowd classification. On the other hand, the strategic amalgamation of audio-visual features can enable accurate and reliable crowd analysis and classification. Considering it as motivation, in this research a novel audio-visual multi-modality driven hybrid feature learning model is developed for crowd analysis and classification. In this work, a hybrid feature extraction model was applied to extract deep spatio-temporal features by using Gray-Level Co-occurrence Metrics (GLCM) and AlexNet transferrable learning model. Once extracting the different GLCM features and AlexNet deep features, horizontal concatenation was done to fuse the different feature sets. Similarly, for acoustic feature extraction, the audio samples (from the input video) were processed for static (fixed size) sampling, pre-emphasis, block framing and Hann windowing, followed by acoustic feature extraction like GTCC, GTCC-Delta, GTCC-Delta-Delta, MFCC, Spectral Entropy, Spectral Flux, Spectral Slope and Harmonics to Noise Ratio (HNR). Finally, the extracted audio-visual features were fused to yield a composite multi-modal feature set, which is processed for classification using the random forest ensemble classifier. The multi-class classification yields a crowd-classification accurac12529y of (98.26%), precision (98.89%), sensitivity (94.82%), specificity (95.57%), and F-Measure of 98.84%. The robustness of the proposed multi-modality-based crowd analysis model confirms its suitability towards real-world crowd detection and classification tasks

    Bring it to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis

    Get PDF
    Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach

    Multiple human tracking in RGB-depth data: A survey

    Get PDF
    © The Institution of Engineering and Technology. Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appearance-based approaches, primarily formulated on RGB data, are constrained and affected by problems arising from occlusions and/or illumination variations. In recent years, the arrival of cheap RGB-depth devices has led to many new approaches to MHT, and many of these integrate colour and depth cues to improve each and every stage of the process. In this survey, the authors present the common processing pipeline of these methods and review their methodology based (a) on how they implement this pipeline and (b) on what role depth plays within each stage of it. They identify and introduce existing, publicly available, benchmark datasets and software resources that fuse colour and depth data for MHT. Finally, they present a brief comparative evaluation of the performance of those works that have applied their methods to these datasets

    Efficient Min-cost Flow Tracking with Bounded Memory and Computation

    Get PDF
    This thesis is a contribution to solving multi-target tracking in an optimal fashion for real-time demanding computer vision applications. We introduce a challenging benchmark, recorded with our autonomous driving platform AnnieWAY. Three main challenges of tracking are addressed: Solving the data association (min-cost flow) problem faster than standard solvers, extending this approach to an online setting, and making it real-time capable by a tight approximation of the optimal solution

    Modeling Pedestrian Behavior in Video

    Get PDF
    The purpose of this dissertation is to address the problem of predicting pedestrian movement and behavior in and among crowds. Specifically, we will focus on an agent based approach where pedestrians are treated individually and parameters for an energy model are trained by real world video data. These learned pedestrian models are useful in applications such as tracking, simulation, and artificial intelligence. The applications of this method are explored and experimental results show that our trained pedestrian motion model is beneficial for predicting unseen or lost tracks as well as guiding appearance based tracking algorithms. The method we have developed for training such a pedestrian model operates by optimizing a set of weights governing an aggregate energy function in order to minimize a loss function computed between a model\u27s prediction and annotated ground-truth pedestrian tracks. The formulation of the underlying energy function is such that using tight convex upper bounds, we are able to efficiently approximate the derivative of the loss function with respect to the parameters of the model. Once this is accomplished, the model parameters are updated using straightforward gradient descent techniques in order to achieve an optimal solution. This formulation also lends itself towards the development of a multiple behavior model. The multiple pedestrian behavior styles, informally referred to as stereotypes , are common in real data. In our model we show that it is possible, due to the unique ability to compute the derivative of the loss function, to build a new model which utilizes a soft-minimization of single behavior models. This allows unsupervised training of multiple different behavior models in parallel. This novel extension makes our method unique among other methods in the attempt to accurately describe human pedestrian behavior for the myriad of applications that exist. The ability to describe multiple behaviors shows significant improvements in the task of pedestrian motion prediction

    Automatic human behaviour anomaly detection in surveillance video

    Get PDF
    This thesis work focusses upon developing the capability to automatically evaluate and detect anomalies in human behaviour from surveillance video. We work with static monocular cameras in crowded urban surveillance scenarios, particularly air- ports and commercial shopping areas. Typically a person is 100 to 200 pixels high in a scene ranging from 10 - 20 meters width and depth, populated by 5 to 40 peo- ple at any given time. Our procedure evaluates human behaviour unobtrusively to determine outlying behavioural events, agging abnormal events to the operator. In order to achieve automatic human behaviour anomaly detection we address the challenge of interpreting behaviour within the context of the social and physical environment. We develop and evaluate a process for measuring social connectivity between individuals in a scene using motion and visual attention features. To do this we use mutual information and Euclidean distance to build a social similarity matrix which encodes the social connection strength between any two individuals. We de- velop a second contextual basis which acts by segmenting a surveillance environment into behaviourally homogeneous subregions which represent high tra c slow regions and queuing areas. We model the heterogeneous scene in homogeneous subgroups using both contextual elements. We bring the social contextual information, the scene context, the motion, and visual attention features together to demonstrate a novel human behaviour anomaly detection process which nds outlier behaviour from a short sequence of video. The method, Nearest Neighbour Ranked Outlier Clusters (NN-RCO), is based upon modelling behaviour as a time independent se- quence of behaviour events, can be trained in advance or set upon a single sequence. We nd that in a crowded scene the application of Mutual Information-based social context permits the ability to prevent self-justifying groups and propagate anomalies in a social network, granting a greater anomaly detection capability. Scene context uniformly improves the detection of anomalies in all the datasets we test upon. We additionally demonstrate that our work is applicable to other data domains. We demonstrate upon the Automatic Identi cation Signal data in the maritime domain. Our work is capable of identifying abnormal shipping behaviour using joint motion dependency as analogous for social connectivity, and similarly segmenting the shipping environment into homogeneous regions

    SEGMENTATION, RECOGNITION, AND ALIGNMENT OF COLLABORATIVE GROUP MOTION

    Get PDF
    Modeling and recognition of human motion in videos has broad applications in behavioral biometrics, content-based visual data analysis, security and surveillance, as well as designing interactive environments. Significant progress has been made in the past two decades by way of new models, methods, and implementations. In this dissertation, we focus our attention on a relatively less investigated sub-area called collaborative group motion analysis. Collaborative group motions are those that typically involve multiple objects, wherein the motion patterns of individual objects may vary significantly in both space and time, but the collective motion pattern of the ensemble allows characterization in terms of geometry and statistics. Therefore, the motions or activities of an individual object constitute local information. A framework to synthesize all local information into a holistic view, and to explicitly characterize interactions among objects, involves large scale global reasoning, and is of significant complexity. In this dissertation, we first review relevant previous contributions on human motion/activity modeling and recognition, and then propose several approaches to answer a sequence of traditional vision questions including 1) which of the motion elements among all are the ones relevant to a group motion pattern of interest (Segmentation); 2) what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are similar and how we can 'optimally' transform one to match the other (Alignment). Our primary practical scenario is American football play, where the corresponding problems are 1) who are offensive players; 2) what are the offensive strategy they are using; and 3) whether two plays are using the same strategy and how we can remove the spatio-temporal misalignment between them due to internal or external factors. The proposed approaches discard traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic mechanism, or compact generative model to achieve both effectiveness and efficiency. In particular, the intrinsic geometry of the spaces of the involved features/descriptors/quantities is exploited and statistical tools are established on these nonlinear manifolds. These initial attempts have identified new challenging problems in complex motion analysis, as well as in more general tasks in video dynamics. The insights gained from nonlinear geometric modeling and analysis in this dissertation may hopefully be useful toward a broader class of computer vision applications
    corecore