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Abstract: Multiple human tracking (MHT) is a fundamental task in many computer vision applications. Appearance-based
approaches, primarily formulated on RGB data, are constrained and affected by problems arising from occlusions and/or
illumination variations. In recent years, the arrival of cheap RGB-depth devices has led to many new approaches to MHT, and
many of these integrate colour and depth cues to improve each and every stage of the process. In this survey, the authors
present the common processing pipeline of these methods and review their methodology based (a) on how they implement this
pipeline and (b) on what role depth plays within each stage of it. They identify and introduce existing, publicly available,
benchmark datasets and software resources that fuse colour and depth data for MHT. Finally, they present a brief comparative
evaluation of the performance of those works that have applied their methods to these datasets.

1 Introduction
Human tracking is a key component in many computer vision
applications, including video surveillance [1], smart environments
[2], assisted living [3, 4], advanced driver assistance systems
(ADAS) [5], and sport analysis [6]. They are usually centred
around RGB sensors and are characterised by a variety of
limitations, such as occlusions due to cluttered or crowded scenes
and varying illumination conditions. The vast literature landscape
in this research area has widened even further in the last few years,
due to the introduction and popularity of low-cost RGB-depth
(RGB-D) cameras (such as the Kinect [7] and Asus Xtion [8]).
This has enabled the development of new algorithms that integrate
depth and colour cues to improve detection and tracking systems
[9].

The aim of this survey paper is to summarise and focus on the
area of multiple human tracking (MHT) from the combination of
colour (RGB) and depth (D) data, given that cheap depth-enabled
sensors are becoming ubiquitous in computer vision research and
applications. The survey is not however limited to methods using
active sensing RGB-D devices, but also encompasses state-of-the-
art passive sensing stereo-based human tracking techniques, where
colour and depth are again jointly relied upon to enable tracking.

We do not review methods based only on RGB features as that
would need a dedicated survey of its own and would demand much
greater space – for RGB only MHT, the reader is referred to the
reviews presented by Dollar et al. [10] on colour-based pedestrian
detection and Luo et al. [11] for colour-based multi-object tracking.
The intention here rather is to address and summarise an area that
is now of far-reaching interest to a huge community of researchers.

Four main computer vision topics were identified in [9] that
could benefit from depth information: human activity analysis and
recognition [12, 13], hand gesture analysis [14], three-dimensional
(3D) mapping [15] and object detection and tracking. For example,
the effect of occlusions can be reduced by using the 3D
information contained in depth data, or more reliable features can
be extracted in scenes undergoing illumination variations since
such variations have low impact on depth sensors. Moreover, depth
can be used to extract a richer description of the scene allowing to
simplify the tracking problem, e.g. by adding physical constraints
on human appearance and size. On the other hand, certain depth
sensor characteristics, such as limited capture range, or scene
characteristics, such as excessive natural light and reflective

surfaces, reduce the reliability of depth data in some operating
conditions, e.g. in outdoor scenarios. Colour and depth data can be
significantly complementary, and hence their efficient combination
and processing can dramatically reduce the effect of the problems
that affect them individually. In this survey, we focus on the
analysis of algorithms, and available datasets and software, which
combine colour and depth data for MHT. Most previous survey
papers on human tracking do not provide such coverage and are
limited to one or other aspects of MHT. For example, in [1], an in-
depth review of surveillance systems is provided, with particular
focus on challenges in using large camera networks. In [16],
pedestrian detection methods using colour-based approaches are
surveyed while the pedestrian detection review presented in [5] is
mainly focused on ADAS systems. The survey presented in [10]
proposes an extensive evaluation of 16 pedestrian detectors that are
based on a sliding window strategy. In [17], the focus of the survey
is on algorithms for high-level crowd scene understanding. A
review of human detection algorithms in video surveillance
applications is presented in [18] where the main sub-modules of
the human detection task are identified (object detection and object
classification) and the state-of-the-art algorithms are appraised by
describing the different strategies used in each sub-module. The
survey presented in [19] summarises the advances in human body
parts tracking for rehabilitation purposes. Table 1 lists the recent
surveys that are related in some fashion to MHT. 

To the best of our knowledge, the surveys most closely
associated to ours here are those presented in [9, 11, 12]. These
cover similar themes but come with certain limitations. The work
in [9] reviews recent Kinect-based applications in computer vision,
including a very brief survey of RGB-D based trackers. The review
in [12] is focused on the recent advances on human activity
analysis using depth imagery, while the problem of human
detection and tracking is only marginally discussed. Finally, in
[11], a general review of multiple object tracking is presented, but
the analysis, dedicated to approaches that combine colour and
depth data, is limited and brief.

It is worth noting that we do not consider general single object
trackers based on combined depth and colour features, such as the
recent works presented in [20–23], since they are more focused on
the optimisation of appearance and motion models rather than
facing the specific challenges of MHT, or are concerned with
tracking inanimate objects. Furthermore, we do not include
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detection only methods, e.g. [24–26], and methods that use depth
only for MHT, e.g. [27–30], or depth and reflectance, such as [31].
Finally, we do not include in this review any work or dataset that is
related to the analysis of people interaction, such as [32, 33], or
action recognition, such as [34], as they are not focused on the
problems and issues of MHT.

In summary, we provide here a review of the state-of-the-art on
MHT algorithms that integrate depth and colour data,
characterising them based on (a) trajectory representation and
matching and (b) how they exploit depth information to improve
various stages of the processing pipeline. We also provide a review
of the constraints of use of these algorithms, and we examine
existing online resources, i.e. benchmark datasets and source
codes, and present a comparison of the very few such resources
made available to the community. The audience of this survey is
not limited to researchers working directly in the development of
tracking algorithms, but also includes those who wish to employ a
tracking method that is relevant to their application area, where
colour and depth sequences are to be analysed, such as the very
active research area of action recognition [12, 13], smart
environments [35], health-care applications [36, 37], and
applications mentioned in [9].

Next, in Section 2, we present the common processing stages of
a typical MHT system, along with a variation on it employed by
some works. Amongst other topics, we cover some generic
descriptions of a person and introduce two characterisations of
MHT systems based on their matching strategy and use of depth.
These characterisations are then used in Sections 3 and 4 to survey
state-of-the-art approaches. Practical issues, such as type of sensor,
camera position, and speed of computation, are considered in
Section 5. Section 6 presents an overview of online datasets and
software resources for RGB-D MHT. We then compare existing
evaluations derived from some of the works in this survey in
Section 7. We highlight the main challenges within the current
state-of-the-art of RGB-D MHT in Section 8 and conclude in
Section 9.

2 Multiple people detection and tracking
techniques in RGB-D data
In this section, we identify the main approaches to MHT from
combined colour and depth data. We first present the processing
pipeline that can be attributed to the greater set of works in the
literature and then characterise the works we review based on (a)
which trajectory representation is used and its matching, and (b)
how and for which purpose depth data is exploited.

In MHT, detections of multiple people are normally aggregated
into independent tracks, one for each person, in order to establish
their respective trajectories. Tracks may contain position, motion,
and appearance descriptions. We shall use the words ‘track’ and
‘trajectory’ interchangeably in the rest of this paper.

The common processing pipeline is illustrated in Fig. 1. MHT
methods normally perform the stages indicated by the solid lines in
Fig. 1, with first a detection stage that searches for occurrences of
humans in a new frame, based on a generic description of a person
(elaborated later below). It may possibly be preceded by an
optional Regions of Interest (ROIs) selection stage (the dashed-line
box in Fig. 1), that allows for the reduction of the search space.
Then, a matching step associates these new detections to the
trajectories based on a matching strategy and a similarity measure,
computed from position and, more often than not, appearance. 

There are numerous approaches to performing the matching
process. These rely on the active trajectories to provide (i.e.,
effectively feedback) a representation of the target's motion and
appearance to their matching stage (the solid arrow in Fig. 1). The
pool of active trajectories is managed by the matching stage, with
new trajectories created when detections cannot be associated to
the existing ones, and old trajectories discontinued when certain
termination criteria are met.

In a variation to the common pipeline, depicted by the dotted
line and box in Fig. 1, the detection and matching stages may be
directed by trajectories and their representations rather than by a
generic representation of a person. Thus, currently tracked people
are directly detected at the position predicted by their trajectory
representation's motion model in a significantly reduced search
space. In effect, this amounts to combined detection and matching.
This variation of the MHT processing pipeline still requires a
generic person description for initialising new trajectories by
detecting people that are not yet tracked. Note that some methods
also use a generic person description in the combined detection and
matching stage in addition to the trajectory representation, in order
to ensure that the tracks do not switch to background objects of
similar predicted position and appearance to that of the target.

Section 3 provides a detailed description of implementations of
the MHT pipeline (and its variation), including comparing different
fulfilments of the matching stage. It should be stressed that both
the main pipeline and its variation are by no means specific to
RGB-D based methods, and the same can apply to MHT methods
based on RGB data only.

Trajectory representations in MHT methods vary significantly
between implementations as well, as illustrated in Fig. 2. Thus,
although all reviewed methods employ a motion model in their
trajectory representation, the use of an appearance model (e.g.,
colour histogram, texture, joint RGB and depth feature etc.) is
optional, as represented by the dashed arrow (or blue sub-tree) in
Fig. 2. Both motion and appearance models may be built from an
observation in a single frame, or from richer information that
accounts for the history of the target. 

Two types of motion models may be identified. The first,
denoted as ‘zero-velocity motion model’, assumes stationary
position of the target, while the second describes their velocity,
yielding a first order characterisation of their movements. Higher
order motion models, such as one that includes the target's
acceleration, would be equally possible, but are not addressed in
this survey as no methods in RGB-D MHT were encountered that
employed them. Static appearance models may be built from one or
a few initial frames and remain fixed for the duration of the
trajectory's lifetime, while dynamic appearance models may be
derived from all previous observations of the target or from a
sliding window. Such models are updated as new observations
become available, in order to account for varying appearances, due
to different body orientation relative to the sensor or changing
illumination conditions. Yet these dynamic models could result in
incorrect descriptions in case of failure in tracking, such as drifting.
MHT methods may use any combination of these different possible
(static and dynamic) motion and appearance models.

Depth data can be exploited to enhance RGB-based MHT. The
methods that we review can be characterised by how and at which
stage of the MHT pipeline they employ depth information. Indeed,

Table 1 Recent related surveys (most recent first)
Year Article Topic
2016 Zhang et al. [13] RGB-D dataset for action

recognition
2014 Luo et al. [11] MHT
2013 Chen et al. [12] human activity analysis
2013 Han et al. [9] recent Kinect applications
2013 Li et al. [17] crowd monitoring
2013 Paul et al. [18] human detection in surveillance
2013 Wang [1] multi-camera video surveillance
2012 Dollar et al. [10] pedestrian detection
2010 Geronimo et al. [5] ADAS systems
2009 Enzweiler and Gavrila [16] pedestrian detection
2008 Zhou and Hu [19] human tracking in rehabilitation

 

Fig. 1  Common processing pipeline for MHT – the dashed-line stage is an
optional step of the pipeline, while the dotted rectangle and arrow depict a
variation of it
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depth may support each and every stage of the MHT pipeline, as
indicated in Fig. 3. It can help to specify ROIs in the image
corresponding to 3D physical scene regions of significance, e.g. a
doorway or passage, to help reduce the search space for the
detection stage (left branch of Fig. 3). Depth information may also
increase the robustness of human detection, by enhancing the
generic description of a person with 3D shape information (middle
branch of Fig. 3). Finally, depth can help in matching detected
candidates and trajectories (right branch of Fig. 3), by providing
the information needed to track people in 3D, and by further
enriching the appearance descriptions of people, that are
traditionally based on RGB information only. The various uses of
depth information in published work will be detailed in Section 4. 

The generic description of a person that drives the detection
stage, is often made up of a number of RGB and depth cues. Then,
in the detection stage, a cascade of RGB and depth based
descriptors is applied to either the full image or ROIs, starting with
the less computationally expensive ones, which are generally
depth-based descriptors of the human shape. When using RGB
information, the generic representations for a person often takes the
form of a Histogram of Oriented Gradients (HOG) [38] descriptor
of the full or upper body. Other examples of possible generic
person descriptions from RGB data are provided by the poselet-
based human detector of [39], the deformable part-based models of
[40] (DPM) or use the Viola and Jones Adaboost cascade [41].
Table 2 summarises the different generic descriptions of people
used by the various methods reviewed here. 

Next, in Section 3, we review all RGB-D MHT methods known
to us, leveraged on how they implement the MHT pipeline. We
characterise these works based on their applied trajectory
representation and matching strategy, following the categorisation
proposed in Fig. 2. Then, in Section 4, we again review and
characterise these same methods based on their adoption of depth
information, describing the uses of depth for each stage of the
MHT pipeline, according to Fig. 3.

3 Survey by MHT pipeline implementation
This section details how the pipeline for MHT, described in Section
2, has been implemented, including optional stages and variations.
The emphasis is on complexity of trajectory representation (see
Fig. 2) and matching. We may refer to depth data in this section for
some of the works – the details of their use of depth is provided in
Section 4.

3.1 Implementations of the main pipeline

We encountered only four works that build their trajectory
representation exclusively from the previous frame [42–45]. The
principle characteristics of their implementation of the MHT
pipeline are indicated in the first four rows of Table 3. 

Darrell et al. [45] present a stereo-based tracking approach
using the target's position and size constancy from frame to frame.
In particular, candidates are detected by using a segmentation
approach that allows to identify connected component in the
disparity images corresponding to regions in the 3D space with a
typical volume occupied by a person facing the camera. For each
detected region, a cascade of face and skin detectors, and
geometric constraints, are applied to validate the target's head
position. A long term model is generated by considering skin and
face average colour, appearance colour histogram, face pattern and
height extracted from depth data. These features are used to solve
occlusions and target re-identification in case of targets re-entering
in the scene.

Bansal et al. [42] first detect people after an ROI selection
stage, using a combination of depth cues, and a HOG detector that
is applied to a selection of edges obtained by preliminary template
matching with several 2D contours of different body parts. Then,
they match detections with trajectories from the previous frame by
image patch-correlation. This is performed in the area of the image
that contained in the previous observation of the person, after
correction for camera motion estimated by visual odometry. Thus,
the trajectory representation is made up of a zero-velocity motion
model in the 2D image coordinates and an appearance model that
consists of an image patch around the detection in the previous
frame. This amounts to a dynamic appearance model built from a
sliding-window of one frame-width.

Salas and Tomasi [43] detect and track all objects in ROIs that
denote foreground, and then they select the paths that have, at some
point in time, a detection with a high confidence score from a HOG
based human detector. The matching stage is performed by
dynamically building a directional connected graph of the
foreground object detections. These are organised into layers that
correspond to the frames they originate from, and they are
interconnected by the graph's edges in chronological order. The
cost of an edge is the probability for its two nodes (or foreground
detections) belonging to the same object. Based on these costs, the
tracks are selected as the most strongly connected paths in the
graph. A greedy algorithm is used for extracting individual paths,
starting from the oldest remaining detection, and selecting the
strongest connection locally between two adjacent node layers. The
edge cost, used for matching, is estimated from the similarity of the
colour signatures, measured using the Earth mover's distance [76],
and from the distance between the 3D locations of both detections
that is expected to be proportional to the elapsed time. Thus, the
trajectory representation consists of a zero-velocity motion model,
and an appearance model made up of the colour signature [76] of
the blob in the previous frame.

Dan et al. [44] use depth information for detection. All detected
candidates are then matched independently to detections in the
previous frame by maximising a score that assesses both
appearance similarity and closeness in 3D space. The trajectory
representation used for matching is made up of an RGB-D based
dynamic appearance model with a sliding window of one frame,
along with a zero-velocity motion model. A backward/forward
matching strategy is used, where all detections in frame t are
matched to those in frame t − 1 (backward matching), and vice
versa (forward matching), which allows handling trajectory splits
and merges, which may arise from the failure of detection in one
direction that may match two people against the same candidate.

Fig. 2  Categorisation of the different models that make up the trajectory
representation used for matching. The dashed arrow denotes an optional
model for the trajectory representation, while semi-dotted arrows indicate
where one or the other of two possibilities is selected

 

Fig. 3  Categorisation of the uses of depth information in MHT methods
from RGB-D data
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All four methods in [42–45] propose a crude motion model that
does not describe a person's movements sufficiently well, although
Salas and Tomasi [43] expects the distance travelled to be
proportional to the time. The movement itself, and in particular its
direction, are not captured by the trajectory representation. Thus,
these methods are more likely to suffer from incorrect
identifications when a track ‘jumps’ from one person to another,
and from wrong detections being integrated into the tracks. In
addition, both their motion and appearance models are made from
the observations in the previous frame only. Hence, in case of
occlusion, a person cannot be tracked any longer and the associated
trajectory is automatically discontinued. A new, independent
trajectory would have to be created if the person re-emerges.

The methods we present in the rest of this, and the following
subsection, occupy rows five to the end of Table 3. These address
the above issues (a) by proposing motion models that describe the
motion of the target to the first order, and (b) by building
appearance models from richer temporal information, which allow
for maintaining consistent trajectory representations, and help
prevent the model from changing dramatically in cases of
temporary detection failure over a few frames.

In the work of Han et al. [46], the motion model determines
target's velocity approximately by the mean and variance of its
depth variations in the past ten frames. Their static appearance
model is made up of colour and texture histograms for the torso
and legs, generated at the first observation of a new person, with
the torso and leg locations being detected using depth information.
This trajectory representation is kept after the person leaves the
scene, in order to allow re-identification in case of re-entry. People

are first detected in ROIs, as objects within a pre-defined height
range appearing for a number of successive frames, based on depth
information. Their best matching trajectory is selected from a
linear combination of the appearance similarity and the continuity
of the depth variation. The former is assessed with the
Bhattacharyya distance measure and the latter is expected to follow
a Gaussian distribution with a mean and variance provided by the
motion model, under the assumption of a constant speed.

In [47], Bajracharya et al. assume a target velocity of 2 ms−1 in
any one direction, hence the motion model does not depend on the
data. The appearance model of the trajectory representation is
made up of the colour histogram of the last observation for the
track. Matching is performed by comparing candidates, detected
from depth information in ROIs, to trajectories, based on the colour
histograms of the candidate and of the appearance model of the
track, evaluated by the Bhattacharyya measure. Only trajectories
that are predicted to be located close to the candidates are
considered.

In all other RGB-D MHT methods reviewed next which apply
the main MHT pipeline, motion is modelled as the position and
velocity of the tracked person from the previous frame. The
position, and sometimes the velocity, of the next observation are
predicted from the model, and then compared with the positions of
new detections during the matching stage. With the exception of
[49, 55], the methods reviewed next carry out their predictions
using Kalman filtering.

Some works find the best association of a detected candidate to
a track independently for each detection or track. For example, in
[48], Zhang et al. find people in ROIs using a cascade of RGB and
depth-based detectors, where detected candidates from depth cues
are verified by a HOG detector, and by the poselet-based human
detector of [39] that detects body parts. This last detector is rather
computationally expensive, hence it is only applied to detected
candidates that cannot be associated with existing targets in the
matching stage. The matching stage locates the best matching track
or static background object for each new detected candidate, using
a Directed Acyclic Graph (DAG) to handle the decision process.
The DAG performs coarse matching by position similarity first and
then finer matching to account for appearance similarity. The
appearance is represented by a dynamic model, updated online by
an AdaBoost algorithm. A classifier is trained by AdaBoost from
weak nearest neighbour classifiers and colour histogram features,
with positive and negative examples taken from previous
observations of the target and of other people and objects,
respectively. This model is kept after the person leaves the scene to
enable future re-identification.

Similarly in [49], Galamakis et al. model motion as the target's
speed, computed between the last two frames, and use it to predict
the next position of the target, assuming a constant velocity.
Following the matching strategy of [77], candidate detections,
found by background subtraction, are associated with their nearest
neighbour trajectories. Unlike [77] however, the distance to a
trajectory combines the 3D distance to its predicted position and
the appearance similarity, quantified as in [78] by a correlation
metric. The appearance model comprises the hue and saturation
histograms of the upper and lower body which are found by
reference to the depth data. It is updated by linear combination of
the current model and the new histogram. Liu et al. [50, 51] detect
all candidate people in ROIs of a new frame from RGB-D data and
then, for each track, select the best detected candidate by
maximising a correspondence likelihood that is a linear
combination of distance to the predicted position and appearance
similarity, assessed by the Bhattacharyya measure. The appearance
model of the trajectory representation is a joint colour and height
histogram. The authors do not give any indication whether their
appearance model is updated. To handle short-term occlusions, the
trajectory is only terminated after 10 s of being lost.

Other works consider all possible associations of detections to
tracks in order to find a global optimisation that takes into account
possible interactions between tracks, such as crossing of
trajectories and sharing of detections. In [53], Luber et al. build a
tree of association hypotheses in a multi-hypothesis tracker
(MuHyT) framework, where matching probabilities, for all past

Table 2 Types of generic descriptions of a person
Method Depth

descriptor
RGB descriptors

Bansal et al. [42] ✓ 2D contour matching
+ HOG

Salas and Tomasi [43] — HOG
Dan et al. [44] ✓ —
Darrell et al. [45] — face and skin detector
Han et al. [46] ✓ —
Bajracharya et al. [47] ✓ —
Zhang et al. [48] ✓ HOG + poselet
Galamakis et al. [49] ✓ —
Liu et al. [50–52] ✓ joint RGB and height

histogram + physical
priors [52]

Luber et al. [53] and Linder
and Arras [54]

✓ HOG

Ess et al. [55] ✓ HOG-based detectors
Jafari et al. [56] ✓ HOG
Muñoz Salinas et al. [57] — face detector
Munaro et al. [58, 59] ✓ HOG
Almazán and Jones [60, 61] ✓ —
Bahadori et al. [62] — temporal colour-based

model
Beymer and Konolige [63] ✓ —
Satake et al. [64] ✓ SIFT
Vo et al. [65, 66] ✓ HOG + face detector
Harville [67] ✓ —
Muñoz Salinas et al. [68, 69] ✓ —
Muñoz Salinas et al. [70] ✓ Adaboost classifier for

upper body + ellipse
fitting at head location

Choi et al. [71, 72] ✓ HOG + face detector
+ motion detector +

skin colour recognition
Migniot and Ababsa [73] ✓ —
Gao et al. [74] — HOG + DPM
Ma et al. [75] — HOG + DPM
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and current frames, are computed from closeness to position and
velocity predictions, and from appearance similarity. The MuHyT
grows a hypothesis tree, pruned to the k-best hypotheses at each
iteration in order to prevent exponential growth of the tree. The
current best hypothesis, that jointly describes all tracks, is then
selected at each frame, following [79]. Similarly to [48], the
appearance model relies on a colour and depth Adaboost classifier.
Linder and Arras [54] propose an extension of the method in [53]
for group tracking. In particular, to characterise group movements,
they add to the MHT framework a set of coherent motion
indicators, such as relative spatial distance, difference in velocity,
and difference in orientation of two given tracks.

Beymer and Konolige [63] propose a combination of stereo-
based background subtraction (see [80]) and a full body binary
template to identify candidate targets. The binary template size is
chosen according to the mean depth value of the foreground blob.
A Kalman filter with a constant velocity model is used for tracking.
A target's representation includes 3D space coordinates and two
appearance models, a colour model and the average disparity.
These models are linearly updated taking into account the
confidence rate of the person detector module, such that it
introduces a smoothing factor in the update process, hence limiting
the models’ drift. A similar approach was proposed by Bahadori et
al. [62], using detected foreground regions and geometric
constraints in their stereo setup to identify blobs containing
candidate targets. For each blob, a fixed resolution and adaptive
colour-based appearance model is generated, with each pixel
modelled as a unimodal distribution in the colour space. Tracking
is also performed with a Kalman filter, with a constant velocity
model that takes into account the 3D depth position of the target
and its appearance. The matching strategy is based on the

minimisation of the distance, considering both position and
appearance, between all the detected candidates and the current
active tracks. The generation of new tracks and the termination of
lost ones are managed by a finite state machine system.

Ess et al. [55] detect people in a Bayesian network that
accounts for the probabilities of human presence, as output by a
colour-based detector, given the scene geometry and a generic
person geometry description, both provided by depth data. Areas
around the next expected target locations also see their detection
likelihood increased. Then, they also build multiple candidate
tracks, from forward and backward matching hypotheses,
following [81]'s tracking framework. These hypotheses are
generated from position predictions by a constant velocity model
and from appearance similarity measured using the Bhattacharyya
distance on colour histograms. The best tracks are selected, while
enforcing that each person detection can only be matched to one
trajectory. The trajectory's appearance model used for matching is
the mean colour histogram of all previous observations of the
tracked person. Jafari et al. [56] use the same matching stage and
trajectory representation. They perform detection in ROIs based on
depth at a close range and using a HOG detector [82] in the far
range.

Satake et al. [64] detect people by applying a classifier cascade
to the RGB-D data. First, a set of three binary templates [83],
containing frontal and side views of head and shoulders, are used
to identify candidate regions in the disparity map. These are then
validated and refined with a support vector machine (SVM)
classifier trained on HOG features to detect humans. An extended
Kalman filter is used to track the target in the 3D space. SIFT
features [84] of the target are periodically collected to build an
appearance model. Association between tracked targets and current

Table 3 Characterisation of the methods based on their MHT pipeline implementation. The number of frames indicated in the
column ‘Dynamic – sliding window’ indicates the width of the window. For Liu et al. [50–52], it is not known if the appearance
model is static or dynamic
Method ROI selection Pipeline

variation
Motion model Appearance model

Zero
velocity

First-order
velocity

Static Dynamic-sliding
window

Dynamic-full
history

Bansal et al. [42] ✓ ✓ ✓ (1 frame)
Salas and Tomasi [43] ✓ ✓ ✓ (1 frame)
Dan et al. [44] ✓ ✓ (1 frame)
Darrell et al. [45] ✓ ✓ ✓ ✓

Han et al. [46] ✓ ✓ ✓ (10 frames)
Bajracharya et al. [47] ✓ ✓ ✓ (1 frame)
Zhang et al. [48] ✓ ✓ ✓

Galamakis et al. [49] ✓ ✓ ✓

Liu et al. [50–52] ✓ ✓ ? ? ?
Luber et al. [53] and Linder and Arras [54] ✓ ✓

Ess et al. [55] ✓ ✓ ✓

Jafari et al. [56] ✓ ✓ ✓

Muñoz Salinas et al. [57] ✓ ✓ ✓

Munaro et al. [58, 59] ✓ ✓ ✓

Almazán and Jones [60] ✓ ✓ ✓ (1 frame)
Bahadori et al. [62] ✓ ✓ ✓

Beymer et al. [63] ✓ ✓ ✓

Satake et al. [64] ✓ ✓ ✓ (30 frames)
Vo et al. [65, 66] ✓ ✓

Harville et al. [67] ✓ ✓ ✓

Almazán and Jones [61] ✓ ✓ ✓ ✓

Muñoz Salinas [68] ✓ ✓ ✓ ✓

Muñoz Salinas et al. [69] ✓ ✓ ✓

Muñoz Salinas et al. [70] ✓ ✓ ✓

Choi et al. [71] ✓ ✓ ✓

Choi et al. [72] ✓ ✓ ✓ ✓

Migniot and Ababsa [73] ✓ ✓

Gao et al. [74] ✓ ✓ ✓ ✓

Ma et al. [75] ✓ ✓ ✓
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frame detections is performed by thresholding on the number of
matching SIFT features.

Muñoz Salinas et al. [57] detect people from a face detector
applied in ROIs selected from depth information. The face detector
may suffer from false negatives (FNs) in non-fronto-parallel views,
therefore it is only applied at the very end of the detection cascade,
and only to detected candidates that cannot be associated with
existing targets in the matching stage. The matching stage finds the
globally optimal associations of detected candidates to existing
tracks using the Hungarian method [85]. The matching likelihoods
are computed from the distance to the predicted position and the
similarity to the colour histogram appearance model estimated with
the Bhattacharyya measure. This model is updated by linearly
combining its current values and the new observed colour
histogram. The track is discontinued if the new observation of the
target is not encountered after a time-limit. Almazán and Jones [60]
also use the Hungarian method to match candidates, detected from
motion and size using depth information, to trajectories. The
correspondence likelihood is based on the distance to the predicted
position and on appearance similarity, evaluated using the
Bhattacharyya measure. The appearance model combines a height
histogram and the colour distributions of its bins, and it is updated
every ten frames by replacing bins and their associated
distributions by newly observed ones if available, i.e. if no
occlusion happens.

Another method based on the Hungarian algorithm for
matching detected and tracked objects is that of Vo et al. in [65],
where the authors identify background areas with a depth-based
occupancy grid system. Candidate targets’ search space is limited
to the foreground areas which is analysed with a cascade of
classifiers, comprising face and skin detectors (see [66] for more
details) and a full body HOG-based human detector [38]. Detected
objects are tracked simultaneously with a compressive tracker and
a Kalman filter. Munaro et al. [58, 59] find the optimal assignment
of detections to tracks in a Global Nearest Neighbour framework.
Their matching likelihoods are obtained from the distance to the
predicted position and velocity, the probability of being a human as
evaluated by a HOG-based human detector, and the similarity to
the appearance model of the track. The latter is provided by an
online Adaboost classifier trained on previous observations, and
selects features in the colour histogram space. Harville [67] detects
moving candidates by applying the background subtraction
algorithm presented in [86] to RGB-D data. The detected
foreground objects are projected to a 2D reference plane where
occupancy and height maps are generated. A box filter system is
applied to the occupancy map such that 3D clusters not
corresponding to a volume occupied by an average adult are
filtered out. Their tracking Kalman filter state includes position in
the reference plane and the height and occupancy maps data. These
features are linearly combined to calculate the matching score that
it is used in the measurements and update phases of the Kalman
filter.

Ma et al. [75] present a tracking approach where a set of HOG-
based DPM detectors [40] is applied to both depth and colour
images to detect body parts to enable their system to deal with a
person's articulated motion. The conditional random field-based
approach of [87] is used and extended to solve data association and
trajectory estimation. In particular, person locations are inferred by
minimising an objective function, which includes detection
matching, spatial correlation, mutual exclusion, temporal
consistence, and regularisation constraints. One interesting aspect
of this method is that it can deal with flexible number and type of
detectors.

3.2 Implementations of the variation of the pipeline

The detection of humans driven by generic full body descriptions,
such as those mentioned earlier in Section 3.1, may sometimes be
problematic, e.g. when there is partial occlusion which can
significantly alter the appearance of the target. In Section 2 (also
see Fig. 1), we stated that in a variation to the common pipeline,
some works attempt to address such difficult detections by
exploiting trajectories and their representations in a combined

detection and matching stage to enable more robust detection. The
trajectory representations provide descriptions of the targets,
including first-order motion models that enable predictive tracking.

After an ROI selection stage, Almazán and Jones [61] use the
mean-shift algorithm to find the ROI that best matches the
appearance model of a target. For each trajectory, this search is
initialised at the position predicted by a Kalman filter, and it is
performed in the area defined by both the position variance
estimated by the filter and by the ROI selection. The appearance
model is made up of the colour histogram of the upper body region,
comprising the head and the torso. After thresholding the 3D point
cloud occupied by the person, the upper body region is estimated
relative to the height of the 3D cluster from the ground plane. The
corresponding colour histogram is then updated dynamically with
each new observation as the weighted mean of the model at the
previous frame and of the new histogram. The trajectory remains
active until a number of frames after the target leaves the scene to
allow its re-identification in case of temporary occlusion.

All other methods we review here that employ this variation of
the MHT pipeline implement their first-order motion model in a
particle filter framework. A potential drawback of this is that
particle filters tend to be computationally expensive and may
require optimisations to achieve practical running times. In the
works of Muñoz Salinas et al. [68–70] one particle filter is used per
track, using a constant speed model to predict the next location of
the target, and new target observations are searched for by
maximising a detection probability. In [68, 69], candidates are
identified in ROIs based on depth information, wherein the
probability of the presence of (any) person is computed based on
heuristic rules on the number of points in a cluster and its maximal
height. To compute the probability of detecting the tracked person,
this human presence probability is combined with an interaction
factor that allows handling trajectory crossings by imposing a
minimal separation between the positions of different people. In
[68], the detection probability also includes the Bhattacharyya
appearance similarity measure, while in [69] it uses a measure of
confidence on depth. Hence, the trajectory representation in [69]
does not include any appearance model, and in [68] it models
appearance by the colour histogram of the cluster. This model is
updated with new observations that have high detection and
matching confidence by the linear combination of the previous
model and of the new histogram. This confidence condition avoids
the model being updated when the detection contains parts of a
different person, in case of close interaction between people. In
[70], the detection probability is made up of three terms. It includes
the probability of being a frontal-facing human, firstly by verifying
that the cluster may be approximated by a vertical plane at the
expected distance from the camera, and secondly, by evaluating the
fitting of an ellipse on the RGB image in order to validate the
presence of the elliptical shape of a head at this position. It also
uses the Bhattacharyya appearance similarity measure to compare
to the trajectory representation's appearance model, made up of two
(colour) histograms inside two ellipses of pre-defined sizes and
respective positions that represent the head and torso respectively.
This appearance model is updated dynamically as in [68].

In all three methods in [68–70], new tracks are initialised when
unknown targets are detected based on the use of generic person
descriptions. In [68], heuristic rules on the size and height of
clusters are used. In [69], confidence on depth is added and new
trajectories are initialised only after a few consecutive detections.
In [70], the detection of new people is first performed by an
Adaboost classifier trained on RGB images to detect upper bodies
which are verified by heuristics on their width and planarity using
depth information. Tracks are kept for a number of frames after
occlusion or departure.

In [73], Migniot and Ababsa use a top-down view of a depth
camera and propose a 2D model composed of two ellipsoids
corresponding to the head and shoulder regions which are obtained
by simply thresholding the depth data. The Chamfer distance
between the observed regions and the ellipsoidal models is then
used to assign the particle weights in their particle filtering tracker.
In case of multiple persons in the scene, an independent tracker is
created for each target.
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Choi et al. [71, 72] use particle filtering with Reversible Jump
Markov Chain Monte Carlo (RJ-MCMC) sampling to track
multiple people simultaneously, as well as static non-human
objects (obstacles) and the camera's position. Given the positions
and velocities of all tracked targets and the results from generic
person detectors applied to ROIs, at each iteration a move is
attempted to initialise, delete or update a trajectory. The moves are
sampled from the space of possible moves, one at a time, and the
likelihood of the modified solution is estimated. Moves are
accepted or rejected similar to MCMC sampling until the chain
converges. The moves are guided by the probability of continuous
tracking, based on a smooth target's motion constraint, which may
also account for people interactions [72], and the probability of
being a human, as computed by a combination of HOG-based
human detection, face and motion detection, skin colour and 2D
shape recognition. While Choi et al. [72] accounts for the person's
appearance in the likelihood, by computing the distance from a
target-specific appearance-based mean-shift tracker [88] that uses
colour information, Choi et al. [71] do not use any appearance
model. The appearance model for the tracker in [72] is static
though and built from a small number of consecutive frames, in
order to minimise tracking drifts.

In the pedestrian tracking system presented by Gao et al. [74], a
layered graph model is used to estimate pedestrian trajectories in
RGB-D sequences. The colour-based classifier of [40] is used to
detect target candidate regions from which several features such as
3D position, appearance, and motion are extracted. The layered
graph nodes represent the detected regions, and the edges the
feature similarity. By minimising the cost function of the graph,
using a heuristic searching algorithm, the pedestrian trajectories are
obtained.

3.3 Summary and discussion

In this section, we presented details of how the MHT pipeline has
been implemented for RGB-D data by researchers in this area,
especially focusing on trajectory representation and matching.
Table 3 provides a summary of the main characteristics of each
method. Robust trajectory representation is crucial, especially to
solve occlusions, and the majority of existing methods include a
dynamic model to cope with it. Only four of the reviewed methods,
i.e. [42–45], use a very simple zero velocity motion model base on
the information contained in two consecutive frames (top four rows
of Table 3). Thus, these methods are more likely to suffer from
trajectory ID switches, and from wrong detections being integrated
into the tracks. Furthermore, in case of occlusion, a person cannot
be tracked any longer and the associated trajectory is automatically
discontinued. The rest of the methods reviewed deploy more
complex motion and appearance models that take into account the
target evolution over time. All the reviewed approaches, i.e. [46–
75], rely on a first-order motion model, generally based on Kalman
filters – an assumption quite common in human tracking.
Appearance models are dynamically updated and are usually based
on RGB data. Several methods, such as [42–47, 60, 64, 75],
generate them by applying a sliding window on the recent history
of the target trajectory to estimate and update their model. Such
approaches help towards a consistent trajectory representation and
prevent the model from changing dramatically in cases of
temporary detection failure over a few frames. Finally, among the
reviewed methods we identified seven different works [61, 68–72,
74] based on a modification of the standard tracking pipeline (see
the third column in Table 3), where their combined detection and
matching stages are directed by trajectories and their motion model
representations, rather than by a generic representation of a person.

4 Survey by use of depth information
The works that we review in this paper seek to improve the stages
of ROIs selection, human detection, and matching by the use of
depth information as an additional cue. In this section, we outline
how the use of depth, in combination with RGB information, can
improve each and every stage of MHT.

4.1 Use of depth in ROI selection

Amongst the reviewed methods, all those that select ROIs rely
heavily on depth and the additional information it provides on the
scene geometry to identify the areas where people may potentially
be found. As illustrated in the left branch of Fig. 3, we distinguish
three categories of depth-based ROI selection methods, i.e. those
based on the estimation of the ground plane, those that model the
scene's background, and those that detect motion. We now look at
these categories in turn, and characterise the reviewed methods
based on their ROI selection method – see columns two to four of
Table 4. 

4.1.1 Use of ground/ceiling plane: The assumption that people
are usually located in areas of limited height above the ground
plane can greatly reduce the search space for detection, and this
strategy has been used in many of the reviewed works. Munaro et
al. [59] estimate the ground plane using a Hough-based method
[89], and select as ROI the volume above the ground plane at
typical human height.

Liu et al. [50, 51] detect 3D points that are local height maxima,
located at a reasonable distance from the ground. ROIs are defined
as vertical cylinders of fixed size centred on these maxima. In [52],
the same authors filter these positions by using a fast approach that
applies typical head sizes and geometry to remove false candidates.

Ess et al. [55] estimate the ground plane jointly with object
detection in a Bayesian network. The ground plane is inferred from
the bounding boxes of detected objects and the depth-weighted
median residual between the ground plane estimate in the previous
frame and the lower regions of the depth image. Jafari et al. [56]
first produce a rough estimation of the ground plane based on the
known height of the camera, and then they project onto this plane
the points that have a relative height of no more than 2 m. 3D
points that project in dense areas of the initial plane are excluded,
and the remaining points are used to fit a more accurate plane to
the ground surface using RANdom SAmpling Concensus [90].
They then classify the remaining points into three different classes
(‘object’, ‘free space’, and ‘fixed structure’ that usually denotes
walls) based on their height and on their density when projected
onto the ground plane. ROIs are searched for amongst the points
labelled as ‘object’, by clustering them based on the connectivity of
their ground projections and by retaining the clusters that contain a
high enough number of points. They are then divided into sub-
clusters that are likely to contain single humans, using the quick-
shift algorithm [91] that groups points around local maxima in the
density of their ground projections. Similarly, Bansal et al. [42]
also classify the 3D points into ‘object’, ‘ground’, and
‘overhanging structure’ (e.g., walls) using the distribution of
heights in the cells of a grid superposed on the ground plane. The
associations between these distributions and cells’ labels are learnt
off-line by kernel density estimation. Finally, a smoothing is
applied to the pixels’ labelling using a Markov random field that
penalises neighbouring pixels that have different labels. Pixels
labelled as ‘object’ are used in the detection phase to validate
candidate detections.

Detecting and removing the ground plane from a point cloud
also facilitates the clustering of the remaining points into separate
objects, since they are no longer connected to each other through
the floor. Bajracharya et al. [47] project all 3D points onto a
ground plane, presumably estimated based on known camera
height and orientation. The resulting map is used to select areas of
high density as ROIs of foreground points. Zhang et al. [48] exploit
the known height of their camera to produce a rough estimation of
the ground and ceiling planes, similarly to [56]. Then, at each new
frame, they use the previously estimated planes to select 3D points
within a distance threshold to the planes, which are used in a
RANSAC algorithm to refine the planes’ estimations. After
removing the ground and ceiling planes, the remaining points are
clustered, first by isolating regions of similar depths around local
maxima in the depth distribution, and then, for each region, by
extracting connected components in the image plane. Munaro et al.
[58] estimate the ground plane using a RANSAC-based least
square method that is updated at each new frame to compensate for
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possible movements of the camera. The authors do not provide a
detailed description of their RANSAC-based plane fitting stage.
After suppressing the ground plane from the point cloud, they
cluster the remaining points from their Euclidean distances. To
avoid over-segmentation of objects, the neighbour clusters in
ground plane coordinates are merged. Humans belonging to the
same cluster are separated later in the detection stage, as will be
explained in Section 4.2.

Choi et al. use a similar strategy in [71, 72] for detection. After
ground plane removal, they cluster 3D points and then select the
clusters whose heights are within an acceptable range. HOG-based
detectors of both the upper and full bodies, and a face detector are
then applied to the clusters to generate their weak, initial detection
hypotheses. In [72], a skin colour detector, a motion detector, and a
detector based on upper body shape from depth are also used.
Galamakis et al. [49] estimate the ground plane (without stating
how) to discard any ROI points obtained by background
subtraction that would be located on or close to the ground.
Bahadori et al. [62] apply off-line calibration to map their fixed
stereo camera disparity data to the 3D world coordinate system.
Their resulting reference plane is used to track moving objects by
using 3D spatial information. A similar calibration is applied also
in the stereo system in [67].

4.1.2 Background subtraction: While similar to ground plane
removal, the background subtraction strategy has the advantage of
producing ROIs that are more likely to contain humans and to
exclude static objects. Its drawback is that it requires learning a
model of the background, and updating it in case of moving
cameras or variable background. In the latter case, people need to
be moving in the scene faster than the background model is
updated, to be detected as moving objects. A background model
that employs depth may be more robust than a colour one to
modifications of appearance that are not correlated with changes of

the scene's geometry, such as due to illumination variations [9, 92,
93].

In [60, 61], Almazán and Jones initialise a background model
from the first few frames of a sequence. The model is then updated
progressively by a linear combination of the model's and current
depth values where foreground objects are detected, without
modifying background areas that are assumed to remain
unchanged. The result is that new background objects are
eventually added to the model after they enter the scene, with the
risk of adding stationary people when they stop moving for a
significant amount of time. Foreground points are detected when
the difference of their depth value with that of the model exceeds a
threshold, which was empirically established in [61], and that
accounts for the measured standard depth variation of the sensor as
a function of the distance in [60]. Foreground points are then
projected onto a coarse horizontal grid, whose cells, which contain
a high enough number of foreground points are selected as ROIs.
Galamakis et al. [49] also detect foreground points based on their
difference with the depth values of a background model. No
information is provided on the creation and possible update of the
model. In a multi-camera setup, a global 3D coordinate system is
used, and foreground points are reconstructed using triangular
meshes. Triangles that are too close to the estimated ground plane
are discarded. A top-down view of this scene – which in effect is a
projection onto the floor – is generated using a GPU and used as a
2D map of the ROI clusters.

Muñoz Salinas et al. define a background model in [57] as a
height map, i.e. the map of maximum height for each ground plane
coordinate. This model is built as the median of ten consecutive
maps, and it is updated every 10 s. This update rate is chosen
empirically based on the observed people's dynamics to reduce the
risk of introducing a person who is temporarily standing in the
scene into the model. Background subtraction is performed by
selecting the points whose height are above the model's value.
Foreground points are clustered using their projection on the

Table 4 Characterisation of the reviewed methods based on their use of depth information
Method ROI selection Human detection Matching

Ground
plane

Background
subtraction

Motion
detection

3D geometry 2D depth
classifier

3D depth
classifier

3D tracking Joint RGB-D
description

Bansal et al. [42] ✓ ✓

Salas and Tomasi [43] ✓ ✓

Dan et al. [44] ✓ ✓ ✓

Darrell et al. [45] ✓

Han et al. [46] ✓ ✓ ✓

Bajracharya et al. [47] ✓ ✓ ✓ ✓

Zhang et al. [48] ✓ ✓ ✓

Galamakis et al. [49] ✓ ✓ ✓ ✓ ✓

Liu et al. [50–52] ✓ ✓ only in [52] ✓ ✓ ✓

Luber et al. [53] and Linder and
Arras [54]

✓ ✓ ✓

Ess et al. [55] ✓ ✓ ✓

Jafari et al. [56] ✓ ✓ ✓

Muñoz Salinas et al. [57] ✓ ✓

Munaro et al. [58, 59] ✓ ✓ ✓ ✓

Almazán and Jones [60] ✓ ✓ ✓ ✓

Bahadori et al. [62] ✓ ✓ ✓ ✓ ✓ ✓

Beymer and Konolige [63] ✓ ✓ ✓ ✓

Satake et al. [64] ✓ ✓

Vo et al. [65, 66] ✓ ✓

Harville [67] ✓ ✓ ✓ ✓ ✓

Almazán and Jones [61] ✓ ✓ ✓

Muñoz Salinas et al. [68, 69] ✓ ✓ ✓

Muñoz Salinas et al. [70] ✓ ✓ ✓

Choi et al. [71, 72] ✓ ✓ ✓ ✓

Migniot and Ababsa [73] ✓ ✓

Gao et al. [74] ✓ ✓

Ma et al. [75] ✓ ✓ ✓ ✓
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ground plane, and the clusters that occupy a suitably large area and
that contain enough points are selected as ROIs. These ROIs are
used as human detections for the matching stage. A colour-based
face detector initialises new tracks. In [67], Harville applies the
mixture of Gaussian-based foreground segmentation method of
[86] to their stereo-based RGB-D data. The foreground objects are
then projected to a 2D reference plane where occupancy and height
maps are generated. These features are then used to track the
foreground blobs with Kalman filters in the 2D reference plane.

Salas and Tomasi [43] use the background model introduced by
Gordon et al. [94] to combine colour and depth in a 4D Gaussian
mixture model. Foreground points are detected as those that are
more than 3σ away from the nearest background mode, and large
clusters of 3D connected components are selected as ROIs. These
ROI clusters are validated as humans or rejected in the detection
stage by a colour-based HOG detector. Muñoz Salinas et al. in [68,
69] use a similar model that was defined in [86], which is updated
by excluding points that belong to detected people. The foreground
points are projected onto the ground plane for use in the detection
and matching stages, and regions around local density maxima in
this plane are selected as ROIs. Bahadori et al. [62] propose a very
simple unimodal background model by exploiting both intensity
images and the estimated stereo disparity. The background model
is dynamically adapted after a short initial phase where moving
objects are assumed to be not in the scene. Moving object blobs are
obtained by subtracting the actual data from the background model
and then projecting it to the reference plane to be tracked.

Beymer and Konolige [63] employ the stereo-based background
subtraction algorithm proposed in [80]. The background model is
initialised with an empty scene. The foreground regions are then
segmented to extract dominant disparity layers, assuming that
different people in the scene may be located at different distances
from the camera. The obtained blobs are then processed by the
person detection module. Vo et al. [65, 66] identify the background
areas combining the navigation information of the moving robot
and a depth-based occupancy grid. Background areas are excluded
from the candidate search space, speeding up the next steps of their
algorithm.

4.1.3 Motion detection: For indoor applications, it may be
reasonable to assume that moving objects are likely to be human,
and to select areas with motion as ROIs for human detection. Our
previous discussion on the respective sensitivities of depth and
colour to appearance changes for background subtraction also
applies here, and motion may be detected more reliably using depth
than from colour only. Thus, the authors such as Choi et al. [71,
72] detect changes in 3D point clouds of consecutive frames,
represented in octrees, following the method proposed in [95]. The
motion term in their estimation of human presence likelihood is
then the ratio of moving pixels in the candidate region.

Han et al. [46] apply the same foreground detection technique
as in [60, 61], but they use the previous frame as the background
model. Thus, their foreground points selection is equivalent to
selecting moving objects between two successive frames. The
moving points are then clustered into ROIs based on the continuity
of their values in the depth image.

4.2 Use of depth in human detection

Depth information has been found by many authors to provide cues
for human detection that are complementary to colour-based
appearance information. These cues mostly describe the 3D shape
of the target, and they can be taken advantage of by (a) direct
comparison against simple geometrical characteristics of a human
shape, or (b) through the classification of 2D and 3D features, as
detailed next. Columns five to seven of Table 4 summarise the
reviewed methods based on their exploitation of these depth cues
for people detection.

4.2.1 3D geometrical properties: To speed up the detection
process, many authors apply a cascade of small detectors to the
ROIs, starting from the most lightweight ones, followed by the
more computationally intensive ones on the few remaining

candidates not dealt with by the earlier stages. A very fast and
popular early detection stage is the assessment of the ROI clusters
against simple geometrical constraints that are determined
empirically. In [47], Bajracharya et al. select ROI clusters based on
the expected width, height, and depth variance of a standing adult.
Then a classifier on 3D features further refines the selection of
clusters that have a human-like shape. In [48], Zhang et al. first
verify that the height of objects as well as the number of points in
their clusters, are within the expected ranges for a human target.
Then, a random selection of normals to the cluster's surface vote to
discard vertical (e.g., wall) and horizontal (e.g., tables) surfaces.
Finally, a HOG and SVM-based detector is used to validate the
remaining human candidates using RGB data. In [58, 59], Munaro
et al. consider that ROI clusters may contain several humans, or a
miscellany of humans and background objects. They extract sub-
clusters that are likely to contain individual humans by detecting
heads, denoted as local height maxima that follow heuristic rules
on their distance from the scene floor and on the minimal
separation with others. These initial detections are then validated or
rejected as humans by a HOG-based detector on RGB data. Vo et
al. in [65, 66] apply different geometric constraints to limit the
search space of their skin and face detector modules. In particular,
features like size and height (considering sitting and standing
person) are used.

In [70], Muñoz Salinas et al. detect the upper body using an
Adaboost classifier with Haar-like features in colour images, and
then confirm these detections by verifying their width and
planarity. For each positive classification, a binary mask of the
upper body shape is applied to the depth image in order to compute
the mean and standard deviation of the depth inside the template
shape. These are used to estimate the probability for human
detection, following heuristic assumptions on the expected width
and planarity of a person. When confirmed by this test on depth
distribution, the new detections are used to initialise new tracks.
Ess et al. [55] combine the output of a (or any) colour-based person
detector with depth-based cues in a Bayesian network, where the
object detection probability depends on the probability provided by
the colour-based human detector, the probability of human
presence given the scene geometry (using ROIs), and the
probability of the detected object to be a human given its 3D
geometrical properties, evaluated based on typical human height.
The detection is also refined around the estimated location of the
colour detector by imposing a uniform depth inside its bounding
box, when the depth is sufficiently available.

Other works, such as [44, 46, 73] limit their human detection
stage to an assessment of the geometry of ROI clusters to achieve
an even higher frame rate. In [44], Dan et al. detect humans in top-
down depth views by selecting local height maxima within a
specified range that show the characteristic empirically-determined
shape and size of head and shoulders when seen from above. A
similar top-down camera approach has been used by Migniot and
Ababsa [73] where the head and shoulder area is obtained by
thresholding the depth data and fitting two ellipsoids to the
identified regions. This model is then used to estimate body and
head orientation.

Han et al. [46] only evaluate the height of moving ROI clusters,
assuming that human-sized objects that move in an indoor
environment are likely to be humans. Thus, ROI clusters, which
have a height within a specified range that does not change
significantly over five frames, are selected as human detections. A
similar approach is also presented in [62, 64, 67] where the height
of the detected 3D blobs is used to discard moving objects that are
unlikely to be people. Similarly, Almazán and Jones [60, 61] select
ROI clusters of moving points that have a high density when
projected onto the ground. In [61], detections are defined as areas
of a pre-defined size around local density maxima in the ground
projection map of the ROI points. In [60], a blob detection
technique is used, with smoothing and hole filling of the projected
points into blobs, as well as filtering out those blobs that have a
projected points density below a certain threshold. The authors
note that the depth resolution of their sensors decreases with
distance, producing an increasing spread of measured depth values
around the exact values, i.e. a stretching of blobs on the line-of-
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sight of the camera. Thus, the blobs are first normalised in a polar
coordinate system. The density threshold is chosen as a function of
depth, in order to compensate for the perspective effect that
decreases the number of points in the blobs with distance.
Galamakis et al. [49] also select blobs in their top-down 2D view
of ROIs. Morphological operations are applied to a binary mask of
their 2D view, and blobs that are too small are discarded.

In [68, 69], Muñoz Salinas et al. compute the likelihood of
human presence in candidate regions (i.e., regions around local
density maxima of foreground points projected onto the ground
plane), based on the maximal height and the number of points in
these regions that follow empirically established expected values
and associated standard variations. This likelihood is used both for
detecting new people to initialise tracks and for tracking existing
targets.

Darrell et al. [45] segment the disparity stereo map with a
simple combination of a gradient operator and thresholding based
on the typical volume occupied by a person facing the camera.
Large connected components are then considered as possible
human candidates, and head locations are estimated at the top of
each connected component. A combination of face and skin
detectors is used to rule out false detections.

Liu et al. [52] improved the detection performance of their
previous algorithms [50, 51] both in terms of accuracy and
processing speed by using a cascade of classifiers based on 3D
geometry data. They use a very fast filter based on empirical
thresholds on the typical human head size. A second classification
stage, based on a ring-wedge mask detector [96], is then applied to
identify the head and shoulders regions.

Ma et al. [75] use a pool of classifiers based on colour and
depth data to detect the human body and its articulated parts. The
3D spatial structure of the tracked object's parts is taken into
account such that the detector pool learns pre-determined
configurations, and hence the system is able to cope with pose
variations.

4.2.2 Classifier of 2D features in the depth map: Classifiers
that are traditionally used on grey-level or colour images may also
be applied to depth data, or disparity maps in stereo imaging, to
recognise the 2D shape of a human. Munaro et al. [59] apply a
Haar-like feature classifier in a cascade to both the colour image
and the disparity map, to exploit different and independent features
that increase the detection rate and reduce the number of false
positives (FPs). Luber et al. [53] introduce a variant of the HOG
detector for depth maps, the Histogram of Oriented Depth (HOD),
that they use in an SVM classifier to compute probabilities which
are linearly combined with the ones obtained from a classical
HOG-based SVM classifier on RGB data to detect humans. A
similar approach is used in [75] where several DPM classifiers [40]
trained on HOG features extracted from the depth maps are used in
the detection phase.

Template matching in depth images has also been used [56, 63,
64, 71, 72] for recognising the 2D shape of the upper body. Choi et
al. [71, 72] compute the likelihood of the depth image to contain a
person by template matching of the thresholded depth map with the
upper body shape. This probability is combined with the output of
a HOG-based detector, and of face, skin colour, and motion
detectors, to obtain the human presence likelihood term in their
tracking algorithm. Similarly, Jafari et al. [56] perform template
matching of the depth map with a depth template of the upper
body. This depth-based detection is used in close-range images,
while a colour-based HOG detector allows for detecting people at a
further range where depth sensors may not operate satisfactorily. In
[63], the binary template is applied in a classic fashion to
foreground blobs and a person is detected when the response is
above a certain threshold. Satake et al. [64] apply a set of three
binary templates [83], containing frontal and side views of head
and shoulders, to the disparity map. The sum of squared distance
criterion is then used to select human candidates. Detections are
checked by using an SVM classifier trained on HOG features.

4.2.3 Classifiers on the 3D point cloud: Similarly to [56, 71,
72], template matching of a human shape may also be performed in

3D. Bansal et al. [42] adapt a 3D template to the camera view-
point, before its correlation with the disparity map is computed for
each ground plane coordinate. Local maxima in this correlation
map, together with neighbouring correlation values above 60% of
the associated maximum, are selected as initial detection
candidates. These regions are refined by discarding points with
divergent depths, and by selecting areas with a high density of
edges in the colour image.

Bajracharya et al. [47] apply a linear classifier to a number of
features derived from the 3D points of detected candidates. Some
of these features capture the variance of the height of the points
within the candidate, and the object's size and extent. Three
rotationally invariant features also account for the eigenvalues of
the point cloud's covariance matrix.

To avoid making hard assumptions on the shape of a human
body or upper body, Liu et al. [50, 51] train an SVM classifier on
two features computed from the height and colour distributions of
3D points. Their features are a histogram of the heights of the
upper body, and a joint colour and height histogram of the head,
respectively. The upper body and head points are found in regions
of pre-defined sizes in the ROI clusters. Harville [67] apply a box
filter, set by considering the average adult human height and torso
width, to the occupancy map corresponding to the segmented 3D
foreground clusters. The peak of the response is thresholded to
discard FP detections.

4.3 Use of depth in matching

This section reviews how the use of depth information reduces
ambiguities for establishing correspondences of detected people
against existing tracks through (a) the provision of 3D trajectories,
and (b) by enhancing description of the target in combination with
colour. These two uses of depth information for matching in the
reviewed methods are summarised in the last two columns of
Table 4.

4.3.1 3D tracking: The majority of methods reviewed in this
survey construct trajectories in the 3D space to facilitate 3D
tracking. This allows better handling of trajectory crossings when
objects move past each other in the scene in the camera's
viewpoint. We now highlight the role of depth position information
in the matching stage, which was described earlier in Section 3.

Dan et al. [44] place their camera on the ceiling with a top-
down view, therefore the 2D coordinate system of the image can be
seen as a good approximation of the 2D ground plane coordinate
system. Then, they match detected 3D shapes in adjacent frames
from their degree of physical overlap. Galamakis et al. [49] also
track people in a top-down view of the 3D scene rendered from
multiple views, by comparing their distance to predicted target
positions on the 2D ground plane.

Gao et al. [74] employ depth data to build a 3D layered graph
model of the scene to solve possible occlusions, and thus, they
boost their proposed tracking algorithm. In [43], Salas and Tomasi
exploit 3D location information for computing one-to-one
correspondences between candidates, by including a term based on
their separating distance in their appearance and motion based
correspondence likelihood formulation. Similarly, the various
authors of [47, 48, 50, 51, 53, 55–60, 62–64] all perform matching
by determining the 3D distance of a detected candidate to its
predicted position. In [61, 67–72, 75], 3D position predictions are
used to initialise the search for targets in the 3D space.

Only three works described in Section 3 do not exploit the 3D
trajectory information. In [46], Han et al. use similarities in colour,
and variations of depth across two adjacent frames, in order to
compute matching correspondences, without taking into account
the 3D coordinates. In [42], although Bansal et al. use 3D
coordinates for ROI selection for their human detection stage, and
for camera motion estimation, their matching stage is performed in
2D. Similarly, Vo et al. [65] implement their compressive tracking
and Kalman filter by considering the target's movements only in
the image plane.
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4.3.2 Joint RGB and depth description: The fusion of colour
and depth information allows for more reliable correspondence of
detected candidates to tracks. An example of such fusion is in
Luber et al. [53], where they build their model from a combination
of three possible features: Haar-like features in intensity and depth
images, and Lab colour feature in the RGB image. Several such
features are calculated from small rectangles, randomly sized and
positioned inside the bounding box of the detected person. A
combination of a few of these features is selected by on-line
boosting to produce a classifier that attempts to distinguish the
tracked person from its surroundings. Liu et al. [50, 51] use a joint
colour and height histogram of the full body as their appearance
model. The likelihood of new detected candidates to match this
model is computed using the Bhattacharyya similarity measure.
Similarly, Almazán and Jones [60] model people's appearances
from a height histogram associated with colour distributions for
each histogram bin, approximated by 3D Gaussians in the RGB
space. Dan et al. [44] assess the correspondence between two
detected candidates by linearly combining a Bhattacharyya
measure of similarity of their colour histograms, and the overlap of
the 3D shapes of both candidates. This last value, in addition to
accounting for the distance in the 3D space between the candidates,
may also capture the similarity of their shapes if their 3D locations
are close enough. Beymer and Konolige [63] use an intensity
model and average disparity value to describe a person. Both are
linearly updated, and their drift is limited by applying their person
detector confidence as a smoothing factor.

Han et al. [46] propose the use of depth for generating an
appearance model, where a silhouette obtained from depth
information helps in isolating the relevant parts of the body from
which a colour-based appearance model is built. The neck and
waist are identified as local width minima of the silhouette along
the vertical direction. They divide the colour image of the person
into head, torso, and legs areas. Torso and legs colours are then
used to build the appearance model, by concatenating histograms
of colour and texture for both regions. Galamakis et al. [49] also
exploit depth to produce a two-part colour histogram model of
upper and lower body, using their textured mesh representation
obtained during their ROI selection stage. The mesh is divided into
lower and upper body parts at an empirically determined height.

In [70], Muñoz Salinas et al. assume planarity of standing
people in order to compute a single-valued depth term of the RGB
and a depth based likelihood of a target detection. The mean depth
of a candidate region is assessed against a normal distribution with
mean equal to the predicted target's distance to the camera, and
standard deviation chosen heuristically and decreasing with an
increased confidence in depth (measured as the proportion of pixels
in the region that have a depth measure). Two depth terms are
computed for the head and torso separately. The detection
likelihood of a target also includes the comparison to two colour
histogram-based appearance models for the head and torso,
respectively, using the Bhattacharyya measure, and the assessment
of the fitting of an ellipse on the colour image at the expected head
location, using image gradients.

4.4 Summary and discussion

In this section, we analysed how the use of depth, in combination
with RGB information, is used to increase performance of MHT
methods. In Table 4, it can be seen how depth information has been
used in all the stages of the pipeline. Particularly common is to use
depth data to identify candidate regions of interest containing
humans. This is usually achieved by identifying the ground plane
and then clustering regions perpendicular to the plane [42, 47–52,
55, 56, 58, 59, 62, 67, 71, 72] or by using background subtraction
[43, 49, 57, 60–63, 65–69]. Both approaches are valid only under
certain assumptions, such as uncluttered scenes (to allow ground
plane estimation) or static cameras (for more accurate background/
foreground segmentation). ROI selection is essentially a pre-
detection stage, applied to reduce false detections and
computational demand. The identified ROIs are then validated with
more specific human detectors with the majority of them based on
3D geometric assumptions on typical human size, such as [44–47,

49–52, 55, 58–63, 65–70, 73–75], and some based on adapting
standard human detectors to handle depth data, such as [53, 54, 56,
58, 59, 63, 64, 71–73, 75]. Only a few methods use complete
template models based on 3D information [42, 47, 50–52, 67].
Although the reviewed approaches seem to perform well in typical
video-surveillance like scenarios, the majority of these works
detect and track humans while they are walking or standing. A
huge challenge lies in tracking people engaged in other activities,
or maintaining tracking while they undergo drastic pose changes,
e.g. sitting to standing, which would be necessary in other
applications, such as long-term health monitoring [37]. Depth data
is also fundamental at the matching stage to the majority of the
methods where detections are assigned to existing or new tracks
based on a distance metric, e.g. [43, 44, 47–52, 55, 56, 58–64, 67–
72, 74, 75]. Other approaches base their matching strategy on a
combination of colour and depth descriptors [45, 46, 49–54, 60, 62,
70, 75]. We believe this latter approach leads to better target
description and is more suited to complex environments, such as
smart-homes, where e.g. more varied human interaction and pose
changes occurs.

5 Considerations on the practical applications of
MHT
The methods presented in this survey are, almost always,
customised for specific scenarios or application areas by
employing assumptions on aspects, such as the position of the
camera(s) (e.g., static or mobile, top-down or head-level view), the
geometry of the scene, and the generic description of a person. To
guide the reader in their choice of RGB-D MHT method, we next
outline the conditions of use of the reviewed methods. These are
also summarised in Table 5. 

5.1 Type of depth sensor

Historically, depth has been mostly obtained from passive stereo
cameras, which offered a cheaper alternative to other technologies
such as active sensor cameras. Depth from stereo vision is still
widely used in MHT methods, such as [42, 45, 47, 55–57, 62–64,
67–70]. The recently introduced and affordable Kinect camera (and
those like it) generate depth from structured light and are more
convenient to use than stereo vision for indoor scenes, since they
do not require calibration and an elaborate computation of a
disparity map. Thus, computer vision researchers are increasingly
adopting such cheaper and more immediate technology for RGB-D
MHT when it can sufficiently serve their purpose, such as in [43,
44, 46, 48–51, 53, 56, 58–61, 65, 66, 71–73, 75].

Most of the methodologies presented in this survey could use
passive and active sensors interchangeably, including those that
extract features directly from disparity maps, as disparity and depth
maps have similar properties. However, the optimal conditions of
use for both types of sensors differ significantly, both in terms of
depth range and illumination conditions. For example, the depth
range of structured light cameras tends to be more limited than that
of stereo vision, and they are also more sensitive to infra-red light,
which makes them unsuitable for outdoor uses. On the other hand,
colour-based stereo cameras require good illumination conditions
and they may not operate in dark environments for example.
Moreover, the additional processing time required to obtain
disparity from stereo data can be critical for real time applications.
These particularities were highlighted by Jafari et al., who used
both sensors in [56] to track people in close and far ranges. The
second column of Table 5 shows the type of sensor used in the
works in this survey.

5.2 Camera position

5.2.1 Handling of moving cameras: Some applications rely on
static sensors that provide a stable background model, e.g. [43, 49,
57, 60–63, 67–69], especially when this model is static itself and
not updated on-line to account for camera movements, as in [43,
60, 61] and we presume in [49]. Some methods attempt to update
the background model continuously, e.g. [57, 62, 63, 67–69].
Although these MHT methods did not present any experiments
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with mobile cameras, the authors of [57] state that their method has
been developed with ‘human–mobile robot’ interaction in mind,
and that their background modelling technique is especially
appropriate for mobile devices. Indeed, these models may be able
to adapt to camera motion, provided that the update rate is faster.
The implementation of this strategy is not easy, since, as discussed
in Section 4.1, an update rate that is too fast would be likely to
result in slow people being included in the background model.
Thus, as the authors explain, it has to be tuned depending on the
application.

On the contrary, methods that do not assume a static or nearly
static background can generally be used with a mobile camera,
such as a PTZ or one mounted on a mobile robot. Some methods
assume that both person and camera motion are smooth, and they
treat their combined effects as that of a single speed for the tracked
person relative to the camera [48, 58, 64, 70]. Others exploit the
global 3D coordinate system provided via the depth dimension in
order to track the camera's movements. Choi et al. [71] and Vo et
al. [65] compute the position of the camera using the ROS library
[97] in order to project target locations onto the global 3D
coordinate system, and Bansal et al. [42], Bajracharya et al. [47],
Ess et al. [55], and Jafari et al. [56] do the same using visual
odometry. In [55], the visual odometry algorithm is improved by
feedback from the tracker which helps avoid using areas that are
likely to contain moving objects. In their later work, Choi et al.
[72] estimate both the motion of the camera and the humans in the
scene in their combined detection and matching stage. In general,
these approaches assume that the camera is moving, at least locally,
on a mostly flat ground plane.

Note that the works in [50, 51, 57, 68, 69, 75], although not
tested with mobile cameras, perform tracking in a global 3D

coordinate system similarly to [42, 56, 71], and we believe could
therefore apply the same mobile camera-handling strategy if
combined with camera motion estimation. These approaches can be
successful in a moving camera scenario if the camera position
requirements (discussed in the following section) can be generally
met.

The works in [46, 53, 59] also could employ the same ‘smooth
relative-speed strategy’ as [48, 58, 70]. The possibility of using
mobile cameras with the reviewed methods is indicated in the third
column of Table 5.

5.2.2 Handling of multiple cameras: The works in [53, 56, 58,
63, 64, 67, 74] can exploit information from multiple cameras
simultaneously and fuse detections from independent cameras at
the matching stage. This requires the relative positions and
orientations of the cameras to be known or estimated off-line. In
particular, [58] has been extended to the multi camera scenario in
[98, 99]. This strategy would be accessible to all methods that
apply the main MHT pipeline and perform tracking in a 3D global
coordinate system.

This multi-sensor data fusion strategy is not possible in works
that apply the variation of the MHT pipeline since they do not
perform the detection and matching stages sequentially, such as in
[61, 68–72]. However, in [60, 61, 68, 69], detection and matching
are performed on a global representation of data on the 2D ground
plane, which is generated in [60, 61, 69] from the point clouds of
several cameras. The methods in [62, 70–72] use 2D colour image-
based people detectors, but they track people in a 3D space. Thus,
they could use multiple cameras if all the transformations from the
individual image spaces to the global 3D space are known.
Similarly to [60, 61, 68, 69], Galamakis et al. [49] detect and then

Table 5a Continued
Method Sensor

type
Handle a
mobile
camera

Handle
multiple
cameras

Camera
location

constraints

Real-time Processing
hardware

Require
flat

ground

Other special
requirements

Bansal et al. [42] stereo ✓ ✗ roughly frontal
view

10 fps CPU Intel Dual-
Core

✓ none identified

Salas and Tomasi
[43]

structured
light

✗ not tested roughly frontal
view

no data no data ✓ limited to standing
people

Dan et al. [44] structured
light

✗ not tested vertical top-down
view

55 fps on
QVGA
stream

CPU 2.4 GHz, 4 GB
RAM

✓ limited to standing
adults

Darrell et al. [45] stereo Not tested ✗ roughly frontal
view

12 fps no data ✗ none identified

Han et al. [46] structured
light

Not tested ✗ roughly frontal
view

10 fps (2
people)

CPU Dual core
2.53 GHz, 4 GB

RAM

✗ limited to standing
adults –people must

be moving to be
detected

Bajracharya et al.
[47]

stereo ✓ not tested none identified 5–10 fps no data ✗ limited to standing
adults

Zhang et al. [48] structured
light

✓ not tested roughly frontal
view

7–15 fps CPU 2.0 GHz, 4 GB
RAM

✓ none identified

Galamakis et al.
[49]

structured
light

✗ ✓ multiple views
from different

angles are
desirable

real-time
(no exact

data)

GPU NVIDIA
GTX680

✗ none identified

Liu et al. [50–52] structured
light

not tested not tested none identified 30–50 fps CPU i5–2500, 8 GB
RAM

✓ may be limited to
standing adults

Luber et al. [53] and
Linder and Arras
[54]

structured
light

not tested ✓ roughly frontal
view

no data no data ✗ may be limited to
standing people

Ess et al. [55] stereo ✓ not tested roughly frontal
view when using

HOG based
detectors

3 fps GPU nVidia
GeForce 8800 and

CPU 2.66 GHz

✓ none identified

Jafari et al. [56] combined
stereo and
structured

light

✓ ✓ roughly frontal
view

18–24 fps CPU i7-3630QM
and GPU NVIDIA

GeForce GT650m,
12 GB RAM

✓ may be limited to
standing people in the

far range

 

276 IET Comput. Vis., 2017, Vol. 11 Iss. 4, pp. 265-285
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



track people in a common 2D coordinate system. The fourth
column in Table 5 indicates which of the reviewed works can (or
could) handle multiple cameras.

5.2.3 Requirements on the camera's position and
orientation: Methods that use human detectors that are trained on
specific view positions and angles, such as HOG trained from
roughly frontal views, require similar views of people. This is the
case in [42, 43, 48, 53, 56, 58, 59, 70], and also in the
implementation of [55], although the authors stress that other
colour-based detectors can be used. Similarly, the works in [57, 71,
72] employ face detectors, and require a roughly frontal view of
the face to be visible in a significant number of frames. The
methods in [45, 57, 70] were specifically designed for a camera
located at head (or just under head) height. In particular, the work
in [70] assumes the human shape as seen by the camera can be
approximated by a vertical plane. Han et al. [46] also require a
frontal view for analysing human silhouettes, as explained earlier
in Section 4.3. The methods in [44, 73] operate on a top-down view
due to their specific detection strategy centred around monitoring
humans seen from above. In [49], a sufficient coverage of the scene
by multiple cameras at various viewing angles is preferred to
produce 3D textured meshes of humans. In [62], the camera is
placed on the ceiling at an angle of 30∘, so as to reduce occlusions

as upper body parts are always visible. A similar camera position is
used in the e-health application presented by Ma et al. in [75].
However, their proposed system, based on different DPM
classifiers, is able to deal with considerable variations of human
body pose, hence ensuring also a certain invariability to camera
viewpoints. Beymer and Konolige [63] propose a 3D motion model
based on the assumption that the stereo camera is placed parallel to
the ground floor. In [64], the system has been specifically designed
for a wheel-chair navigation system, and the stereo camera is
placed at an approximate height of 1 m. The various requirements
and limitations of the camera position and orientation are
summarised in column five of Table 5.

5.3 Speed of computation

The works in [43, 53, 60, 61, 75] provide no computational
information. Harville et al. [67] report a processing rate of 8 fps,
however, this is obtained using obsolete hardware and it would
dramatically improve if tested on current workstations. The rest of
the methods we review claim real-time performances, with the
exception of Ess et al. [55], who report a running time of 300 ms
per frame on a GPU, plus an additional (off-line) 30 s for the
colour-based human detector. Their method can be used with other,
more efficient, colour-based detectors.

Table 5b Conditions of use of the presented methods
Method Sensor

type
Handle a
mobile
camera

Handle
multiple
cameras

Camera location
constraints

Real-time Processing
hardware

Require
flat

ground

Other special
requirements

Muñoz Salinas et
al. [57]

stereo not tested not tested roughly frontal
view

10 fps CPU 3.2 GHz
Pentium IV

✓ people only detected in a
close range (by face

detector) but tracked on a
larger range

Munaro et al.
[58, 59]

structured
light

✓ ✓ roughly frontal
view

30 fps [59],
26 fps [58]

CPU Xeon
E31225 3.10 

GHz [58]

✓ minimal separation
between people's heads:
30 cm – may be limited to

standing adults
Almazán and
Jones [60, 61]

structured
light

✗ ✓ none identified no data no data ✗ stationary people may not
be detected after a while

Bahadori et al.
[62]

stereo ✗ not tested fixed to ceiling,
pointing down at

30∘

10 fps CPU 2.4 GHz ✓ may be limited for other
camera configurations,
3D coordinate system

calibration
Beymer and
Konolige [63]

stereo ✗ not tested parallel to the
ground floor

10 fps no data ✗ none identified

Satake et al. [64] stereo ✓ not tested none identified 9 fps no data ✗ developed for wheel-chair
applications, camera

placed around 1 m height
Vo et al. [65, 66] structured

light
✓ ✗ none identified 23 fps CPU 2.4 GHz ✗ developed for robot

applications, camera
placed around 1 m height

Harville [67] stereo ✗ not tested none identified 8 fps CPU 750 MHz ✓ none identified
Muñoz Salinas et
al. [68, 69]

stereo not tested ✓ none identified 15 fps [68]
and 100 fps

[69] (4
people)

AMD Turion
3200, 1 GB of

RAM

✓ none identified

Muñoz Salinas et
al. [70]

stereo ✓ not tested frontal view at
head level

23 fps (3
people)

AMD-K7 2.4 GHz ✗ limited to standing people

Choi et al. [71,
72]

structured
light

✓ not tested roughly frontal
view

5–10 fps GPU ✗ may be limited to adults

Migniot and
Ababsa [73]

structured
light

✗ not tested vertical top-down
view

40 fps CPU 3.1 GHz ✗ none identified

Gao et al. [74] not
specified

✓ not tested developed for
ADAS

applications,
camera placed

around 1 m height

40 fps on
CPU

✗ none
identified

Ma et al. [75] structured
light

✓ not tested none identified no data no data ✗ hand labelled data of
body parts to train DPM
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Running times and the hardware platforms used, when
available, are reported in columns six and seven of Table 5.
Methods that use stereo vision suffer from the overhead of deriving
disparity maps, while depth information is readily available from
structured light-based sensors. Some authors, such as Bansal et al.
in [42], speed-up this computation using a GPU.

Works such as in [46, 68, 69] report performances that vary
significantly according to the number of people being tracked. This
is particularly the case in methods that use multiple trackers for
individual people, such as the 3D Kalman filter in [64] or particle
filters in [68–70, 73]. Such methods also need to establish a trade-
off between the number of particles used and the accuracy and
robustness of tracking. Jafari et al. [56] exploit both depth and
colour information in complementary distance ranges, and speed-
up the total process from 33 (on GPU) to 18 fps by applying the
computationally intensive colour detector only in far ranges (over
7 m) where the depth-based detector does not operate.

Finally, Liu et al. [51] report a processing rate range of 30–50 
fps, without the use of GPU hardware, for their detection and
tracking system. In addition, in their more recent work [52], they
boosted the detection phase by using a cascade of classifiers on top
of their depth-colour histogram model. This meant that their
detection module can operate in a range of 77–140 fps, however,
no rate is given for the entire detection and tracking processing.

5.4 Specific constraints

5.4.1 Flat ground: Methods that detect ROIs based on an
estimation of the ground plane, as detailed in Section 4.1, cannot
handle environments where the ground cannot be approximated by
a plane. This is the case, e.g. of staircases, where Munaro et al.
report worse results in [58]. Similarly, the methods in [42, 56]
classify the scene into general categories that include a flat ground
and vertical structures, and would most likely not generalise well to
a staircase environment.

In [44, 73], people are detected by thresholding the distance of
their head to the camera, which has to be within an acceptable
range. Therefore, although there is no hard constraint on ground
planarity, varying ground level can influence the head-to-camera
distances significantly.

Methods, such as those in [47, 49–51, 57, 60, 61, 68, 69],
project detections onto a flat ground plane. In [47, 49, 60, 61],
ROIs are not selected based on height from this plane [In [47], ROI
clusters are selected based on their absolute height, and in [49],
only a few points close to the ground plane are discarded, not the
full ROI clusters.], so the flat ground assumption does not need to
correspond to reality. However, this is not the case in [50, 51, 57,
68, 69] where people have to be located in a relatively narrow band
above the floor to be detected. In [62, 67] a reference plane is used
to track 3D blobs in a real-world coordinate system. As the camera
and real-world scene are calibrated, the reference plane does not
have to be necessarily flat. Column seven in Table 5 indicates
which of the methods operate only in ground plane scenarios.

5.4.2 Constraints on pose: Several works, e.g. [44, 46, 47, 50,
51, 57–59, 62, 63, 65, 67–69, 71–73] select ROIs based on height
and volume assumptions derived from a model of a standing adult
person. Such methods may not be able to detect and track, e.g.
children, adults with abnormal heights, and sitting people, if the
acceptable ranges for height and volume are not chosen
appropriately. This is the case, e.g. for Choi et al. [71] and Han et
al. [46], who filter heights in ranges of 1.3–2.3 and 1.5–2 m,
respectively. Other authors, such as Zhang et al. [48] and Liu et al.
[50, 51], accept quite larger range of values (0.4–2.3 and 0.6–2 m
for height, respectively), to prepare their ROIs to handle children
or people who may not be standing. Ess et al. [55] suggest the
possibility of detecting children by increasing the standard
deviation of their normal height distribution.

Methods that use full-body detectors such as HOG and HOD,
i.e. [43, 53, 56, 58, 59, 65], may also struggle to detect sitting
people if these detectors are trained on standing people only. To
alleviate this shortcoming, Choi et al. [71, 72] combine full-body
and upper-body detectors, in order to cope with both occlusions of

the lower part of the body and various poses. Multiple different
DPM detectors based on HOG features are used to deal with
deformable body pose (e.g. sitting, bending etc.) in [75]. Jafari et
al. [56] also apply an upper-body detector based on a depth
template, as described in Section 4.2, and Liu et al. [50, 51] detect
people based on a model of height of the upper body. Similarly,
Zhang et al. [48] use a poselet-based detector [39] to identify body
parts, and Bansal et al. [42] perform matches of several local
contours, thus allowing the detection of people in arbitrary poses.
In [70], detected candidates are checked against a planar model of
a standing person using depth information. Thus, sitting people
would be rejected by the human detector.

5.4.3 Miscellaneous: Munaro et al. [58, 59] distinguish people in
close interaction based on the separation of their heads, which
needs to be at least 30 cm. This constraint is generally easily
respected, especially in a public environment. Han et al. [46] detect
people based exclusively on movement and on their height (see
Section 4.2). Therefore, motionless people would not be detected.
In [57], new people are detected by a face detector, and the authors
set the detector to only scan the close range area (0.5–2.5 m) to
speed-up the process. Tracking is still performed on the full space,
but would be initialised only after the person enters this detection
region. Constraints on body pose and other miscellaneous
constraints are stated in the last column of Table 5.

5.5 Preprocessing the depth map

Depth maps tend to suffer from noise and areas of missing values,
whatever the sensor, and result in inhomogeneous point clouds. A
few of the reviewed works correct these deficiencies before
exploiting depth information.

5.5.1 Depth map denoising and completion: Zhang et al. [48]
suppress outliers from the 3D point clouds by removing the points
that have only a few neighbours. In Galamakis et al. [49], the
overlapping views of the structured light sensors create
interferences that add noise to the scene. The authors report that in
their setup this noise is predominantly on the ground plane and
negligible on humans, and use an estimate of the ground plane to
eliminate any points close to the ground in their ROI selection
stage. The method proposed by Dan et al. in [44] detects people
based exclusively on their 3D shape in the depth map, and so can
underperform when faced with missing depth values. To close the
holes in their map, they first apply morphological operations to the
binarised depth values, obtained by thresholding the heights above
the ground plane, and then a nearest neighbour interpolation is used
to recover the depth values in the gaps that were filled in the binary
map.

5.5.2 Voxel grid filtering: Works, such as Jafari et al. [56] and
Almazán and Jones [60], which consider the number of points in
ROI clusters have to take into account the perspective effect that
makes the density of points depend on the distance to the camera.
Munaro et al. [58] address this issue to produce a homogeneous
density of points in the volume space by re-sampling their 3D point
cloud before ROI detection and clustering. Thus, they ensure that
the number of points in a cluster depends only on the size of the
object within it, rather than on a combination of its size and
distance to the camera. In [65], Vo et al. reduce their initial search
space by subsampling their colour and depth images.

5.5.3 Fusion of point clouds: Jafari et al. [56] obtain richer 3D
point clouds by combining those obtained over a time window of
five to ten frames, using their mobile camera motion, estimated by
visual odometry. In [69], Muñoz Salinas et al. merge the ground
plane representation of overlapping views from several sensors by
retaining the points in a global coordinate system that have the
highest confidence. Galamakis et al. [49] fuse foreground points of
overlapping views in a global coordinate system during their ROIs
selection stage. Note that works, such as [60, 61], which fuse
foreground points of non-overlapping views, do not require
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specific manipulation of the point clouds and only need to calibrate
their cameras’ positions and orientations.

6 Online resources: benchmark datasets and
software
In this section, we provide an overview of publicly available
benchmark datasets and source code, with a summarised list
provided in Tables 6 and 7, respectively. 

6.1 Dataset resources

The ETH dataset from [100] contains stereo sequences obtained by
a pair of AVT Marlin F033C cameras mounted on a mobile
platform. Images are acquired at 640 × 480 resolution at 14 fps.
The corresponding disparity maps are obtained by using the stereo
algorithm presented in [102], but are not available for download.
The dataset is composed of five sequences recorded in very busy
pedestrian zones, and these have been manually annotated every
four frames by labelling only pedestrians that are greater than 60
pixels in height. The ground truth does not contain tracks IDs,
hence only the detectors’ performances can be obtained. An
example of the ETH stereo data is shown in Fig. 4. The ETH
dataset has been also used to validate MHT algorithms based on
the use of colour data only, especially in the MOT challenge [103]. 

The dataset presented in [25, 53] is obtained by using static
cameras, positioned 1.5 m high, in a large university hall. We refer

to this dataset as the University Hall Dataset (UHD). An array of
three Kinect devices, with non-overlapping fields of view to avoid
IR interferences, is used to record people passing through the
university hall. Due to the Kinect sensor's range limitations, depth
data is not available beyond a certain range in the hall. The image
resolution is 640 × 480, with synchronised sequences recorded at
30 Hz. This rather small dataset is composed of three sequences
each ∼1130 frames in length. There are 3021 instances of people,
and 31 tracks have been manually annotated as ground truth (for
detection and tracking). An example of this UHD data is shown in
Fig. 5. 

The RGB-D tracking dataset presented in [72] contains two
different scenarios captured with Kinects, one static and one
mobile. We refer to this dataset as the StanfordRGB-D dataset. The
first scenario, the Kinect office, contains 17 sequences with the
camera placed 2 m high in an office. These videos contain different
occlusion scenarios and human poses. The second scenario, the
Kinect mobile, contains 18 sequences with people performing daily
activities in offices, corridors, and hallways. These sequences were
recorded with the camera mounted on a mobile platform (a PR2
robot). In both sets, human positions are hand-annotated (four
images every second) with bounding boxes around their upper
bodies – hence, both detection data and targets ID are included.
Ground truth odometry information of the camera's location in 3D
space is also available. An example of the StanfordRGB-D dataset
for the static camera scenario is given in Fig. 6. 

Table 6 RGB-D benchmark datasets – in all cases resolution = 640 × 480 and frame rate = 30 Hz (except ETH [100] = 14 Hz)
Device Number of

Sequences
Number of

Frames
Ground truth Comments

ETH [100] stereo device
(AVT Marlins

F033C)

8 5017 YES manually annotated
detection only

minimum pedestrian size 48 pixels,
calibration and odometry data available

UHD [25, 53] Multiple Kinect 1
static

3 3390 YES Manually annotated
detections and 31 people

tracks

part of the scene out of depth range

StanfordRGB-D [72] Kinect 1 static
and mobile

17 (static) 18
(moving)

≃157,500 YES manually annotated four
images per second,

detections and tracks

Camera positioned 2 m high for the static
sequences. Ground truth odometry of

camera location available
KTP [58, 101] Kinect 1 static

and mobile
5 8475 YES manually annotated and

infrared marker groundtruth,
detections and tracks

device placed at robot level, sequences
with different complexity

SD [50, 51] Kinect 1 static 1 3000 YES manually annotated one
image per second, only

detections

Camera positioned 2.2 m high, 30∘

inclination. Cluttered and crowded scenes

KingstonRGB-D [60] Multiple Kinect 1
static

6 ≃6000 YES manually annotated,
detections and tracks

Cameras positioned around 2 m high.
Cameras'calibration matrices available

 

Table 7 Software resources
Processing

arch.
Processing rate,

fps
Dependencies requirements Availability

Luber et al. [25,
53]a

CPU — Eigen2 Partial: depth-based detector module and
integration with Kinect not available

Choi et al. [72]a CPU+GPU 5–10 Opencv, boost Partial: depth-based detector module not
available

Munaro et al. [58,
101]

CPU 23–28 detector only,
19–26 detector +

track

boost, eigen3, flann, Openni, PCL Partial: only detector module available,
manual initialisation of ground plane

required. Integrated with PCL

Jafari et al. [56]a CPU+GPU 24 without HOG-
GPU 18 with HOG-

GPU

FOVIS, Openni x64, CImg, CUDA,
KConnectedComponentLabeler, boost,

eigen3, ImageMagick++

Partial: missing modules for stereo data
processing to estimate tracked camera

position and projections. GPU–CPU
processing to enable far distance detections

Munaro et al. [98,
99]

CPU 30 ROS, PCL Full for live camera network, but no plug and
play module to test offline data. Multi-camera
and multi-device support for calibration and

synchronisation
a
The authors of the paper were contacted (who responded) to clarify details about their software release.
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The Kinect Tracking Precision (KTP) dataset proposed in [58,
101] was acquired with a Microsoft Kinect, at a resolution of
640 × 480 and recorded at 30 Hz, on board a mobile platform. It
contains 5 different sequences, exhibiting 14,766 instances of
humans in 8475 frames. Both manually labelled 2D image and
metric ground truth (for detection and target IDs) are provided, and
3D positions are also available since an infrared marker was placed
on every subject's head. Fig. 7 shows an example frame from the
KTP dataset. 

The dataset in [50, 51] contains ten sequences recorded with a
Kinect sensor in an indoor (shop) environment, and we refer to it as
the SD dataset. The device was mounted at 2.2 m high with about a
30∘ tilt towards the floor and the sequences were recorded at 30 Hz
at a resolution of 640 × 480. The groundtruth, produced once every
30 frames, does not contain target ID information, and thus only

detection accuracy can be tested. An example of the SD dataset is
displayed in Fig. 8. 

A recent dataset introduced in [60] was obtained using three
static Kinect devices, all positioned at about 2 m high in a lab with
non-overlapping views. We refer to this multi-camera dataset as the
KingstonRGB-D dataset. The sequences contain people moving in
the lab, individually or in numbers, with paths crossing at times.
The dataset comprises six 1000-frame sequences split equally into
a training set and a test set. The cameras’ calibration matrices and
the data to obtain a wider planar map of the scene are also
available. The ground truth supplies detections and target IDs for
all the different views. An example of the KingstonRGB-D dataset
is shown in Fig. 9. 

To recapitulate, only the ETH dataset [100] is based on stereo
data, while the others presented here have all been recorded using
the Kinect and hence contain only indoor scenes. As also

Fig. 4  ETH stereo dataset example
 

Fig. 5  RGB-D UHD dataset example
 

Fig. 6  StanfordRGB-D dataset example
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highlighted in Section 5.2, in most of the proposed approaches the
position of the camera facilitates the acquisition of frontal views of
the moving human. Only in the dataset presented in [50, 51, 60, 72]
is the camera placed close to the ceiling, giving a top-oblique view
of the scene. This setup yields a more realistic example of a typical
surveillance camera location.

6.2 Software resources

There are only very few software resources for RGB-D MHT
tracking publicly available. A list of these can be found in Table 7.
The source code for the method presented in [53] is available for
Linux platforms – however, it does not provide all the
functionalities described in [53]. For example, the code
corresponding to the detection module based on HOD features
(described in Section 4.2) has not been released, but the code for
the tracking core, based on MHT (Section 3.1) and the online
adaboost detector (Section 3.1) are available and are integrated
with a laser range scanner. Despite the source code being
incomplete, this resource is still very useful as the missing HOD
module can be developed by the interested researcher starting from
one of the available colour-based HOG versions and then by using
the UHD data to train the classifier. The code can also be easily
ported onto a Windows environment as its only dependency, Eigen,
is available for both Linux and Windows. The authors of [53] do
not provide details of computational performance of their method.

The authors of [72] provide the source code for their tracking
module, based on an RJ-MCMC particle filter (Section 3.2), but
some of their proposed detectors (Section 4.1), in particular their

depth-based silhouette (Section 4.2), are not made available or
integrated into the main processing loop of their software. Their
method also runs on Linux, but we have ported it to Windows as
the main dependencies needed to run it, OpenCV and Boost, are
available on both platforms.

Munaro et al. in [58, 101] have integrated the detector stage of
their tracking methodology into the Point Cloud Library (PCL)
[104]. This integration with such a widely used library, is one of
the main advantages of this source code as it can be easily ported to
both Windows and Linux. They indicate a processing throughput of
19 fps on an Intel i5-520M 2.40 GHz CPU and 26 fps on an Intel
Xeon E31225 3.10 GHz CPU; in both cases a 4 GB DDR3 memory
was used. These remarkable results can be associated with the
specific optimisation approaches used, e.g. as stated in Section 5.5,
the algorithm in [58] dramatically reduces the point cloud size by a
subsampling procedure and by eliminating ground plane points as
described in Section 4.1.

Recently, this software package has been upgraded by Munaro
et al. [98, 99] to support a multi-camera RGB-D system. The new
software library, OpenPTrack, is compatible with Microsoft Kinect
and Mesa SwissRanger and can achieve real-time tracking of
people at 30 Hz. Each sensor stream independently detects people,
while tracking is performed in a central unit by fusing the
contribution of all the network nodes. The detection and tracking
software, however, is not easily accessible as a plug and play
module. The algorithms presented in [58, 59, 101] are included in
OpenPTrack.

Fig. 7  RGB-D KTP dataset example
 

Fig. 8  RGB-D SD dataset example
 

Fig. 9  RGB-D KingstonRGB-D dataset example
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Jafari et al. [56] provide the source code for their method which
imposes different dependencies as shown in Table 7. The OpenNI
library is used as their interface for both the Kinect and Asus Xtion
sensors. Their system is based on both a short-range depth-based
human detector [105] running at 24 fps on a single CPU and a far-
range HOG-based human detector [82] (see also Section 3.1)
which must run on a GPU. Their experimental results were
obtained using an Intel i7-3630QM with 12 GB RAM and an
NVIDIA GeForce GT650m GPU. The main advantage of this
software resource is the possibility to activate the two different
detection modules independently. This adaptability offers the
opportunity to balance accuracy and processing speed, and the
possibility to avoid using modules when not necessary, e.g. the
longer range detector in an indoor environment. Note the system
requires calibration and odometry data to operate.

7 Comparative evaluations
We now consider how various works have used the datasets
introduced in the previous section for evaluating their methods.
Two types of comparative evaluations are presented next – the first
attempts to compare different published works on a publicly
available dataset (or part of it), while the second presents within-
method comparative results by switching one or more of the
method's components off. Unfortunately, we are not able to
compare the results of the software listed in Table 7 due to the
limitations outlined in the previous section.

7.1 Inter-method comparative results

Two publicly available datasets have been used by more than one
published work, the Eidgenössische Technische Hochschule and
the UHD datasets.

7.1.1 ETH: The stereo ETH dataset has been used by [42, 47, 55,
56, 58, 72] to test their specific methods, with many utilising
different sequences, and metrics, for evaluation. Bearing this in
mind, Table 8 displays the log-average miss rate (LAMR) [10]
results which are focused on people detection accuracy for the
ETH-Bahnhof sequence of the ETH dataset. LAMR is computed
by averaging the miss rate versus the FP per image (MR-FPPI)
graph in the range [10−2, 1] in the FP axis. In particular, we use the
reported MR-FPPI results in [42, 55, 58, 72] to extrapolate the
LAMR values (second column of Table 8). Note, the MR-FPPI
results reported in [42, 72] are not available for the entire range,
and for this reason we estimate the Modified_LAMR (third column
of Table 8) by considering a smaller interval in the range of
[0.056…1]. The best Modified_LAMR result is obtained by Choi
et al. [72]. 

The sequence ‘Sunny day’ of the ETH dataset is used to test the
methods proposed in [42, 47, 56]. The results are reported with
graphs of ‘recall versus FP per image’. As reported by Jafari et al.
[56], their method achieves the best results – e.g. for a fixed FPPI
value of 0.5, their recall rate is ≃ 0.85 which is greater than ≃ 0.7
by Bajracharya et al. [47] and ≃ 0.5 by Bansal et al. [42].

7.1.2 University Hall Dataset: The UDH dataset was used to
evaluate the methods proposed in [53, 58, 72, 75] tested with only
colour-based features. Tracking performance is reported by
considering the CLEARMOT metrics [106] for which two indexes
are given – the multiple object tracking accuracy (MOTA) index
estimates the tracking error by considering the FNs, FPs and
mismatches, and the multiple object tracking precision (MOTP)
index which measures how well exact target positions are
estimated. FP, FN ratios and identity switches are also reported.
Table 9 shows the results reported in [53, 58, 101]. While the
method proposed by Luber et al. [53] guarantees best performance
in term of MOTA, FP and FN, the method of Ma et al. allows to
dramatically reduce the number of identity switches. Similar top
performance is obtained by Munaro and Menegatti in [101] who
state that their poor performance on this dataset is mainly due to
mis-detection of people on the staircase sequence as it breaks the
flat ground assumption that is central for this approach (as
described in Section 4.1). When ignoring these mis-detections in
the stairs, as well as re-annotating some ground truth which were
believed to be incorrect, the authors reported an improved MOTA
result of 88.9%. This result cannot be used for comparative
evaluation here as the ground truth is modified. For the MOTA
metric, the methods presented in [72, 75] lead to significantly low
scores. 

7.1.3 StanfordRGB-D: The StanfordRGB-D dataset has been
used by its creators in [72], and by Liu et al. [51] and Vo et al. [65],
to evaluate the detection accuracy of their proposed approaches to
MHT. Choi et al. [72] present their results in terms of MR-FPPI
and the LAMR for the two different scenarios (fixed camera and
mobile platform), obtained by averaging across the different
sequences. Table 10 summarises the LAMR values, reported in
[72], for the two scenarios: static camera (second column) and
moving camera (third column). After the full method in the first
row of the table, each row reports the results obtained by turning
off one of the detectors (see Section 3.2). As shown, the depth cue
is the most important for the system, where the LAMR value
increases by around 0.25 in both scenarios when this detector is not
employed. The HOG-based detector is also significant to the final
performance of the system, while the impact of the other detectors
is less. The full system obtains the same LAMR value of around
0.6 for both scenarios. The recent results obtained by Vo et al. [65]
show that for both scenarios (moving and static cameras) the
proposed approach outperforms the results obtained by the RJ-
MCMC method in [72]. Liu et al. [51] only report their results in
terms of MR-FPPI and thus it is not possible to precisely calculate
Modified_LAMR values. 

Table 8 ETH dataset detection results
LAMR Modified_LAMR

Ess et al. [55] 0.645 0.527
Bansal et al. [42] — 0.612
Choi et al. [72] — 0.434
Munaro et al. [58, 101] 0.663 0.592
 

Table 9 UHD dataset tracking results
MOTP, % MOTA, % FP, % FN, % ID Sw.

Luber et al. [53] — 78.0 4.5 16.8 32
Munaro et al. [58, 101] 73.7 71.8 7.7 20.0 19
Choi et al. [72] (only colour) 57.6 20.2 20.9 57.6 1.28
Ma et al. [75] 70.4 26.9 13.9 57 2.1
 

Table 10 StanfordRGB-D dataset detection results
Method LAMR

Static camera Mobile camera
Choi et al. [72] full 0.60 0.601

no depth 0.844 0.858
no Hog 0.657 0.695
no Face 0.612 0.608
no skin 0.626 0.629

no motion 0.592 0.637
Vo et al. [65] 0.52 0.514
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7.2 Intra-method comparative results

Three datasets have been compared on variations of the same
method providing comparative results.

7.2.1 KTP: The KTP dataset was prepared and used by Munaro
and Menegatti [101] to evaluate the tracking performance of their
method [58] with the CLEARMOT metrics. In Table 11, we
present some of the results reported in [101]. The first row shows
the results obtained by the algorithm presented in [58] by using all
its components, including the sub-sampling strategy described in
Section 5.5. This strategy guarantees real-time performance (see
Section 6) at little loss of performance in comparison to when not
subsampling the point cloud (second row). The last three rows
contain the results for using different colour spaces as input to the
colour classifier (see Section 3.1). The authors claim that the best
results are obtained with the HSV colour space, especially for the
reduction of identity switches. 

As previously mentioned, in [99], Munaro et al. present an
extended software library containing the algorithms presented in
[101] that is able to cope with different depth devices. In [99] they
also evaluated the performance of their tracking algorithm by using
different devices. They present results for three different sequences
recorded with both the Kinect (based on structured light
technology) and the recent Kinect V2 (based on time-of-flight
technology), and one other time-of-flight device (SR4500). The
time-of-flight sensors both did better than the first generation
Kinect, while Kinect V2 performed better than the SR4500 due to
its higher resolution depth representation.

7.2.2 SD: In [50, 51], the authors first compare colour-only to the
depth–colour detector, reporting the value of the break-even point
(i.e., where precision is equal to the recall in the PR curve) of 93%
when the depth–colour detector is used, compared to 52% when the
standard colour-based HOG detector is employed. The tracking
results presented by the authors in [50, 51] are reported in
Table 12. They show how the proposed method based on depth–
colour combination guarantees a better performance, for both lost
tracks and ID switches, with respect to the proposed tracker relying
only on colour or depth solely to solve the data association
problem. 

7.2.3 KingstonRGB-D: This dataset has been used only by its
creators in [60] to estimate the performance of their tracking
method. They evaluate their methods by considering some of the
metrics proposed in [107], i.e. correct detected tracks (CDT), false
alarm tracks (FAT), track detection failure (TDF), and ID switches.
In addition, the F1-score metric is used as a summarising metric.
The results obtained by the authors in [60] are reported in Table 13

 and demonstrate that the proposed tracking strategy based on a
colour and depth appearance model (described in Section 4.3) is
able to outperform an alternative tracking strategy that uses depth
data only. 

8 Challenges
In summary, depth data is a fundamental cue that can bring more
reliability to MHT methods, but there are many challenges that the
vision community needs to address to advance this area further.

To start with, it is important that this research community can
generate for itself standard and diverse datasets to cover all kinds
of application areas (e.g., surveillance, health monitoring,
pedestrian tracking etc.) that can help it to evaluate old and new
algorithms in a consistent fashion. However, this predicates on
researchers to make their data and software more widely available,
and report their methodology and processes in a reasonably
reproducible fashion.

There are still many challenges where depth can be explored
further. For example, depth can be a fundamental tool for better
(partial) occlusion detection while tracking, so we should expect to
see some creative uses of depth information to achieve higher
accuracy rates for MHT – perhaps even in busy scenes depending
on the camera viewpoint. Developments on resilient part-based
tracking of humans will also help in better occlusion handling.

Depth sensors’ accuracy is limited to a certain range of
distance, hence another important challenge is handling of scale
while tracking. The better occlusion and scale handling, the greater
the diversity of applications colour appearance and depth-based
tracking can contribute to. Indoor applications, such as in-home
health monitoring may be well served by active sensors, whereas
outdoor or longer range applications, such as surveillance
monitoring, would be handled by passive sensors. Improvements to
the detection range and technology of active sensors will help to
overcome shortcomings in scale handling in indoor environments,
as already evidenced by the new Kinect V2 compared to the first
generation Kinect.

Humans have articulated parts so they will be observed in a
variety of poses in various scenarios, compounded by the fact that
they also interact with each other. The majority of current works, if
not all, track humans while they are walking or standing. A huge
challenge lies in tracking people engaged in other activities, e.g. to
monitor their routine for health monitoring, or maintaining tracking
while they undergo drastic pose changes, e.g. if they bend down, sit
down and then stand up, or perform certain prescribed exercises.

Other challenges include more regular issues, such as
developing better features and more elaborate adaptive and
dynamic methodologies (e.g., such as by applying deep learning
techniques).

9 Conclusion
This survey provided an overview of all existing works known to
us that fuse RGB and depth data for MHT. It is a snapshot of the
current works in the last few years, along with data and software
resources, as well as some comparative results. MHT is still a
relatively young but quickly progressing area where the availability

Table 11 KTP dataset tracking results
MOTP, % MOTA, % FP, % FN, % ID switch

full (HSV) [101] 84.2 85.8 0.7 12.5 53
no sub. [101] 84.2 83.0 0.6 15.9 56
full (RGB) [101] 84.2 86.1 0.8 12.7 60
full (CIELab) [101] 84.2 86.5 0.9 12.2 56
full (CIELuv) [101] 84.2 86.7 0.9 12.9 65
 

Table 12 SD dataset tracking results
Lost tracks ID switches

depth–colour tracker [50, 51] 13 1
depth tracker [50, 51] 14 15
colour tracker [50, 51] 15 6
 

Table 13 KingstonRGB-D dataset tracking results
CDT FAT TDF F1 IDSw.

depth/spatial model [60] 27 18 35 0.5 60
colour+depth [60] 40 5 19 0.77 15
 

IET Comput. Vis., 2017, Vol. 11 Iss. 4, pp. 265-285
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

283



of cheap depth sensors is a huge contributing factor to the
regeneration of old, and creation of new, human detection and
tracking methods. The analysis and the results reported in the
review demonstrates that depth data is fundamental to boost RGB-
only MHT methods in terms of both detection accuracy and
tracking reliability as depth data introduce very powerful spatial
cues (3D shapes and 3D locations) that are also less sensitive to
scene illumination conditions. Moreover, the combined colour–
depth appearance model can be used to describe humans also at
region level. Further, despite the processing of the additional depth
cue, real-time performance can still be maintained, as depth data
allows for the significant reduction of the search space for both
detector and tracker modules, even when simple heuristic rules are
used.
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