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A B S T R A C T

Multi-target tracking is an important task in computer vision and
its applications such as autonomous driving or sport statistics. In-
telligent vehicles rely on information of surrounding traffic par-
ticipants for path planning and collision avoidance. Increasingly,
video cameras are employed, since they are cheap and give rich
information on the surrounding. In particular in computer vision,
multi-target tracking is still a very active research area and a chal-
lenging task. Nowadays, one of the most popular approaches to
multi-target tracking is tracking-by-detection. Current solutions
focus on solving the data association problem in a (near) opti-
mal fashion and therefore typically in a batch setting [180, 22, 7].
Promising min-cost flow algorithms which solve the data associa-
tion problem optimally have three main drawbacks: they are com-
putationally expensive, they assume that the whole video is given
as a batch and they scale badly in memory and computation
with the length of the video sequence. For real-time demanding
applications as autonomous driving, camera-based multi-target
tracking still remains an unsolved problem. This thesis addresses
each of these issues. Our first contribution is a dynamic ver-
sion of the successive shortest-path algorithm, which solves the
data association problem optimally while re-using computation
and results in significantly faster inference than standard solvers.
With our second contribution, we address the optimal solution
to the data association problem when dealing with an incoming
stream of data (i.e., online setting). Our last contribution to multi-
target tracking is an approximate online solution with bounded
memory and computation, which can handle videos of arbitrary
length while performing tracking in real-time. Moreover, we in-
troduce a scene flow-based 3D object detector providing another
source of input data for our tracking algorithms. Furthermore,
we introduce a challenging benchmark, recorded with our au-
tonomous driving platform AnnieWAY to demonstrate the effec-
tiveness of our algorithms showing state-of-the-art performance,
while being significantly faster than existing solvers. Finally, we
give an extensive evaluation of the proposed dataset and features
for data association.





Z U S A M M E N FA S S U N G

Objektverfolgung für komplexe, reale Szenarien ist nach wie
vor eine herausfordernde Aufgabe im Bereich der Bildverar-
beitung und für darauf aufbauende Anwendungen wie au-
tonomes Fahren oder die Erzeugung von Sportstatistiken. Au-
tonom fahrende Fahrzeuge benötigen verlässliche Schätzung
von Objekttrajektorien für sich daran anschließende Aufgaben
wie Pfadplanung oder Kollisionsvermeidung. In den letzten
Jahren wurde für diese Aufgabe zunehmend kostengünstige,
video-basierte Sensorik verwendet. Objektverfolgung ist seit
Jahrzehnten ein aktives Forschungsfeld und insbesondere im
Bereich der Bildverarbeitung nach wie vor ein aktuelles und
herausforderndes Problem. Moderne Methoden untersuchen
den Datenassoziationsaspekt bei gegebenen Objektdetektionen
und schätzen (approximierte) global-optimale Lösungen, für die
komplette Sequenzen zur Optimierungszeit vorliegen [180, 22, 7].
Aktuelle Algorithmen zur Lösung des Minimum-Cost Flow Prob-
lems lösen das Assoziationsproblem optimal. Allerdings ergeben
sich dadurch bei Anwendung für Objektverfolgungsszenarien
mit Echtzeitanforderung folgende drei Nachteile: Die Komplex-
ität ist unnötig groß, Sequenzen müssen zur Lösung komplett
vorliegen und der Ressourcenverbrauch steigt unbegrenzt für
längere Eingangssequenzen. Insbesondere für autonomes Fahren
ist die kamerabasierte Objektverfolgung daher weiterhin ein ak-
tiver, ungelöster Forschungsbereich. Diese Arbeit stellt Lösungen
für alle drei genannten Problembereiche vor: Der erste Beitrag
ist eine dynamische Erweiterung des Successive Shortest Paths
Algorithmus zur optimalen Lösung des Assoziationsproblems.
Der vorgeschlagene Algorithmus führt nur notwendige Berech-
nungen erneut aus und erzielt deutlich schneller Inferenzergeb-
nisse im Vergleich zu Standardlösern. Dieser dynamisch Ansatz
wird für ein Online-Szenario mit kontinuierlich abzuarbeitenden
Eingangsdaten entsprechend erweitert. Im letzten Schritt kann
darauf aufbauend eine approximative Lösung abgeleitet wer-
den, die für das Assoziationsproblem unabhängig von der Se-
quenzlänge ist und damit für Echzeit-Anwendungen im Bereich
des autonomen Fahrens nutzbar ist. Darüber hinaus stellt diese
Arbeit einen generischen Objektdetektor auf Basis von Szenen-



flussmerkmalen vor, die als Eingang für die Objektverfolgung
geeignet sind. Zur Evaluation der untersuchten Methodiken
und Merkmale wurde ein anspruchsvoller Benchmark mit Hilfe
des Versuchsträgers AnnieWAY erstellt. Die durchgeführten Ex-
perimente zeigen die Eignung der vorgestellten Methodik zum
robusten Lösen des Assoziationsproblems für komplexe Objekt-
verfolgungsszenarien. Dabei ist die Laufzeit geringer als bei
vergleichbaren, aktuellen Ansätzen und im Falle des approxi-
mativen Algorithmus unabhängig von der Sequenzlänge. Ab-
schließend werden die verwendeten Merkmale bewertet und die
Eigenschaften des erstellten Datensatzes detailliert analysiert.
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1
I N T R O D U C T I O N

“ Everything in life is somewhere else,
and you get there in a car.

E LW Y N B . W H I T E

Nowadays mobility for people and commodities is a key issue
for the prosperity of our society. In consequence, by today there
are more than 50 million vehicles manufactured worldwide every
year in this millennium [92, 164].

For this reason, there are various open tasks for future mobil-
ity: The number of road casualties has been decreasing for the last
decades in countries with a high level of income only (Fig. 1.1(a),
[168]), but is still a major cause of death and injury even there
(Fig. 1.1(b)). Due to the increasing number of vehicles, people
are wasting more and more time in traffic jams [91]. Urban plan-
ning must consider sufficient parking space and the increasing
amount of exhaust gases [9].

The current UN Decade of Action for Road Safety1 (2011-2020) is
trying to reduce the expected number of road casualties at the
end of this decade by 50% [93, 168]. The five pillars of the Decade
of Action include improvement on road safety management, safer
roads and road users, as well as post-crash response, and in par-
ticular safer vehicles.

1 http://www.un.org/en/roadsafety/

http://www.un.org/en/roadsafety/
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Figure 1.1: Road Safety and Traffic Fatalities. After the German gov-
ernment started pushing road safety in the 1970s, the total number of
traffic fatalities decreased continuously (a). However, traffic fatalities are
still one of the major causes of death worldwide (b).
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Self-driving and interacting vehicles in their different manifes-
tations will play a key role not only to further decrease the num-
ber of road casualties but also to exploit energy more efficiently
and to avoid unnecessary traffic jams [172]. Furthermore, driver-
less vehicles can fulfill time-independent tasks at off-peak hours
to unify the road network usage over the whole day further re-
ducing traffic jams.

To fulfill these tasks fully autonomously, self-driving cars must
perform trajectory planning and environmental perception in
complex traffic scenarios, including non-autonomous traffic par-
ticipants such as pedestrians, cyclists, or driver-operated cars.
Consequently, robust environmental perception is still one of
the fundamental open challenges in both autonomous driving
and computer vision. In contrast, downstream applications such
as trajectory planning already proved suitability given a decent
perception input [98, 184].

This thesis presents an efficient method to track traffic partici-
pants over time for complex and cluttered real-world traffic sce-
narios. As input data, the proposed system does not rely on any
specific sensor, although monoscopic and stereo camera input
data is used for validation.

1.1 problem statement

Given a variable and unknown number of (dynamic) objects over
time captured from an arbitrary (moving or static) sensor, multi-
target tracking is the problem of associating these detections to
form tracklets. Building on this, smoothing can be applied, but
is not considered explicitly in this thesis. In particular, we are
interested in video-based multi-target tracking for complex traf-
fic scenarios as they are present in inner cities. Such scenarios
are challenging due to interactions between objects, frequent oc-
clusions, and an arbitrary scene geometry constituting an inter-
esting problem for tracking. These challenges stem mainly from
the problem constitution, having a moving observer and a flat
observation angle.
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For a successful multi-target tracking approach, the following
questions should be answered:

• How many unique objects are present in the scene?

• Where do tracklets start and end?

• Which detections are outliers?

• How can occlusions be tackled?

• What are good features for data association?

The proposed approach solves the problems arising from these
questions in a globally optimal way and is extended to achieve a
solution for bounded memory and computational resources. We
show, that using a cheap sensor set-up with a close-to-production
monoscopic camera system and a state-of-the-art object detector
already allows for good results. Furthermore, combining differ-
ent kinds of object detections by extending the camera set-up to
acquiring stereo information can be easily incorporated in the
proposed system.

An overview of the processing stages is given in Fig. 1.2 show-
ing the original scene, the detector output for the 2D case inclu-
ding false positives, and the finally associated detections.

1.2 applications

We emphasize three different areas of application, that rely on
robust multi-target tracking:

Autonomous Driving: By now, autonomous driving is com-
monly divided into three categories [27, 70]: While partially auto-
mated driving, still requiring the driver to constantly monitor the
traffic scenario, already starts to enter the end user market (e.g.,
traffic jam assistance), highly and fully automated driving (the for-
mer still requires a backup driver, the latter can be a driverless
system) is still an active field of research [74, 98, 184].
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Figure 1.2: Multi-Target Tracking Stages: For the given input data
(top), an object detector returns different types of traffic participants
(middle), and object tracks are established for the input sequence dis-
carding outliers (bottom).
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Such systems arouse the expectation to enhance private trans-
port in terms of safety, efficiency, as well as energy and resource
consumption while making traveling and commuting more com-
fortable. Furthermore, car sharing can be more efficient since
cars can be autonomously distributed on demand. Considera-
tions merging private and public transportation in a similar man-
ner already existed decades ago in the 1970s [17].

Considering benefits in terms of safety aspects, end users must
be able to bear the costs of such systems. Taking into account that
the number of road casualties is especially high and increasing
for emerging countries [168], utilizing low-cost sensors is desir-
able. Current autonomous systems mainly rely on particular and
pricey sensor systems [165]. However, developers start to utilize
more close-to production sensors for highly automated driving
[184].

Sports: Especially for team sports, organizers and television
broadcasters provide wide statistics for the audience. Nowadays,
these statistics (e.g., ball contacts, running stats, duels) are largely
computed automatically. Therefore, individual players must be
tracked during a game. This is a challenging task especially due
to highly dynamic and holonomic motion. Furthermore, players
have a uniform appearance and usually converge to a single tar-
get. Commonly, TV cameras with a relatively flat observation
angle are used and therefore occlusions must be considered as
well [22].

Biology: Since data in biology has grown tremendously in re-
cent years, manual analysis cannot satisfy current research de-
mands and automated approaches are essential. In particular,
live-cell imaging experiments heavily rely on tracking algorithms
to take advantage of time-lapse microscopic images [119].

1.3 contributions

This thesis addresses several aspects of two fundamental chal-
lenges of multi-target tracking:
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Data Association:

• We develop an efficient dynamic method to solve multi-
target tracking formulated as a minimum-cost flow prob-
lem for batch processing in a globally optimal manner.

• Considering online scenarios (i.e., continuously arriving
measurements), the proposed solver is extended in a way,
which allows integration of novel frames in a previously
computed solution instead of performing a complete re-
computation.

• For handling input sequences of an arbitrary length, we de-
rive an approximative solver that overcomes the limitation
of unbounded growth of existing min-cost flow approaches
in memory and computation without temporal delay.

Evaluation:

• The average-case complexity of min-cost flow tracking is
compared for the proposed methods against existing state-
of-the-art approaches.

• An extensive evaluation is performed on 50 challenging
real-world sequences to demonstrate the tracking perfor-
mance of the proposed methods. Despite evaluation on this
introduced dataset, we present results on another state-of-
the-art benchmark which is used in the long-term.

• Performance of association features and metrics is evalu-
ated on the proposed benchmark.

1.4 outline

The following chapters are structured as follows: Chapter 2 re-
views the state-of-the-art while delimiting the contributions of
this thesis with respect to previous work. Chapter 3 states the
problem formulation of multi-target tracking formulated as a
min-cost flow optimization problem. Chapter 4 outlines the pro-
posed methods for solving this problem in an efficient, dynamic
manner and how the solution can be extended to tackle online
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scenarios. Furthermore, an approximative solution to handle se-
quences of an arbitrary length is presented. Image evidence, de-
scribing the detections used as input data as well as association
features are discussed in Chapter 5. Additionally, this chapter in-
troduces our scene flow-based 3D object detector to generically
detect moving traffic participants. Details on the experimental
platform, the collected data, the proposed method, and experi-
mental results are given in Chapter 6. Finally, conclusions are
drawn in Chapter 7. An overview of related network optimiza-
tion algorithms is given in Appendix A.



2
R E L AT E D W O R K

“ To study and not think is a waste. To
think and not study is dangerous.

C O N F U C I U S

In this section, we review related work for multi-target tracking.
First, we discuss the state-of-the-art in computer vision and po-
sition the contributions of this thesis. Secondly, we discuss the
currently used benchmarks and metrics for vision-based multi-
target tracking. Thirdly, a summary of the current challenges for
different applications requiring to solve a multi-target tracking
problem is given.

2.1 multi-target tracking in computer vision

Despite decades of research, robust multi-target tracking re-
mains one of the fundamental challenges in computer vision and
for its applications such as autonomous driving. This chapter
starts by reviewing the development of object tracking in general.
Tracking-by-detection has proven as one of the most successful
strategies in recent years, hence the state-of-the-art in object de-
tection is summarized before discussing recent methods for data
association. Since there is typically higher level knowledge for
particular problem scenarios, we give an additional overview on
how this can be exploited to increase tracking performance.
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2.1.1 Target Tracking

Tracking of arbitrary targets of an unknown type has been persis-
tently pursued since the 1930s for different sensors and applica-
tions [3, 29, 94, 97, 102, 148]. In computer vision, it remains one of
the fundamental open challenges [7, 8, 43, 60, 108, 180]. We give
an overview of the history of tracking in Fig. 2.1, outline the his-
tory shortly in this chapter, finally giving an extensive overview
of the state-of-the-art.

The pioneer work of Heinrich Hertz in the 1880s of genera-
ting and detecting radio waves led to the first RADAR applica-
tions in the 1930s. Until 1950, tracking algorithms to detect mov-
ing targets within large clutter reflected from land and sea were
built into custom hardware for analogous signal processing. Dig-
ital signal processing for such systems was developed starting
in the 1950s while most effort was made for military purposes
[29, 148]. Inevitably, multi-target tracking (even in a multi-sensor
environment) became an active topic of research in the 1970s, al-
ready considering non-linearities, probabilistic data association,
and exploiting parallel computational structures. The resulting al-
gorithms can be generally classified as filtering-based approaches.
Exploiting the Markov assumption, i.e., the current state depends
only on the previous state, these algorithms were already fast and
real-time applicable for RADAR scenarios [3, 16, 97, 139, 150].

In the early days of computer vision, low-level tasks, e.g.,
edge detection, optical flow estimation, or image segmentation
were the primary focus of research. In the 1990s, subsequent
tasks based on geometric image interpretation started to be of
particular interest, including visual object tracking. Hence, exist-
ing filtering-based approaches were applied to computer vision.
However, they typically suffer from their inability to recover from
early errors, which is particularly problematic in complex scenar-
ios while applied to noisy sensor data. Primary, approaches for
arbitrary scenes typically used motion and gray level information
for tracking such as Burt et al. [40] in surveillance-based scenarios
to establish and validate object tracks. Koller et al. [101] already
considered fundamental multi-target tracking issues such as oc-
clusions. Furthermore, a moving observer was discussed, e.g.,
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by Dickmanns and Gräfe [51] and Papanikolopoulos et al. [136].
Contour tracking [94, 102] was a common approach for object
tracking and was applied to cluttered sequences. Isard and Blake
[94] extended unimodal filtering, e.g., [51], to represent simul-
taneous alternative tracking hypotheses while using learned
dynamic models for increasing robustness in cluttered environ-
ments.

Early approaches in computer vision typically needed to tackle
a low signal-to-noise ratio. Therefore, tracking was performed on
raw sensor data (e.g., gray-values, optical flow information) to re-
duce information loss caused by e.g., an object detection step. De-
pending on the application, detection is performed subsequently
of the tracking step. Avoiding a detection step and executing
tracking on the raw sensor data directly is known as track-before-
detect in the literature. [143] Typically, Bayesian tracking is used
for this approach [30, 143] as shortly outlined in the following
section or dynamic programming is used as an efficient solution
to this problem [143, 158].

Current research still employs filtering-based methods, where,
in contrast to work in the 1990s, object hypotheses are generated
by a class-specific object detector providing a higher signal-to-
noise ratio [35, 60, 122]. This approach, known as tracking-by-de-
tection, has become the primarily used approach for object track-
ing in computer vision [5, 34, 72, 109, 170, 180], taking the place
of background subtraction as summarized in [178]. We shortly
review the state-of-the-art for object detection in Section 2.1.3.

Nevertheless, recent efforts focus primarily on batch methods,
generating object hypotheses by a tracking-by-detection ap-
proach and formulating tracking as an optimization problem for
a completely acquired sequence [7, 44, 180]. This mitigates the
aforementioned problems, since all measurements are optimized
jointly, rejecting outliers more robustly and fixing occlusions by
incorporating higher-order knowledge.

2.1.2 Data Association for Multi-Target Tracking

Filtering-based approaches for tracking typically handle single
targets [14, 94, 97]. Starting with the development of RADAR,
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associating current measurements (so-called plot association) to
existing tracks was already a key issue for such systems, even in
the presence of only a single (wanted) target but in an environ-
ment with high clutter [3, 16]. In this thesis, we refer to this task
as data association for multi-target tracking.

The simplest approach to fulfill this task is a nearest-neighbor
association, which links the closest observation to a track in a
greedy manner. This results obviously in a non-optimal data as-
sociation, but was used in productive systems for a long period
of time [28]. Solving the given problem, associating n tracks to
m observations in the current frame, can be solved optimally by
the Hungarian algorithm [2, 106, 125]. All the aforementioned ap-
proaches only perform a frame-to-frame association, taking fur-
ther information on the tracks only indirectly into account by
associating detections to tracks predicted by the applied filter.
Furthermore, they only allow to form single data association hy-
potheses.

For complex scenarios, where interacting targets are present
and violating underlying motion models, such a simple data
association strategy may cause the used filter to fail. Already in
the 1970s, probabilistic approaches were developed to tackle this
problem [14, 16, 140]. An in-depth explanation is given in [15]
and summarized in the following. Probabilistic data association
(PDA) is a Bayesian approach for single target data association.
PDA solves the problem of selecting measurements for a regular
tracking filter, such as an (extended) Kalman filter [97], for up-
dating the filter state. PDA considers a single, already initialized
target assuming a given detection and false alarm probability.
The state of the target x ∈ Rn is evolved from the previous time
step k− 1 by

xk = Fk−1xk−1 + wk−1 (2.1)

exploiting the Markov assumption

p(xk | x0, . . . , xk−1) = p(xk | xk−1) (2.2)

for which the current state xk is conditionally independent of
all earlier states which are contained in the given previous state
xk−1.
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For the target, a true measurement ẑk ∈ Rm is given by

ẑk|k−1 = Hkx̂k|k−1 + vk (2.3)

Both noise terms wk−1 and vk are assumed to be zero-mean
mutually independent white Gaussian noise. The covariances are
given by wk−1 ∼ N(0, Qk−1) and vk ∼ N(0, Rk) respectively.

The state vector and its covariance at time k− 1 is predicted for
the most recent time step k by

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.4)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1. (2.5)

With Eq. 2.3 an elliptical validation region V can be defined.
Within this validation region, measurements made by the sensor
can be associated with the target of interest. This region can
be set up to guarantee that the correct measurement is within
this region with high probability. Ultimately, the PDA results in
association probabilities depending on the location of the mea-
surement as outlined below. The validation region is given by

V = {z : [z − ẑk|k−1]
>S−1
k [z − ẑk|k−1] 6 γ} (2.6)

with residual covariance

Sk = HkPk|k−1H>k + Rk (2.7)

where γ is the threshold corresponding to the probability that the
region contains the true measurement (if it was detected).

Using a Poisson clutter model for the parametric case, the asso-
ciation probability for z(i)k being the correct measurement (i > 0)
is given by

β
(i)
k =


L

(i)
k

1−PDPG+
∑mk
j=1L

(j)
k

, i = 1, . . . ,mk

1−PDPG

1−PDPG+
∑mk
j=1L

(j)
k

, i = 0
(2.8)

for mk validated measurements and with the likelihood ratio
L
(i)
k of the measurement z(i)k

L
(i)
k ,

N(z(i)k ; ẑk|k−1, Sk) PD
λ

(2.9)
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being the true target instead of clutter, PD the probability for de-
tecting a target, and PG the probability for the validation region
containing the true measurement.

After predicting the state xk|k−1, validating and associating the
measurement, the final state is estimated by

x̂k|k = x̂k|k−1 + Wkỹk (2.10)

with the combined innovation

νk =

mk∑
i=1

β
(i)
k ν

(i)
k (2.11)

and the gain

Wk = Pk|k−1HTkS−1
k . (2.12)

The estimated covariance is obtained by

Pk|k = β
(0)
k Pk|k−1 + [1−β

(0)
k ]Pck|k + P̃k (2.13)

with

Pck|k = Pk|k−1 − WkSkW>k (2.14)

and

P̃k = Wk

[
mk∑
i=1

β
(i)
k ν

(i)
k ν

(i)>
k − νkν

>
k

]
W>k . (2.15)

PDA can be extended to handle an already known number
of multiple targets. This approach is known as joint probabilistic
data association (JPDA). Each target has an (individual) dynamic
and measurement model and states are assumed to be Gaussian
distributed. However, target measurements may be overlapping
and cannot be unambiguously associated. Association probabili-
ties are computed jointly across the targets. JPDA evaluates the
conditional probabilities joint association

Ak =

nm⋂
j=1

A
(jtj)

k (2.16)
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at the current time step k with A
(jtj)

k indicating that measure-
ment j is originated from target t for a total of nt targets and
nm measurements. Modeling the number of false alarms φ as a
Poisson distribution in the parametric case, the probability mass
function is given by

µF(φ) = exp−λV (λV)φ

φ!
(2.17)

with the volume Vk of the validation region for an nz dimen-
sional unit hypersphere

Vk = cnz |γSk|
1
2 = cnzγ

nz
2 |Sk|

1
2 (2.18)

resulting in the joint association probabilities

P{Ak | Zk} =
1

c2

∏
j

{λ−1ftj [z
(j)
k ]}τj

∏
t

(PtD)δt(1−Pd)
1−δt (2.19)

where

ftj(z
(j)
k ) = N(z

(j)
k ; ẑ(tj)

k|k−1
, S(tj)

k ) (2.20)

and ẑ
(tj)

k|k−1
is the predicted measurement for target tj with its

covariance P(tj)

k after the innovation. PtD is the probability of de-
tecting target t, whereas τj and δt are the detection and measure-
ment indicators.

For the decoupled case with mutually independent past ob-
servations, the marginal probabilities of the target states are ob-
tained by summing over all joint events resulting in

β
jt
k , P{A(jt)

k | Zk} =
∑

A:A(jt)∈A

P{Ak | Zk}. (2.21)

Consequently, the state estimation is done as for the regular PDA.
Both approaches approximate the conditional probability den-

sity function of the state using a single Gaussian and past asso-
ciations must not be re-computed since the information state is
(approximately) given by the most recent time step. In particular,
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these approaches showed good results for low-noise sensor data
(e.g., RADAR) and relatively few targets.

Generally, the optimal Bayesian solution evaluates the proba-
bility of all association hypotheses. This approach is known as
the multi hypotheses tracker (MHT). Assuming white noise for mu-
tually independent process and measurement sequences as well
as white noise for false measurements, the probability density
function (pdf) is given by

pk = p(xk | Ik) (2.22)

with the information set Ik = {{z(j)}kj−1,Uk−1} for all observa-
tions through time k (subsumming the initial information Z0)
and all known inputs Uk−1 prior to time k. These assumptions
are sufficient for pk being an information state. This allows to es-
timate the trajectories of multiple objects in the presence of clutter
as sets of associated measurements.

The state pk can be recursively updated by

pk+1 = ψk+1(pk, zk+1,uk) (2.23)

where

ψk+1(pk, zk+1,uk) =

1

c

nA(k+1)∑
i=1

p(zk+1 | xk+1,A(i)
k+1)

×
∫
p(xk+1 | xk,u(k))pkdxk

× P{A(i)
k+1}

(2.24)

with nA(k + 1) mutually exclusive and exhaustive association
events A(i)

k+1 at time k+ 1 and the normalization constant c. This
optimal estimator results in an exponentially growing number of
terms over time for the sum in Eq. 2.24 introduced by the associ-
ation events, represented in the MHT hypothesis tree, encoding
all possible trajectories. However, this results in increased com-
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putational resources in orders of magnitude for solving the asso-
ciation problem and a far more complex implementation. Conse-
quently, real-world multi hypotheses tracking approaches apply
pruning and support typically only the k-best solutions.

To further facilitate computations, branching is applied [140] or
the probability density is approximated [16]. These approaches
were extended in several ways in recent years [13, 68, 127, 128],
handling multi-modal track hypotheses, but still resulting in
suboptimal solutions using a heuristical track management. An
overview and evaluation of MHT and PDA approaches is given
in [28, 178].

Considering multi-target tracking in a batch setting, data as-
sociation should consequently be formulated as a multi-frame
problem, e.g., in [180]. Recent approaches perform this multi-
frame data association following different approaches. Markov
chain Monte Carlo data association is employed in [21, 33, 43].
For a statically observing camera the problem can be casted into
a relatively complex linear program, while optimization is per-
formed for detections represented on a discrete grid [19, 22, 89].

The problem of tracking through occlusions has been tackled in
[90, 112, 174, 173] by using context from outside the object region
and by building strong statistical motion models. Associating ini-
tial tracklets on a tracklet level using online-learned motion cues
was also investigated by [176] and extended to online learned
appearance models in [177]. Further online learning approaches
have been suggested in order to increase discriminative power
[108, 111, 151, 175, 179, 181]. Higher-level cues as group behav-
ior for pedestrian detection to tackle highly complex, crowded
scenarios were recently investigated by [44, 107].

While all of the aforementioned formulations resort to appro-
ximate optimization without optimality guarantees, Zhang et al.
[180] showed in their seminal work how multi-frame data asso-
ciation can be cast as a network flow problem. This formulation
solves for the globally optimal trajectories applying a min-cost
flow algorithm, inherently solving the model selection problem,
i.e., resulting in the number of trajectories and their respective
start and end in time. Therefore a cost-function is created, which
incorporates the likelihood of a detection as well as transition
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probability between detections in two consecutive frames. Since
this thesis is based upon this problem formulation, we give a
detailed outline of min-cost flow data association and a general
solution in Chapter 3.

2.1.3 Object Detection

In recent years, tracking-by-detection has proven as a successful
strategy for multi-target tracking. Consequently, object detection
is a key requirement for multi-target tracking. Beyond estimat-
ing tracklets, multi-target tracking results in improving object
detection by exploiting knowledge over time. Therefore, “over-
detection” is preferable in the initial detection stage. Neverthe-
less, object detection itself is one of the main challenges in com-
puter vision. Since this thesis relies on detections as input data,
we give a short outline of the current state-of-the-art.

In early days of computer vision, object hypotheses in the
image plane for a subsequent classification were generated by
exhaustive scanning [47, 135, 182, 183], using image cues such
as color, intensity, gradients, symmetry [36, 95, 114, 157], or
relied on stereo information for specialized applications, e.g.,
autonomous driving [69, 105, 122]. Although motion is an im-
portant cue for human perception, it is a challenging task to be
applied to in computer vision [48, 55, 160]. More recent work
used characteristic features for a specific object class such as
shadow and symmetry features for cars. For associating result-
ing object hypotheses over time, approximative JPDA was used
and the object state estimated using Kalman filtering for multiple
motion models using an interacting multiple model filter method.
[86, 87]

Primarily, state-of-the-art methods follow an appearance-based
procedure for verifying generated hypotheses, where, in general,
descriptors are evaluated by a (pre-trained) classifier. For this
task, state-of-the-art approaches rely on adaptive boosting, sup-
port vector machine classification, or neural networks [1, 12, 32,
53, 54, 58, 65, 110, 116, 117, 123, 146, 161]. As descriptors, his-
tograms of oriented gradients (HOG), Haar wavelets, edgelets,
or shape context descriptors are commonly used [47, 71, 113, 135,
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142, 171]. For a more detailed overview and an evaluation of the
state-of-the-art we refer the reader to [55, 81].

Felzenszwalb et al. [65] proposed one of the best-performing al-
gorithms for object detection in the PASCAL Visual Object Chal-
lenge [62]. Mixtures of multiscale deformable part models are
used within the training procedure of a latent support vector ma-
chine. This allows for representing large variance within an object
class.

By now, large datasets such as ImageNet [50] draw increasing
interest for computer vision algorithms. Therefore, classification
methods must handle an increasing amount of (partly unlabeled)
training data and discriminate several hundred different classes.
Krizhevsky et al. [104] showed on the ImageNet dataset, that for
such problems, deep convolutional neural networks outperform
current part-based approaches.

2.1.4 Incorporating Domain Knowledge

Multi-target tracking for complex and crowded scenes is still a
challenging task. In such an environment, additional information
such as motion or activity recognition can increase performance
of a tracking system.

Filtering-based tracking methods typically employ motion
models to increase robustness [5, 35, 60]. Similarly, rich motion
models can be incorporated in the optimization problem formu-
lation for batch processing, while a joint discrete-continuous op-
timization still allows for taking the whole sequence into account
[7, 121], since pure continuous energy minimization is a difficult
optimization task [6]. The discrete (data association) and continu-
ous (trajectory estimation) optimization are performed iteratively
until convergence to a (generally local) minimum. Extending the
work of [180], higher-order terms for track smoothness were
introduced by [41]. However, necessary constraints extend the
problem, which cannot be solved in a min-cost flow sense any-
more. To keep the problem tractable, the constraints are relaxed
using Lagrangian relaxation while violating optimality.

Furthermore, problem specific knowledge, e.g., group behav-
ior in the case of pedestrian tracking, can be incorporated in
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the optimization problem by introducing higher-order relation-
ships [44, 103, 107].

2.2 benchmarking

Demanding benchmarks are a key requirement to close the gap
between algorithm development and applicability for real-world
scenarios. Diverse benchmarks are mandatory to avoid a bias
to particular benchmarks. Furthermore, comparability requires a
significant measure. In the past few years an increasing number
of benchmarks have been developed to push forward the perfor-
mance of visual recognitions systems, e.g., Caltech-101 [63], Mid-
dlebury for stereo [145] and optical flow [11] evaluation. How-
ever, most of these datasets are simplistic, e.g., are taken in a con-
trolled environment. A notable exception is the PASCAL VOC
challenge [62] for detection and segmentation. Summarizing the
state-of-the-art, this section introduces existing benchmarks and
currently used metrics for multi-target tracking.

2.2.1 Benchmarks

Several benchmarks to evaluate object detection were proposed
mainly in the last decade [59, 62, 64, 124, 130, 133, 141]. An
overview of the existing benchmarks is given in Table 2.1. The
recent releases of the PASCAL Visual Object Challenge [62] are
still the established state-of-the-art benchmarks for object detec-
tion and segmentation, although no future challenges will be re-
leased. Beyond the provided ground truth data, [62] established
the commonly used average precision (AP) as a measure for evalu-
ating and comparing object detection approaches. Summarizing,
for computing AP, detections are iteratively assigned to ground
truth labels starting with the largest overlap. The overlap crite-
rion is measured by bounding box intersection over union. Typi-
cally, a minimum overlap of 50% is required for a true positive
and multiple detections of the same object are considered as false
positives. AP is defined as the area under the resulting curve for
precision and recall.
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In contrast, there is no single ranking criterion for multi-target
tracking (Section 2.2.2). However, a systematic evaluation of
multi-target tracking approaches in computer vision has drawn
increasing attention in recent years [42, 67, 131, 162, 185]. Several
benchmarks were created, covering surveillance [56, 67, 149] and
traffic scenarios [4, 61]. Additional ground truth for the primar-
ily used benchmarks is provided by [7, 175]. A comprehensive
comparison of the existing benchmarks is given in Table 2.2 and
commonly used metrics are described in the following section.

2.2.2 Tracking Metrics

In computer vision, there are currently two common sets of met-
rics used for benchmarking. An illustrative overview of these
metrics is given in Fig. 2.2. Bernardin and Stieflhagen [23] intro-
duce the CLEAR MOT metrics by discussing necessary demands
for evaluating multi-target tracking and consequently derive a set
of metrics. CLEAR MOT unifies the previously existing metrics
introduced by the VACE [42] and CHIL [162] benchmarks. On
the one hand, CLEAR MOT takes the precision of the estimated
tracklets with respect to a ground truth into account, normalized
by number of objects (Multiple Object Tracking Precision (MOTP))
or number of frames (Multiple Object Detection Precision (MODP)).
On the other hand, missed targets, false positives, and identity
switches are evaluated with respect to the number of ground
truth targets (Multiple Object Tracking Accuracy (MOTA)).

MOTP =

∑
i,t |d

i
t|∑

t ct
=

total position error
no. of matches

(2.25)

MOTA = 1−

∑
t(mt + fpt +mmet)∑

t gt

= 1−
no. of misses + false positives + mismatches

no. of objects in all frames
(2.26)

Li et al. [111] proposed a set of metrics, clustering tracked
trajectories according to the tracked length. Tracklet (hypothe-
ses) and (ground truth) trajectories are associated frame-based
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by evaluating the bounding box overlap. Depending on the over-
lap of tracklets and trajectories in time, associations are counted
as mostly tracked (MT), if the trajectory is covered for more than
80% by a tracklet. Trajectories tracked for less than 20% are con-
sidered as mostly lost (ML) and remaining trajectories as partly
tracked (PT). Furthermore, id-switches and fragmentations are
counted for all trajectories, according to the definition in Fig. 2.2.
Beyond these measures on a trajectory level, precision, recall, and
false alarm rate (FAR) are evaluated on a frame-based level. An
overview of the definitions is given in Table 2.3

MT =
{nt | lt > 0.8lgt}

ngt
(2.27)

ML =
{nt | lt < 0.2lgt}

ngt
(2.28)

PT = 1.0−MT −ML (2.29)

Fragments =
∑

trajectory interruptions (2.30)

Id-Switches =
∑

trajectory identity changes (2.31)

Nghiem et al. [131] proposed three metrics on tracking level:
Tracking time evaluates the normalized time a trajectory is tracked.
In contrast, object ID persistence counts the number of tracker hy-
potheses associated to a trajectory. To penalize a low recall, object
ID confusion computes the number of trajectories per tracker hy-
pothesis.

Individually, all the aforementioned measures are not suitable
as a ranking criterion. Therefore, comparing and judging tracking
approaches quantitatively may lead to ambiguous assessments,
also depending on the considered application.

2.3 multi-target tracking applications

Nowadays, better and cheaper sensors as well as increasing com-
putational power and memory lead to an unseen data explosion.
To cope with and take advantage of such an amount of data,
automated processing is essential for many different application
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Name Definition

MT [%] Mostly tracked: Percentage of GT trajectories which are
covered by tracker output for more than 80% in length.

ML [%] Mostly lost: Percentage of GT trajectories which are cov-
ered by tracker output for less than 20% in length.
The smaller the better.

PT [%] Partially tracked: 100% − MT − ML.

GT No. of ground truth trajectories.

Frag Fragments: The total of No. of times that a ground truth
trajectory is interrupted in tracking result.
The smaller the better.

IDS ID switches: The total of No. of times that a tracked tra-
jectory changes its matched GT identity.
The smaller the better.

Recall (Frame-based) correctly matched objects / total ground
truth objects.

Precision (Frame-based) correctly matched objects / total output ob-
jects.

FA/Frm (Frame-based) No. of false alarms per frame.
The smaller the better.

Table 2.3: Metrics proposed by and definitions taken from [111].

Figure 2.2: State-of-the-art Tracking Metrics. Ground truth trajec-
tories (black) are associated to tracker hypotheses (larger, colored cir-
cles). MOTP evaluates the precision of the tracker (gray arrows). MOTA
summarizes false positives (red hypothesis), false negatives (untracked
trajectory, top right) and id-switches (green and purple hypotheses) in
one measure. Furthermore, MT (blue), ML (cyan), and PT (orange) are
evaluated. The tracker hypotheses at the bottom (right) result in two
id-switches and two fragmentations. The examples are taken from the
metric definitions in [23, 111].
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areas. Typically, time series are of particular interest, and conse-
quently multi-target tracking is a fundamental task to be solved.
This chapter discusses applications on autonomous driving, sport
statistics, and biology taking advantage of multi-target tracking
and positions global methods within the particular areas.

2.3.1 Autonomous Driving

Autonomously driving vehicles have been targeted continuously
in research for several decades, but fully automated driving is
still an open challenge. First successful results were shown in
the 1980s, already using camera-based environmental percep-
tion [51, 52]. Increasing levels of difficulty such as suburban
scenarios, vehicle-to-vehicle communication, and challenging
real-traffic scenarios were considered in the following years
[39, 74, 98, 165, 184]. These approaches primarily rely on particu-
lar high-end sensor systems or accurate pre-built maps, whereas
visual sensors are rarely exploited. However, recent systems in-
creasingly integrate camera-based sensor systems to take advan-
tage of a rich visual description of the scene and mass production
for cheaper sensors.

Environmental perception for autonomously driving vehicles
is mandatory for a robust overall system. By now, higher-level
scene understanding draws an increasing interest for this appli-
cation area [38, 75, 167]. From the outset, multi-target tracking
is considered as a key task and was initially performed using
visual sensors exploiting monocular and stereo information for
object detection, while multi-target tracking was performed rely-
ing on Kalman filter-based approaches [52, 69]. These approaches
did not consider a robust data association in a cluttered environ-
ment and widely relied on the quality of the given input data.
In the meantime, fully autonomously driving systems and driver
assistance systems widely rely on RADAR or laser sensor sys-
tems for car detection [98, 166], where vision based approaches
increasingly draw attention especially for pedestrian detection
[10, 20, 36, 37, 57, 81].

For multi-target tracking, autonomous driving requires real-
time capable algorithms for frame rates of the sensor system,
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which are typically 10fps and above. Therefore, existing ap-
proaches for multi-target tracking to the best of our knowledge
solely rely on filtering-based approaches using local data asso-
ciation. Consequently, real-world traffic scenarios are typically
tackled by applying multi-hypotheses tracking approaches and
probabilistic data association [126, 153]. However, none of the ex-
isting approaches directly takes advantage of the measurement
history to overcome heuristically determined track instantiation,
target number estimation, and reduce approximation errors.

2.3.2 Sports

Team sports have always relied on evaluating games and single
players or actions. Box scores are a common feature for several
sports (e.g., basketball, football, and baseball) for which Henry
Chadwick originally invented the modern box scores [129]. To-
day, box scores are much more informative and assistant coaches
created additional statistics for their particular team for a long
period of time. Such statistics are used as additional informa-
tion in the stadium, for television broadcasting, and as a basis
of decision-making for team coaches. Beyond that emerge deci-
sion theory-based algorithms, e.g., for football a system called
ZEUS1 to judge critical play choices.

Increasingly, automated vision based systems are replacing
hand-compiled statistics across different team sports. The teams
of the US basketball league widely use a commercial system
called SportVU2, which relies solely on setting up several cam-
eras to monitor the playing field. In the meantime, the German
Bundesliga introduced a commercial system called VIS.TRACK3

for creating statistics, utilizing only two cameras. Basically, the
derived statistics from the captured data can be divided into two
categories: positional information and activity recognition. While
positional information primarily requires tracking of each player
individually during the game, activity recognition additionally

1 http://vimassgroup.com
2 http://www.stats.com
3 http://www.bundesliga-datenbank.de

http://vimassgroup.com
http://www.stats.com
http://www.bundesliga-datenbank.de
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needs to track the ball and detect interactions between players of
the same or opposing team.

Basketball (NBA) turned out to be a relatively easy task for
vision based evaluation, since there are only 11 moving targets,
typically moving constantly. Consequently, research projects fo-
cus on this task as the Swiss ARAMIS project. Recently, filtering-
based and batch processing methods for online scenarios were
proposed for sport applications. Since this application requires
results promptly (but not in real-time), multi hypotheses filtering-
based approaches focus on efficient multi-target tracking conside-
ring noisy input data [34]. Batch methods relax the global formu-
lation to obtain a rapid solution by pruning unlikely associations
[18] or processing sub-sequences and linking results [22].

2.3.3 Biology

Research in medicine and biology is still investigating living or-
ganisms. Time-lapse microscopy is a key approach to analyze
anatomic and dynamic properties. Currently, live cell imaging
is widely used, creating a large amount of data. Inevitably, au-
tomated tools take over the place of manual inspection. One key
requirement of such systems is tracking a variable and large num-
ber of cells and estimating their dynamic behavior. However, tak-
ing advantage of sophisticated tracking algorithms was primarily
initiated in the past decade [118].

Generally, the focus of biology applications is tracking both
cells and particles. Where cell tracking mainly focuses on a ro-
bust cell segmentation and solves data association with a sim-
ple nearest-neighbor approach, particle tracking is subject to clut-
tered and noisy input data, e.g., due to poor contrast, where data
association is more challenging [119]. Solving the model selec-
tion problem, tackling occlusions, and particle splitting and merg-
ing cannot be handled by a simple nearest-neighbor approach
anymore. Since tracking-by-detection is commonly used, both
filtering-based multi-target tracking approaches [45, 82, 99] and
batch methods are investigated [31, 96, 144] including min-cost
flow based data association for cell and particle tracking [26, 134].





3
T R A C K I N G - B Y- D E T E C T I O N

“ Elegance is not a dispensable luxury
but a quality that decides between success
and failure.

E D S G E R W. D I J K S T R A

The contributions of this thesis to solve multi-target tracking are
focused on linking individual detections to form tracklets. Re-
viewing existing approaches, we consider the seminal work of
Zhang et al. [180] as most promising to tackle the challenges of
multi-target tracking as discussed previously (Section 1.1).

One of the most popular approaches to multi-target tracking is
tracking-by-detection, where a set of detections is computed for
each frame and trajectories are formed by linking the detections
as discussed in Section 2.1. This chapter reviews the formulation
of multi-target tracking as a min-cost flow problem, the originally
introduced solution [180], and a faster algorithmic approach pro-
posed recently [22, 138].

3.1 problem formulation

Min-cost flow multi-target tracking follows a tracking-by-de-
tection strategy, representing an available set of detections as
X = {xi}. Let xi = (ui, ti,ai,di) denote a detection, with ui
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the position of the bounding box, ti the time step (frame in-
dex), ai the appearance, and di a score returned by the de-
tector. We define a trajectory as a sequence of observations
Tk = (o1,o2, . . . ,olk) with o ∈ {1, . . . , |X|} the detection index
of temporally adjacent detections toi+1 = toi + 1.

The full association hypothesis is then given by a set of trajec-
tories T = {Tk}, and the data association problem can be formu-
lated as a Markov random field (MRF). More specifically, we aim
at maximizing the posterior probability of trajectories:

p(T|X) = p(T)
∏
i

p(xi|T) (3.1)

The observation model is given by

p(xi|T) =

{
Pi if ∃ Tk ∈ T ∧ i ∈ Tk
1− Pi otherwise

(3.2)

where Pi denotes the probability of xi being a true detection. The
prior over trajectories decomposes into a product of unary and
pairwise factors

p(T) ∝
∏
T∈T

Ψ(T)
∏

T ,T ′∈T
[T ∩ T ′ = ∅] (3.3)

where the pairwise term ensures that trajectories are disjoint. The
unary factors are given by

Ψ(T) = Ψen(xo1)Ψex(xol)
l−1∏
i=1

Ψli(xoi , xoi+1) (3.4)

where Ψen(xo1), Ψex(xol), and Ψli(xoi , xoi+1) model the likeli-
hood of entering a trajectory, exiting a trajectory and linking tem-
porally adjacent detections within a trajectory.



3.2 minimum-cost flow solution 33

3.2 minimum-cost flow solution

Taking the negative logarithm of (Eq. 3.1), the maximization can
be transformed into an equivalent minimization problem over
flow variables [180] as follows

f∗ = argmin
f

∑
i

Ceni feni +
∑
i

Cexi f
ex
i

+
∑
i,j

Clii,jf
li
i,j +

∑
i

Cdeti fdeti

s.t. feni +
∑
j

flij,i = f
det
i = fexi +

∑
j

flii,j ∀i (3.5)

where Ceni = − logΨen(xi) is the cost of creating a new trajectory
at xi and Cexi = − logΨex(xi) is the cost of exiting a trajectory
at xi. The cost of linking two consecutive detections xi and xj
is denoted Clii,j = − logΨli(xi, xj) and Cdeti encodes the cost of
xi being a true detection or a false positive (data term). Further-
more, the binary flow variables feni or fexi take value 1 if the
solution contains a trajectory such that xi is the first frame or last
frame, respectively. fdeti = 1 encodes the fact that xi is part of
a trajectory and flii,j = 1 if a tracklet exists which contains both
detections xi and xj in two consecutive frames.

Given the stated problem, an optimal solution can be obtained
by mapping it into a min-cost flow network G(V ,E) being a di-
rected graph with nodes ui ∈ V , edges (ui, vi) ∈ E, a source
s ∈ V , and a target node t ∈ V . Every edge has an assigned
cost c(ui, vi), a maximum flow capacity fmax(ui, vi) > 0, and
an assigned flow f(ui, vi) > 0. After creating this network, the
min-cost flow problem is the task to maximize a suitable flow re-
sulting in a minimum of the total cost for paths from source to
target minimizing∑

(ui,vi)∈E
c(ui, vi) f(ui, vi). (3.6)

Note that the solution may be that no suitable flow exists. A
suitable solution must fulfill the capacity constraints f(ui, vi) 6
fmax(ui, vi), skew symmetry f(ui, vi) = −f(vi,ui), as well as flow
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conservation
∑
w∈V f(u,w) = 0 ∀ u /∈ {s, t} allowing flow only to

be introduced or absorbed at source or target. [2]
Mapping the stated multi-target tracking problem into a min-

cost flow problem is illustrated in Fig. 3.1, where two virtual
nodes (source s and target t) are introduced. For each observa-
tion two nodes ui and vi are created (summarized as one node
for clarity of illustration) with an edge between them with cost
c(ui, vi) = Cdeti and flow f(ui, vi) = fdeti . For entering and exit-
ing trajectories, edges between the source s and the first variable
(with cost c(s,ui) = Ceni and flow feni ), and the second variable
and the sink t (with cost c(vi, t) = Cexi and flow fexi ) are in-
troduced. Finally, edges between consecutive detections (vi,uj)
encode pairwise association scores with cost c(vi,uj) = Clii,j and
flow flii,j. Trajectories are established as paths between the virtual
nodes and flow can only be created and absorbed at these loca-
tions. The maximum flow capacity for all edges of this network
is fmax = 1 since a detection can only be part of a exactly one tra-
jectory (and therefore on path from source to target). While we
assume that only detections in consecutive frames can be linked,
this can be easily generalized by allowing transitions between de-
tections in non-consecutive frames resulting in additional edges.

To find the optimal solution, Zhang et al. [180] iteratively com-
puted the min-cost flow solution for a given amount of flow.
Starting with flow zero, the flow pushed from the source into
the network is augmented one unit at a time before applying
the push relabeling algorithm of [84] (with a time complexity of
O(|E||V |2log|V |)) to retrieve the shortest paths at each iteration.
The algorithm terminates if the cost of the currently retrieved
shortest path is greater or equal to zero and rejects the trajectory
introduced by this shortest path. Note that this results in the com-
putation of at least one shortest path. For efficiency, the bisection
method can be applied on the number of flow units, reducing
time complexity from linear to logarithmic with respect to the
number of trajectories nK (which is upper bounded by the num-
ber of nodes |V |). The total complexity is then O(|E||V |2 log2 |V |),
with |V | number of nodes and |E| number of edges. The obvious
drawback of this algorithm is that the min-cost flow problem is
solved log |V | times. Computations from previous iterations are
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(a) Original Problem

(b) Min-cost Flow Network

Figure 3.1: Problem Mapping. The original problem (a) is mapped into a
min-cost flow network (b). Ground truth trajectories are shown in black.
Colored nodes encode detections and correspond to two nodes in the
min-cost flow network G(X). For clarity of illustration, edges from the
source and to the sink have been omitted.

discarded, since the coupled problems of each iteration are solved
independently. Assuming a constant number of objects per frame
on average and therefore |V | and |E| roughly linear with the num-
ber of frames nf, the total complexity is O(nf

3 log2 nf) which is
inapplicable for any (near) real-time demands. The resulting run
time takes up to several minutes per frame for sequences with
less than 1000 images. In the following section, we review a bet-
ter optimization scheme. However, to the best of our knowledge,
there is no existing approach tackling this problem in a real on-
line fashion independent of the sequence length. We derive such
a solution (which also exploits the special structure of this prob-
lem for a batch setting) in Chapter 4 in this thesis.
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3.3 successive shortest paths (ssp) for min-cost flow

Recently, Berclaz et al. [22] proposed to use the k-shortest paths
algorithm (KSP, [154]) and Pirsiavash et al. [138] adapted the suc-
cessive shortest paths algorithm (SSP, Algorithm 3.1 as stated in
[2, p. 106]) resulting in the same algorithm as KSP, computing
the optimal set of trajectories. Both approaches exploit Suurballe’s
algorithm [154, 155] to find nK node-disjoint paths in a network
without negative costs.

The proposed algorithm computes shortest paths in residual
graphs iteratively, without discarding information on trajectories
found in previous iterations. Beyond that, converting the original
problem (containing edges with negative costs) in a network with
positive costs only further reduces the time complexity of the
algorithm.

Finding a shortest path in each iteration is elementary. Gen-
erally, this problem can be solved by applying the Bellman-
Ford algorithm (BF, Algorithm A.2) within the SSP framework
for a graph without negative cycles and arbitrary costs [46,
p. 651ff.]. Advantageously, this reduces computational complex-
ity to O(nKnf

2) where nK is the number of trajectories and nf
denotes the number of frames. Beyond that, initially converting
the graph to have positive costs only [22, 138], Dijkstra’s algorithm
(Algorithm 3.2) can be applied to find shortest paths during op-
timization. For an initial graph without negative costs, the SSP
algorithm guarantees edge weights of the residual graphs which
are positive only as well. Note that we will distinguish both
cases (positive and arbitrary costs) in the following chapters by
mentioning the respective shortest path solver. For graphs with
positive costs SSP – Dijkstra is used and SSP – Bellman-Ford is
applied in the case of arbitrary costs.

Graphs with Arbitrary Costs We start our discussion by de-
scribing the Bellman-Ford algorithm, which is typically called at
each SSP-iteration for computing the shortest path on the resid-
ual graph Gr. BF is based on the principle of relaxation (Algo-
rithm A.3), in which an upper bound of the correct distance to
the source for each node is gradually replaced by tighter bounds
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Algorithmus 3.1 : Successive Shortest Paths (SSP) Algorithm
[2]

Input : Detections X = {xi}, Source s, Target t
Output : Set of trajectory hypotheses T = {Tk}

// construct graph from observations

1 G(V ,E,C, f)← X

// initialize flow to 0

2 f(G)← 0

// initialize Gr(f) as a DAG

3 Gr(f)← G(f)

// find k-th shortest path

4 while C(γk) < 0 do
// using any SP solver

5 γk ← FindShortestPath(Gr(f), s, t)
// Revert edges for Gr(f) along γk

6 Gr(f)← RevertEdges(Gr(f),γk)
7 return T

(by computing the predecessor and its distance) until the opti-
mal solution is reached. We refer the reader to the appendix for
a more detailed review (Section A.1.2).

While the BF algorithm is able to compute a single trajectory
with the lowest cost, in multi-target tracking we are interested
in recovering the optimal set of trajectories. In the following, we
review how to compute the optimal set of trajectories by means
of SSP (see Algorithm 3.1) for a given example. Let us consider
the directed acyclic graph (DAG) in Fig. 3.2a which specifies an in-
stance of the network flow problem formulated in Eq. 3.5 for four
frames and three detections per frame. Note that in general we do
not require the number of detections to be the same for each time
step. For clarity, we only sketch edges coming from the source
and going to the target. First, we relax all edges by traversing
the graph from left-to-right, which is illustrated in Fig. 3.2 (b)+(c)
for the first and second time step. This allows to recover the first
optimal trajectory depicted in green in Fig. 3.2d. We refer to this
algorithm as DAG-SP as stated in [46, p. 655]. An alternative at
this point is to remove all edges from this trajectory and run the
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algorithm again [138]. However, this greedy version of the algo-
rithm does not guarantee optimality, as shown in Fig. 3.2e where
some of the edges are absent in the graph and therefor not all
possible trajectories are encoded anymore. Introducing a resid-
ual graph G(k)

r (Fig. 3.2f) by inverting the edges of the previously
found optimal trajectory (by changing the direction of the edge
and assigning the original cost with the opposite sign), the result-
ing graph is not a DAG anymore. A slight improvement of the
approximative greedy solution can be achieved by considering
backward-pointing edges once by traversing through the graph
against the direction of the initial DAG [138]. In the following,
we refer to this heuristic approximation as dynamic programming
(DP). Instead, the SSP algorithm applies BF again on the residual
graph (Fig. 3.2g) yielding the second shortest path and preserv-
ing optimality. The process finishes when a newly found shortest
path has positive costs, i.e., it can not further reduce the total cost
specified in Eq. 3.5. The final trajectories shown in Fig. 3.2h are
recovered by extracting all backward edges from the most recent
residual graph, starting the back-tracking procedure at the target
node.

Graphs with Positive Costs After stating the SSP algorithm
for graphs with arbitrary edge weights, we continue by review-
ing the KSP algorithm [22, 154, 155] (SSP-Dijkstra) for a graph
with positive costs only. Since the original tracking problem con-
tains negative edge weights, an initial conversion of the graph
is required. This can be done after initially running the DAG-SP
algorithm for the topologically ordered graph, resulting in a pre-
decessor map containing the shortest path to every node of the
graph. Exploiting this predecessor map, arbitrary edge weights
Ci,j ∈ R can be converted to weights C′i,j ∈ R+

0 by

C′i,j = Ci,j + ρ(i) − ρ(j) ∀ei,j ∈ E (3.7)

resulting in a graph without negative costs (Fig. 3.3). Edges on a
shortest path of this graph have a weight C′i,j = 0 describing an
arborescence Γ [159, p. 126ff.]. An example of this conversion is
depicted in Fig. 3.4.
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(a) Original Costs (b) Converted Costs

Figure 3.3: Cost Conversion. For an edge between the nodes u and v,
costs Cu,v ∈ R can be converted into C′ ∈ R+

0 . Therefore, the distance ρ
on the shortest path to both nodes u and vmust be computed previously.

(a) Original Graph (b) Shortest Path

(c) Converted Graph

Figure 3.4: Cost Conversion Example. For the graph in (a) with nega-
tive costs, the shortest s-t path is computed (blue edges in (b)). Numbers
in the nodes state the distance on the shortest path for this particular
node. The graph is converted into a graph without negative costs ac-
cording to Eq. 3.7. The resulting graph in (c) contains the arborescence Γ
in blue which is identical with the shortest s-t path in this case.
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We continue by reviewing KSP and start with Dijkstra’s algo-
rithm to find shortest paths as stated in Algorithm 3.2. In each
KSP iteration, Dijkstra is initially called on the residual graph
G

(k)
r . As BF, Dijkstra is based on the principle of relaxation. Since

the minimum cost of an edge is guaranteed to be C′i,j = 0, the
algorithm exploits this property as a lower bound for the best
shortest path. Starting at the source node, a minimum-priority
queue is maintained and in every iteration all edges of the most
promising node u to its successors v are relaxed. For every node
u taken from the queue, the final shortest path was determined.
Consequently, while establishing a particular s-t path, the algo-
rithm may terminate early after taking the target node from the
queue. However, within the KSP algorithm the shortest path to
every node must be computed as mentioned above, whereas an
early termination may leave the predecessor map in an incom-
plete state.

Algorithmus 3.2 : Dijkstra’s Algorithm [46, p. 658ff.]
Input : Graph G, Source s, Costs c
Output : Predecessor Map π, Distance Map ρ
// set π(u) = Unkown, ρ(u) =∞, u ∈ |V | \ s

1 π, ρ← InitializeSingleSource(G,s)
2 S← ∅ // invariant nodes

3 Q← edges(G) // min-priority queue

4 while ¬ empty(Q) do
5 u← NodeWithMinDistance(Q)
6 S← S∪ {u}
7 foreach node v ∈ Neighbors(G,u) do

// Check if u is a better predecessor for v

8 if ρ(v) > ρ(u) + c(u, v) then
9 ρ(v)← ρ(u) + c(u, v)

10 return π,ρ

After detecting a shortest path on G(k)
r , an iteration of the KSP

algorithm is continued by converting again the edge costs of G(k)
r
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according to Eq. 3.7 resulting in a graph containing the arbores-
cence

Γ = G
(k)
r \ {E | C′i,j 6= 0}. (3.8)

Finally, the subsequent residual graph G
(k+1)
r is computed ac-

cording to [154] by reverting the direction of edges along the
shortest path γ(k). While for the original graph the SSP algorithm
terminated after finding a path with positive costs, the KSP algo-
rithm for the converted problem finishes if the sum of the total
costs exceeds the costs of first iteration:

k∑
i=1

cost(γ(i)) > | cost(γ(0)| . (3.9)

The KSP algorithm is summarized as Algorithm 3.3.
Comparing the time complexity of both SSP and KSP, differ-

ences result from the different time complexities of the shortest
path solver, which must be repeated nK + 1 times for nK objects
present in the scene. The total complexity of the BF algorithm is
O(|V ||E|), where |V | is the number of vertices and |E| is the num-
ber of edges. Basically, BF relaxes all edges as many times as
vertices exist in the graph to guarantee the shortest path to every
node. This is typically too expensive for real-world applications.
In contrast, the lower bound and the minimum-priority queue
used in Dijkstra’s algorithm reduce the worst-case complexity,
depending on the complexity for queue operations. Using an ef-
ficient Fibonacci heap for this task results in a time complexity
of O(|E|+ |V | log(|V |)) resulting in KSP (O(nK(|E||V | log(|V |))) be-
ing more efficient than SSP (O(nK|V ||E|)). The non-optimal DP
algorithm [138] still saves log(|V |) operations over using KSP.

However, for all aforementioned algorithms run time and mem-
ory consumption still increases unbounded for larger problems
and cannot be applied to an online scenario with arbitrary se-
quence length. Moreover, all algorithms must be ran uninitialized
if new frames are arriving.
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Algorithmus 3.3 : K-Shortest Paths algorithm (KSP) [22, 154]
Input : Detections X = {xi}, Source s, Target t
Output : Set of trajectory hypotheses T = {Tk}

1 G(V ,E,C, f)← ConstructGraph(X) // G is a DAG

2 f(G)← 0 // initialize flow to 0

3 G
(0)
r (f)← G(f)

4 π(0) ← DAG-SP(G(0)
r (f), s) // find shortest path in DAG

// encode arborescence in residual graph

5 G
(0)
r (f)← ConvertEdgeCost(G(0)

r (f),π(0))
// Revert edges along shortest path

6 G
(1)
r (f)← ComputeResidualGraph(G(0)

r (f),π(0))
// find k-th shortest path

7 k← 0

8 while 1 do
9 k← k+ 1

10 γ(k),π(k) ← Dijkstra(G(k)
r (f), s) // shortest path γ(k)

11 G
(k)
r (f)← ConvertEdgeCost(G(k)

r (f),π(k))

12 G
(k+1)
r (f)← ComputeResidualGraph(G(k)

r (f),γ(k))
// evaluate converted costs

13 if
∑k
i=1 cost(γ(i)) > | cost(γ(0))| then

14 break
15 return T
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Figure 3.5: The original problem in Fig. 3.1a is extended to explicitly
model occlusions resulting in possible short-term track fragmentations.
The dashed node indicates a missing detection. Blue arrows are extend-
ing the original formulation, bridging possible occlusions, leading to the
optimal solution.

3.4 occlusion modelling

So far, the introduced problem formulation and energy minimiza-
tion only considers object detections in consecutive frames. How-
ever, explicitly modeling track fragmentation, e.g., due to occlu-
sions, either on detection or on tracklet level [44, 75, 180] and
considering motion models [41] is an important aspect for multi-
target tracking. Therefore, this section shortly reviews how an ex-
tended problem formulation can be modeled within the energy
minimization framework.

As already discussed, the min-cost flow formulation translates
the multi-target tracking problem into the DAG G(X). This for-
mulation can easily be extended to model occlusions by intro-
ducing additional, forward-pointing edges between detections
(vi,uj), which exist not necessarily in consecutive frames but are
in chronological order. The extended problem formulation is de-
picted in Fig. 3.5 for a maximum occlusion length of 3 frames.

Explicitly modeling occlusions in the network structure still
allows to solve the problem optimally. However, increasing the
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connectivity of the network for a large number of occluded
frames results in an exponentially growing solution space. To
keep the problem tractable, approximations are made such as
pruning [138], explicitly modeling occlusions on tracklet level
[180], using branch and bound techniques, or introducing mo-
tion models and applying Lagrangian relaxation [41].

Another approach for slightly occluded objects is to also use
low confident detections. This avoids fragmentations already on
detection level and shifts outlier rejection to a later stage in the
optimization process by exploiting image evidence.





4
E F F I C I E N T M U LT I - C L A S S D ATA - A S S O C I AT I O N

“ There is a way out of every box, a
solution to every puzzle; it’s just a matter
of finding it.

J E A N - L U C P I C A R D

Chapter 3 introduced the formulation of multi-target tracking as
an energy minimization problem, finding an optimal solution by
exploiting min-cost flow optimization, and computing a faster
approximation. Above and beyond, this chapter addresses three
fundamental challenges of min-cost flow data association:

• First, the high computational complexity of existing opti-
mal algorithms prohibits their application to large video
sequences. To tackle this problem, we introduce a dynamic
solver combining the advantages of Dijkstra’s algorithm for
finding shortest paths and the distributed Bellman-Ford al-
gorithm [24, 163] for package routing. While the former al-
lows for efficiently finding shortest paths in networks with
positive edge weights, the latter leverages the special struc-
ture of tracking networks and reuses computation while
computing shortest paths. Combining both algorithms and
integrating this into the successive shortest paths frame-
work results in a very efficient optimization algorithm for
batch scenarios.
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• Secondly, another limitation of current global data associa-
tion algorithms is that they require a batch setting, i.e., they
can only be applied to the full video sequence or handle a
sequence in several batches which introduces another data
association problem. This is a non-realistic assumption for
many tracking scenarios. To address this, we propose an on-
line algorithm, which integrates novel frames into the cur-
rent solution in an optimal fashion.

• Thirdly, the last fundamental challenge we address is the
unbounded growth of existing min-cost flow solvers in
terms of memory and computational complexity. Although
a globally optimal solution cannot be achieved without con-
sidering all nodes at all times, our efficient approximation
allows a sufficient number of time steps during optimiza-
tion and the solution can be transfered into the optimal
solution continuously.

After introducing the distributed strategy for finding shortest
paths in a SSP framework, in Section 4.2 we extend this dynamic
algorithm to an online setting, i.e., when dealing with an incom-
ing stream of frames instead of the common batch setup. This
is an intermediate step for an unrestricted online setting. Conse-
quently, we show how to estimate the trajectories in an online
fashion while dealing with bounded memory and computational
resources. This will result in an algorithm that while not being
optimal can very efficiently estimate trajectories close to the opti-
mal solution.

4.1 dynamic min-cost flow for batch processing

The SSP algorithm requires in every iteration a predecessor map,
containing the shortest path from the source to every node u
including the target node (s-t path). Independent of the applied
shortest path solver, the predecessor map must be completely
known in the end of an SSP iteration. For a graph with arbitrary
costs, this guarantees the shortest path to be the best solution
while for a converted graph with positive costs only the resulting
residual graph requires this information to encode shortest paths
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γk to every node with cost(γk) = 0. Consequently, a completely
known predecessor map is mandatory within every iteration of
the successive shortest paths algorithm, which is also discussed
in [155]. Computing this predecessor map can be achieved by
starting from a empty, initialized predecessor map in each iter-
ation using a suitable shortest path solver (as BF or Dijkstra de-
pending on the graph formulation) or approximated as discussed
in Chapter 3. Disregarding previously performed computations
after finding a new trajectory is in the worst-case optimal but
computationally expensive. The worst-case complexity for the
shortest path computation is generally given by O(|V |2) (BF) or
O(|E|+ |V | log |V |) (Dijkstra) respectively. The shortest path solver
must be called for nK + 1 times within the SSP framework in or-
der to find nK trajectories. Considering a min-cost flow formula-
tion for a multi-target tracking scenario, the residual graph Gr is
altered only slightly within each iteration. Changes of the prede-
cessor map are solely triggered by the previously found shortest
path.

Since finding the shortest path is the key component in every
iteration of the SSP algorithm, re-using previously obtained infor-
mation on predecessors can reduce average-computational costs
significantly. To exploit this property, we propose tailoring Dijk-
stra’s algorithm to the multi-target tracking problem by re-using
computations and only updating predecessors when needed.
Combining both Dijkstra’s queuing strategy and the distributed
Bellman-Ford concept allows for finding shortest paths more
efficiently. We will refer to this proposed algorithm as dynamic
Dijkstra (dDijkstra) in the following.

In terms of classical network routing schemes, re-building the
predecessor map from initialization is comparable to a simple
flooding strategy, where every node sends information to all of
its neighbors (in case of the SSP until convergence). This strat-
egy guarantees that the information is received by every node,
although multiple copies might be received (Fig. 4.1a). Conse-
quently, flooding guarantees to utilize the shortest path, whereas
broadcasting (Fig. 4.1b) ensures that each node receives the infor-
mation only once [24, p.368]. In contrast, multicast communicates
information only to specified group of receivers (Fig. 4.1c). Con-
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(a) Flooding. (b) Broadcast. (c) Multicast.

Figure 4.1: Routing Schemes. While flooding (a) communicates a mes-
sage from the red node using all edges in a network (dashed blue edges),
a broadcast based strategy (b) uses a spanning tree to communicate the
message to all nodes. Flooding results in multiple copies received by
every node while broadcasting provides the information for every node
exactly once. In contrast, multicast (c) communicates a message to a
specific sub-group of nodes of a particular network. Blue edges in the
network indicate a propagated message while black edges only show
physical connections between nodes.

sidering the whole network, dDijkstra is closely related to a mul-
ticast strategy, since only nodes in the network receive a message,
when a predecessor was updated. However, this group of nodes
is initially not explicitly known. Instead of repeatedly comput-
ing and updating a spanning tree containing all nodes requiring
an update, the proposed distributed algorithm solves this prob-
lem implicitly, updating nodes until no further messages must be
emitted and the predecessor map converged.

The initial shortest path (k = 0) can be found by applying
dynamic programming (DAG-SP) since all edges are forward
pointing in time, whereas for subsequent iterations the residual
graph also contains backward pointing edges. After finding each
shortest path, the subsequent residual graph is created by revert-
ing edges along this path and encoding the arborescence Γ (c.f.
Section 3.3). Creating the most current residual graph results in
all nodes along the shortest path having an invalid predecessor.
Adding these nodes to an initial queue, new predecessors for all
queue elements are obtained by traversing the graph in temporal
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direction. This initial step updates outdated predecessors while
all nodes remain in the queue. Using this as a starting point, the
most promising node (with the lowest cost on its shortest path)
is taken from the queue iteratively, exploiting the strategy of Di-
jkstra’s algorithm. Thus, all successors receive the information
on a new shortest path of the broadcasting node. Nodes having
broadcasted a message to all neighbors are removed from the
queue and nodes receiving an update (having a new predeces-
sor) are added. In contrast to Dijkstra’s algorithm, a node might
be relaxed another time, since other nodes on its shortest path
may receive an update before convergence.

Reviewing the algorithm, nodes can be in three different states
(broadcasting, receiving, or idle). Thus, if no node is broadcasting
(and therefore receiving information on a new predecessor) any-
more, all nodes are in idle state. This is represented by an empty
queue when the algorithm terminates and the optimal solution
is obtained. Algorithm 4.1 summarizes the proposed dynamic so-
lution. For arbitrary DAGs of different sizes, our experiments in
Section 6.2.2 showed, that speed-ups can be obtained in particu-
lar for longer scenarios compared to a regular SSP implementa-
tion applying Dijkstra’s algorithm. For real-world tracking prob-
lems, our experiments in Section 6.2 show that for such graphs
speed-ups up to factor 2 can be obtained over a standard SSP
implementation.

We illustrate our dynamic algorithm in Fig. 4.2, for the example
from Fig. 3.2. Given the trajectory found in Fig. 3.2d, we revert
its edges to form the residual graph in Fig. 3.2f. Note that the
corresponding predecessor mappings have to be updated as the
direction of these edges has changed. We start by updating all
predecessors for nodes belonging to the most recent trajectory
(blue path in Fig. 4.2a) in a forward sweep (relaxed edges are
marked in red). Next, all nodes which received an update (a new
predecessor) are added to the queue and propagate their cost to
their successors (Fig. 4.2b). Nodes are taken from the queue until
the predecessor map converged (Fig. 4.2c) i.e., all nodes are in
idle state. The algorithm terminates and the optimal set of two
shortest paths for flow f = 2 is found (Fig. 4.2d).
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The proposed dynamic algorithm is suitable for offline sce-
narios when complete batches must be processed. For an online
scenario when new frames arrive continuously, dDijkstra would
be initialized and called again for every new time step. While
this is possible for short sequences, longer scenarios create larger
graphs causing every batch solver to loose real-time capability.
A suitable extension to apply the dynamic algorithm using an
extended caching strategy is described in the following section.
Since any solver guaranteeing an optimal solution will suffer
from a growing sequence length, this intermediate approach will
be extended by introducing an optimization window of length τ.
While introducing memory and computational bounds by setting
τ ∈ R+, optimality cannot be guaranteed anymore. However, our
experiments (Section 6.2.3) show, that the tracking performance
does not change significantly in our application.

4.2 data association for online scenarios

Typically, multi-target tracking scenarios require a problem solu-
tion promptly (allowing a short temporal delay) or even more
demanding in real-time (computing results before a new frame
arrives) as outlined in Section 2.3. The problem with current op-
timal tracking algorithms is that they scale badly with the size of
the video. Tackling this problem by an approximation as the 2-
pass dynamic approach in [138] merely shifts this problem, since
the input sequence under consideration still cannot contain an ar-
bitrarily large number of frames. A simple solution would be to
just enforce temporal consistency between processed batches as
proposed in [22], introducing a time delay between frame captur-
ing and obtaining results. A more sophisticated approach would
be to perform data association on a intermediate tracklet level,
e.g., done in [44]. Both approaches, however, will not lead to the
optimal solution and only the former considers a (near) online
scenario at all.

Likewise, the previously introduced dynamic algorithm only
exploits previously obtained computations in trajectory space
(within every SSP iteration) obtaining the optimal solution for
one particular time step. Consequently, a dynamic algorithm
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(a) Update Nodes (b) Backward Iteration

(c) Process Queue (d) Shortest Path

Figure 4.2: Dynamic Message Broadcasting: (a) For a given residual
graph (the shortest path marked in blue), nodes with invalid predeces-
sors are detected (in red). For each node, the current best predecessor
from the previous time step is selected among all candidates (connected
by red edges). Nodes from (a) are put into a queue. (b) The queue is
maintained, taking successively nodes from the queue and relax their
outgoing edges. Nodes with updated predecessors (in red) are in turn
put into the queue. (c) Exploiting Dijkstra’s algorithm, the queue is main-
tained in a minimum-priority manner until no nodes are left, which
leads to the final solution for this particular residual graph (d).
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Algorithmus 4.1 : Data Association by SSP using dDijkstra
Input : Set of Detections X = {xi}

Output : Set of trajectory hypotheses T = {Tk}

1 G(V ,E,C, f)← ConstructGraph(X, s, t)
2 f(G)← 0 // initialize flow to 0

3 γ(0),π(0) ← DAG-SP(G(f)) // get shortest path in DAG

4 G
(0)
r (f)←ConvertEdgeCosts(G(f),γ(0),π(0)) // initialize Gr(f)

5 G
(1)
r (f)←ComputeResidualGraph(G(0)

r (f),π(0))
6 q← ∅ // q is maintained for every iteration k

7 while 1 do // find shortest paths for k > 1
8 k← k+ 1

// initial predecessor map πk must be updated

9 π(k) ← π(k−1)

// predecessors on last shortest path are invalid

10 q← γ(k−1)

// process queue in time direction

11 foreach node u ∈ q do
// check predecessor from past

12 π(k) ← Update(π(k), u)
13 if updated then
14 q← AddSuccessors(q, u, G(k)

r (f))
// process queue

15 while ¬ empty(q) do
16 u← NodeWithMinDistance(q) // pop node

17 q← q \ u

18 foreach node v ∈ Neighbors(G(k)
r (f),u) do

// Check if u is a better predecessor for v

19 π(k)(v)← Relax(u,v,c)
20 if ρ(v) > ρ(u) + c(u, v) then
21 ρ(v)← ρ(u) + c(u, v)
22 q← AddNode(q, v)

23 G
(k)
r (f)← ConvertEdgeCost(G(k)

r (f),π(k))

24 G
(k+1)
r (f)← ComputeResidualGraph(G(k)

r (f),γ(k))
// evaluate converted costs

25 if
∑k
i=1 cost(γ(i)) > | cost(γ(0))| then

26 break
27 return T
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for an online setting should additionally exploit previously
computed but unchanged predecessors for previous time steps.
Hence, we extend the dynamic algorithm (dDijkstra) presented in
Section 4.1 to the online setting (odDijkstra, Section 4.2.1) allowing
for further reductions in runtime while maintaining optimality.
We then present a memory-bounded algorithm (mbodDijkstra,
Section 4.2.2), which can estimate trajectories in a principled
way in large graphs, where existing algorithms fail due to their
unbounded memory and computation requirements. Our mem-
ory bounded algorithm computes locally optimal trajectories
for a time window of τ frames in a dynamic fashion. Previous
trajectories, predecessor maps, and residual graphs are held in a
cache and updated at each iteration. By collapsing paths of nodes
which leave the optimization window, our algorithm is able to
remember previously found trajectories and thus maintains track
identities. While optimality can not be guaranteed anymore, the
performed experiments in Section 6.2 indicate little loss in perfor-
mance with respect to batch processing on the full sequence. The
time window size τ controls the tightness of the approximation
and for τ = nf ∈ R+ our mbodDijkstra algorithm reduces to the
odDijkstra algorithm which obtains an optimal solution again.

4.2.1 Globally Optimal Online Solution (odDijkstra)

Efficiently computing the optimal min-cost flow solution for an
online setting (i.e., new frames are arriving continuously) must
consider two main problems. First, a previously obtained prede-
cessor map (in time and trajectory space) must be selected as
an initialization. Secondly, for updating this initialization, an ef-
ficient broadcasting strategy must be applied to make the whole
predecessor information current. Hence, an efficient caching and
broadcasting strategy is mandatory and derived from the dDijk-
stra strategy in the following.

Fig. 4.3 illustrates the idea of our distributed online algorithm:
Consider the network specified in (a) with the most recent time
step nf and its current solution in (b) for which the optimal set of
trajectories and predecessor maps are available. As a new frame
arrives (c), new nodes are added extending the graph to the next
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time step. The first trajectory from the previous time step nf − 1
is extended by running one dynamic programming step of the
DAG-SP solver, since all edges point forward. For this iteration,
the cached predecessor map from nf − 1 can be extended at all
times. Solely adding new nodes for nf to the DAG does not in-
troduce any changes for computed predecessors in previous time
steps. For the current iterations of the successive shortest path al-
gorithm, the predecessor maps from the previous time steps can
be re-used if the paths under consideration are in an identical or-
der. In this case, we use the predecessor map marked in magenta
in Fig. 4.3e. Note that the second trajectory in blue has already
been found up to the previous time step. The new nodes marked
in orange are added to a minimum-priority queue, which is main-
tained until all nodes are in idle state. In this example, only the
predecessor of the node marked in cyan in Fig. 4.3f is updated.
This node broadcasts a message to its successors (red edges). As
no changes take place, the algorithm terminates. The final result
for frame t = 4 is illustrated in Fig. 4.3g.

Unfortunately, this simple caching strategy alone is often not
sufficient in practice. In the worst case, a non-cached trajectory
is found and the batch processing step must be performed since
no previously computed information is available. For the simple
caching strategy described above, this happens primarily in the
presence of competing trajectories with similar costs, frequently
changing their ordering within the SSP iterations from frame
to frame. This happens primarily for groups of pedestrians and
inner-city intersection scenarios and is therefore relevant for ur-
ban automated driving.

To tackle this problem, we extend our cache C in the following
way. We keep all predecessor maps for a cache length of |C| frames
in memory. If a trajectory from the previous time step is not ex-
tended, the cache is searched for a match containing identical
shortest paths up to both frame nf − δi and the current iteration
k. Consequently, a valid cache has the same history in trajectory
space as in the current SSP iteration. This procedure always uses
the most recent cache, since fewer nodes must be updated in
the following broadcasting procedure. If such a cache was found
from an older time step δi, the predecessor map π

(nf)
k is ini-
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tialized using this cache. Therefore, this initialization contains
no information on predecessors for frames newer than nf − δi.
Using this as a starting point, the current predecessor map is
updated by the dynamic broadcasting strategy (Section 4.1). All
outdated nodes are added to a minimum-priority queue which
is processed until convergence. Every node taken from the queue
broadcasts its updated shortest path information to its successors,
which are added to the queue in case of receiving information on
a better predecessor.

This caching strategy allows to re-use computations even in
the presence of competing trajectories and to reduce the number
of computations compared to applying a pure offline solution to
this online problem. However, since finding a shortest path for a
new frame typically results in changes of the total cost for this
path from source to sink, the sink broadcasts this information
backwards in time due to the reverted edges of the already estab-
lished paths in the residual graph. Note that this is not the case
for any shortest path terminating in a frame earlier than most
recent time step.

Nonetheless, an arbitrary large number of arriving frames re-
sults in an arbitrary large graph possibly growing beyond mem-
ory or computational bounds. Since this cannot be restricted
while ensuring global optimality at all times, we introduce a
memory-bounded solution in the following section. Although
global optimality is obviously violated, a trade-off between per-
formance and optimality can continuously be chosen and at least
for the optimized time window an optimal solution is computed.

4.2.2 Memory-Bounded Solution (mbodDijkstra)

While the odDijkstra strategy proposed in the previous section
allows to reduce the number of relaxations compared to running
a batch solver for every time step, it still scales poorly to very
large problems since messages might be broadcasted back to the
first frame in order to guarantee optimality. Furthermore, stor-
ing graphs of arbitrary length in memory is infeasible in prac-
tice. Thus, in this section we devise a memory and computation-
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ally bounded approximation which we call mbodDijkstra (Algo-
rithm 4.2, Fig. 4.3).

Unlike the batch processing proposed in [22], mbodDijkstra
does not introduce any temporal delay. In contrast, the previously
described optimal approach for online scenarios is extended in
order to perform optimization within a specified time window
length τ. Since the most recent time step considered within
optimization is the newest available captured frame, the most
available evidence is used for optimization and therefore the
model selection problem is solved recurrently by incorporating
new evidence arriving with every captured frame. To keep the
problem tractable in terms of memory and computation, frames
leaving the optimization window are deleted. Beyond temporal
consistency, previously obtained results are remembered during
optimization for the current time step. Results obtained within
the clipped time window are still guaranteed to be optimal,
although global optimality is sacrificed. However, erroneously
remembered results can be detected, even if a correction is not
possible anymore.

As this algorithm extends the previously described odDijkstra
algorithm, we will now review necessary modifications in order
to extended to the memory-bounded version of this dynamic on-
line algorithm: Consider an optimized time window of τ = 4

frames with the most recent time step nf. The solution from the
previous time step (i.e., up to frame nf − 1) is given by the graph
in Fig. 4.3g. Before adding new nodes to the graph for the most
current time step nf, the oldest time step nf − τ is removed from
the graph as illustrated in Fig. 4.3h to guarantee a memory/com-
putational budget. Simply deleting edges from the graph will be
very suboptimal as this completely discards computations from
the previous time steps. Even temporal consistency cannot be en-
forced. In order to “remember” established paths, we map the
predecessors for nodes at nf − τ to the respective entry edge and
delete all remaining edges:

C
(nf−τ+1)
en,i = C

(nf−τ)
en,i +C

(nf−τ)
i +C

(nf−τ)
i,j ∀ui ∈ T(nf−τ) (4.1)

The caching strategy is similar to the one used for the optimal
online approach. The main difference results from the clipped
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graph used during optimization. Thus, the cache obtained in pre-
vious time steps contains nodes that do not exist in the current
graph anymore. While extracting the first shortest path (k = 0)
by running another dynamic programming step of the DAG-SP
solver, the corresponding predecessor map of the previous time
step π(nf−1)0 can be extended without any modifications of the al-
gorithm. No changes of the predecessor map must be propagated
for older time steps while extending π(nf−1)0 to π(nf)0 for clipping
the original DAG. For the subsequent shortest paths, the prede-
cessor map π

(nf)
k of each iteration k is initialized by a cached

equivalent from a previous time step as in odDijkstra. In compar-
ison, the previously found shortest paths ki = 0, . . . ,k− 1 for the
current time step nf are compared only within the optimization
window nf − τ to predecessor maps held in the cache. A match-
ing predecessor map

π
(nf)
ki

≡ π(nf−δ)ki
∀ ki = 0, . . . ,k− 1 (4.2)

is then clipped to the current optimization window. Again, no
changes must be propagated at this stage within π(nf)ki

since the
clipped DAG and consequently the intermediate graphs inher-
ently contain the clipped trajectories. After initializing π(nf)ki

, the
updating strategies as described for odDijkstra can be applied to
the predecessor map resulting in a new shortest path. In the rare
event that a trajectory is found, which is not represented in the
current cache, we resort to the batch solver on the full time win-
dow, guaranteeing a valid predecessor map for the current SSP
iteration.

Clipping the DAG to the length of the optimized time window
maintains trajectories which cannot be changed anymore. How-
ever, a shortest path containing a clipped edge indicates a (not
possible) modification in the past and therefore deviations from
the optimal solution.

The memory-bounded solution only returns results obtained
within the optimization window. Thus, the optimized trajectories
are only representing a very small part compared to the full se-
quence length. Typically, trajectories for a longer period or even
for the full time window are required for downstream applica-
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tions. Consequently, our approach allows for storing the trajec-
tories over the whole sequence, even if the offline part cannot
be considered during optimization anymore. Clipped edges are
used to extend the offline trajectories and link them to the online
part. Thus, the most available evidence is used and trajectories
are always estimated up to the most recent time step. Further-
more, this allows remembering trajectories for an arbitrary his-
tory without considering them explicitly during optimization.

Algorithmus 4.2 : Data association by SSP using mbodDijk-
stra

Input : Current Detections Xnf = {xnf }, G(V ,E,C, f, s, t), Cache C

Output : Set of trajectory hypotheses T = {Tk}

// clip graph at the beginning (mbodDijkstra)

1 foreach node u ∈ [nf − τ] do
// remember predecessor by updating Ceni

2 G(f)← UpdateEntryEdge(G(f),u)
3 G(f)← RemoveObservation(G(f),u)
// From here on, (mb-)odDijkstra are identical.

4 G(f)← AddObservations(G(f),Xti ) // G is still a DAG

// initialize π(0) for the DAG from last time step

5 π(0) ← C(0)(nf − 1)

// run DAG-SP for edges (u, v) ∈ [nf − 1,nf]
6 γ(0),π(0) ← DAG-SP(Gr(f),nf − 1)

7 G
(0)
r (f)←ConvertEdgeCosts(G(f),γ(0),π(0),nf − 1)

8 G
(1)
r (f)←ComputeResidualGraph(G(0)

r (f),π(0))
9 q← ∅, k← 0

10 while 1 do
11 k← k+ 1

// γ
(k−1)
nf−δi

= γ
(k−1)
nf , δi ∈ D

12 δi ← FindMostRecentCache(C,γ(l) ∀ l = 0, . . . ,k− 1)
13 π(k) ← C(δi,k) // update predecessor map πk

14 q← {γ
(k−1)
nf , (u, v) ∈ [nf − δi,nf]} // invalid predecessors

// Algorithm 4.1, line 11

15 G
(k+1)
r (f),γ(k) ← ProcessQueue(q, π(k), G(k)

r (f))
16 return T





5
I M A G E E V I D E N C E

“ You create a universe by perceiving it,
so everything in the universe you perceive is
specific to you.

D O U G L A S A D A M S

The previous chapters introduced optimization techniques result-
ing in an (approximated) optimal solution for multi-target track-
ing. Both, batch methods and our online and memory-bounded
algorithm described in Section 4.2 rely on unary (i.e., per detec-
tion) and pair-wise (i.e., association) costs. Therefore, image cues
to encode these terms as costs for a min-cost flow formulation are
described in this chapter. For both terms, monocular and stereo
knowledge can be incorporated to encode the observation model
p(xi|T) of an observation xi and the prior over trajectories p(T)
with its unary terms Ψ(T), T ∈ T and map it into the min-cost
flow network G(X). Costs related to detections and associations
in 3-dimensional space can easily be integrated in the min-cost
flow formulation by adding respective edges, but require a stereo
camera setup. The proposed 3D object detections are computed
using scene flow information, whereas the observer’s ego-motion
is implicitly obtained.

To create the final costs of the image cues used for associa-
tion (i.e., bounding box overlap, color histogram similarity, cross-
correlation, bounding box size similarity, optical flow overlap,
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orientation similarity as well as positional similarity), the unary
factors Ψ(T) of the trajectory prior are obtained using ground
truth for real data. Weights w and offsets o for the final costs
Clii,j = ((1 − s) + o)ᵀw are optimized similarly. While this is out-
lined in the following, the description of the used data and ob-
tained results are presented in Chapter 6.

5.1 detections

Chapter 3 introduced tracking-by-detection as one of the most
promising approaches to multi-target tracking. Consequently, the
problem statement introduced multi-target tracking as the prob-
lem of associating detections to form tracklets. This formulation
defines a tracklet Tk = {xk1 , xk2 , . . . , xklk } as a set of detections xi.
We start by representing such a detection as a 2D bounding box
as commonly used for tracking-by-detection approaches. Beyond
that, this section presents a 3D detector for moving objects, pro-
viding additional information in terms of a 3D position relative
to the observer and a continuous orientation estimation.

Classified object detections of cars, pedestrians, and cyclists are
considered for qualitative evaluation, resulting in a comprehen-
sive description of the traffic scene. While these classified detec-
tions are obtained as pure 2D results using a monocular camera
system, for the proposed 3D detections of moving objects (which
are typically active traffic participants) we introduce the generic
class label traffic participant. Empirically, we found that the dom-
inant object classes in our dataset are cars and (with some lim-
itations in their total amount) pedestrians and cyclists. Therefore,
we restrict our quantitative evaluation to cars while qualitative
results are shown for all three object classes.

5.1.1 2D Object Detections

We start with the definition of a 2D object detection as xi =

(ui, ti, si,ai,αi,di,oi). Each detection occurs in a particular time
step specified by its frame index ti ∈ N. A 2D detection is de-
scribed by its bounding box bi of size si = (w, h)ᵀ ∈ R2 de-
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Figure 5.1: Object Detections. Different object classes are detected.

scribing width and height at its position specified by the bottom
center of the bounding box ui = (u, v)ᵀ ∈ R2. Additionally, the
appearance ai = f(g|bi) described by pixel values g ∈ R3 for
color images and for a given bounding box, the object orienta-
tion relative to the camera position αi ∈ R [79], and a detector
score di ∈ R [65] are available as additional cues for all detec-
tions. Finally, each detection contains an assigned discrete class
label oi ∈ {car, pedestrian, cyclist}. A depicting example of the ob-
ject definition is given in Fig. 5.1.

We used the publicly available part-based object detector1 of
[65] to obtain a set of 2D object detections X in each frame as
input data for our algorithms. This object detector is capable of
representing high intra-class variance for arbitrary object classes
and showed state-of-the-art performance on challenging object
detection benchmarks as e.g., the PASCAL visual object challenge
[62]. The object representation is based on mixtures of multi-scale
deformable part models and for training a latent support vector
machine is used. This training procedure allows the position of
individual parts to be unknown. These hidden variables and the
model parameters are found by applying a stochastic gradient
descent within an iterative training process. For training the ob-
ject detector, we manually annotated the object classes car, pedes-
trian and cyclists for a training set. We provide a more detailed
description of the dataset and properties of training and test data
in Section 6.1.

1 Source Code: http://www.cs.berkeley.edu/~rbg/latent/

http://www.cs.berkeley.edu/~rbg/latent/
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5.1.2 3D Object Detections

In this thesis, we propose a 3D object detector for moving traffic
participants.2 This detector is based on 3D scene flow information
which is caused by moving traffic participants creating primarily
non-background motion in the scene. Consequently, we extend
the object detection xi by a 3D positional information Xi and
dimensions Si respectively. Figure 5.2 outlines our system which
is described in the following.

To retrieve scene flow information, feature matches in the cur-
rent and previous stereo image pair must be extracted. We use
the algorithm of [80] which extracts interest points by filtering
the input images with 5×5 blob and corner masks. Feature candi-
dates are obtained from the filtered images using non-maximum
and non-minimum-suppression. Assuming smooth camera mo-
tion, a compact Sobel-based descriptor is computed and features
are matched between left and right images in the current and
previous image based on the sum-of-absolute-differences of the
descriptor. Such a “circle match” at image position u for the most
current time t is defined as uL,t−1 ↔ uR,t−1 ↔ uR,t ↔ uL,t ↔
uL,t−1. A candidate is accepted if the last feature in the “cir-
cle” coincides with the first one. All accepted feature matches
are used to compute the egomotion of the camera system using
the publicly available implementation of libVISO3. The result is
obtained by minimizing the sum of re-projection errors for the
3-point algorithm [85, 132]. To increase robustness a RANSAC
scheme is applied to compute the final result [73, 66]. The ego-
motion is then given for each time step by the estimated transfor-
mation parameters (R̂, t̂) for rotation and translation. Egomotion
is compensated by representing all scene flow vectors in the co-
ordinate system of the current image. Note that very small flow
vectors are considered as background noise and removed for fur-
ther processing.

Since calibrated and rectified images are used and the dis-
parities for a match between left and right frame at a partic-
ular time step are estimated at sub-pixel accuracy, 3D points

2 Source Code: http://www.mrt.kit.edu/software/
3 Source Code:http://www.mrt.kit.edu/software

http://www.mrt.kit.edu/software/
http://www.mrt.kit.edu/software
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X = [X, Y, Z]> ∈ R3 are obtained using a simple triangulation
by

X =
(uL − cu,L) · b

uL − uR
, Y =

(cv,L − vL) · b
uL − uR

, Z =
b · F

uL − uR
(5.1)

where b denotes the baseline of the stereo system, cu and cv the
principal point of the camera and F the focal length for the recti-
fied images. The center of the left-handed world coordinate sys-
tem is OW with the X axis pointing to the right as depicted in
Fig. 5.2.

The scene flow f for a world point is assumed to be constant
for two consecutive frames. Thus, the egomotion-corrected scene
flow is computed as the first order derivative which can be ap-
proximated by the difference of the world points X in two con-
secutive frames. Assuming a constant sampling rate of 1/∆t, all
points are represented in the most current coordinate system.
Rigidly moving objects in the scene are assumed to have simi-
lar scene flow values. Thus, clustering regions of homogeneous
scene flow describes moving traffic participants (Fig. 5.4).

f =
∆X

∆t
(5.2)

For such a clustering, our approach establishes a graph-like
structure connecting all detected interest points in the image
plane using a Delaunay triangulation [49] (Fig. 5.4a). Classifying
edges of this graph according to scene flow differences ||fi − fj||2
of directly connected nodes (i, j) leads to a clustering of similarly
moving objects. However, the uncertainty stemming from the
stereo reconstruction error does not lead to a satisfying solution
for such a simple thresholding as shown in Fig. 5.4b. Conse-
quently, we consider the resulting error of the 3D position by
linear error propagation. The quadratically growing reconstruc-
tion error is exemplarily shown in Fig. 5.3.
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(a) Model of the 3D reconstruction error. (b) Quadratically growing reconstruc-
tion error.

Figure 5.3: Resulting noise of 3D reconstruction. One pixel noise of
the disparity uL − uR leads to the 3D position X (and its error shown
in red) (a). Error propagation leads to a quadratically growing error of
the 3D position with the largest uncertainty perpendicular to the line of
sight (b).

To compute the Mahalanobis distance of two connected nodes,
we need to compute the Jacobian J for the scene flow f by

J =
df

d(uL, uR, v)>
=


∂fX
∂uL

∂fX
∂uR

∂fX
∂v

∂fY
∂uL

∂fY
∂uR

∂fY
∂v

∂fZ
∂uL

∂fZ
∂uR

∂fZ
∂v

 (5.3)

The covariance Σ of the scene flow is then given by

Σ = Jσ2IJ> (5.4)

where σ2I is the diagonal measurement noise matrix assuming a
measurement noise of 0.5pixel. For two adjacent nodes i and j of
the graph, the Mahalanobis distance D equals to

D(fi, fj) =
√

(fi − fj)>Σ−1
i,j (fi − fj) (5.5)

according to [115]. We compute D for all edges (i, j) ∈ E, where
a single edge is weighted 0 (or removed) if D(fi, fj) > Dmin ex-
ceeding a certain threshold. Note that this threshold Dmin can be
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chosen as a fixed value already considering the stereo reconstruc-
tion error. Ultimately, moving objects in the scene are extracted
as the remaining subgraphs of the initial graph. These subgraphs
contain nodes with small scene flow differences and similar mo-
tion describing a rigid object as shown in Fig. 5.4c. The remaining
connected components in Fig. 5.5a of the graph are detected by
depth-first search (c.f. Section A.1.1) [46].

Although small flow vectors were removed while compensat-
ing the egomotion, noisy input data may still result in large back-
ground objects. Since this happens particularly for far feature
points the resulting bounding boxes typically enclose an implau-
sibly large volume and, likewise, distances between neighboring
feature points are long. Therefore, we add a plausibility check
to our algorithm that examines these geometric conditions for all
segments and eventually eliminates false alarm detections. An ex-
ample for geometrically rejected objects and the final hypotheses
is given in Fig. 5.5a and Fig. 5.5b.
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(a) Interest Point Triangulation

(b) Fixed Threshold

(c) Thresholding of Mahalanobis Distance

Figure 5.4: Graph building and clustering. Detected interest points
are connected using a Delaunay Triangulation (a). A fixed threshold to
remove the edges considering the scene flow difference does not lead to
a satisfying solution (b). Considering error propagation and applying a
threshold on the resulting Mahalanobis distance groups similar objects
in the scene (c).
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(a) Remaining connected components

(b) Geometrically checked objects

Figure 5.5: Object detection. All remaining connected components of
the computed graph are found by depth-first search (a). Geometric fea-
tures are taken into account to remove static parts of the scene. Objects
are covered by a bounding box. Center and velocity of each object are
marked in their respective color (b).
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5.2 association features

Section 1.1 introduced multi-target tracking as the problem of
associating detections to form tracklets, representing objects
present in the scene. While object detections used for this thesis
were introduced in the previous section, measures to compare
similarity of two detections in different frames are presented in
the following. While the detector score di translates to the costs
Cdeti of the network formulation introduced in Section 3.2, the
similarity measures translate to the costs for linkin detections
Clii,j.

For this thesis, we make use of seven measures using pure
monocular image information (image features, Fig. 5.6) and two ad-
ditional measures exploiting 3D information for detections (world
features). All measures return a similarity score sd ∈ [0, 1] for two
detections, say, x1 and x2 in different frames. A score sd → 1

indicates a high similarity between both objects x1 and x2.
As image measures, we compute appearance-based cues namely

color histogram similarity and cross-correlation. Furthermore, we
compute positional-based cues as bounding box overlap, bound-
ing box size similarity, positional similarity, optical flow overlap,
and orientation similarity. These measures have proven useful for
multi-target tracking applications [65, 75, 178, 180] or evaluation
[77, 76, 62].

Appearance-based image cues can be used for comparing the
similarity of objects in consecutive and non-adjacent frames and
are explained in the following:

• Color Histogram Similarity scolor computes a measure
how well the histograms of both detections match. There-
fore, the correlation based metric for every histogram bin i
is computed by

scolor(H1,H2) =

∑
(i)(H1(i) − H̄1)(H2(i) − H̄2)√∑

(i)(H1(i) − H̄1)
2
∑

(i)(H2(i) − H̄2)
2

(5.6)
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where

H̄k =
1

np

∑
(j)

Hk(j)

and np the total number of histogram bins depending on
the color depth of the image. Note that a normalization of
the input data is performed by subtracting the average H̄k
in the numerator and computing the standard deviation σH
in the denominator.

In case of color images with nch = 3, each channel is com-
pared separately for both images and the average is com-
puted as the final measure:

scolor(a1,a2) =
∑nch
i=1 d

(i)
h (H

(i)
1 ,H(i)

2 )

3
(5.7)

Note that this formulation can be used for arbitrary color
spaces such as RGB, HSV, Lab. We decided to use the Lab
color space which was designed to approximate visual hu-
man perception and does not suffer as heavily as e.g., the
RGB color space from illumination changes.

• Normalized Cross-Correlation sx-corr (template match-
ing) is used as an appearance-based cue by correlating the
bounding box region defined by detection x1 with the re-
gion specified by the detection x2 used as template for cor-
relation:

sx-corr(g1,g2) =
1

n

∑
u,v

(g1(u, v) − g1)(g2(u, v) − g2)
σg1σg2

(5.8)

where gi(·, ·) returns the color value for a specified pixel
(u, v), n the number of pixels, and · being the respective
mean. Changes in the scale of the object are considered by
computing the correlation for a range of scales and taking
the maximum value. To handle uncertainties in the bound-
ing box position, the template is cropped to 80% of its orig-
inal size.
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Positional-based image cues are primarily suitable for com-
paring objects in consecutive frames. Bounding box overlap,
size, and position in the image plane are subject to perspective
changes for non-adjacent frames and moving objects, consider-
ably changing for a longer time period. The five positional-based
cues are defined as follows:

• Bounding Box Overlap sover is the intersection over union
fraction for the (axis aligned) bounding boxes of both ob-
jects, requiring a minimum overlap

sover(b1, b2) =

O if O > 0.5

0 otherwise
(5.9)

with O =
b1 ∩ b2
b1 ∪ b2

• Optical Flow Overlap sflow is the number of flow vectors
ζ pointing from bounding box b1 (tail) to b2 (head), nor-
malized by the bounding box area of b1 (wb1 · hb1 ).

sflow =
| {ui + ζk ∩ uj | ui ∈ b1, uj ∈ b2, ζk ∈ ζ} |

wb1 · hb1
(5.10)

• Bounding Box Size Similarity ssize is the normalized sum
of the absolute width and height difference

ssize(s1, s2) = 1−
1

2

[
|w1 −w2|

max(w1,w2)
+

|h1 − h2|

max(h1,h2)

]
(5.11)

• Positional Similiarity sloc is the sum of absolute differ-
ences for the bounding box position normalized by the im-
age dimensions.

sloc(u1, u2) = 1−
1

2

[
|u2 − u1|

wimg
+

|v2 − v1|
himg

]
(5.12)

• Orientation Similarity sα is the normalized cosine simi-
larity of the absolute angular difference

sα(α1,α2) =
cos(|α1 −α2|) + 1

2
(5.13)
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• 3D Overlap Sover is the bounding box overlap on the
ground plane. Therefore, Sover is computed similarly to
sover in 2D.

• 3D Positional Similarity Sloc is the Euclidean distance
of the 3D bounding box positions normalized by the max-
imum possible distance, which has an upper bound intro-
duced by the maximum observation distance lobs.

Sloc =

√
X2 + Y2 +Z2√
(2lobs)2 + l

2
obs

(5.14)

In the remaining part of this thesis, we use introduced abbrevi-
ations for the feature names summarized as follows:

color color histogram similarity

x-corr normalized cross-correlation (template matching)

over bounding box overlap

flow optical flow overlap

size bounding box size similarity

loc positional similarity

α orientation similarity

5.3 learning unary and pair-wise costs

The previous sections introduced unary and pair-wise terms as
(not necessarily normalized) scores where higher values indicate
a more reliable detection or a higher similarity between detec-
tions. To use these scores within the optimization framework,
a conversion into observation likelihood Ψ(xi|T) and transition
probabilities Ψlink(xti+1|xti) is necessary.

This is done by using logistic regression and manually labeled
training data containing 8008 images with annotated bounding
boxes for tracklets of 579 cars (28 253 labels), 167 pedestrians
(11 628 labels), and 37 cyclists (1 972 labels).
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(a) Color Histogram Similarity

x-corr

signal #1 signal #2

(b) Cross Correlation

(c) Bounding Box Overlap (d) Optical Flow Overlap

(e) Positional and Size Similarity (f) Orientation Similarity

Figure 5.6: Association Features. Image-based ((a), (b)) and positional-
based ((c), (d), (e), (f)) features used as input for association costs within
the network flow formulation.
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Figure 5.7: Discrete Orientations for 2D Detections.

Logistic regression is used to predict the outcome of a depen-
dent variable (e.g., transition probability) for given predictor vari-
able s (score) of the logistic function

s̄ =
1

1+ e−βs
. (5.15)

A closed-form solution for this problem does not exist, hence
regression coefficients are estimated as a maximum likelihood
solution. The algorithm is exemplarily outlined as an iteratively
reweighted least-squares approach (Appendix A.2), solving itera-
tively a linear problem by conjugate gradient approach. We used
the similar and publicly available implementation of [137]4 to es-
timate the regression coefficients.

The learned logistic regression model for the object classes car,
pedestrian, and cyclist are depicted as differently colored curves
in Fig. 5.8 for the similarity features used in this thesis.

4 Source Code: http://scikit-learn.org

http://scikit-learn.org
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(c) Pedestrian
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(d) Cyclist

Figure 5.8: Logistic Regression Output for quantitatively evaluated ob-
ject classes. The normalized similarity measure (feature) is predicted by
the learned logistic regression model resulting in the similarity feature
sl representing the unary term Ψli(xoi , xoi+1) for linking temporally
adjacent detections (Eq. 3.4). The transformation for a similarity feature
into costs is described in Section 6.2.1 for the costs defined as the neg-
ative logarithm of the initial maximization problem (Section 3.2). The
orientation feature only allows for confirming an association while, e.g.,
the color or flow feature allows rejecting an association being therefore
more discriminative.
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E VA L U AT I O N

“ There are no facts, only interpretations.

F R I E D R I C H N I T Z S C H E

For the experimental section of this thesis, we developed the
KITTI vision dataset [76, 77] including object detection and track-
ing benchmarks. Sequences for this dataset were recorded from
a VW Passat station wagon [98] using both color and gray-scale
stereo camera images, laser scans, and a combined GPS/IMU
system fusing high-precision GPS and acceleration/angular ve-
locity information. Detailed information on the setup is given in
Section 6.1.1. This dataset contains footage from inner-city, rural,
and freeway traffic situations from the area of Karlsruhe, Ger-
many (c.f. Fig. 6.1). Benchmarks for several tasks such as stereo
and optical flow estimation, visual odometry, and in particular
3D object detection and tracking were extracted from this data
and are available online.1

Our evaluation contains performance and run time compari-
sons for the different solvers for multi-target tracking as a min-
cost flow problem as introduced in Chapters 3+4. The proposed
methods are compared against other state-of-the-art multi-target
tracking algorithms. Finally, qualitative results are shown.

1 The KITTI Vision Dataset http://www.mrt.kit.edu/software/datasets.html

http://www.mrt.kit.edu/software/datasets.html
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Figure 6.1: KITTI Recording Area. This figure shows the GPS tracks of
our recordings in the metropolitan area of Karlsruhe in Germany. Colors
encode the GPS signal quality: While green tracks have been recorded
with highest precision using RTK corrections, blue denotes the absence
of correction signals. The black runs have been excluded from our data
set as no GPS signal was availble.

6.1 data collection

This section gives a short overview of the setup, recording, bench-
mark extraction, and data statistics of the KITTI vision dataset for
the object detection and tracking part. More detailed information
on calibration and other benchmarks is provided in [76, 77].

The object detection benchmark focuses on computer vision al-
gorithms for object detection and 3D orientation estimation and
provides accurate 3D bounding boxes for object classes such as
cars, vans, trucks, pedestrians, cyclists and trams. This informa-
tion is obtained manually by labeling objects in 3D point clouds
produced by the laser scanner, and projecting them back into the
image. This results in tracklets with accurate 3D poses, which can
be used to asses the performance of algorithms for object detec-
tion and orientation estimation as well as tracking.
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6.1.1 Setup

We equipped a standard station wagon with two color and two
grayscale PointGrey Flea2 video cameras (10 Hz, resolution:
1392 × 512 pixels, opening: 90◦ × 35◦), a Velodyne HDL-64E
3D laser scanner (10 Hz, 64 laser beams, range: 100 m), and a
GPS/IMU localization unit with RTK correction signals (open
sky localization errors < 5 cm).

The sensor setup is illustrated in Fig. 6.3 and the specifications
of the sensors are provided as follows:

• 2 × PointGrey Flea2 grayscale cameras (FL2-14S3M-C), 1.4
Megapixels, 1/2" Sony ICX267 CCD, global shutter

• 2 × PointGrey Flea2 color cameras (FL2-14S3C-C), 1.4
Megapixels, 1/2" Sony ICX267 CCD, global shutter

• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90◦, ver-
tical opening angle of region of interest (ROI) ∼ 35◦

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64

beams, 0.09 degree angular resolution, 2 cm distance accu-
racy, collecting ∼ 1.3 million points/second, field of view:
360
◦ horizontal, 26.8◦ vertical, range: 120 m

• 1 × OXTS RT3003 inertial and GPS navigation system, 6

axis, 100 Hz, L1/L2 RTK, resolution: 0.02m / 0.1◦

Note that the color cameras lack in terms of resolution due
to the Bayer pattern interpolation process and are less sensitive
to light. This is the reason why we use two stereo camera rigs,
one for grayscale and one for color. The baseline of both stereo
camera rigs is approximately 54 cm. The distance between color
and grayscale cameras is minimized (6 cm). We believe this is
a good setup since color images are very useful for tasks such
as segmentation and object detection while their grayscale coun-
terparts are more suitable for stereo matching and optical flow
estimation. The trunk of our vehicle houses a PC with two six-
core Intel XEON X5650 processors and a shock-absorbed RAID 5

hard disk storage with a capacity of 4 Terabytes. Our computer
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Figure 6.2: Recording Platform. Our VW Passat station wagon is
equipped with four video cameras (two color and two grayscale cam-
eras), a rotating 3D laser scanner and a combined GPS/IMU inertial
navigation system.

runs Ubuntu Linux (64 bit) and a real-time database [83] to store
the incoming data streams.

We use a Velodyne HDL-64E unit, as it is one of the few sensors
available that can provide accurate 3D information from moving
platforms. To compensate egomotion in the 3D laser measure-
ments, we use the position information from our GPS/IMU sys-
tem.

In order to synchronize the sensors, we use the timestamps of
the Velodyne 3D laser scanner as a reference and consider each
spin as a frame. We mounted a reed contact at the bottom of the
continuously rotating scanner, triggering the cameras when fac-
ing forward. This minimizes the differences in the range and im-
age observations caused by dynamic objects. Unfortunately, the
GPS/IMU system cannot be synchronized that way. Instead, as it
provides updates at 100 Hz, we collect the information with the
closest timestamp to the laser scanner timestamp for a particular
frame, resulting in a worst-case time difference of 5 ms between
a GPS/IMU and a camera/Velodyne data package. Note that all
timestamps are provided such that positioning information at
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Figure 6.3: Sensor Setup. This figure illustrates the dimensions and
mounting positions of the sensors (red) with respect to the vehicle body.
Heights above ground are marked in green and measured with respect
to the road surface. Transformations between sensors are shown in blue.

any time can be easily obtained via interpolation. All timestamps
have been recorded on our host computer using the system clock.

For calibrating the cameras intrinsically and extrinsically, we
use the approach proposed in [78]. Note that all camera centers
are aligned, i.e., they lie on the same x/y-plane. This is important
as it allows us to rectify all images jointly.

We have registered the Velodyne laser scanner with respect to
the reference camera coordinate system (camera 0) by initializing
the rigid body transformation using [78]. Next, we optimized an
error criterion based on the Euclidean distance of 50 manually
selected correspondences and a robust measure on the disparity
error with respect to the 3 top performing stereo methods in the
KITTI stereo benchmark [77]. The optimization was carried out
using Metropolis-Hastings sampling.

For registering the IMU/GPS with respect to the Velodyne
laser scanner, we first recorded a sequence with an ’∞’-loop and
registered the (untwisted) point clouds using the Point-to-Plane
ICP algorithm. Given two trajectories this problem corresponds
to the well-known hand-eye calibration problem which can be
solved using standard tools [88].
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6.1.2 Object Annotation

Ground truth for object detection, orientation estimation, and
tracking was created manually by annotating the recorded image
sequences. Towards this goal, we created a special purpose label-
ing tool, which displays 3D laser points as well as the camera
images to increase the quality of the annotations. This tool en-
ables annotators to place and orient 3D bounding boxes within
the displayed point cloud, where an estimated ground plane is
shown for reference. Bounding boxes are placed in key frames
and motion between these frames can be interpolated either lin-
early (even restricted on the ground plane) or using an ICP-based
tracker. To gain maximum precision of the annotations, perspec-
tive and orthogonal projections of the point cloud as well as the
zoomed part of the image are available to the user for verification.
The user interface is exemplarily shown in Fig. 6.4. Following
[62], we asked the annotators to additionally mark each bound-
ing box as either visible, semi-occluded, or fully occluded, while
truncation is computed automatically. Benchmark users can use
a set of tools for visualization and evaluation. A tracklet viewer
is shown in Fig. 6.5

To fulfill this labeling task, we hired a set of annotators, and
asked them to assign tracklets in the form of 3D bounding boxes
to objects such as cars, vans, trucks, trams, pedestrians and cy-
clists. Unlike most existing benchmarks, we do not rely on online
crowd-sourcing to perform the labeling. Consequently, our bench-
mark offers accurate 3D position and orientation information for
each object. Statistics of our labeling effort are discussed in the
following section.

6.1.3 Data Statistics and Quality

In total, we collected ∼ 3 TB of data from which we select a repre-
sentative subset to evaluate each benchmarking task. Our 3D ob-
ject detection and orientation estimation benchmark is cho-
sen according to the number of non-occluded objects in the scene,
as well as the entropy of the object orientation distribution. High
entropy is desirable in order to ensure diversity. This allows us
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Figure 6.4: Tracklet Annotation Utility. The point cloud (here in
an orthogonal bird’s eye view) contains user placed labels for different
classes. For the selected tracklet (here: #4), the already labeled trajectory
for future time steps is displayed in red to verify the object orientation.
The projection of the label in the image and a zoomed version of the
selection are displayed as well. Occlusion states are color-coded in the
tracklet bar (top) and the bounding box of the selected tracklet.
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Figure 6.5: Development Kit. The KITTI development kit contains be-
sides other tools for visualization and evaluation a viewer for working
with tracklets.

to automatically select a smaller subset of images with a large
amount of non-occluded objects and a well distributed set of ori-
entations. Towards this goal we utilize a greedy algorithm: We
initialize our dataset D to the empty set ∅ and iteratively add
images using the following rule

D← D∪ argmax
I

[
α ·noc(I) + 1

C

C∑
c=1

Hc (D∪ I)
]

(6.1)

where D is the current set, I is an image from our dataset, noc(I)
stands for the number of non-occluded objects in image I and C
denotes the number of object classes. Hc is the entropy of class
c with respect to orientation (we use 8/16 orientation bins for
pedestrians/cars). We further ensure that images from one se-
quence do not appear in both training and test set.

For the 3D tracking benchmark, sequences in training and
test set are chosen in order to balance sequence types in both
sets, number of frames, and number of objects. A qualitative
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overview is given in Fig. 6.11. The number of labels, tracklets,
and images for training and test sequences is summarized in Ta-
ble 6.1. Note that a complete balanced test and training set is not
possible in order to guarantee completely exclusive sequences in
both sets. For the same reason, training sequences of other bench-
marks cannot be added to the tracking test set. Considering these
restrictions, we decided for a more challenging evaluation by se-
lecting a slightly larger test set. Fig. 6.6 shows the tracklet length
per class of all benchmark sequences as a histogram. For both of
the two predominant classes car and pedestrian, most tracks are
visible for a less than 5s (50 frames) such as oncoming or crossing
traffic. There are only a few tracks visible for more than 25s (250

frames) such as preceding traffic.
To give a more comprehensive overview of the annotated

sequences and extracted benchmarks, this section provides statis-
tics on object occurence as well as geometry and orientation
(Fig. 6.7). The total occurences of the individually labeled classes
are shown in Fig. 6.8, justifying that the benchmarks focus on
the predominant classes car and pedestrian for tracking and, ad-
ditionally, cyclists for object detection and orientation estimation.
The remaining classes do not contain enough labels for training
procedures or even a quantitatively sound evaluation. Object
labels per class and image are summarized in Fig. 6.8, whereas
statistics on object motion are depicted in Fig. 6.9. A detailed
evaluation of the different scene types such as inner-city, rural,
or freeway traffic can be found in Fig. 6.10.
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Figure 6.6: Tracklet Length. This figure shows the tracklet length in
frames for the most predominant classes (captured at 10fps). Only a few
tracklets are visible for more than 250 frames such as preceding traffic.

T R A I N I N G T E S T I N G

# L A B E L S

car 28 253 38 660

pedestrian 11 628 24 113

cyclist 1 972 4 919

# T R A C K L E T S

car 579 670

pedestrian 167 292

cyclist 37 80

S E Q U E N C E S

# images 8 008 11 095

# sequences 21 29

images/sequence 381 ±262 382 ±265

Table 6.1: KITTI Tracking Benchmark Statistics. For training and test
set of this benchmark, the number of object labels (in images), tracklets
(in sequences), and the average sequence length is shown.
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Figure 6.7: Object Occurrence and Object Geometry Statistics. This
figure shows (from left to right and top to bottom): The different types
of objects occurring in all sequences (including non-released ones), the
power-law shaped distribution of the number of instances within an im-
age and the orientation histograms and object size distributions for the
two most predominant categories cars and pedestrians.
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Figure 6.9: Egomotion, Sequence Count and Length. This figure
shows (from-left-to-right) the egomotion (velocity and acceleration) of
our recording platform for the whole dataset. Note that we excluded
sequences with a purely static observer from these statistics. The length
of the available sequences is shown as a histogram counting the num-
ber of frames per sequence. The rightmost figure shows the number of
frames/images per scene category.
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Figure 6.11: Illustration of the Dataset. This figure exemplarily
shows 18 images selected from the 50 sequences compiling the KITTI
tracking benchmark. For all sequences grayscale and color stereo images,
laser point clouds, GPS/IMU information, and calibration matrices are
available. Note the wide variety and complexity of scene types, quanti-
tatively stated in Fig. 6.9d.
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6.2 experimental results

In the following, we give a comprehensive evaluation of the run-
time performance of the methods proposed in this thesis. A de-
tailed performance analysis gives insights into the portion of
the total runtime for the different solver elements and compares
to regular as well as approximative batch methods and a stan-
dard baseline. Additionally, average-case complexity shows the
effectiveness for all algorithms to demonstrate benefits for on-
line scenarios. Runtime performance is evaluated using the train-
ing sequences compiled in the KITTI tracking benchmark. More-
over, tracking performance is evaluated against state-of-the-art
methods on both the challenging test sequences of the KITTI
benchmark (c.f. Section 6.1) and for a comparative evaluation on
the PETS2009 [56] dataset. Furthermore, we gain insights into the
applicability of the association features by evaluating the training
results of the algorithms. Again, we used the KITTI training set to
optimize the parameters for feature scaling and the subsequent
evaluation.

We use the following abbreviations for the different shortest
path solvers within the SSP framework:

Bellman-Ford SSP – Bellman-Ford
Dijkstra SSP

dynamic Dijkstra dSSP
online-dynamic Dijkstra odSSP

memory-bounded odDijkstra mbodSSP

6.2.1 Graph Building

For object detection, we make use of the deformable part-based
model (DPM) [65] in combination with the pre-trained object de-
tection model provided with the KITTI benchmark and our mov-
ing objects detector as outlined in Section 5.1. We convert the
detector score for each bounding box di into the unary cost Cdeti
using the provided training data for obtaining β

Cdeti =
1

1+ eβdi
. (6.2)
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To encode association costs, we use seven different pairwise sim-
ilarity features s̄ = {s̄i}: bounding box overlap, orientation sim-
ilarity, positional similarity, bounding box size similarity, flow
overlap, color histogram similarity as well as cross-correlation as
discussed in Section 5.2. Similar to detection, here, s̄i denotes the
output of a logistic function which has been learned via logistic
regression from training data and ranges [0, 1] using the associa-
tion feature si as input data. The detection/association cost for
each edge (u, v) is then defined as

Cu,v = ((1 − s̄) + o)>w , (6.3)

where o denotes an offset and w the scale. Note that the offset
is required to allow for negative as well as positive costs. All
parameters β, o, w have been obtained using grid search on the
training set and kept fix to the values in Table 6.2 during our
experiments. The parameter for the logistic function in Eq. 6.2
was set to β = 8.4.

Learning the scaling values for unary and pair-wise similarity
features allows insights into the performance of the features. Due
to the huge feature space and the particular problem formulation
which does not allow for well-known learning techniques such as
structured prediction [147], we used a 1D grid search strategy fix-
ing parameters for all but one feature. The resulting performance
is shown in Fig. 6.12+6.13. As a ranking criterion rg, we used a
weighted sum of five different metrics

rg = a1MT + a2PT + a3F1+ a4 precision+a5MOTA (6.4)

where MT/PT mostly tracked/partly tracked are the metrics intro-
duced in Section 2.2, F1 is the harmonic mean of precision and
recall

F1 = 2 · precision · recall
precision+ recall

, (6.5)

and precision and recall are defined as follows

precision =
tp

tp+ fp
recall =

tp

tp+ fn
. (6.6)



98 evaluation

feature en ex det α over size color x-corr loc flow

wl 5.0 5.0 21.5 1.5 5.0 1.0 9.25 6.5 1.25 8.0

ol 0.0 0.0 -0.5 1.0 -0.75 0.0 -0.8 -0.01 0.625 -0.4

Table 6.2: Model parameters. This table shows the weightwl and offset
ol for each feature lwhich we kept fixed during all our experiments. The
robustness of each feature l against variation of its weight value wl is
shown in Fig. 6.12+6.13 for different values of wl.

We chose the weight coefficients ai according to the observed
weaknesses of the tracker output and used the following weights:

a1 = 4/10, a2 = 1/10, a3 = 1/10, a4 = 2/10 a5 = 2/10 .

Bounding box and flow overlap turned out to be the most
robust positional features, almost not influenced by changing
their weight. The same observation can be made for color his-
togram similarity and cross correlation. In contrast, bounding
box size, positional and orientation similarity can only reject a
wrong hypothesis (Consider two different but similarly oriented
cars.). Therefore, changing the respective weights has significant
influence on tracking performance.

6.2.2 Average-case Complexity Analysis

We discussed the response of the standard batch algorithms
in their runtime to changes in the input size of the tracking
problem, i.e., the sequence length, using big O notation in Chap-
ter 3. While these theoretical considerations allow classifying
algorithms, for the distributed algorithms proposed in this the-
sis achievable runtime reductions are not considered. Moreover,
the particular graph structure (which mainly remains a DAG
during optimization) prevents the batch solvers reaching their
worst-case complexity.

Consequently, we study average-case complexity for the me-
thods proposed in this thesis and the respective baselines. This
allows judging the efficiency of different algorithms in practice.
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Figure 6.12: Robustness of Object Detection Score and Positional

Features against Variation of Parameters. This figure shows the
performance for the logistic parameter β and different weight values on
the KITTI training set using dSSP. While varying one parameter, all other
parameters are kept fixed (c.f. Table 6.2).



100 evaluation

F1 MT precision recall MOTA

0 5 10 15 20 25 30 35 40 45

weight wl

0.0

0.2

0.4

0.6

0.8

1.0

(b) Color Histogram

0 5 10 15 20 25 30 35 40 45

weight wl

0.0

0.2

0.4

0.6

0.8

1.0

(c) Cross-Correlation

Figure 6.13: Robustness of Appearance-based Features against Vari-
ation of Parameters. This figure shows the performance dSSP for dif-
ferent weight values on the KITTI training set. While varying one pa-
rameter, all other parameters are kept fixed (c.f. Table 6.2).

We used the KITTI training set sequences as samples for the eval-
uation, which provide a wide variety of different scene types,
crowdedness, and object classes. For a fair comparison, all al-
gorithms are implemented in python, using the same datastruc-
tures, and a single CPU core of an Intel Core i7-3740QM@2.7GHz
processor. All standard algorithms are implemented using the
textbook implementation described in [46]. For all our experi-
ments, we used the previously discussed DPM detector for cars
with a threshold di = −0.3.

Batch Methods. For comparing the total runtime of the batch
solvers in Fig. 6.14, optimization is performed for all sequences
and runtime is summed. In particular, the different methods for
finding a shortest path within the SSP framework are evaluated.
The quadratically growing response to the input sequence length
of the Bellman-Ford algorithm (a) is reflected by a total runtime
one order of magnitude larger than by applying Dijkstra’s algo-
rithm (b), even for the well-posed DAG problem avoiding the
worst-case complexity considerably (Fig. 6.16). In the following,
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we only refer to the BF implementation exploiting an early ter-
mination if no changes take place anymore during optimization.
Although applying Dijkstra’s algorithm requires converting the
graph after finding a shortest path (i.e., encoding the arbores-
cence), the additional, simple computations do not affect the over-
all runtime adversarially.

Applying the proposed dynamic modifications to Dijkstra’s al-
gorithm (c) reduces the overall runtime almost by factor two on
average. In particular, the dynamic algorithm reduces the run-
time for finding shortest paths by factor three. Note that com-
puting and updating the residual graph is merged into dDijkstra
Update to initialize the minimum-priority queues for the dynamic
case, introducing a marginal overhead. Additionally, we created
DAGs with the typical structure of the introduced tracking prob-
lem but with arbitrary edge weights. This experiment (Fig. 6.15)
poses a more complex problem since there are no predominant
trajectories present. While for very short sequences the speed-ups
achieved by dSSP are marginal, an increasing sequence length
shows the advantages of our dynamic approach.

Online and Approximative Algorithms. Considering an on-
line scenario, we used all solvers to compute a solution for every
single time step for all KITTI training sequences. We only evalu-
ated frames which existed for at least three sequences, resulting
in a maximum evaluation length of 803 frames (Fig. 6.17). While
our proposed dynamic batch solver outperforms a regular SSP
implementation, all optimal solvers respond with an increased
runtime to larger input sequences as already theoretically dis-
cussed in Section 4.2. Extending dSSP to tackle an online sce-
nario yields significant speed-ups up to one order of magnitude
for well-posed problems. This is indicated by the shown vari-
ance over the test sequences in Fig. 6.17. However, the offline
strategy using a minimum-priority queue is already very effi-
cient. Therefore, the introduced overhead for maintaining such
a queue in the online version on average leads to a slightly in-
creased runtime. The main advantages of odSSP are achieved in
the memory-bounded case. Most importantly, unlike any other
of the discussed solvers, our memory-bounded algorithm’s com-
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0.011s - Extract SP
0.131s - Residual Graph
640.233s - Bellman-Ford
640.376s - SSP-Bellmann-Ford (total)

(a) SSP – Bellman-Ford

0.000s - Cost Conversion
0.012s - Extract SP
0.107s - Residual Graph
0.591s - DAG-SP
10.041s - Graph Conversion
23.453s - Dijkstra
34.204s - SSP-Dijkstra (total)

(b) SSP – Dijkstra

0.000s - Cost Conversion
0.010s - Extract SP
0.591s - DAG-SP
7.393s - dDijkstra
11.785s - dDijkstra Update
19.780s - dDijkstra (total)

(c) SSP – dDijkstra

Figure 6.14: Detailed Runtime Evaluation for Batch Scenarios. This
figure gives a runtime comparison for the different components of the
batch solvers using the KITTI training sequences as input data with a
sequence length of 381 frames on average (Table 6.1). While the Bellman-
Ford algorithm suffers from its complexity class (a), even the introduced
overhead by applying Dijkstra’s algorithm (cost conversion) does not af-
fect the runtime reductions (b). Applying the dynamic modifications to
Dijkstra’s algorithm (c), the total runtime can be further reduced by fac-
tor two, although a marginal overhead is introduced by initializing the
minimum-priority queues in the update step (computing and converting
the residual graph).



6.2 experimental results 103

0 100 200 300 400 500 600 700

# frames

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

ru
nt

im
e

SS
P

dS
SP

3
5

6
10

Figure 6.15: Run Time for Random DAGs. This figure shows the speed-
ups our dynamic algorithm (dSSP) achieves over a regular SSP imple-
mentation in a relative fashion. The experiment was carried out for dif-
ferent lengths of a random DAG and a different number of shortest
paths (differently colored curves) and averaged over four runs.
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Figure 6.16: Relaxations for Bellman-Ford Algorithm. As expected,
the worst-case complexity for the Bellman-Ford algorithm (BFn2) is
never reached. Tracking graphs under consideration are not fully con-
nected and forward pointing edges dominate the graph structure even
for residual graphs. This results in one order of magnitude less relax-
ations for an early termination of the algorithm.
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plexity is constant and not affected by the size of the sequence.
Additionally, it can be applied to unlimited data streams as its
memory requirements are also constant (and only dependent on
the number of detected objects per frame) (Fig. 6.18).

When comparing our optimal odSSP to the approximative DP
solution of [138], we find that the proposed approach requires
slightly more runtime on average while still being optimal. How-
ever, for sequences allowing to fully exploit the dynamic strategy,
our optimal solver is on par with the approximative solution. In
contrast, our memory-bounded solver mbodSSP outperforms DP
by approximately two orders of magnitude while at the same
time being more accurate (see Table 6.3).

To evaluate runtime and memory consumption for a long-term
scenario, we used a sequence with almost 10

6 frames. Fig. 6.18

shows the results as a log-log plot. While all optimal solvers and
the approximate DP solution grow infinite in both memory us-
age and computational time, our memory-bounded algorithm re-
quires constant resources. Note that the memory consumption is
computed idealized and based on the size of the used data types
to avoid artifacts introduced by pythons garbage collection.

Memory-bounded Parametrization. Finally, we evaluate the
runtime of mbodSSP for different values of τ (Fig. 6.19) on all
frames of the KITTI training dataset. The runtime comparison
shows that for a reasonable value of τ = 10, our non-optimized
Python implementation requires less than 10ms which is suffi-
cient for many real-time applications. Furthermore, independent
of the selected value of τ, the runtime always converges to a con-
stant value, which is still real-time capable even for a longer his-
tory.

6.2.3 Optimal Data Association Performance

Tracking performance is evaluated using the metrics discussed
in Section 2.2 and summarized in Table 2.3. Since our 3D moving
object detector disregards static parts of the scene which are a
considerable part of the benchmark, we only evaluate the 2D case
quantitatively. We evaluate the proposed algorithms against state-



6.2 experimental results 105

0 100 200 300 400 500 600 700 800 900

# frames

10−5

10−4

10−3

10−2

10−1

100

101

102

103

ru
nt

im
e

[s
]

SSP – Bellmann-Ford SSP – Dijkstra

(a) Standard Algorithms

0 100 200 300 400 500 600 700 800 900

# frames

10−5

10−4

10−3

10−2

10−1

100

101

102

103

ru
nt

im
e

[s
]

SSP – odDijkstra SSP – dDijkstra

(b) Proposed Algorithms

0 100 200 300 400 500 600 700 800 900

# frames

10−5

10−4

10−3

10−2

10−1

100

101

102

103

ru
nt

im
e

[s
]

SSP – DP SSP – mbodDijkstra

(c) Approximative Algorithms

Figure 6.17: Run Time Comparison for an Online Scenario. This fig-
ure compares all solvers using the KITTI training set (showing the mean
runtime over all sequences and the respective variance) and the object
class car. We used a window size of τ = 10 for mbodSSP and |C| = 4

for (mb)odSSP and evaluated all methods on a fully connected network
without pruning any edges or an increased detector threshold.
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Figure 6.18: Run Time and Memory Comparison. Comparing all solvers
using one long sequence, this figure shows the mean runtime and ideal-
ized memory consumption for every solver.
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Figure 6.19: Run Time for mbodSSP Parameter Variation. We evalu-
ated the complexity of mbodSSP for different values of its history length
τ on the whole KITTI training set for at least three different scenarios for
each frame.
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of-the-art methods on the challenging test sequences of the KITTI
tracking benchmark containing 670 car trajectories. Moreover, we
evaluate the methods on the PETS2009 [56] tracking benchmark
as a dataset used in the long term.

Comparison to State-of-the-art on KITTI. First, we com-
pare the proposed dSSP and mbodSSP algorithm against four
baselines [7, 120, 138, 75] as well as the pairwise optimal Hungar-
ian method (HM) on the challenging KITTI dataset (see Fig. 6.11

for an illustration). Note that all optimal solvers (SSP – Bellman-
Ford, SSP, dSSP, odSSP) obtain identical results and are there-
fore represented by dSSP in the evaluation. As shown in Ta-
ble 6.3 + 6.4, the optimal (batch) algorithms outperform current
state-of-the-art, where the proposed dSSP algorithm solved the
task most efficiently (Section 6.2.2). In our experiments, we made
use of a relatively low threshold di = −0.3 for the DPM object
detector to avoid early pruning. Moreover, this allows evaluating
each method with respect to outlier rejection performance. Note
that our method attains the best performance with respect to
mostly tracked trajectories (MT) while only exhibiting a slightly
higher false alarm rate (FAR) than the other methods. Also note
the little loss in performance when running mbodSSP for a win-
dow length of τ = 10. Compared to the non-optimal DP solution,
mbodSSP achieves higher performance, especially in terms of
identity switches and fragmentations. The low detection thresh-
old used for this comparison results in outlier rejection as a ma-
jor task during optimization. The method of [7] could not handle
these outliers, so that a higher threshold of di = 0.0 was used in
this case. Generally, the relatively low F1 score of all methods is
mainly caused by the challenging scenario with many small and
often partially occluded objects. Qualitative results are discussed
in Section 6.2.5.

Comparison to State-of-the-art on PETS2009. Additionally,
we evaluate our method on the commonly used PETS2009 dataset
for sequence S2.L1. We used the detections and ground truth pro-
vided by the authors of [7], since the annotations of the bench-
mark authors are not publicly available. The PETS benchmark
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HM [7] [120] [138] [75] mbodSSP dSSP

MOTA 0.42 0.35 0.48 0.44 0.52 0.52 0.54

MOTP 0.78 0.75 0.77 0.78 0.78 0.78 0.78

MODA 0.42 0.36 0.48 0.52 0.52 0.52 0.54

MODP 0.53 0.54 0.58 0.54 0.58 0.59 0.59

Recall 0.43 0.50 0.54 0.46 0.54 0.56 0.58

Prec. 0.97 0.77 0.90 0.96 0.95 0.93 0.94

F1 0.60 0.61 0.67 0.62 0.69 0.70 0.71

FAR 0.048 0.46 0.18 0.053 0.083 0.14 0.11

MT 0.077 0.11 0.14 0.11 0.14 0.15 0.21

ML 0.42 0.34 0.34 0.39 0.35 0.30 0.27

IDS 12 223 125 2738 33 0 7

Frag. 578 624 401 3241 540 708 717

Table 6.3: Comparison of our proposed methods to four state of the art
methods and a HM baseline implementation on KITTI (car) [77]. Bold
entries for the proposed methods indicate that this method performed
better than the state-of-the-art.

[6] [7] EKF [120] [120] mbodSSP dSSP

MOTA 0.81 0.96 0.68 0.91 0.89 0.91

MOTP 0.76 0.79 0.77 0.80 0.87 0.87

MODA n/a n/a n/a n/a 0.89 0.91

MODP n/a n/a n/a n/a 0.87 0.87

Recall n/a n/a 0.70 0.92 0.90 0.92

Precision n/a n/a 0.98 0.98 0.99 0.99

F1 n/a n/a 0.82 0.95 0.94 0.95

FAR n/a n/a 0.08 0.07 0.057 0.067

MT 0.83 0.96 0.39 0.91 0.89 0.89

ML 0.0 0.0 0.04 0.04 0.0 0.0

IDS 15 10 25 11 7 23

Frag. 21 8 30 6 100 100

Table 6.4: Comparison of our proposed method to three baselines on
PETS 2009 [56]. Bold entries for the proposed methods indicate that this
method performed better than the state-of-the-art.
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compiles several surveillance scenarios containing pedestrian tra-
jectories. Our methods perform particularly well for precision-
based measures resulting e.g., in a low false alarm rate. However,
the underlying motion models for the reference methods allow
to reduce the number of fragmentations compared to our purely
association-based approach.

Comparing results on both datasets, the different perfor-
mance is primarily caused by the difficulty of both scenarios, re-
flected by different object detection performance. The PETS2009

surveillance setup provides a relatively large zenith angle result-
ing in few occlusions. In comparison, for the KITTI setup, objects
are observed from a drivers point of view resulting in frequent
inter-object occlusions. Furthermore, the object detections pro-
vided for the PETS2009 scenario gain better performance since
both camera and background are static while the camera for the
KITTI scenarios is mounted on a moving vehicle.

Peformance for Different Sliding Window Sizes. Finally,
we evaluate the tracking performance of mbodSSP for differ-
ent values of τ (Fig. 6.19) on all frames of the KITTI training
dataset. (The test set ground truth is not publicly available and
would therefore not allow to reproduce results.) The run time
comparison shows that for a reasonable value of τ = 10, our
non-optimized Python implementation requires less than 10ms
which is sufficient for many real-time online applications. To gain
quantitatively good results, such a small value of τ is sufficient,
considering the increasing run time. Therefore, we decided to
use τ = 10 as a compromise between tracking performance and
speed for all experiments in this thesis.

6.2.4 Detection-independent Performance

Multi-target tracking relies on detections as its input. Using any
object detector to provide this information already results in
noisy input data, missing detections, and false positives. There-
fore, we perform an additional experiment with artificially as-
sembled data to evaluate these effects in an isolated fashion. We
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Car Pedestrian
GT GT + FP GT GT + FP

MOTA 0.98 0.94 0.96 0.77

MOTP 0.92 0.92 0.93 0.93

MODA 0.98 0.94 0.97 0.78

MODP 0.80 0.79 0.28 0.27

recall 0.98 0.96 0.96 0.90

precision 1.0 0.98 1.0 0.88

F1 0.99 0.97 0.98 0.89

FAR 0.00012 0.054 0.0 0.17

MT 0.80 0.72 0.81 0.57

ML 0.030 0.047 0.090 0.16

Id-Switches 4 2 102 54

Fragmentations 6 35 134 111

Table 6.5: Detector-independent Performance. We used groundtruth
(GT) labels with a sampled “detection” score and additional false posi-
tive (FP) detections to evaluate tracking performance independent of the
input data and to verify outlier detection.

computed the distribution of the detector score for true positives
of a regular experiment. In the new dataset, true positives are
represented by ground truth bounding boxes with a score sam-
pled from this distribution. Additionally, we added remaining
detections (being a false positive in the regular case) to introduce
outliers into the data. We were running the globally optimal al-
gorithm dSSP to obtain tracklets for cars and pedestrians. The
results in Table 6.5 demonstrate that multi-target tracking for
challenging traffic scenarios is solved in the presence of a “per-
fect” object detector by the proposed algorithms. Adding false
positives only leads to a slight drop in performance for most
measures. However, this indicates that a robust outlier rejection
is a key task for multi-target tracking which is realized by the pro-
posed algorithms. Moreover, the results indicate that a relatively
low detector threshold is preferable to reduce fragmentations or
identity switches in an early stage based on image evidence.
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6.2.5 Qualitative Evaluation

Fig. 6.21 – 6.26 illustrate qualitative results for the optimal data
association and our proposed approximative algorithm. First, we
discuss performance for the 2D case for cars in general and re-
view selected differences between the two solutions. Secondly,
we state solely qualitative results for a challenging inner-city sce-
nario. For a more complete scene description, in this case we used
additional pedestrian and cyclist detections during optimization.
Finally, we show qualitative results for the proposed 3D object
detector (Section 5.1.2) for two challenging scenarios. For the op-
timal solution, results were obtained by applying our dSSP im-
plementation. For the approximative solution, we used a cache
length |C| = 4 and an optimization window of τ = 10. For both
methods and all object classes, the parameters were set according
to Table 6.2.

For most tracklets data association has been performed cor-
rectly. Far away objects are tracked from a very early point and
followed persistently (Fig. 6.21). Note that a quantitative evalu-
ation for such cases was not possible. Objects posing an inter-
esting problem for this experiment are typically more than 80m
away from the egovehicle and cannot be labeled reliably in the
laser point cloud. In contrast to several existing approaches, our
method is capable of starting tracks reliably from the first asso-
ciation onwards. Turning cars with a significant change in ap-
pearance and bounding box size are tracked continuously dur-
ing such a scenario (Fig. 6.22). Even for crowded inner-city sce-
narios, preceding objects are followed over their complete pres-
ence (Fig. 6.23). Low-confident object detections (e.g., due to il-
lumination changes) may lead for the approximative solution
to terminate a track early, while the optimal solution can ex-
ploit the full evidence to persistently follow this track (Fig. 6.24).
Parts of the sequence which went out of the optimization win-
dow for mdodSSP may also avoid fragmentations (Fig. 6.25). Low
confident evidence (e.g., due to occlusions) in the beginning of
a trajectory may lead to a delayed initialization for mbodSSP
(Fig. 6.26). For a challenging, crowded inner-city scenario with
additional object classes the proposed framework obtains good
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results (Fig. 6.27 + 6.28). However, high, frequent occlusions for
several frames lead to fragmentations.

Our scene flow-based 3D object detector can be used to reliably
estimate trajectories (Fig. 6.29). We used our mbodSSP algorithm
for data association in this experiment to review results in an on-
line setting. The 3D information additionally allows to associate
tracks in a world coordinate system which supports rejecting im-
plausible associations. The varying number of scene flow vectors
on an object during its presence in the scene leads to significant
changes in the estimated 3D dimension. Nevertheless, data asso-
ciation performs well in this case. However, the scene flow-based
clustering creates false positive detections more consistently at
one place than the 2D detector. This results in false positive tracks
even after the data association since both detector score and asso-
ciation features indicate a correct tracklet.

In summary, the proposed methods for globally-optimal multi-
target tracking and the memory-bounded approximation work
well, fast, and robustly even in the presence of outliers. While the
optimal algorithms cannot be used for an online scenario such
as autonomous driving with an arbitrarily large input sequence
and real-time demands, the memory-bounded approximation is
already as a python implementation capable of handling such
scenarios. Consequently, input data (object detections and associ-
ation features) must be processed real-time capable as well.
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Figure 6.20: Performance for Different Optimization Windows. We
evaluated the performance of mbodSSP for different values of its opti-
mization window τ on the whole KITTI training set and PETS S2.L1.
Results for τ→∞ are given on the very right of the plot.
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Figure 6.21: Results for the Optimal (left) and Approximative Solution (right).
Far away objects are tracked continuously. The oncoming car is followed for 3.7s and
not confused with several parking cars.

Figure 6.22: Results for the Optimal (left) and Approximative Solution (right).
Objects are tracked continuously during sharp turns. Significantly changing bound-
ing box sizes and appearance do not lead to track interruption for the preceding car.
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Figure 6.23: Results for the Optimal (left) and Approximative Solution (right).
Preceding objects in crowded scenes are tracked continuously. The preceding (black)
car is followed for 9.5s

Figure 6.24: Results for the Optimal (left) and Approximative Solution (right).
Changes in illumination and resulting ambiguous detections (middle) may lead the
approximative solution to terminate a track due to missing future evidence. In con-
trast, the optimal solution tracks the preceding car for 37.2s.
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Figure 6.25: Results for the Optimal (left) and Approximative Solution (right).
Challenging intersection scenarios lead to qualitatively good results. The limited op-
timization window for the approximative solution may also avoid fragmentations of
the trajectory outside of this window.

Figure 6.26: Results for the Optimal (left) and Approximative Solution (right).
Missing future evidence for the approximative solution may lead to tracks starting
later compared to the optimal solution (second car on the right). This happens pri-
marily for detections with a low score for the early part of the trajectory.
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Figure 6.27: Results for the Optimal (left) and Approximative Solution (right).
For crowded inner-city scenes, objects of different classes (cars, pedestrians, cyclists)
are tracked robustly over the main part of their presence in the image.

Figure 6.28: Results for the Optimal (left) and Approximative Solution (right).
For groups of interacting pedestrians, tracks are followed continuously even for partly
occluded objects. Very high occlusions for several frames may lead to interrupted
tracks.
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Figure 6.29: Qualitative Results for our 3D Object Detector. This figure shows
two different sequences (left, right) for the 3D object detector (Section 5.1.2). Tracking
was performed using mbodSSP. Moving objects are tracked persistently although the
bounding box size is varying significantly depending on the number of scene flow
vectors for the particular object in a frame. However, false positives cannot be rejected
as good as in the 2D case due to their constant appearance (left: blue track, right:
yellow track).
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C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

“ I never think of the future – it comes
soon enough.

A L B E RT E I N S T E I N

This thesis has proposed an efficient approach for optimal
data association to solve multi-target tracking in a tracking-by-
detection framework. The application focused on is autonomous
driving, which poses an interesting and currently unsolved prob-
lem due to crowded scenes and real-time demands. To solve the
data association problem, the actual maximization task has been
casted into a min-cost flow formulation which allows to find the
optimal data association for given detections in a batch setting.
This formulation inherently solves the model selection problem,
i.e., estimating the number of tracks present in the scene in-
cluding their respective start and end point in time as well as
rejecting detection outliers.

Generally, the successive shortest paths algorithm solves this
network optimization problem in an efficient fashion. This thesis
has proposed a dynamic approach adopting Dijkstra’s algorithm
to the special structure of the tracking problem achieving fur-
ther runtime reductions. In contrast to existing approaches, the
dynamic algorithm has been extended to be capable solving the
stated problem in an online setting. However, all previously men-
tioned approaches scale badly with a growing sequence length.
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To tackle this problem, this thesis has finally proposed an approx-
imation of the online algorithm with bounded memory and com-
putational resources solving multi-target tracking in real-time
with only marginally reduced tracking performance.

A challenging dataset providing a large number of traffic
scenes with a comprehensive ground truth has been proposed to
evaluate object detection and tracking algorithms. An extensive
evaluation of the proposed algorithms has shown, that for the
challenging task of multi-target tracking for autonomous driving
scenarios the proposed approach has significantly outperformed
the state-of-the-art. Moreover, parameters to weight different as-
sociation features have been learned using ground truth training
data and evaluated with regard to their influence on tracking
performance.

An interesting direction of future research is given by exploit-
ing a joint optimization for different object detectors and incor-
porating motion models. This may lead to higher-order terms
and/or quadratic pair-wise costs. A possible solution must ei-
ther formulate the resulting network (which poses a NP-hard op-
timization problem in general) and apply Lagrangian or heuristic
relaxation approaches or iteratively solve the data association for
initially given constraints in an EM-like scheme. Extending the
cost functions in such a manner introduces additional parameters
and requires more sophisticated parameter optimization. Conse-
quently, using the introduced ground truth data for parameter
learning presents an interesting research aspect.

Furthermore, non-imaged based cost terms will increase ro-
bustness in complex environments. Using maps as prior knowl-
edge, object hypotheses, motion models, or group behavior esti-
mation can benefit from this information. In the case of outdated
maps, tracking results provide valuable information on changed
infrastructure and can be used for subsequent algorithms to keep
such maps up-to-date.

Moreover, current tracking metrics primarily focus on evalua-
tion on a detection level. Designing a metric for an evaluation
on tracklet level can facilitate learning and make a comparison
between existing tracking approaches more explicit.
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N E T W O R K A N D O P T I M I Z AT I O N A L G O R I T H M S

This appendix states related network optimization algorithms,
which are used to implement the necessary functionality for
the proposed algorithms. Moreover, a generic approach for
minimum-cost maximum-flow computation in a network is
reviewed, which can solve the multi-target tracking problem
discussed in this thesis in a general and hence more complex
fashion. Additionally, we state the optimization scheme used for
logistic regression in Section 5.3.

a.1 network algorithms

a.1.1 Depth-first Search

All proposed algorithms implicitly require finding connected
components (nodes with outdated predecessors and their suc-
cessors), typically during initialization. For this task, depth-first
search (Algorithm A.1) is an efficient strategy to collect all rele-
vant nodes. This algorithm allows traversing a graph starting at
arbitrary root nodes (in this case nodes on the most recent short-
est path) and continues by exploring neighboring nodes affected
by the predecessor change. Affected nodes have the root node (or
one of it successors) as their predecessor. The time complexity
for DFS is linear for the graph size with O(|V |+ |E|.
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Algorithmus A.1 : Depth-first Search

Input : Graph G, Starting Node v ∈ G
Output : Connected Subgraph S

1 D← emptyStack()
2 S← emtpyStack()
3 S← pushToStack(v)
4 while S 6= empty do
5 v← popFromStack(S)
6 if ¬ D(v) then
7 D← pushToStack(v)
8 foreach edge (v,w) ∈ adjacentEdges(G, v) do
9 S← push(w)

10 return S

a.1.2 Bellman-Ford Algorithm

The Bellman-Ford (BF) algorithm (Algorithm A.2) is based on the
principle of relaxation (Algorithm A.3). All nodes are initialized
with an unknown predecessor and infinite costs (as an upper
bound) on their shortest path except for the source with a cost
of 0. The algorithm iteratively replaces this upper bound of the
correct distance to the source for each node gradually by tighter
bounds (by computing the predecessor and its distance) until the
optimal solution is reached. To achieve optimality the BF algo-
rithm relaxes all edges in the graph for |V |− 1 iterations, where
|V | denotes the number of vertices in the graph. In each of these
repetitions, the number of vertices with correctly calculated dis-
tances grows, from which it follows that eventually all vertices
will have their correct distances, even before the |V | − 1 repeti-
tion. In contrast to the originally proposed BF algorithm, current
implementations consider this behavior by terminating the algo-
rithm early when no changes between two iterations are detected
anymore.
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Algorithmus A.2 : Bellman-Ford [46]
Input : Graph G, Costs C, Source s
Output : Predecessor Map π, Distance Map ρ
// set π(u) = Unkown, ρ(u) =∞, u ∈ |V | \ s

1 π, ρ← InitializeSingleSource(G,s)
2 for i← 1, . . . , |V |− 1 do
3 foreach edge (u, v) ∈ G do
4 π(v)← Relax(π(v), (u, v), c(u, v))
// check for negative cycles

5 foreach edge (u, v) ∈ G do
6 if ρ(v) > ρ(u) + c(u, v) then

// a negative cycle was detected

7 RaiseError(“negative cycle”)
8 return π, d

Algorithmus A.3 : Relaxing Edges.
Input : Predecessor Map π(v), Distance Map ρ, Edge (u, v)
Output : Predecessor Map π, Distance Map ρ
// relax edge (u, v) with cost c(u, v)

1 if ρ(v) > ρ(u) + cuv then
// update cost d for shortest path to v

2 ρ(v)← ρ(u) + c(u, v)
// update predecessor for edge (u, v)

3 π(v)← u

4 return π(v), d(v)
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a.1.3 Minimum-Cost Maximum-Flow Algorithms

In contrast to the algorithms discussed in the main part of this
thesis, many network optimization problems need to solve a min-
cost max-flow problem. Such a generic algorithm can also be
used to solve the problems discussed in this thesis, resulting in a
high complexity as discussed in Section 3.2. A generic algorithm
for solving min-cost max-flow problems is the push-relabel algo-
rithm (Algorithm A.4, [84]). The algorithm starts by pushing max-
imum flow from the source and than repeatedly performing basic
operations (push and relabel) maintaining a preflow and gradually
obtaining the maximum flow (for given cost constraints). There-
fore, flow is pushed between neighbors or relabeling is applied
to create an admissible out edge. If no active node is existing
anymore, the algorithm terminates. A variant of this algorithm
computing min-cost max-flow for a network is available as an
open source implementation.1

a.2 iteratively reweighted least-squares (irls)

An optimization problem given by an objective function

arg min
β

n∑
i=1

wi(β)
∣∣yi − fi(β)∣∣2, (A.1)

cannot be solved in a closed form anymore. A maximum likeli-
hood estimation can be achieved by iteratively solving a weighted
least-square problem given by

β(t+1) = arg min
β

n∑
i=1

wi(β
(t))
∣∣yi − fi(β)∣∣2. (A.2)

We refer the reader to [156] for a more complete introduction.

1 Source Code: http://lemon.cs.elte.hu/

http://lemon.cs.elte.hu/
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Algorithmus A.4 : Push-Relabel Algorithm

Input : Graph G, Source s, Sink t, Capacity Function c
1

Output : Flow f containing s-t paths
2

3 foreach edge (u, v) ∈ E do
4 f(u, v)← 0 // flow

5 if u = s then
6 f(u, v)← c(u, v)
7 if v = s then
8 f(u, v)← −f(v,u)
9 foreach v ∈ V do

10 ef ←
∑
w:(w,v)∈E f(w, v)

11 if v=s then
12 d(v)← n

13 else
14 d(v)← 0

15 while ∃ active node do
16 if v active and (v,w) ∈ Af and d(v) = d(w) + 1 then
17 PushFlow((v,w), min(ef(v), cf(v,w)))
18 if v active and ∀w ∈ Γ+(v) with (v,w) /∈ Ef or d(W) > d(v) then
19 d(v)← min(d(w) + 1|w ∈ Γ+(v) with (v,w) ∈ Ef)
20 return f
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Algorithmus A.5 : Iteratively Reweighted Least-Squares
Input : Feature Matrix X ∈ Rm ×n

Vector of Class Variables y ∈ Rm

Ridge Regression Constant λ
Output : Model Parameter β

1 β← 0

2 while ¬ terminated do
3 ui ← 1

1+e−Xiβ

4 Wii ← µi(1− µi)

5 Ui ← Xiβ+ yi−µi
Wii

6 A← X>WX+ λI
7 b← X>WU
8 β← conjugateGradient(A,b,β)
9 return β

Algorithmus A.6 : Conjugate Gradient
Input : A, b, β
Output : β satisfying Aβ = b

1

2 r← b−Aβ

3 d← r

4 δnew ← rtopr

5 δ0 ← δnew
6 while δnew > δmin do
7 q← Ad

8 α← δnew
d>q

9 β← β+αd

10 r← r−αq

11 δold ← δnew

12 δnew ← r>r

13 γ← δnew
δold

14 d← r+ γd

15 return β
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