258 research outputs found

    Computer simulation of a pilot in V/STOL aircraft control loops

    Get PDF
    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable

    Efficient meta-heuristics for spacecraft trajectory optimization

    Get PDF
    Meta-heuristics has a long tradition in computer science. During the past few years, different types of meta-heuristics, specially evolutionary algorithms got noticeable attention in dealing with real-world optimization problems. Recent advances in this field along with rapid development of high processing computers, make it possible to tackle various engineering optimization problems with relative ease, omitting the barrier of unknown global optimal solutions due to the complexity of the problems. Following this rapid advancements, scientific communities shifted their attention towards the development of novel algorithms and techniques to satisfy their need in optimization. Among different research areas, astrodynamics and space engineering witnessed many trends in evolutionary algorithms for various types of problems. By having a look at the amount of publications regarding the development of meta-heuristics in aerospace sciences, it can be seen that a high amount of efforts are dedicated to develop novel stochastic techniques and more specifically, innovative evolutionary algorithms on a variety of subjects. In the past decade, one of the challenging problems in space engineering, which is tackled mainly by novel evolutionary algorithms by the researchers in the aerospace community is spacecraft trajectory optimization. Spacecraft trajectory optimization problem can be simply described as the discovery of a space trajectory for satellites and space vehicles that satisfies some criteria. While a space vehicle travels in space to reach a destination, either around the Earth or any other celestial body, it is crucial to maintain or change its flight path precisely to reach the desired final destination. Such travels between space orbits, called orbital maneuvers, need to be accomplished, while minimizing some objectives such as fuel consumption or the transfer time. In the engineering point of view, spacecraft trajectory optimization can be described as a black-box optimization problem, which can be constrained or unconstrained, depending on the formulation of the problem. In order to clarify the main motivation of the research in this thesis, first, it is necessary to discuss the status of the current trends in the development of evolutionary algorithms and tackling spacecraft trajectory optimization problems. Over the past decade, numerous research are dedicated to these subjects, mainly from two groups of scientific communities. The first group is the space engineering community. Having an overall look into the publications confirms that the focus in the developed methods in this group is mainly regarding the mathematical modeling and numerical approaches in dealing with spacecraft trajectory optimization problems. The majority of the strategies interact with mixed concepts of semi-analytical methods, discretization, interpolation and approximation techniques. When it comes to optimization, usually traditional algorithms are utilized and less attention is paid to the algorithm development. In some cases, researchers tried to tune the algorithms and make them more efficient. However, their efforts are mainly based on try-and-error and repetitions rather than analyzing the landscape of the optimization problem. The second group is the computer science community. Unlike the first group, the majority of the efforts in the research from this group has been dedicated to algorithm development, rather than developing novel techniques and approaches in trajectory optimization such as interpolation and approximation techniques. Research in this group generally ends in very efficient and robust optimization algorithms with high performance. However, they failed to put their algorithms in challenge with complex real-world optimization problems, with novel ideas as their model and approach. Instead, usually the standard optimization benchmark problems are selected to verify the algorithm performance. In particular, when it comes to solve a spacecraft trajectory optimization problem, this group mainly treats the problem as a black-box with not much concentration on the mathematical model or the approximation techniques. Taking into account the two aforementioned research perspectives, it can be seen that there is a missing link between these two schemes in dealing with spacecraft trajectory optimization problems. On one hand, we can see noticeable advances in mathematical models and approximation techniques on this subject, but with no efforts on the optimization algorithms. On the other hand, we have newly developed evolutionary algorithms for black-box optimization problems, which do not take advantage of novel approaches to increase the efficiency of the optimization process. In other words, there seems to be a missing connection between the characteristics of the problem in spacecraft trajectory optimization, which controls the shape of the solution domain, and the algorithm components, which controls the efficiency of the optimization process. This missing connection motivated us in developing efficient meta-heuristics for solving spacecraft trajectory optimization problems. By having the knowledge about the type of space mission, the features of the orbital maneuver, the mathematical modeling of the system dynamics, and the features of the employed approximation techniques, it is possible to adapt the performance of the algorithms. Knowing these features of the spacecraft trajectory optimization problem, the shape of the solution domain can be realized. In other words, it is possible to see how sensitive the problem is relative to each of its feature. This information can be used to develop efficient optimization algorithms with adaptive mechanisms, which take advantage of the features of the problem to conduct the optimization process toward better solutions. Such flexible adaptiveness, makes the algorithm robust to any changes of the space mission features. Therefore, within the perspective of space system design, the developed algorithms will be useful tools for obtaining optimal or near-optimal transfer trajectories within the conceptual and preliminary design of a spacecraft for a space mission. Having this motivation, the main goal in this research was the development of efficient meta-heuristics for spacecraft trajectory optimization. Regarding the type of the problem, we focused on space rendezvous problems, which covers the majority of orbital maneuvers, including long-range and short-range space rendezvous. Also, regarding the meta-heuristics, we concentrated mainly on evolutionary algorithms based on probabilistic modeling and hybridization. Following the research, two algorithms have been developed. First, a hybrid self adaptive evolutionary algorithm has been developed for multi-impulse long-range space rendezvous problems. The algorithm is a hybrid method, combined with auto-tuning techniques and an individual refinement procedure based on probabilistic distribution. Then, for the short-range space rendezvous trajectory optimization problems, an estimation of distribution algorithm with feasibility conserving mechanisms for constrained continuous optimization is developed. The proposed mechanisms implement seeding, learning and mapping methods within the optimization process. They include mixtures of probabilistic models, outlier detection algorithms and some heuristic techniques within the mapping process. Parallel to the development of algorithms, a simulation software is also developed as a complementary application. This tool is designed for visualization of the obtained results from the experiments in this research. It has been used mainly to obtain high-quality illustrations while simulating the trajectory of the spacecraft within the orbital maneuvers.La Caixa TIN2016-78365R PID2019-1064536A-I00 Basque Government consolidated groups 2019-2021 IT1244-1

    Efficient meta-heuristics for spacecraft trajectory optimization

    Get PDF
    190 p.Uno de los problemas más difíciles de la ingeniería espacial es la optimización de la trayectoria de las naves espaciales. Dicha optimización puede formularse como un problema de optimización que dependiendo del tipo de trayectoria, puede contener además restricciones de diversa índole. El principal objetivo de esta tesis fue el desarrollo de algoritmos metaheurísticos eficientes para la optimización de la trayectoria de las naves espaciales. Concretamente, nos hemos centrado en plantear soluciones a maniobras de naves espaciales que contemplan cambios de orbitas de largo y coto alcance. En lo que respecta a la investigación llevada a cabo, inicialmente se ha realizado una revisión de estado del arte sobre optimización de cambios de orbitas de naves espaciales. Según el estudio realizado, la optimización de trayectorias para el cambio de orbitas cuenta con cuatro claves, que incluyen la modelización matemática del problema, la definición de las funciones objetivo, el diseño del enfoque a utilizar y la obtención de la solución del problema. Una vez realizada la revisión del estado del arte, se han desarrollado dos algoritmos metaheurísticos. En primer lugar, se ha desarrollado un algoritmo evolutivo híbrido auto-adaptativo para problemas de cambio de orbitas de largo alcance y multi-impulso. El algoritmo es un método híbrido, combinado con técnicas de autoajuste y un procedimiento derefinamiento individual basado en el uso de distribuciones de probabilidad. Posteriormente, en lo que respecta a los problemas de optimización de trayectoria de los encuentros espaciales de corto alcance, se desarrolla un algoritmo de estimación de distribuciones con mecanismos de conservación de viabilidad. Los mecanismos propuestos aplican métodos innovadores de inicialización, aprendizaje y mapeo dentro del proceso de optimización. Incluyen mixturas de modelos probabilísticos, algoritmos de detección de soluciones atípicas y algunas técnicas heurísticas dentro del proceso de mapeo. Paralelamente al desarrollo de los algoritmos, se ha desarrollado un software de simulación para la visualización de los resultados obtenidos en el cambio de orbitas de las naves espaciales

    Control algorithms for large scale adaptive optics

    Get PDF
    In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies

    Optimization and Energy Maximizing Control Systems for Wave Energy Converters

    Get PDF
    The book, “Optimization and Energy Maximizing Control Systems for Wave Energy Converters”, presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms

    Real-Time Physically Based Sound Synthesis and Application in Multimodal Interaction

    Get PDF
    An immersive experience in virtual environments requires realistic auditory feedback that is closely coupled with other modalities, such as vision and touch. This is particularly challenging for real-time applications due to its stringent computational requirement. In this dissertation, I present and evaluate effective real-time physically based sound synthesis models that integrate visual and touch data and apply them to create richly varying multimodal interaction. I first propose an efficient contact sound synthesis technique that accounts for texture information used for visual rendering and greatly reinforces cross-modal perception. Secondly, I present both empirical and psychoacoustic approaches that formally study the geometry-invariant property of the commonly used material model in real-time sound synthesis. Based on this property, I design a novel example-based material parameter estimation framework that automatically creates synthetic sound effects naturally controlled by complex geometry and dynamics in visual simulation. Lastly, I translate user touch input captured on commodity multi-touch devices to physical performance models that drive both visual and auditory rendering. This novel multimodal interaction is demonstrated in a virtual musical instrument application on both a large-size tabletop and mobile tablet devices, and evaluated through pilot studies. Such an application offers capabilities for intuitive and expressive music playing, rapid prototyping of virtual instruments, and active exploration of sound effects determined by various physical parameters.Doctor of Philosoph

    Traffic Flow Modeling with Real-Time Data for On-Line Network Traffic Estimation and Prediction

    Get PDF
    This research addresses the problem of modeling time-dependent traffic flow with real-time traffic sensor data for the purpose of online traffic estimation and prediction to support ATMS/ATIS in an urban transportation network. The fundamental objectives of this study are to formulate and develop a dynamic traffic flow model driven by real-world observations, which is suitable for mesoscopic type dynamic traffic assignment simulation. A dynamic speed-density relation is identified by incorporating the physical concept in continuum and kinetic models, coupled with the structural formulation of the transfer function model which is used to represent dynamic relationship. The model recognizes the time-lagged response of speed to the influential factors (speed relaxation, speed convection and density anticipation) as well as the potential autocorrelated system noise. The procedures adapted from transfer function theory are presented for the model estimation and speed prediction using the real-time data. Speed prediction is performed by means of minimum mean square error and conditional on the past information. In the context of real-time dynamic traffic assignment simulation operation, a framework based on the rolling-horizon methodology is proposed for the adaptive calibration of dynamic speed-density relations to reflect more recent traffic trends. To deal with the different time scales in the data observation interval and the traffic simulation interval, an approximation procedure is proposed to derive proper impulse responses for traffic simulation. Short term correction procedures, based on feedback control theory, are formulated to identify discrepancies between simulation and real-world observation in order to adjust speed periodically. Numerical tests to evaluate the dynamic model are conducted in a standalone manner firstly and then by integrating the model into a real-time DTA system. The overall conclusion from the results is that the proposed dynamic model is preferable in the context of real-time application to the use of conventional static traffic flow models due to its higher responsiveness and accuracy, although many other aspects remain to be investigated in further steps

    Risk Management using Model Predictive Control

    Get PDF
    Forward planning and risk management are crucial for the success of any system or business dealing with the uncertainties of the real world. Previous approaches have largely assumed that the future will be similar to the past, or used simple forecasting techniques based on ad-hoc models. Improving solutions requires better projection of future events, and necessitates robust forward planning techniques that consider forecasting inaccuracies. This work advocates risk management through optimal control theory, and proposes several techniques to combine it with time-series forecasting. Focusing on applications in foreign exchange (FX) and battery energy storage systems (BESS), the contributions of this thesis are three-fold. First, a short-term risk management system for FX dealers is formulated as a stochastic model predictive control (SMPC) problem in which the optimal risk-cost profiles are obtained through dynamic control of the dealers’ positions on the spot market. Second, grammatical evolution (GE) is used to automate non-linear time-series model selection, validation, and forecasting. Third, a novel measure for evaluating forecasting models, as a part of the predictive model in finite horizon optimal control applications, is proposed. Using both synthetic and historical data, the proposed techniques were validated and benchmarked. It was shown that the stochastic FX risk management system exhibits better risk management on a risk-cost Pareto frontier compared to rule-based hedging strategies, with up to 44.7% lower cost for the same level of risk. Similarly, for a real-world BESS application, it was demonstrated that the GE optimised forecasting models outperformed other prediction models by at least 9%, improving the overall peak shaving capacity of the system to 57.6%
    corecore