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Abstract of the Dissertation

Control Algorithms for Large Scale Adaptive

Optics

by

Piotr Piatrou

Doctor of Philosophy in Electrical & Computer Engineering

Michigan Technological University, Houghton, 2005

In this dissertation, the problem of creating effective large scale Adaptive Optics (AO)

systems control algorithms for the new generation of giant optical telescopes is ad-

dressed. The effectiveness of AO control algorithms is evaluated in several respects,

such as computational complexity, compensation error rejection and robustness, i.e.

reasonable insensitivity to the system imperfections. The results of this research are

summarized as follows:

1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller

(POLC) for multi-conjugate adaptive optics (MCAO). The AO system model

that accounts for various system errors has been developed and applied to check

the stability and performance of the POLC algorithm, which is one of the most

promising approaches for the future AO systems control. It has been shown

through numerous simulations that, despite the initial assumption that the exact

system knowledge is necessary for the POLC algorithm to work, it is highly robust

against various system errors.

2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms

for MCAO. The limiting performance of the non-dynamic Minimum Variance and
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dynamic KF-based phase estimation algorithms for MCAO has been evaluated

by doing Monte-Carlo simulations. The validity of simple near-Markov auto-

regressive phase dynamics model has been tested and its adequate ability to

predict the turbulence phase has been demonstrated both for single- and multi-

conjugate AO. It has also been shown that there is no performance improvement

gained from the use of the more complicated KF approach in comparison to the

much simpler MV algorithm in the case of MCAO.

3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal

prediction stage has been added to the non-dynamic MV control algorithm in

such a way that no additional computational burden is introduced. It has been

confirmed through simulations that the use of phase prediction makes it possible

to significantly reduce the system sampling rate and thus overall computational

complexity while both maintaining the system stable and effectively compensating

for the measurement and control latencies.

xiv



CHAPTER 1

Introduction

Astronomy is one of the oldest and the most exciting branches of fundamental sci-

ence, which investigates matter and energy in the universe through direct observations

with the aid of various astronomical instruments. Astronomy is an instrument-based

science and its progress is closely connected to the progress in design of astronomical

instruments for all kinds of sensible radiation. Recent progress in the field of optics

and photonics provides scientists the opportunity to obtain in near future optical as-

tronomical instruments with new outstanding parameters, which are very likely to lead

to new scientific discoveries. Several countries are preparing for deployment of the new

generation of giant ground based optical telescopes with mirror diameters ranging from

20 to 100 meters equipped with the new high resolution image and spectral sensors. A

few of the most important projects in this area are:

• Thirty meter telescope (TMT) [1]. Its first light is planned to be in 10-15 years.

The telescope basic parameters are:

- primary mirror diameter is 30 m;

- field of view is 20 arcmin,

- angular resolution at 1 µm is 0.01 arcsec

The most likely location, where this telescope will be built is Mauna Kea, Hawaii.
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• 20/20 binocular telescope/interferometer [2]. Its first light is planned to be in

10-15 years. The telescope parameters are:

- diameter of two primary mirrors is 21 m;

- angular resolution is 0.01 arcsec at 1 µm;

The construction site is Las Campanas, Chile.

• Giant Magellan Telescope (GMT) [3]. Its first light is in 2016. The telescope

parameters are:

- seven 8.4 meter circular segments make 25.4-meter overall diameter of the

primary mirror;

- it is claimed to have ten times better resolution than that of Hubble tele-

scope.

The construction site is Las Campanas, Chile.

• Overwhelmingly large telescope (OWL) [4]. The parameters are:

– primary mirror diameter is 100 m;

– field of view is 3 arcmin;

– angular resolution is 0.003 arcsec;

Construction site is La Silla, Chile.

The advantage of the large ground-based optical telescopes over space telescopes

is the possibility to use significantly bigger mirrors, which are currently impossible to

launch into space. Since the collected energy is proportional to the square of the mirror

diameter, the ground-based thirty-meter class telescope is able to collect over 100 times

more power than the 2.4-meter Hubble space telescope, and a ground-based telescope
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construction and subsequent operation are about an order of magnitude cheaper than

those of a space telescope. Also, ground-based telescopes allow greater versatility of

instruments and have a much longer life time than space telescopes.

In addition to a number of engineering challenges of large telescope construction,

such as making large stable and precise mirrors, extra-lightweight support structures,

etc., a fundamental problem to overcome is the severe image quality deterioration due

to atmospheric turbulence. Despite the fact that, if placed in vacuum, the diffraction

limited angular resolution improves proportionally to the primary mirror diameter, the

resolution of the system placed in air is limited by the atmospheric turbulence corre-

lation radius (Fried parameter), which (in near infrared, the most interesting spectral

region) does not exceed 0.5 m even for the best astronomical sites on Earth [6]. Only if

this problem is effectively addressed will large ground-based telescopes become a really

outstanding astronomical instrument.

Adaptive optics (AO) compensation of the aberrations induced by the atmosphere

is believed to be the most effective technology to eliminate the effects of atmospheric

turbulence in astronomical imaging. Adaptive optics is an interdisciplinary area, the

confluence of optics, mathematics, control theory and advanced hardware engineering.

Adaptive optics systems have become an integral part of many large optical telescopes,

both existing ones and the ones planned to be built in the future. The progress made

in the area for the last twenty years brought to life what is now called “conventional

adaptive optics”, the moderate size systems capable of compensating the turbulence-

induced aberration in the main aperture and achieving nearly diffraction-limited image

quality within a-few-arc-second field of view. Conventional adaptive optics systems

are now operating on a number of existing astronomical telescopes (see e.g. [61])

and have already shown the potential of adaptive optics to perform nearly diffraction-

limited imaging in the presence of the atmosphere [5]. However, conventional adaptive
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optics is unable to deal with the problem of atmospheric turbulence compensation

in the new giant telescopes. Among many other challenges the problem of creating

the new effective AO system control algorithms is one of the least developed and the

most important areas of adaptive optics, because almost all aspects of AO system

performance are influenced to some extent by the control strategy chosen. The control

algorithms normally used in existing AO systems are inadequate to serve for giant

telescopes, and they do not reflect either modern control theory, or the state of the

research on control algorithms for adaptive optics [7, 8, 9, 10, 11, 12]. A list of the

most important problems to be solved in the new generation of AO control algorithms

includes:

1. Very high hardware complexity of the systems under consideration (typical num-

ber of degrees of freedom in these systems varies from 104 to 105).

2. Necessity to achieve the compensated field of view as large as a few tens of arc-

seconds.

3. Necessity to work with artificial beacons.

4. Necessity to achieve the most accurate atmospheric turbulence compensation

possible with the available set of measurements.

5. Temporal prediction ability in order to compensate for time delays due to mea-

surement readout and control command computation.

6. Necessity to come up with control strategies reasonably insensitive to various

misalignments and calibration errors normally present in real AO systems.

The first problem in the list, that is the need to process in real time the information

from of the order of 105 channels, appears to be the most difficult. The current matrix

4



multiplication algorithms normally have the computational complexity of O(N2), where

N is the number of degrees of freedom, which is agreeable with the hardware cost and

time considerations when N ∼ 102 but makes the practical implementation of an AO

system impossible, if N ∼ 105. The development of control algorithms of the cost below

O(N2) requires not only new mathematical approaches to perform the calculations but

also better understanding of the nature of atmospheric turbulence compensation.

This dissertation is the summary of the author’s work on effective low complexity

control algorithms for large scale AO systems intended for use in new very large optical

telescopes. The author’s contribution in this area of science can be split into three

categories:

• Robustness study of Sparse Pseudo-Open-Loop Minimum Variance controller

(POLC) for multi-conjugate adaptive optics (MCAO) [50]. This addresses the

issues (1), (2) and (6) in the above list. The AO system model that accounts

for various system errors has been developed and applied to check the stability

and performance of the POLC algorithm, which is one of the most promising ap-

proaches for the future AO systems control. It has been shown through numerous

simulations that, despite the initial assumption that the exact system knowledge

is necessary for the POLC algorithm to work, it is highly robust against various

system errors.

• Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms

for MCAO (issues (4) and (5)) [58]. The limiting performance of the non-dynamic

MV and dynamic KF-based phase estimation algorithms for MCAO has been

evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov

auto-regressive phase dynamics model has been tested and its adequate ability to

predict the turbulence phase has been demonstrated both for single- and multi-

conjugate AO. It has also been shown that there is no performance improvement

5



gained from the use of the more complicated KF approach in comparison to the

much simpler MV algorithm in the case of MCAO.

• Sparse predictive Minimum Variance control algorithm for (MCAO) (issues (1)

and (5)). The temporal prediction stage has been added to the non-dynamic

MV control algorithm in such a way that no additional computational burden

is introduced. It has been confirmed through simulations that the use of phase

prediction makes it possible to significantly reduce the system sampling rate and

thus overall computational complexity while both maintaining the system stable

and effectively compensating for the measurement and control latencies.

The reminder of the dissertation is organized as follows.

Chapter 2 gives an overview of the basic ideas for AO system operation and current

state of the research on AO control.

Chapter 3 gives the theoretical background necessary to analyze the various aspects

of AO systems performance.

Chapter 4 gives an account of the robustness study of the Pseudo Open-Loop Con-

troller.

Chapter 5 is devoted to the comparison of the predictive Kalman Filter and Mini-

mum Variance control for MCAO.

Chapter 6 is an account of the most recent work on the Sparse Predictive Pseudo

Open-Loop Minimum Variance Controller for MCAO.

Chapter 7 is the overview of possible progress in the area of control algorithms for

large scale AO systems that can be done in the future.
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CHAPTER 2

Outline of AO Control Theory

2.1 Idea of adaptive compensation of turbulence-

induced optical aberrations.

Light from a distant astronomical object, which is a superposition of plane waves,

penetrates the Earth’s atmosphere and gets distorted by it. Three major factors are

recognized to contribute to atmospheric distortion of images:

1. Light refraction by the large scale, i.e. much larger than the observation wave-

length, component of atmospheric turbulence.

2. Rayleigh scattering by the small scale, i.e. the order of the observation wave-

length, fraction of turbulence and scattering by the water, ice or soot particles

drifting in the atmosphere. The background light due to the scattering of the

ground and celestial light sources by the atmosphere should also be mentioned.

3. Light attenuation due to the absorption of air gases, which does not deteriorate

the sharpness of image but may significantly distort its spectral content.

The second and third distortion factors can be almost eliminated by the positioning

an observatory at high altitude, far from big cities and, of course, by night observa-

tions for scattering elimination; operating in visible, near and mid-infrared, the spectral
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regions, where atmospheric absorption is small, the first factor still remains the fun-

damental obstacle for achieving the diffraction-limited quality images on ground-based

telescopes. On the other hand, the nature of atmospheric turbulence, its spatial distri-

bution scaling and its temporal dynamics make it possible to measure and compensate

the turbulence-induced distortions in real time. The method for active dynamic aber-

ration compensation is known as adaptive optics (AO).

Fig. 2.1 shows the basic setup of the “conventional” adaptive optics system. Light

that comes into a telescope and is distorted by the atmosphere is split into two parts.

Part of the light is directed to the wave front sensor (WFS) optically conjugated to the

entrance pupil, which measures the wave front excursions from the flat shape. Based on

the information provided by the WFS, the correction signal is computed and sent to the

second main part of AO system, the deformable mirror (DM). The DM is an electro-

mechanical device, whose reflective surface is capable of deforming to the extent of few

micrometers according to the electrical signal applied to it. When conjugated to the

entrance pupil, DM introduces an aberration that can at least partially compensate the

aberration introduced by the atmosphere. Since the parameters of an AO system such

as spatial resolution of both the WFS and the DM necessary for effective compensation,

dynamic range of turbulence-induced aberrations, and the time scale for their temporal

dynamics are determined by the nature of atmospheric turbulence, a mathematical

theory to describe the turbulence phenomena is necessary.

2.2 Atmospheric turbulence theory.

The mathematical theory capable of adequate description of turbulence effects was first

introduced in the work of Soviet scientists A. N. Kolmogorov [14] and V. I. Tatarskii

[15]. It has been shown that, according to the principles of fluid mechanics, the process

8



Figure 2.1: Setup of the conventional adaptive optics system.
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of energy dissipation in a volume of air results in a random density distribution of air.

The random distribution of local density induce the random distribution of the refrac-

tion index of air, which is the physical property responsible for the light propagation

through atmosphere. The random refractive index in the volume of air can be written

as

n(~x, t) = n0 + δn(~x, t), (2.1)

where n0 is the mean value of the refractive index, which is very close to one, and

δn(~x, t) is the zero-mean random refractive index fluctuation responsible for atmosphere-

induced aberrations. δn is related to the local temperature T and pressure P by [62]

δn =
77.6P

T
× 10−6. (2.2)

At least with respect to the cumulative effect of light propagation through relatively

thick layers of atmosphere (hundreds of meters), the refractive index fluctuation can

be regarded as spatially Gaussian zero-mean random process. Over the periods of time

as long as a few seconds the turbulence can be regarded as stationary. Therefore,

its spatial statistics are completely determined by the covariance function Γ(~x) or,

equivalently, by the power spectral density (PSD) Φ(~k) related to each other through

Fourier transform

Φ(~k) =
∫

Γ(~x) exp(−i~k · ~x)d~x. (2.3)

The fundamental result of the Kolmogorov theory is the expression for PSD of the

refraction index fluctuations:

Φn(~k) = 0.033C2
n|~k|−11/3, (2.4)

where C2
n, [m−2/3], is the structure constant of the refraction index fluctuations that

determines strength of the turbulence, ~k is the position vector in frequency domain,

also referred to as the wave number vector. Eq. (2.4) illustrates the fractal nature
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of the turbulence, which is believed to consist of “eddies”, the regions of constant

refractive index imbedded into one another. Eq. (2.4) is valid within so called “inertial

sub-range” k0 ≤ |~k| ≤ K0 of spatial frequencies, which is due to the fact that turbulent

eddies cannot be larger that certain size L0 = 2π/k0 called the outer scale and smaller

than certain size l02π/K0 called the inner scale. A convenient approximation to the

refraction index fluctuations PSD that is valid for all spatial frequencies and takes into

account both inner and outer scales

Φn(~k) = 0.033C2
n(|~k|2 + K2

0 )−11/6 exp

(
−|

~k|2

k2
0

)
(2.5)

is called von Karman turbulence spectrum. Another convenient turbulence character-

istic, the structure function Dn(~x) of refractive index fluctuations, is defined as

Dn(~x) = 〈[δn(~x0)− δn(~x0 + ~x)]2〉. (2.6)

The relation of the structure function to the turbulence autocorrelation and PSD is

Dn(~x) = 2[Γn(0)− Γn(~x)] (2.7)

=
∫

d|~k|Φn(|~k|)

[
1− sin |~k||~x|

|~k||~x|

]
.

In the case of Kolmogorov spectrum (2.4) integration in the last expression can be done

analytically yielding for the structure function

Dn(~x) = C2
n|~x|2/3. (2.8)

Application of Kolmogorov theory to wave propagation through turbulent media has

been developed in the works of D. L. Fried [16]. The simplified version of it convenient

for AO systems analysis can be summarized as follows [62]. The basic assumptions are:

• The whole atmosphere from space to ground is divided into a number of layers

with constant C2
n.
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• The layers are supposed to be mutually statistically independent, which yields

for the autocorrelation function of the whole atmosphere

Γn(~x) =
N∏

i=1

Γni(~x), (2.9)

where Γni(~x) is a spatial autocorrelation function of ith individual layer, N num-

ber of layers.

• Each layer is replaced with infinitely thin two-dimensional phase screen, whose

parameters are obtained by averaging over the physical thickness of a layer.

For the unit amplitude of the plane wave incident normally to the ith layer the

transmitted optical field is

ui(~x) = exp[iφi(~x)],

where the phase accumulated passing through ith atmosphere layer of thickness ∆zi is

φi(~x) = k

∫ zi+∆zi

zi

dzδn(~x, z). (2.10)

With the assumption of the turbulence being Gaussian we have for the ith layer

phase autocorrelation function

Γui(~x) = 〈exp[iφi(~x0)] exp[iφi(~x0 + ~x)]〉 (2.11)

= exp
[
−1

2
Dφi

(~x)
]

,

where

Dφi
(~x) = k2〈

(∫ zi+∆zi

zi

dz[δn(~x0, z)− δn(~x0 − ~x, z)]
)2

〉 (2.12)

= 2.91k2∆zC2
ni
|~x|5/3.

is the phase structure function of the ith layer. With the Fried parameter of the ith

layer

r0i = 0.185
[

4π2

k2C2
ni

∆zi

]3/5

(2.13)
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introduced, the expression for the phase structure function in Eq. (2.12) takes the form

Dφi
(~x) = 6.88

(
|~x|
r0i

)5/3

. (2.14)

Substitution of Eq. (2.11) into Eq. (2.9) yields

Γu = exp

[
−1

2
6.88

(
~x

r0

)5/3
]

(2.15)

= exp
[
−1

2
Dφ(~x)

]
,

where the integral Fried parameter r0 is

r0 = 0.185

[
4π2

k2
∑N

i=1 C2
ni

∆zi

]3/5

. (2.16)

The Fried parameter can be interpreted as the aperture size beyond which further

increase in telescope diameter results in no further increase in resolution. Quantity

(D/r0)2, where D is the system’s entrance pupil diameter, is used as an estimate of

the required number of AO system degrees of freedom to achieve the diffraction-limited

turbulence compensation. The number of AO system degrees of freedom is normally

understood as a number of WFS measurements or DM actuators.

2.3 Model for turbulence temporal dynamics.

In contrast to the spatial component, the time evolution of atmospheric turbulence, is

not very well understood. Two processes are believed to contribute to the temporal

changes in the turbulence pattern:

1. Relatively slow random motion of the eddies due to processes of energy dissipation

in the air [17] sometimes referred to as “atmospheric boiling”.

2. Faster deterministic motion of the atmospheric layers due to wind. Typical wind

speeds measured for good atmospheric sites [6, 59] vary from 5 to 50 m/s with
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typical time scale on which significant wind speed and direction changes occur of

the order of ten seconds.

Rate of change in the turbulence phase patterns is an important parameter affecting

the requirements for how fast an AO system should be to adequately follow changes

in atmosphere-induced aberrations. Taylor Frozen Flow Hypothesis is the usual as-

sumption made to model temporal dynamics. It states that the boiling effects can be

neglected and all changes in the turbulence pattern are ascribed to the deterministic

wind shift only. In other words, the turbulence pattern is assumed to be fixed once

and for all and moving as a whole parallel to the ground with some wind speed ~v. The

measure of how fast the phase changes in the telescope aperture plain occur was first

introduced in [18] and called the Greenwood frequency. Greenwood frequency, fG, is

defined as the inverse of the time lag in an AO system, for which the lag-induced phase

error reaches, in the absence of any other errors, 1 rad. For a single layer the definition

for fG is

fG = 0.427
|~v|
r0

. (2.17)

For the thick atmosphere with many layers moving with different speeds the wind speed

in Eq. (2.17) should be somehow averaged over altitude. The turbulence weighted wind

speed average

|~v| =

[∫
dzC2

N (z)|~v(z)|5/3∫
dzC2

N (z)

]3/5

(2.18)

is normally used in Eq. (2.17), which means that the high velocities at regions where

C2
n is large give the biggest contribution to the Greenwood frequency. Typical value

of Greenwood frequency for good astronomical sites in near infrared is between 20 and

30 Hz. To minimize the lag-induced fraction of the wave front compensation error the

AO system closed-loop bandwidth should match or exceed the Greenwood frequency.

This consideration will be seen later to govern the sampling rate of the AO controller.
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2.4 Image quality assessment.

In astronomical imaging objects are considered to be spatially incoherent, that is the

object autocorrelation function has the form

Γo(~x, ~x′) = o(~x)δ(~x− ~x′), (2.19)

where o(~x) is the object irradiance function. The fundamental result for an incoherent

optical system is that the spectrum of the image intensity is determined by the auto-

correlation function Γp(~x) of the incident field in the pupil, and the generalized pupil

function Wg(~x) [60]:

I(~f) = Γp(λdi
~f)
∫

d~xWg(~x)Wg(~x− λdi
~f), (2.20)

Wg(~x) = ta(~x)Wa(~x),
∫

d~xWa(~x) = 1,

where di is the distance from pupil to the image plane, ta(~x) is the pupil transmittance

function and Wa(~x) is a function constant inside the pupil and zero elsewhere. If the

atmosphere is modelled as a thin phase screen with transmittance function ta(~x), the

autocorrelation function of the field in the pupil is [62]

Γp(~x) = Γa(~x)Γo(~x),

where Γa(~x) is the field autocorrelation due to the atmosphere and Γo(~x) is the field

autocorrelation due to the object. Substituting this into Eq. (2.20) gives

I(~f) = Γa(λdi
~f)Γo(λdi

~f)
∫

d~xWg(~x)Wg(~x− λdi
~f).

By the van Cittert-Zernike theorem [62], the second term here can be recognized as the

scaled Fourier transform of the object irradiance function, o(~x), whereas the integral

term is, up to a multiplicative constant, the diffraction-limited optical transfer func-

tion Ho(~f) of the imaging system for incoherent illumination [62]. Thus, the previous
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equation takes the form

I(~f) = O(~f)Γa(λdi
~f)Ho(~f), (2.21)

and the system transfer function I(~f)/O(~f) is

H(~f) = Γa(λdi
~f)Ho(~f) = Ha(~f)Ho(~f). (2.22)

Substitution of Eq. (2.15) gives

H(~f) = exp
[
−1

2
Dφ(λdi

~f)
]

Ho(~f), (2.23)

which is valid for any structure function provided that the corresponding random pro-

cess is Gaussian. For the uncompensated Kolmogorov turbulence we will have

H(~f) = exp

−1
2
6.88

(
λdi|~f |

ro

)5/3
Ho(~f).

Optical transfer function (OTF) H(~f) is the main measure of the imaging system’s

performance. The absolute value of the normalized transfer function H(~f)/H(~0) gives

the attenuation factor for a spatial harmonic of frequency ~f as it passes the imaging

system. Transfer function equal to unity for all frequencies corresponds to the ideal

imaging system. Other useful quality measures are derived from the transfer function.

The inverse Fourier transform of the transfer function defines the impulse response, or

point-spread function (PSF) of the system

s(~x) = F−1[H(~f)], (2.24)

which shows the degree of the point source image blur caused by the optical system.

The Strehl ratio is defined as the ratio of the center intensity of the real system PSF

to the center intensity of the diffraction-limited PSF in the absence of aberrations:

SR = s(~0)/sdiff (~0).
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Strehl ratio gives a convenient measure of the image quality departure from the limiting

quality physically achievable for the system.

Eq. (2.23) is the most important result of this section. It is obvious from this equa-

tion that, to achieve diffraction-limited imaging, it is necessary to make the exponential

term equal to unity for all frequencies, which is equivalent to the structure function

Dφ(~x) being equal to zero for all separations. With the definition of the structure func-

tion given in Eq. (2.7) this means that the phase in the pupil should be just constant.

Therefore, in order to improve image quality, an AO system should be able to minimize

the departure of the pupil phase function from a constant value. This gives motivation

for the introduction of another useful measure for the imaging system quality, the pupil

averaged residual phase variation

σ2
φ =

1
|S|

∫
S

d~x〈(φ(~x)− 〈φ(~x)〉)2〉, |S| =
∫

S
d~x, (2.25)

where S is the area if the entrance pupil. Obviously, the less this value is the closer

the system is to the diffraction limit. Beside the relative ease this parameter can be

computed with in the AO system simulations, σ2
φ is connected to Strehl ratio, the most

important AO system quality measure, through Marechal’s approximation [61]

SR ≈ exp[−σ2
φ]. (2.26)

Thus, to maximize the Strehl ratio means to minimize the pupil averaged residual phase

variation, so this quantity can be taken as a merit function in the optimal AO control

algorithms.

2.5 Factors limiting AO system performance.

In this section the main factors that prevent ideal turbulence compensation by means

of adaptive optics will be listed [61].
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2.5.1 Anisoplanatism.

Anisoplanatism is one of the most important effects to limit AO system performance.

In contrast to the ideal situation shown on Fig. 2.1, where the light from the object to

be imaged is also used for measuring the wave front errors caused by the atmosphere, it

is sometimes necessary to use for wave front sensing another, brighter, object referred

to as the beacon. This is because most astronomical objects of interest are extremely

faint, or emit most of their radiation in a spectral range unavailable for wave front

sensing. This leads to the situation depicted in Fig. 2.2, where one object is available

for measuring the wave front distortion, while a different object is to be measured. Two

cases shown in the figure correspond to:

Figure 2.2: Angular (a) and focal (b) anisoplanatism.

1. The situation shown on Fig. 2.2(a) is when a bright natural star that happens

to exist near the object of interest is taken for the infinitely remote beacon or
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natural guide star (NGS). Light from the beacon passes through atmosphere in

the direction different from the scientific target direction by angle θ.

2. The situation shown on Fig. 2.2(b) is when an artificial beacon is created based

normally on the scattering of the laser light in high atmospheric layers, which is

referred to as laser guide star (LGS). Because of the physical nature of such a

beacon, its altitude is finite. For instance, it is ∼ 90 km for sodium layer LGSs.

This implies that the light from an artificial beacon passes through only part

of atmospheric turbulence within a conical volume swept by the rays emanating

from the beacon and collected by the telescope aperture.

It is obvious from Fig. 2.2 that the problem arises because of the fact that the light

from the beacon passes through a slightly different region of the atmosphere than

the light from the scientific target. This is the underlying case of anisoplanatism.

The anisoplanatic error in the wave front correction occurs due to mismatch of the

information provided by WFS and the actual wave front distortion. The aperture

averaged phase error caused by the angular anisoplanatism, that is natural guide star’s

being an angle θ away from scientific target, can be approximated by [61]

σ2
angular =

(
θ

θ0

)5/3

, (2.27)

where the anisoplanatic angle θ0 is defined as a separation angle for which the phase

error is 1 rad2 in the AO system with no other errors. The explicit value for θ0 in the

case of Kolmogorov turbulence is

θ0 = 0.31
(

r0

h

)
, h =

[∫
dzC2

n(z)z5/3∫
dzC2

n(z)

]3/5

. (2.28)

Typical value for anisoplanatic angle computed with the aid of Eq. (2.28) does not

exceed 3 arcsec even for good astronomical sites, which applies severe limitation on
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the size of AO-compensated field of view. An analogous expression holds for the focal

anisoplanatism, i.e. the phase error due to laser guide star being at a finite altitude:

σ2
focal =

(
D

d0

)5/3

, (2.29)

where parameter d0 can be interpreted as the diameter of the aperture over which the

wave front error due to the focal anisoplanatism is equal to 1 rad2 in the AO system

with no other errors [19]. d0 depends on the guide star altitude and for sodium LGS

(H = 90 km) it varies from 2 to 4 meters, i.e. the effect of focal anisoplanatism is less

restrictive than that of angular anisoplanatism.

2.5.2 Temporal error.

This fundamental error is caused by the inability of the AO system to respond instantly

to the changes in the wave front. Measuring of the wave front error by WFS with

acceptable accuracy takes time, since collecting sufficient photons for adequate SNR

requires time, as well as processing the WFS data to obtain the correction command.

Time delays occur in process of transferring the information among the pieces of AO

system hardware (WFS-computer-DM). A simple assessment of the temporal phase

error can be done if the AO system temporal behavior is modeled as the action of some

kind of integrator with integration time 4T . In this case the temporal phase error can

be written as [18]

σ2
temp = K

(
fG

∆f

)5/3

, (2.30)

where 4f = 1/4T is the integrator bandwidth, constant K depends on the form of

frequency response of the servo loop and takes values from 0.2 to 1 [61].

2.5.3 Measurement error.

The error in the measurement data provided by the WFS has two fundamental sources:
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- measurement noise;

- finite spatial sampling of wave front.

One contribution to the measurement noise is the photon noise, whose value depends on

the illumination level and is described by the Poisson statistics. As the light intensity on

the detector increases this noise increases proportionally to the square root of intensity

so that the detected signal-to-noise ratio (SNR) increases.

The read noise typical for CCD detectors is another contribution to the measure-

ment noise. The level of this noise is constant independently of the illumination, and

can be described by the Gaussian statistics.

The SNR for a general photodetector has the form [61]

SNR =
np

(np + n2
b + σ2

r )1/2
, (2.31)

where np is the number of detected photoelectrons, nb is the number of the background

electrons due to thermal noise, amplifier noise, scattered light, and σr is the read noise

variance that do not depend on the level of incident radiation.

The phase error due to the combined effect of measurement noise and finite sampling

has the following generic form [61]

σ2
meas = K

(
d/r0

SNR

)2

, d > r0, (2.32)

σ2
meas = K

(
1

SNR

)2

, d < r0,

where d is the size of WFS subaperture, K the proportionality constant characterizing

the detector’s quality.
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2.5.4 DM fitting error.

A deformable mirror is a device for making phase correction. However, it is not perfect.

The fundamental reason for its imperfection is finite spatial resolution due to the finite

distance between actuators. As a result, the DM cannot exactly fit the incident wave

front, which is the underlying cause of DM fitting error. Its value depends mainly on

the statistics of the wave fronts to fit and the distance d between DM actuators. For

Kolmogorov PSD (2.4) we will have [61]

σ2
fit = µ

(
d

r0

)5/3

, (2.33)

where µ is the constant, 0.1 ≤ µ ≤ 0.3. The exact value for µ depends upon the

characteristics of the deformable mirror, such as mirror type (segmented piston or

piston-tilt, continuous face-sheet), and the actuator arrangement (square, triangular or

hexagonal). It is important to note that, in the case of both measurement and fitting

error, choosing the inter-actuator distance or subaperture size less than r0 will improve

wave front compensation performance.

2.5.5 Other sources of errors.

There are also a number of error sources due to imperfections in the technology involved

in making AO system elements. The most important of these are:

- Nonlinearities in the DM and WFS output, and the limited dynamic range of

both the DM and WFS, which may cause errors due to saturation.

- Manufacturing defects such as irregularities in DM actuator or WFS subaperture

positions, aberrations and geometrical misalignments of optical elements, which

may not only deteriorate the system performance but also cause its instability.
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- Different optical paths to the WFS, DM, and to the imaging camera result in so

called non-common path errors, which can also be significant.

- Scattered light in the system, which causes background illumination of the sensor

and thus reduces the SNR according to the Eq. (2.31).

- The additional error results from the “model uncertainties” due to simplifying

assumptions made for the underlying physical processes which are difficult or

impossible to model exactly. Layered atmosphere model, Frozen Flow Hypothesis

or linearity of AO system elements are such assumptions usually made, to mention

just a few.

All the errors mentioned must be somehow put together to estimate the overall error

of the AO system. This will make an AO system error budget. With the assumption

that the sources of each error are independent random processes, the resulting phase

error variance is just the sum of variances due to the individual errors. According to

the discussed above this sum looks like [61]

σ2 = σ2
aniso + σ2

fit + σ2
temp + σ2

meas + σ2
recons + σ2

tech.

Since the assumption of error independence is not true for real systems, the previous

equation overestimates the overall error. Desire to find more accurate overall error

estimate provides motivation for doing the AO system simulations. Nevertheless, it is

reasonable to assume that significantly bigger (smaller) errors make the correspondingly

big (small) contribution. Because of the many possibly correlated error factors, it is

not necessarily wise to make any particular one very small. Rather, these errors need

to be balanced.
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2.6 Multi Conjugate AO.

Multi-conjugate adaptive optics (MCAO) is a promising approach to increase the

turbulence-corrected field of view (FoV). As it was pointed out in Sec. 2.5.1 that

in the case of a single beacon the compensated FoV is strongly limited by the angular

anisoplanatism, and is generally less than 3 arcsec. This makes it impossible to observe

with high resolution such large astronomical objects as galaxies or the planets of our

Solar System, which normally requires FoV of the order of 1 arcmin. MCAO can, in

principle, solve this problem. The performance improvement is achieved by means of

probing the atmospheric turbulence in multiple directions, as shown on Fig. 2.3, with

multiple natural and laser guide stars, which is referred to as “star-oriented” MCAO,

or probing the turbulence in a number of layers, such as “layer-oriented” approach

advocated by Ragazzoni et. al. [22, 23]. The extra information obtained is used to

correct the turbulence not only in aperture plane, but also in the volume of atmosphere

with the aid of multiple deformable mirrors (DMs) conjugated to different altitudes.

The ability of a multiple-DM system to correct atmospheric turbulence in a wider

range of directions arises by the virtue of the fact that DMs conjugated to different

altitudes affect the aberration compensation different ways. First proposed in 1988

[20], the MCAO concept has become an object of extensive research. Its increasing

importance accounts for the fact that MCAO is supposed to be the key technology for

the new generation of extremely large telescopes.

From a mathematical standpoint the process of turbulence correction in MCAO

can be considered a form of tomography: the wave front sensors can only measure the

cumulative effect of turbulence in the aperture plane in a number of different direc-

tions. The set of measured data that consists of information about the different, but

overlapping volumes of atmosphere, needs to be processed to extract the 3D structure

of turbulence on the way of light collected by the telescope. The commands for the
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Figure 2.3: Multi Conjugate Adaptive Optics system layout.

25



DMs are computed in a way to minimize the difference between the 3D tomographic

phase estimate and DM correction projected onto the telescope aperture plane and

averaged over a number of viewing directions. Similar to most tomographic problems,

the problem of MCAO control is ill-posed owing to the obvious fact that limited reso-

lution WFSs probing the turbulence in a limited number of directions produce only a

limited amount of information, which is insufficient to extract the full 3D turbulence

profile. Another complication arises from additive nature of both turbulence and the

action of DMs on the overall residual phase, which results in a multiplicity of turbu-

lence and DM correction phase configurations producing the same cumulative effect in

the main aperture, and hence non-uniqueness of the MCAO control problem solution.

The significantly higher hardware complexity of the problem dictated by the very idea

of MCAO is one more complication, which presents a non-trivial problem of finding

the numerically effective algorithms.

Theoretical analysis of the MCAO systems is more complicated than analyzing

“conventional”, or single conjugate AO (SCAO). In a series of papers [24, 25, 26]

A. Tokovinin et. al. gave theoretical estimates of the performance gain achievable

with MCAO systems along with some recommendations about the optimal system

configurations. With simplifying assumptions of infinite aperture, infinite resolution

noiseless WFS measurement, perfect DM correction and Kolmogorov turbulence the

following facts about MCAO system performance are derived:

• The scaling law for residual phase error of MCAO system is formally the same

as for the SCAO one:

〈σ(~θ)2〉 = eK(~θ)
(

Θ
θK

)5/3

,

where K is the number of guide stars, eK(~θ) is a scaling function depending on

the observation direction and guide stars geometry, Θ is the angular size of guide

stars constellation and θK is the generalized isoplanatic angle that depends on
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the number of guide stars and their configuration.

• The achievable by MCAO increase of compensated field of view, that is the in-

crease in θK in comparison to θ0 (see Eq. (2.28)) is expected to be about tenfold

for λ = 1 µm, which makes a leap from 6 arcsec FoV to 1 arcmin.

• If only M deformable mirrors are used, there exists a set of M optimal altitudes

for them, which can be found by minimizing some merit function depending on

C2
n profile [24].

• In order to achieve better correction for wider FoV it is always necessary to trade

off the image quality in a single point and the one averaged over entire FoV,

which leads to the conclusion that MCAO systems are not able to produce Strehl

ratios significantly larger than 0.5 homogeneously over wide range of directions.

• The performance estimates made under the infinite aperture assumption with the

aid of Fourier methods, are the more accurate the larger real aperture diameter

D is and become quite accurate for the giant telescopes with D > 30 m. This

observation led to the extensive research in the application of Fourier methods for

giant telescopes AO [27, 28, 29] very well summarized in B. Ellerbroek’s treatise

[30].

Despite the possibility to evaluate the MCAO system performance under a number

of simplifying assumptions, the performance of real systems may differ from its theo-

retical estimates because of additional factors that are difficult or impossible to take

into account analytically. As it was pointed out in Ref. [24], the numbers obtained

there are neither under- nor overestimates of the performance of real system, but rather

just approximations, and real systems may very well show better performance than the

“ideal” ones. The next step on the way from theoretical analysis to the real AO sys-

tems installed on the new telescopes is the performance evaluation using more accurate
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and detailed mathematical models both for AO system elements and for atmospheric

turbulence. That is why the numerical simulations of MCAO systems are desirable and

constitute a significant fraction of the research in the area.

The results presented in this dissertation are concerned mostly with the numerical

analysis of multi conjugate adaptive optics systems together with the analysis of pos-

sible control algorithms for them. Next chapter summarizes the approaches used for

mathematical modeling of the large scale MCAO systems.
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CHAPTER 3

Mathematical modeling of AO systems.

In this chapter a method of simulating an AO system, and mathematical models for its

elements and their interconnections are described. All the results reported in the next

chapters are based on the equations, and are subject to the simplifying assumptions

listed in this chapter. For the sake of brevity only the model for MCAO system is

described below. The model for SCAO system can be viewed as a simplified special

case.

3.1 Model for atmosphere.

The following assumptions are used to model atmospheric turbulence effects on optical

systems.

1. Layered model is employed to model the 3D atmospheric turbulence, that

is the turbulence is assumed to be concentrated in a finite number of infinitely thin,

statistically independent phase screens, whose statistical properties are found by ap-

plying the discretization procedure to the continuous turbulence profile (C2
n and wind

speed) measured at the astronomical site. The simple standard discretization procedure

consists of the following steps.

1. The atmosphere is divided in a number of NEL equally spaced slabs.
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2. The equivalent altitudes are computed according to

hi
eq =

∫ hi

hi−1
hC2

n(h)dh∫ hi

hi−1
C2

n(h)dh
, i = 1, ..., NEL, (3.1)

where hi are altitudes of layer slabs’ borders.

3. Equivalent strengths (C2
n)eq are found from

(C2
n)eq

i =
1
4hi

∫ hi

hi−1

C2
n(h)dh, i = 1, ..., NEL, (3.2)

where ∆hi are thicknesses of the slabs. Correspondingly, the relative weights of

layers are equal to

Wi =

∫ hi

hi−1
C2

n(h)dh∫ hmax

h0
C2

n(h)dh
,

NEL∑
i=1

Wi = 1. (3.3)

4. Equivalent wind velocities |~v eq
i | are computed such that to maintain the Green-

wood frequency (see Eqs. (2.17), (2.18)) the same both for ’real’ and equivalent

wind profiles, which results

|~v eq
i | =

∫ hi

hi−1
C2

n(h)|~v(h)|5/3dh∫ hi

hi−1
C2

n(h)dh

3/5

. (3.4)

Figure (3.1) shows as an example the initial measured 54-layer Cerro-Pachon turbu-

lence profile [6] and equivalent 6-layer turbulence profile thus obtained. Simulations

performed by the author to check the validity the layered atmosphere model for MCAO

systems analysis show that the system performance metrics obtained with the more

than 6-layer atmosphere models are virtually the same as those obtained with the

quasi-continuous (tens of layers) atmosphere.

2. Frozen Flow Hypothesis (see Sec. 2.3) is assumed, that is the turbulence

dynamics are determined only by the phase screens’ shift caused by the wind. Absolute

values of wind velocities are computed by Eq. (3.4), wind directions are supposed to

be known, e.g. from measurements.
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Figure 3.1: Cerro Pachon turbulence profile and its 6-layer discretization (shown with

diamonds). Left panel: C2
n profile. Right panel: wind velocity profile.

3. The continuous spatial phase distributions are discretized by approximating

with a finite subset of some basis in the metric of the Hilbert space H2 of functions

defined on two-dimensional region S on each phase screen, i.e.

φ(~x) ≈
N∑

i=1

φifi(~x), ~x ∈ S, (3.5)

where

φi = (φ(~x), f̃i(~x)), (3.6)

(a(~x), b(~x)) =
1
|S|

∫
S

a(~x)b(~x)d~x, |S| =
∫

S
d~x

is a metric of H2(S) and {f̃i}∞i=1, (fi(~x), f̃j(~x)) = δij , is the set of functions biorthogonal

to fi. Basis functions fi(~x) used in adaptive optics are usually separated into two types:

- Localized functions, whose support is much smaller than the region S but

∪N
i=1supp(fi) ⊃ S (splines, wavelets). Because of the local nature of this functions

each of them influences only a small region within S, so such a discretization is

regarded as “zonal” approach.
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- Functions for which supp(fi) ⊃ S, ∀i (Zernike polynomials, trigonometric func-

tions). Each of such functions influences the whole phase distribution, and the

corresponding discretization approach is called the “global” one.

In any case the approximation of the form (3.5) results in replacement of functions with

vectors of their approximation coefficients and linear operators acting on the functions

with matrices, respectively. The choice of basis functions proves to be crucial for both

the subsequent modelling and especially for the wave front reconstruction strategy. All

results reported below are obtained for the zonal turbulence discretization approach

with the bilinear splines defined on the square grid {~xi(xi, yi)}N
i=1 with extent D and

grid spacing ∆ = D2/N

fi(x, y) =

 (1− x−xi
∆ )(1− y−yi

∆ ), |x− xi| ≤ ∆, |y − yi| ≤ ∆,

0, otherwise.
(3.7)

Bilinear splines have a number of properties, which make these functions convenient

for numerical applications:

- In contrast to Zernike polynomials, bilinear splines form the topological basis in

H2, i.e. the problem of finding the approximation coefficients is stable for any N .

The aperture averaged error of bilinear spline approximation of random phase

functions with Kolmogorov statistics is [31]

σ2(∆) = 0.28
(

∆
r0

)5/3

, (3.8)

i.e. it quickly goes to zero as ∆ decreases, which is a favorable behavior in

comparison to the Zernike polynomials approximation, whose error begins to

reduce very slowly for large N [62].

- The coefficients φi in the case of bilinear splines are equal just to the values of
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phase φ(~x) at the grid points (xi, yi), i.e. in this case Eq. (3.5) takes the form

φ(~x) ≈
N∑

i=1

φ(~xi)fi(~x), (3.9)

so the integration by Eq. (3.6) is not necessary. We will use this result routinely

throughout the text.

- Bilinear splines fi(~x) are nonzero only in the square region with side 2∆ around

their centers ~xi, i.e. they are very localized. As it will be shown below, the use

of localized spline functions leads to the effective low complexity sparse matrix

formulation of the AO control.

4. Geometrical optics propagation through atmosphere is assumed. This means

that the light propagates along straight paths so that the resulting phase perturbation

in the aperture plane is obtained by summing up phase values on each individual screen

projected along the straight rays emanating from each guide star. Only phase effects

of turbulence are taken into account, which is justified for weak turbulence on good

astronomical sites. Intensity fluctuations (scintillation) are neglected. With bilinear

spline approximation applied, the action of kth phase screen projected on the main

aperture along the lth guide star or scientific target is

φl,k(~xa) =
Nl∑
i=1

φk,iflk,i(~xa), (3.10)

where

- {φk,i} are kth screen phase approximation coefficients,

- Nl is the number of approximating splines in lth phase screen,

- the law of the kth phase screen coordinates ~xk projection onto aperture coordi-

nates ~xa is

~xa =
1

1− hst
l /hps

k

(~xk − hps
k

~θl), (3.11)
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- {flk,i}N
i=1 is the set of bilinear splines defined on the kth phase grid and projected

onto the aperture along lth guide star,

- θl, hst
l are the lth guide star (scientific target) direction angle and altitude, re-

spectively,

- hps
k is the kth phase screen altitude.

The important characteristic of the turbulence that needs to be specified is the

covariance matrix Cφφ = 〈~φ~φT 〉 of the phase approximation coefficients vector ~φ. In the

framework of the layered atmosphere model with statistically independent phase screens

Cφφ-matrix has the block-diagonal structure, where each block Cφφk
corresponds to a

kth layer. It should be noted that, in the case of Kolmogorov turbulence, the zero

frequency component, so called “piston”, is infinite, which results in infinite elements

of matrix Cφφk
. In order to obtain the finite phase covariance matrix, the piston

component should be removed from the phase distribution φ(~x). It can be done in two

ways:

• Phase average subtraction (piston removal). The piston or DC component

of the phase φ(~x) defined on the region S is its average φ(~x) over this region:

φ(~x) =
1
|S|

∫
S

φ(~x)d~x, |S| =
∫

S
d~x. (3.12)

Let bilinear splines are considered as the basis set {fi(~x)}N
i=1 for phase dis-

cretization and S = ∪N
i=1suppfi(~x), i.e. the union of all spline supports. Then

|S| → N∆2 as N → ∞. Substituting the bilinear spline phase approximation

(3.9) and Eq. (3.7) into Eq. (3.12), and performing integration we get

φ(~x) =
1

N∆2

∫
S

φ(~x)d~x ≈ 1
N

N∑
i=1

~φi. (3.13)

34



Thus, we can write for the bilinear approximation coefficients ~̃φ of the piston-

removed phase

~̃φ = ~φ− 1
N

N∑
i=1

~φi = Pps
~φ, (3.14)

where the piston removal projector matrix Pps is defined as

Pps = I − 1
N



1

1
...

1


[

1 1 . . . 1

]
. (3.15)

Since, according to Eq. (3.9), the bilinear spline approximation coefficients ~φi

are equal to the phase values φ(~xi) in the grid points, the piston-removed phase

covariance matrix for Kolmogorov turbulence takes the form [52]

(C̃φφk
)ij = 〈

[
φ(~xi)−

1
N

N∑
s=1

φ(~xs)

][
(φ(~xj)−

1
N

N∑
t=1

φ(~xt)

]∗
〉 (3.16)

= −1
2

[
Dk(~xi − ~xj)−

1
N

N∑
s=1

Dk(~xi − ~xs)−
1
N

N∑
s=1

Dk(~xs − ~xj) +
1

N2

N∑
s=1

N∑
t=1

Dk(~xs − ~xt)

]
,

where Dk(~x − ~y) = 6.88
(
|~x−~y|
r0k

)5/3
is the Kolmogorov structure function of kth

layer. With the structure matrix

(Dk)ij = Dk(~xi − ~xj)

introduced, the Eq. (3.16) can be recognized to have a simple form

C̃φk
= −1

2
PpsDkP

T
ps, (3.17)

which is convenient to compute also the piston-removed von Karman phase co-

variance matrix

C̃φk
= PpsCφk

P T
ps, (3.18)
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where the full von Karman phase covariance matrix is [62]

Cφφk
= 3.089r

−5/3
0k

(L0/4π)5/6K5/6[2πρij/L0]ρ
5/6
ij

Γ(11/6)
, ρij = |~xi − ~xj |,

K5/6[·] is the modified Bessel function of the second kind of order 5/6, Γ[·] is the

gamma function, L0 is the von Karman turbulence outer scale.

• Phase referencing or “point removal”. Since the relative phase difference for

any pair of points is always finite, it is possible to regard the phase distribution

as a set of phase differences with respect to the phase at some fixed reference

point. This gives for “point-removed” bilinear spline approximation coefficients

vector:

~̃φ = ~φ− ~φref = Ppt
~φ, (3.19)

where Ppt is the point removal projector matrix

Ppt = I −



1

1
...

1


[

0 . . . 0 1 0 . . . 0

]
, (3.20)

where 1 stands on the position corresponding to the reference point. This is

another, equivalent, way to extract the finite part from the turbulence-induced

phase error. The expressions for the point-removed phase covariance matrices for

Kolmogorov and von Karman turbulence are the same as Eqs. (3.17) and (3.18)

with Pps replaced with Ppt.

Note that piston- or point-removed phase covariance matrices are positive semi-definite

and have rank deficiency 1.
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3.2 Wave front sensor model.

In what follows we assume the star-oriented approach, i.e. the turbulence probing in

the directions of several guide stars (see Fig. 2.3) with a WFS assigned to each guide

star and conjugated to the main aperture. The equation relating WFS measurement

vector ~s to the phase vector ~φ independently of the WFS type is assumed to be linear

time invariant in the form

~s = Gφ
~φ + ~n, (3.21)

where

- vector ~s is a concatenation of the wave front x− and y−slope sub-vectors read

out from each WFS,

- vector ~φ is a concatenation of phase approximation coefficient sub-vectors of each

turbulence layer,

- Gφ is the phase-to-WFS interaction matrix, one of the most important parts of

the AO system mathematical model. Gφ-matrix is computed in a way that the

individual WFS measurement is modelled as the gradient of the aperture plane

phase averaged over the subaperture,

- ~n is the concatenation vector of WFS x− and y−slope noise components assumed

to be zero mean Gaussian temporally white, uncorrelated with vector ~φ and with

one another.

It is important to notice that the WFS does not measure the wave front phase itself,

but rather its spatial gradient and, therefore, is insensitive to piston. With Ngs guide

stars used in the system we can use Eq. (3.10) to write for the readout from a single
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WFS subaperture Wp illuminated by the light that passed through Nscr phase screens

~sl,p =

 ~sx

~sy


l,p

=
Nscr∑
k=1

N∑
i=1

φk,i
1

|Wp|

∫
Wp

∇flk,i(~xlk)d~xlk, l = 1, . . . , Ngs, (3.22)

|Wp| =
∫

Wp

d~xlk,

from where the expression for a Gφ-matrix element in Eq. (3.21) takes the form

(Gφ)lk,pi =

 Gφ,x

Gφ,y


lk,pi

=
1

|Wp|

∫
Wp

∇flk,i(~xlk)d~xlk, (3.23)

where aperture coordinates ~xlk are the kth phase screen coordinates projected along

lth guide star according to Eq. (3.11). It is seen from Eq. (3.23) that phase-to-WFS

interaction matrix of MCAO system has Ngs×Nscr blocks and a (l, k)-block corresponds

to the WFS measurement sub-vector regarded as an action of the kth phase screen on

the lth WFS.

The theoretical importance of the phase-to-WFS interaction matrix is that it quan-

tifies the quality of phase measurement. The singular values of Gφ are a measure of

the turbulence-induced phase coupling to the WFS measurement. Some of the singular

values being small or zero means that there exist phase configurations that are not or

only weakly sensed by WFS. These configurations are given by the singular vectors

of Gφ-matrix and called the unobservable modes of the MCAO system. The fraction

of turbulence projected on the unobservable modes cannot be detected by the WFS

and, therefore, compensated. This puts the lower limit to the quality of turbulence

compensation. Thus the WFS configuration should be chosen by a designer in a way

to minimize the null space of the Gφ-matrix.

In order to complete the measurement model, the covariance matrix Cnn of the WFS

noise needs to be specified. It is a reasonable assumption that the noise is uncorrelated

between different subapertures and also between x− and y−slope readings from a
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single subaperture. This results in the block-diagonal covariance matrix of WFS noise

~n, where the blocks are collected in pairs, each corresponding to the x- and y-slopes

covariance sub-matrices, which themselves are diagonal. Their elements are equal to

noise variances that can be computed by Eq. (2.32) with the proportionality factor

that depends on the amount of light falling on each subaperture.

The use of laser guide stars presents an additional difficulty because of the uncer-

tainty in the angular position of the LGS spot in the sky due to atmospheric turbulence

[61]. The random movement of LGS spot around its average angular position results

in random average slope, or global tilt, of the phase distribution on the main aperture

the WFS is conjugated to. This makes impossible to extract the information about

the global tilt from measurements with the use of a LGS. Because of the differentiat-

ing nature of the WFS measurement, the tilt in the phase transforms into constant in

the measurement. This constant part of the measurement can be removed the same

way as it is done for the piston in the turbulence phase, which results in piston- or

point-removed noise covariance matrix:

C̃nn =

 P 〈sxsT
x 〉P T 0

0 P 〈sys
T
y 〉P T

 , (3.24)

where P stands for Pps or Ppt and 〈sxsT
x 〉, 〈sys

T
y 〉 are diagonal matrices. Note that piston

removal makes the WFS noise spatially correlated. The main problem, however, is that

LGS is unable to provide global tilt information and additional NGSs for global tilt

sensing are thus required. Fortunately, the anisoplanatic angle for just tilt component

of the turbulence phase error is much larger than the one for the whole turbulence so

it is easier to find the natural beacon for sensing just the tilt [61].
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3.3 Deformable mirror model.

A linear time-invariant model is assumed for the deformable mirrors. In analogy

with the atmospheric phase screens deformable mirrors are regarded as the infinitely

thin phase transparencies placed at the DM conjugation planes in the atmosphere. The

action of the mth DM projected on the main aperture along the sth scientific direction

(direction on sth scientific target) is the linear combination of the commands applied

to the actuators

φs,m(~xa) =
Mm∑
i=1

am,irm,i(~x− ~θsh
dm
m ), (3.25)

where

- {am,i}N
i=1 are mth DM actuator commands,

- Mm is the number of actuators in mth DM,

- {rm,i}N
i=1 are the mth DM influence functions,

- ~x and ~xa are the coordinates in mth DM and main aperture planes, respectively,

- ~θs, hdm
m are the sth scientific direction, and mth DM conjugation altitude, respec-

tively.

The shape of the DM’s influence functions r(~x) depends on the DM design but generally

resembles an inverted bell with a small area of localization [55]. The influence functions

are similar in many ways to the localized spline functions and are often approximated

by splines.

The DM-to-WFS interaction matrix Ga, another key element of the AO system

mathematical model, describes the relationship between the command applied to DMs

and the measurement of the phase created by this command and read out from WFSs
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in the form

~s = Ga~a,

where ~s and ~a are the concatenations of all WFS measurement and DM command

sub-vectors, respectively. Ga-matrix is defined the same way as the Gφ-matrix through

Eq. (3.23) with obvious replacements of flk,i(~xlk) with rm,i(~xm,i − ~θsHm), Ngs with

Nsc, the number of scientific directions, and Nsc with Ndm, the number of deformable

mirrors in the system. Ga-matrix of the MCAO system also has block structure with

Nsc ×Ndm blocks and each (s,m)-block representing the action of mth DM on the sth

WFS.

3.4 Temporal discretization.

The temporal dynamics of the ~φ(t), ~s(t) and ~a(t) vectors are discrete owing to the

discrete readout from a Coupled Charge Device (CCD) normally used in WFS. CCD

integration time is the natural clocking period of the AO controller that specifies the

speed requirements for all hardware involved. Thus, the temporal discretization is done

by sampling the time-dependent vectors with sampling interval 4t equal to integration

time of the CCD used in WFS. In particular, the WFS measurement at time t is

~st =
∫ t

t−4t
~s(t)dt ≈ ~s(t)4t, (3.26)

where subscript “t” stands now for the discrete time. The sampling rate is assumed

to be high enough to correctly represent the turbulence continuous temporal behavior

according to the Nyquist criterion, that is, it should be greater than twice Greenwood

frequency for atmospheric turbulence observed on the astronomical site. In practice

the sampling frequency is chosen to be much larger than 2fG in order to reduce the

time delay between measurement and control thus maintaining the AO system stable,

the issue, which will be carefully addressed in the next chapters.
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3.5 Performance estimation.

In this section the discretized model for the basic MCAO system performance metrics

will be described. The main quantity all performance metrics can be derived from is

the instantaneous residual phase distribution in the main aperture

εt(~xa) = φturb
t (~xa)− φdm

t (~xa),

where φturb
t and φdm

t are the turbulence phase and the DM correction projected onto

the main aperture. Given εt(~xa), the instantaneous optical field distribution in the

focal plane of the telescope (instantaneous coherent impulse response ht(~xa)) can be

found by the Fraunhofer diffraction integral

ht(~xf ) =
1

iλf
exp

[
k

2f
| ~xf |2

] ∫
S

exp [ε( ~xa)] exp
[
i
2π

λf
~xf · ~xa

]
d~xa, (3.27)

which is just a scaled Fourier transform of the main aperture field distribution. In

Eq. (3.27), f is the telescope’s focal distance, ~xa, ~xf are the aperture and focal plane

coordinates, λ the observation wavelength. Average point-spread function (PSF) over

exposure time

〈|h(~xf )|2〉t =
Nexp∑
t=1

|ht(~xf )|2

gives an approximation to the average PSF (2.24) and, thus, Strehl ratio. The Fourier

transform of 〈|h(~xf )|2〉t gives an approximation to the system OTF (2.23).

It is obvious from Eq. (3.27) that piston fraction of ε( ~xa) results in just constant

phase factor in the focal plane and thus does not affect system’s blur. In order for the

aperture phase residual itself to be a good measure of system’s performance the piston

term should be subtracted resulting in the piston-removed aperture phase residual

ε̃(~xa) = ε(~xa)−
1
|S|

∫
S

ε(~xa)d~xa, |S| =
∫

S
d~xa,
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With the aid of Eqs. (3.10) and (3.25) we can write for the residual phase εl in the

direction of the lth scientific target

εl(~xa) =
Nscr∑
k=1

Nk∑
i=1

φk,iflk,i(~x− ~θlh
ps
k )−

Ndm∑
m=1

Mm∑
j=1

am,jrlm,j(~x− ~θlh
dm
m ). (3.28)

A convenient MCAO system performance criterion, which can be used as a merit func-

tion in optimization process, is the aperture residual phase variance integrated over

the aperture and field of view. With Nsc discrete scientific directions considered the

integrated residual phase variance is

σ2
ε =

1
|S|

Nsc∑
l=1

wi

∫
S

d ~xa〈ε̃2l (~xa)〉,
Nsc∑
l=1

wl = 1, (3.29)

where {wl}Nsc
l=1 are the relative weights assigned to each scientific direction, 〈〉 defines

the average over the joint statistics of the atmospheric turbulence and measurement

noise. Substitution of Eq. (3.28) and simplification gives the expression for σ2
ε in the

form

σ2
ε = 〈

 ~φ

~a


 R̃φφ R̃φa

R̃aφ R̃aa

[ ~φT ~aT

]
〉, (3.30)

where R̃ is the piston-removed Gramm matrix of the function system {f(~xa), r(~xa)},

whose blocks are:

- Phase grammian

R̃φφ = Rφφ − ΦΦT ,

Rφφ = diag(w1R
1
φφ, . . . , wNscR

Nsc
φφ ), (3.31)

(Rl
φφ)kk′,ii′ =

1
|S|

∫
S

d~xflk,i(~x− ~θlh
ps
k )flk′,i′(~x− ~θlh

ps
k′ ),

Φk,i = diag(w1Φ1, . . . , wNscΦ
Nsc),

Φl
k,i =

1
|S|

∫
S

flk,i(~x− ~θlh
ps
k )d~x.
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- DM grammian

R̃aa = Raa −AAT ,

Raa = diag(w1R
1
aa, . . . , wNscR

Nsc
aa ), (3.32)

(Rl
aa)mm′,jj′ =

1
|S|

∫
S

d~xrlm,j(~x− ~θlh
dm
m )rlm′,j′(~x− ~θlh

dm
m′ ),

Am,j = diag(w1A
1, . . . , wNscA

Nsc),

Al
m,j =

1
|S|

∫
S

rlm,j(~x− ~θlh
dm
m )d~x.

- Phase-DM cross grammian

R̃φa = Rφa − ΦAT ,

Rφa = RT
aφ = diag(w1R

1
φa, . . . , wNscR

Nsc
φa ), (3.33)

(Rl
φa)km,ij =

1
|S|

∫
S

d~xflk,i(~x− ~θlh
ps
k )rm,j(~x− ~θlh

dm
m ).

Gramm matrix R is one more fundamental quantity that characterizes a MCAO

system. This matrix is symmetric positive semi-definite. Its singular values quantify

the amount of coupling between the phase on phase screens or on deformable mirrors

and the accumulated phase on the main aperture. Some of the singular values being

small or zero means that there exist some phase or DM shape configurations that

either do not, or only weakly affect the residual phase in the aperture. These shape

configurations, or modes, are given by the corresponding singular vectors of the Gramm

matrix. The turbulence phase modes (singular vectors of Rφφ) that do not affect the

aperture phase are called unseen modes of the system. Any amount of wave front

error that is a linear combination of the unseen modes is exactly cancelled in the

aperture plane and does not deteriorate system’s performance. Nevertheless, since the

MCAO system compensates turbulence in the volume, it will attempt to compensate

the unseen modes, which may result in excessive amount of control or even instability.
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The analogous DM modes (singular vectors of Raa) are called uncontrollable, and have

the same negative impact on the MCAO system. Unfortunately, the significant number

of unseen and uncontrollable modes are usually present in the MCAO systems, which

presents a serious difficulty for the designer. On the other hand, the third kind of

modes, the ones belonging to the null space of the full R-matrix will show that there

exist combinations of turbulence and phase shapes that exactly cancel out the aperture

residual, which means that at least part of the turbulence can be compensated by DMs

with zero fitting error.

Computation of the Gramm matrix elements given by Eqs. (3.31) - (3.33) requires

a large number of double integrals to be evaluated. An approximation of the Gramm

matrix that is easier to compute can be done in the following way. Let the residual

phase in the aperture be approximated with some set of basis functions {ai}∞i=1

εl(~xa) ≈
Na∑
i=1

εl,iai(~xa), (3.34)

e.g. bilinear splines. The piston-removed aperture and FoV averaged residual phase

variance (3.29) is thus approximated as

σ2
ε ≈ 〈~εT W̃~ε〉, (3.35)

where ~ε is the concatenated vector of approximation coefficients in Eq. (3.34),

W̃ = W − V V T , (3.36)

W = diag(w1W
1, . . . , wNscW

Nsc),

(W l)ij =
1
|S|

∫
S

d~xaai(~xa)aj(~xa), ∀l, l = 1, . . . Nsc,

V = diag(w1V
1, . . . , wNscV

Nsc),

(V l)i =
1
|S|

∫
S

d~xaai(~xa), ∀l, l = 1, . . . Nsc.
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Note that W l- and V l-matrices are the same for all blocks, and, owing to the shift-

invariance property of the functions ai(~xa) normally used as a basis set, W l- and

V l-matrices have lots of equal elements, which greatly simplifies their calculation.

Further, let the approximations of the phase screen basis functions flk,i(~xa) and

DM influence functions rlm,j(~xa) projected onto the aperture be

flk,i(~xa) ≈
Na∑
p=1

flk,ipap(~xa), (3.37)

rlm,j(~xa) ≈
Na∑
p=1

rlm,jpap(~xa). (3.38)

Then, according to Eq. (3.28), the coefficients in the aperture residual phase approxi-

mation (3.34) can be expressed in matrix form

~ε = Hφ
~φ−Ha~a, (3.39)

where the elements of phase-to-phase interaction matrix Hφ and DM-to-phase interac-

tion matrix Ha are

(Hφ)lk,ip = flk,ip, (3.40)

(Ha)lm,jp = rlm,jp. (3.41)

These elements can also be easily computed especially in the case of the spline functions

taken as the basis sets for all the phase expansions. The computational ease, however,

comes for the price of quite a large H-matrix, for it is necessary to take enough terms

to obtain a reasonably good approximation in Eqs. (3.37) and (3.38). Thus, the

convenient discretized model for the integrated phase variance is

σ2
ε = 〈(Hφ

~φ−Ha~a)T W̃ (Hφ
~φ−Ha~a)〉, (3.42)

which is the main result of this section.
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3.6 Phase reconstructors.

From the statistical estimation theory standpoint, since the atmospheric turbulence

is believed to be a zero mean, stationary, Gaussian random process, an optimal phase

estimator is supposed to be linear time invariant [64]. AO control is a process of finding

the DM command vector ~at at time t by application of some linear time invariant

operator R (matrix in discretized case) to the set of current and past measurements

~St = [~st~st−1...]T of the atmospheric turbulence φt:

~at = R̂~St (3.43)

such that to minimize the discretized H2-norm of the aperture phase residual (H2-

control [13, 66]):

R̂ = arg min
R
〈(Hφ

~φt −HaR~St)T W̃ (Hφ
~φt −HaR~St)〉, (3.44)

where Hφ, Ha, W̃ are the matrices defined in the previous section. The alternative way

to find the optimal reconstructors is to minimize the H∞ norm of the phase residual

(H∞-control [32, 66])

||ε(~xa)||∞ = max
~xa∈S

|ε(~xa)|,

but this is beyond the scope of this dissertation.

Three the most important approaches to find the optimal reconstructor R̂ considered

in adaptive optics are

- Least Squares (LS)

- Non-dynamic Minimum Variance (MV)

- Dynamic Minimum Variance or Kalman Filter (KF)
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3.6.1 Least Squares (LS) reconstructor.

The LS reconstructor is the simplest and the most widely used in conventional adaptive

optics reconstructor. It is computed in the following way.

• Only current measurement, ~st, is taken to compute the current DM command

vector ~at, which is referred to as non-dynamic wave front reconstruction.

• No turbulence statistics are taken into account as an a priori knowledge.

• Instead of variational problem (3.44) the simpler problem of minimization the

residual between the current measurement and the actuator command action

read out from the WFS

âLS
t = arg min

~a
||~st −Ga~a||2 (3.45)

is solved, which yields

R̂LS = G†
a, (3.46)

where G†
a is the pseudo-inverse of the DM-to-WFS interaction matrix usually defined

through the Truncated Singular Value Decomposition of Ga (TSVD):

G†
a~s =

Ntr∑
n=1

σ−1
n ~vn~uT

n~s, (3.47)

where σn, ~un, ~vn are the singular values, left and right singular vectors of Ga, respec-

tively, Ntr is the number of nonzero singular values kept, which is always less than

the size of Ga because of the non-observable modes present. Another way to compute

the pseudo-inverse, which may lead to low computational complexity algorithms, is

Tikhonov regularization, when the minimization problem (3.45) is modified as

âLS
α,t = arg min

a
||~st −Ga~a + α~sT

t L~st||2, (3.48)
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where L and α are the regularization operator and regularization parameter that damp

the singularity of Ga and yield the alternative form of LS reconstructor matrix

R̂LS
α = G†

a,α = (GaG
T
a + αL)−1GT

a . (3.49)

The advantages of the Least Squares approach are its simplicity and relatively low

computational complexity. On the other hand, since the usually available a priori

information about turbulence and measurement statistics is not taken into account, LS

reconstructor is not optimal with respect of giving the smallest residual error. However,

simple modifications such as the clever choice of the regularization operator L [45], can

be made to significantly improve the quality of LS reconstructor.

3.6.2 Minimum Variance reconstructor.

To obtain the non-dynamic MV reconstructor we again set ~St = ~st, that is just the

current measurement. Solving the minimization problem (3.44) in this case yields [47]

R̂MV = F̂ Ê, (3.50)

where the estimation Ê and fitting F̂ matrices are defined as

Ê = CφφGT
φ (GφCφφGT

φ + Cnn)−1 (3.51)

= (GφC−1
nn GT

φ + C−1
φφ )−1GT

φC−1
nn ,

F̂ = (HaW̃HT
a + αL)−1HT

a W̃Hφ, (3.52)

L, α are the regularization operator and regularization coefficient to account for the

unseen and uncontrollable modes.

It is not difficult to see that the estimation and fitting matrices can be defined as

solutions of two independent deterministic minimization problems:
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1. Optimal phase estimation

~̂φt = Ê~st = arg min
~φ

(
‖~st −Gφ

~φ‖2
C−1

nn
+ ‖~φ‖2

C−1
φφ

)
, (3.53)

2. Optimal fitting of the DM commands to the phase estimate

~̂at = F̂ ~̂φt = arg min
~a

(
‖Hφ

~̂φt −Ha~a‖2
W̃

+ α‖~a‖2
L

)
, (3.54)

where a weighted norm of the vector is defined as

‖~v‖2
W = ~vT W~v. (3.55)

Note that the first minimization problem deals with all the statistical priors involved

in the problem, whereas the second one has to do only with AO system geometry. The

possibility to split the minimization problem into two independent parts is known as

the Separation Principle of the H2-control [66].

Because of the additional a priori information about turbulence and noise statistics

involved, which comes in the form of covariance matrices, minimum variance approach

provides lower reconstruction mean square error. As it is seen from the Eq. (3.51) the

Cφφ-matrix serves as a Tikhonov regularization operator and removes the unobservable

modes from the null space of matrix Gφ. Minimum Variance reconstructor is currently

considered the most promising control algorithm for the new generation of the AO

systems. More careful study of the MV reconstructor and its modifications is presented

in Chapters 4 and 6.

3.6.3 Kalman Filter.

The Kalman Filter, whose detailed description will be presented in Chapter 5, is known

as a dynamic statistical estimation method, which, in order to get the current turbu-

lence phase estimate, uses both current and all the past measurements. In addition
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to the turbulence and measurement noise second order statistics also used in MV, KF

also employs a linear autoregressive model, the crucial part of Kalman filter approach,

used to describe the turbulence dynamics:

~Xt+1 = A ~Xt + ~wt+1, (3.56)

where the state ~Xt is a concatenation of the current and some past phase vectors ~φt,

A is the state transition matrix and ~wt+1 is the vector of driving noise assumed to be

zero mean temporally white with known spatial covariance matrix Cww and uncorre-

lated with the measurement noise ~nt. This dynamics model enables an approximate

prediction of the turbulence time evolution, which can be effectively used for reduction

of the temporal error (see Sec. 2.5.2).

To obtain Kalman Filter reconstructor we set ~St to be equal to a concatenation of

the current and all past measurements

~St = [~s0 . . . ~st]T . (3.57)

The optimal estimator R̂KF
t then depends on time because of growing size of the input

data set employed at each time step. The separation principle also holds for the Kalman

Filter [56, 66] and results in the minimization problem in Eq. (3.44) being split into

1. Fitting problem in the form of Eq. (3.54).

2. Kalman estimation problem, which is normally written in the form of the orthog-

onality principle

〈(~φt − ÊKF
t

~St)~ST
t 〉 = 0, (3.58)

which, together with Eq. (3.56) is used to derive the optimal Kalman estimator

ÊKF
t .
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Since the Kalman Filter is derived from formally the same variational principle the

non-dynamic MV reconstructor is based on, KF can be considered the best possible

minimum variance estimator for it takes into account all measurements available.

3.7 Monte-Carlo simulations.

Because of the high complexity of MCAO systems analysis and the fact that the inputs

of the AO system, the turbulence-induced phase errors and measurement noise, are

stochastic processes the most convenient way to assess the system’s performance is

through Monte-Carlo simulations. Another motivation to use Monte-Carlo simulations

is the fact that, despite the linearity assumptions made for all of the MCAO system

elements, the atmospheric turbulence itself is not a linear process, i.e. it cannot be

modelled as the output of some linear dynamic system driven by the white noise. If

it were a case, the time-consuming Monte-Carlo simulations would be avoided and all

the MCAO system performance metrics, such as aperture phase residual ~ε(~xa) and DM

control vector ~at dynamics could be found theoretically using the tools of the linear

system analysis [66].

The main steps of the Monte-Carlo simulation of an AO system can be summarized

in the form of the following algorithm.

Monte-Carlo simulation of the MCAO system

• BEGIN

– Load the atmosphere parameters: C2
n(z), ~v(z), L0, l0.

– Use the algorithm described in Sec. 3.1 to create the layered model of the

atmosphere, compute the integrated turbulence parameters r0, θ0, fG using

the corresponding equations from Secs. 2.2, 2.3.
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– Specify the AO system parameters: primary and secondary mirrors’ di-

ameters, number and geometry of DMs and WFSs, WFS noise levels and

integration time, scientific and guide stars’ altitudes, directions and types.

– Compute the fundamental system’s matrices Gφ, Ga, Hφ, Ha, W̃ using the

corresponding equations of this chapter.

– Compute the reconstruction matrix R̂.

– Begin Monte-Carlo simulation loop

∗ Generate random phase pattern ~φt on the phase screens according to

the statistical specifications (r0, PSD) for each screen.

∗ Generate WFS readout ~st using Eq. (3.21).

∗ Apply a delay between the turbulence phase and WFS measurement

to model the time taken by the real measurement and reconstruction

precesses.

∗ Apply the reconstructor to the delayed WFS measurement vector gen-

erated on the previous step to obtain the current DM commands vector

~̂at.

∗ Find the instant aperture phase residual vector ~εt by Eq. (3.39).

∗ Compute the instant PSF, OTF, Strehl ratio and the residual phase

variance by equations given in Sec. 3.5.

∗ Accumulate the instant values of performance metrics to obtain the long

exposure PSF, OTF, Strehl ratio and the residual phase variance.

– End Monte-Carlo simulation loop

• END

The described Monte-Carlo simulations must be repeated many times for different sta-

tistical realizations of the atmospheric turbulence and the corresponding performance
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metrics must be averaged to obtain the approximations for their statistical mean values.

The simulation process has two random inputs: measurement noise and turbulence

phase. Since the WFS noise is supposed to be Gaussian temporally and spatially

uncorrelated, its generation does not present any difficulty. On the other hand, high

fidelity turbulence phase generation is the nontrivial problem. To be more specific,

it is necessary to generate the random coefficients vectors ~φt in the turbulence phase

approximation given by Eq. (3.5), which are Gaussian zero-mean random variables

with the covariance matrix specified by Kolmogorov or von Karman statistics. Without

going into details we mention that the most widely used methods of random turbulence

phase generation are the following. Generation of random coefficients of the phase

approximation by Zernike polynomials can be done by the method described in [33]. In

the Fourier domain [38, 39] and fractal-based [40] turbulence phase generation methods

the random phase values on a set of grid points are generated. According to Eq. (3.9),

these values can be taken as the bilinear approximation coefficients of the continuous

turbulence phase distributions.

The Fourier domain phase screens generation with tip-tilt correction [41] has been

used in the Monte-Carlo simulations performed by the author because of its simplicity

and high accuracy. The wind shift of the phase screens according to the Frozen Flow

Hypothesis can be modelled by:

• Direct shifting of the discrete phase grid. This is the most accurate method,

though it has serious restrictions:

- In order to avoid interpolation and thus loose accuracy, only the shifts, which

are multiples of the grid spacing, are allowed.

– Direction of the wind should be along the grid lines, which is not a problem

for SCAO, where the laboratory coordinate system orientation can always
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be chosen to coincide with the wind direction, but is a problem for MCAO,

where several phase screens are moving in different directions.

• Fourier domain shift by means of the shift theorem for the Fourier transform

φ(~x− ~v4t) = F−1{exp[−ik4t~v · ~f ]F{φ(~x)}}, (3.59)

where ~x, ~f are the spatial and frequency domain coordinates, ~v the wind speed

vector, 4t the sampling time interval, k = 2π/λ the wave number. This model

allows shifts of any magnitude and direction but, when discretized, Eq. (3.59) is

only an approximation and may introduce significant error.

One more important comment about the Monte-Carlo simulations is that the phase

estimate ~̂φ made with the aid of the wave front reconstructor always has lower resolution

than the input phase screen generated, that is, the number of basis functions in Eq.

(3.5) taken to approximate the phase estimate is smaller than number of functions

to approximate the input phase. The phase estimate resolution and, therefore, its

spectral content, should be taken equal or higher than the DM actuator grid resolution

to generate an adequate DM commands on the fitting step. On the other hand, the

phase screens that are the input of the Monte-Carlo simulation are generated with much

higher resolution to represent higher spatial frequencies present in real turbulence that

are beyond the pass-band of the AO system. This allows to evaluate the error induced

by the uncompensated fraction of the turbulence. In order to find the right resolution

of the input phase screens we note that inner scale l0 of the turbulence gives the size

of the smallest detail in phase patterns. With l0 = 1 mm on the turbulence ground

layer [33] and two samples taken to represent the smallest detail, the resolution of the

phase screen should equal 2 mm−1, which makes 400K grid points for a 10 × 10 m

square phase screen and is far beyond the current computational limitations. On the

other hand, because of the fast (−11/3)-power roll-off of the turbulence phase power
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spectrum, the highest frequency components make very small contribution and quite

accurate representation of the input turbulence can be done by discrete phase screens

with relatively low resolution. The empirical rule to choose the input phase screens

resolution used in the simulations presented below is the following: the reconstruction

error of an AO system is estimated by a sequence of Monte-Carlo simulations with input

phase screens of increasing resolution and the process is stopped at the resolution above

which the reconstruction error change is no more than 10%. It has been found by trial

and error that having the input phase screens resolution eight times bigger than that

of the finest DM actuator grid works well enough for all cases. It also needs to be

mentioned that, in order to correctly represent the aperture phase residual (3.42), the

resolution of the aperture phase grid should be at least twice the highest resolution of

the phase screens. Having two sets of phase screens with different resolution for the

reconstruction and for the simulation input implies the necessity to have two sets of the

system matrices: Gφ,Hφ-matrices computed on the high resolution grids and used for

performance estimation and the same set of matrices computed on the lower resolution

grids and used to build the reconstructor.

More detailed description and modifications of the mathematical approach to model

MCAO systems described in this chapter will be used below in connection with analysis

of several important special cases of AO control.
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CHAPTER 4

Robustness study of the sparse non-dynamic

Minimum Variance controller

The Minimum Variance (MV) control briefly described in Sec. 3.6.2 is one of the most

appealing approaches for the next generation of large scale AO. The two most important

features that make MV more advantageous in comparison to other approaches are:

- The use of a priori information about atmospheric turbulence statistics in the

form of covariance matrices improves the quality of turbulence compensation.

- It is possible to implement MV algorithm in sparse form with low computational

complexity.

Significant progress has been made in the development of MV algorithm both in

modal [51] and zonal [36] representations. In the theoretical aspect, MV approach has

reached the maturity level making it applicable for use in real AO systems, and there

comes a time to investigate some aspects of its practical implementation. One of these

aspects is the degree of robustness of the MV algorithm, that is, its sensitivity to the

errors and model uncertainties present in any real AO system. This chapter is the

account of the work made to quantify the degree of MV controller performance dete-

rioration as a function of various system errors. Section 4.1 describes low complexity

implementation of the MV algorithm, the core of the MV approach for large scale AO.
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Section 4.2 gives a brief theoretical description of the Pseudo Open-Loop algorithm,

the modification of MV control for closed-loop AO system operation, and methods for

its stability and performance analysis. Section 4.4 presents the results of this analysis

applied to the case of the Gemini-South 8 m telescope MCAO system. Conclusions are

given in Section 4.5.

4.1 Low complexity implementation of the MV

reconstruction algorithm.

From the computational standpoint, process of linear control of an AO system is a se-

quence of matrix-vector multiplications. If the reconstruction matrix is fully populated,

as it is the case for the TSVD LS reconstructor given by Eq. (3.47), a matrix-vector

multiplication can be done at the O(N2) cost, where N is the size of the matrix. On

the other hand, doing real time wave front reconstruction at the O(N2) cost for a giant

telescope AO system with N ∼ 105 degrees of freedom is computationally impossible

at this time. Finding the AO control algorithms with complexity lower than O(N2) is

one of the biggest challenges for the next generation of AO systems.

Complexity reduction of the control algorithms is possible, if the quite favorable

internal structure of the MCAO system model is taken into account. In the framework

of zonal approach all the basis functions to approximate phase distributions on phase

screens (Eq. (3.5)), aperture basis functions (Eq. (3.34)) and DM influence functions

(Eq. (3.25)) are considered to be localized ones. With such functions all the system

matrices become very sparse. For instance, each row of the phase-to-WFS interaction

matrices Ga,φ has the number of nonzero elements equal to the number of splines

falling fully or partially into a single WFS aperture area, each row of the phase-to-

phase interaction matrices Ha,φ contains no more than four nonzero elements and each
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row of the aperture weighting matrix W contains no more than nine nonzero elements.

The sparsity patterns of the G-, H- and W -matrices for the representative case of the

Gemini South 8-meter telescope MCAO system are shown of Fig. 4.1. Taking into

account that the size of the system matrices is a small multiple of the MCAO system’s

number of degrees of freedom, we can conclude that the number of nonzero elements

in the matrices, which actually determines the computational complexity of the matrix

manipulations, is O(N).

(a) (b) (c)

Figure 4.1: Sparsity patterns of the Ga- (a), Ha- (b) and W -matrices (c) of the model

for the Gemini South 8-meter telescope MCAO system. The filling factors are 2.49 %,

0.07 % and 1.5 %, respectively.

This makes it possible, with the aid of sparse matrix numerical methods, to create

MV-based AO control algorithms with nearly O(N) complexity. The idea of sparse

implementation of the MV reconstructor belongs to B. L. Ellerbroek [36], and is briefly

described below.

We repeat here for clarity Eqs. (3.51) and (3.52) that make the minimum variance
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estimator R̂MV = F̂ ÊMV :

ÊMV = (GφC−1
nn GT

φ + C−1
φφ )−1GT

φC−1
nn ,

F̂ = (HaW̃HT
a + αI)−1HT

a W̃Hφ,

where

- Gφ is a phase-to-WFS interaction matrix described in Sec. 3.2;

- Hφ, Ha, W̃ are phase-to-phase, phase-to-DM interaction and aperture weighting

matrices described in Sec. 3.5;

- Cφφ, Cnn are the phase and WFS noise covariance matrices described in Secs. 3.1

and 3.2, respectively;

- simple energy constraint L = I is taken for the regularization operator in the

fitting matrix equation.

Inspection of the estimation and fitting operators shows that they consist of the mixture

of sparse and non-sparse matrices. The non-sparsity comes from three different sources:

1. Non-sparse phase covariance matrix Cφφ and its inverse as it is seen from Eqs.

(3.17) or (3.18).

2. Low-rank terms in the form ~u~v T due to piston or point removal operation that

affect the phase and LGS noise covariance matrices as well as the aperture weight-

ing matrix.

3. Presence of matrix inverses that will turn a sparse matrix into a non-sparse one.
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4.1.1 Sparse approximation of matrix C−1
φφ .

To address the first difficulty mentioned the sparse approximation for matrix C−1
φφ has

been proposed [36]. The reasoning for it is the following. In the limiting case of the

very dense grid on the infinite phase screen the bilinear functional defined by the matrix

C−1
φφ can be approximated by its continuous counterpart:

~uT C−1
φφ ~v = ~uT 〈~φ~φT 〉−1~v (4.1)

=
∫ ∫

d~xd~x′u(~x)v(~x′)〈φ(~x)φ∗(~x′)〉−1

=
∫ ∫

d~kd~k′ũ(~k)ṽ∗(~k′)〈φ̃(~k)φ̃∗(~k′)〉−1

=
∫ ∫

d~kd~k′ũ(~k)ṽ∗(~k′)Φ−1(~k)δ(~k − ~k′)

=
∫

d~kũ(~k)ṽ∗(~k)Φ−1(~k),

where ~x, ~k are spatial and frequency coordinates, Φ(~k) is the turbulence PSD, the

Fourier transform of function f is denoted by f̃ . Plancherel theorem [42] is used to

switch from spatial domain integration to frequency domain integration and the fact

that in the infinite domain the Fourier components of a stationary random process form

Karhunen-Loeve basis [65] is used to turn double integration into single one. In order

to further simplify Eq. (4.1) we expand the von Karman PSD into Taylor series:

Φ−1(~k) ∝ (|~k|2 + k2
0)

11/6 =
11
3

k
5/3
0 |~k|2 +
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3

k
−1/3
0 |~k|4 + . . . , (4.2)

where k0 = 2π/L0, L0 is the outer scale, whose measured value for good astronomical

sites is around 50 m [63]. This makes k0 significantly less than 1 and shows that the

|~k|4-term will be predominant in the inverse PSD expansion. Keeping just this term

gives

~uT C−1
φφ ~v ∝

∫
d~kũ(~k)ṽ∗(~k)|~k|4 (4.3)
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=
∫

d~x∇2u(~x)∇2v∗(~x),

i.e. the quantity ~uT C−1
φφ ~v is approximately proportional to the inner product of the

Laplacians of ~u and ~v, thus the inverse phase covariance matrix can be approximated

as

C−1
φφ ≈ ηLT L, (4.4)

where L is a discrete Laplacian and η is the proportionality constant found from nor-

malization condition

η‖LT L‖ = ‖C−1
φφ ‖. (4.5)

The approximation in the form of Eq. (4.4) may seem to be too crude. However, it

works very well because since the C−1
φφ serves in the equation (3.51) as a regularization

term, its influence on the phase estimate is quite weak and thus insensible even to

large errors. Fig. 4.2 illustrates the process of the discrete Laplacian or curvature

matrix computation. Stars in this figure represent the points of the discrete phase

grid. The values near the stars are the nonzero coefficients needed to compute the

value of Laplacian at the interior point A or the boundary points B, C. The “fold-over”

boundary condition is applied, that is, the coefficient that should be assigned to the

point outside the boundary is added to the coefficient assigned to the point opposite to

it with respect to the central point, where the curvature is computed, so that the sum

of coefficients is made zero. The most important is that 2-D discrete Laplacian defined

on a square phase grid is a sparse matrix. This eliminates the non-sparse matrices from

the MV reconstructor, making it a combination of sparse matrices, low-rank matrices

and their inverses.
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Figure 4.2: Discrete Laplacian or curvature operator [70]. This figure illustrates the

coefficients of discrete Laplacian computation. Stars represent the grid points of the

discrete phase grid. The values near the stars are the nonzero coefficients needed to

compute the value of Laplacian at the interior point A or the boundary points B, C.
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4.1.2 Fast matrix inverses.

Explicit computation of the inverse of any matrix will most likely result in fully pop-

ulated inverse matrix and its multiplication by a vector requires O(N2) operations.

On the other hand, in the control process we do not need to explicitly specify R̂MV ,

we only need its action R̂MV ~s on the WFS measurement vector, which is a chain of

matrix-vector multiplications

~Ψ1 = GT
φC−1

nn~s, (4.6)

~Ψ2 = (GT
φC−1

nn Gφ + ηLT L)−1~Ψ1, (4.7)

~Ψ3 = (HT
a W̃Hφ)~Ψ2, (4.8)

~Ψ4 = (HT
a W̃Ha + αI)−1~Ψ3, (4.9)

It is obvious that multiplication operation (4.8) can be done at the O(N) cost because

of the “sparse + low-rank” form of matrix HT
a W̃Hφ. We can also show that the inverse

measurement noise covariance matrix C−1
nn has “sparse + low-rank” representation ow-

ing to its simple internal structure. Indeed, in the case of laser guide star, piston-

or point-removed noise covariance matrix C̃nn is given by Eq. (3.24). This matrix is

block-diagonal and each its block has the form C̃i = PCiP
T , where P is either piston or

point removal projector, Ci is the diagonal matrix. Note that C̃nn is rank-deficient and

cannot be directly inverted, so the pseudo-inverse C̃†
nn must be found instead. Piston

and point removal cases are treated separately:

• Pseudo-inverse of the C̃nn blocks in the piston-removed case can be found as

C̃†
i = (Ci +~1~1T )−1, (4.10)

where ~1 is the vector of ones. Applying the matrix inversion lemma

(M ∓ UV T )−1 = M−1 ± (M−1U)(I ∓ V T M−1U)−1(M−1U)T (4.11)
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we get the “sparse + low-rank” form for the pseudo-inverse

C̃†
i = C−1

i + γpt~v~v
T , (4.12)

~v = C−1
i

~1, γpt = (1−~1T C−1
i

~1)−1

• In the point-removed case we have

C̃i = PptCiP
T
pt = C0

i + (Ci)rr~1 0(~1 0)T , (4.13)

where r is the reference subaperture number, C0
i is the Ci-matrix with rth row

and column replaced with zeros, ~1 0 is the ~1-vector with zero on rth position. Zero

rows and columns can be removed resulting in full-rank matrix. From the matrix

inversion lemma its inverse is again in the “sparse + low-rank” form

C̃r
i = (Cr

i )−1 − γpt~v~v
T , (4.14)

~v = (Cr
i )−1~1 r, γpt = (1 + (Ci)rr(~1r)T (Cr

i )−1~1 r)−1,

where superscript “r” denotes the matrix with rth row and column removed.

Thus, in both cases matrix C̃†
nn can be represented by only a small number of nonzero

elements and the multiplication operation (4.6) can be done at the O(N) cost.

Doing operations (4.7) and (4.9), that is multiplication by an inverse matrix, is

equivalent to solving, correspondingly, the equation systems:

(GT
φC−1

nn Gφ + ηLT L)~Ψ2 = ~Ψ1, (4.15)

(HT
a W̃Ha + αI)~Ψ4 = ~Ψ3. (4.16)

The matrix of the first equation is singular because that both GT
φC−1

nn Gφ and LT L

have piston in their null space. In order to regularize this equation we can act the

65



same way as above with Cnn-matrix. Piston removal results in the pseudo-inverse in

the form

(GT
φC−1

nn Gφ + ηLT L)† = (GT
φC−1

nn Gφ + ηLT L + ZZT )−1, (4.17)

where piston projector Z is defined as

Zij =

 1, if phase point i is the reference point of screen j

0, otherwise
(4.18)

The action of such a pseudo-inverse on a vector results in the phase estimate with some

arbitrary but finite piston that does not affect the reconstructor performance. Point

removal can be done the following way:

(GT
φC−1

nn Gφ + ηLT L)† = [(P ′
pr)

T (GT
φC−1

nn Gφ + ηLT L)(P ′
pr)]

−1, (4.19)

where P ′
pr is the point removal projector (3.20) with its zero row removed. Action of this

matrix results in the estimate in the form of relative phase referenced to some point.

To return to the absolute phase, additional zero should be inserted to the reference

point position, which again gives phase estimate with some finite piston present.

Independently of the way regularization of the systems (4.15) and (4.16) is done,

their matrices are symmetric and have “sparse + low-rank” form. The important

implication of it is that the matrix-vector product with such matrices involved requires

only O(N) operations, so there is the possibility to find the algorithms for solving these

equations on-line that are faster than the direct multiplication by the matrix inverse.

Two effective ways of solving these equation systems can be considered.

• Choleski factorization of the sparse system matrix in the form

A = RT R, (4.20)

where R is an upper triangular matrix, which is also sparse, if matrix A is.

Special reordering, such as Symmetric Approximate Minimum Degree [44], of
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matrix elements prior to factorization can even somewhat increase the R-matrix

sparsity. With factorization (4.20) that can be pre-computed off-line, the on-line

equation system solution turns into sequential solving the two simple equation

systems

RT ~y = ~b, R~x = ~y (4.21)

with triangular matrices, which can be effectively done by back-substitution.

The complexity of this process is entirely determined by the number of nonzero

elements in the Choleski factor R. Practical computations show that due to the

specific structure of matrices involved in Eqs. (4.15), (4.16) the number of nonzero

elements in their Choleski factors is always larger than that of the initial matrix.

This difference is almost negligible in the case of SCAO but the block-structured

matrices of MCAO system normally produce the Choleski factor, which is almost

full. Thus, other methods for the MCAO control are needed.

• The iterative methods are another alternative for effective solving the equations

with large sparse matrices. By their nature, all iterative methods involve only

matrix-vector multiplications [67], which in the case of sparse matrices can be

done very fast. On the other hand, the overall complexity of the iterative solver

depends on the number of iterations necessary to converge to the solution with

prescribed accuracy. The convergence rate does not depend on the matrix size,

which is very favorable for large matrices, but only on the matrix condition num-

ber [68]. Unfortunately, the matrices to be inverted in MCAO control are nor-

mally ill-conditioned, which makes the direct application of iterative methods

ineffective. The cure for this problem is the use of pre-conditioning of the equa-

tion system, that is finding some invertible pre-conditioner matrix C, such that

the equivalent equation system

C−1Ax = C−1b (4.22)
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is better conditioned. Multi-grid algorithms is another very effective method to

iteratively solve ill-conditioned equation systems. The low complexity multi-grid

preconditioned iterative solvers for MCAO, whose brief description is given in

Appendix A, have been proposed by C. Vogel et. al. [43, 44, 45] and used to

achieve nearly O(N) complexity wave front reconstruction.

The conclusion of this section is that fast control algorithms for large-scale MCAO

based on the minimum variance approach can be created. Moreover, these algorithms

were tested through numerous simulations [47, 48] and proved to be the good candidates

for use in new AO systems both for their low computational complexity and good phase

error rejection. Additional study, however, is necessary to resolve the issues of these

algorithms operation on real systems, such as closed-loop stability and sensitivity to

the system errors (robustness). The next sections address these problems.

4.2 Closed-loop operation.

Idea of the Pseudo Open Loop MV controller.

An important assumption made in the course of the MV reconstructor derivation is

the so called “open-loop” operation, when the direct WFS measurement, ~s ol, of the

turbulence phase is available. In the real AO systems the direct phase measurement is

unavailable because of the insufficient dynamic range of the WFS. Instead, the “closed-

loop” operation is normally used. As shown on both Fig. 2.1 and 2.3, deformable

mirrors precede the wave front sensors, thus the phase residual from partially compen-

sated wave front rather than full phase error is measured. This implies that, when

operating in closed loop, we do not have information about the actual turbulence pro-

file. Instead, only the vector ~s cl
t of closed-loop slopes produced by uncompensated

part of the turbulence profile is available. We want to use this information to find the
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update 4~̂φt to the phase profile estimate ~̂φt−1 made on the previous step such that,

according to the minimum variance philosophy,

4~̂φt = Êcl~s cl
t = arg min

4~φ

(
‖~s cl

t −Gφ4~φ‖2
C−1

nn
+ ‖4~φ‖2

C−1
44

)
. (4.23)

Note that the correct regularization term now is C−1
44 , the inverse covariance of the

turbulence residuals after DM compensation, but this quantity does not have a tractable

analytical expression. On the other hand, trying to replace C−1
44 with C−1

φφ proves to

be unreasonably crude approximation. Moreover, it normally causes instability [46].

A simple possible cure was proposed in [47] and is called Pseudo Open-Loop Control

(POLC). The idea of POLC is the following:

1) Recover partially the open-loop slope data ~s pol
t from the closed-loop slopes ~s cl

t

and actuator command vector ~at computed on each step of reconstruction process.

2) Run open loop reconstruction using the recovered open loop slope data as an

input:

~s pol
t = ~s cl

t + Ga~at, (4.24)

where Ga is the DM-to-WFS influence matrix.

That ~s pol
t is only an approximation to the actual open-loop slopes vector ~s ol

t is

obvious because quite a few factors are not taken into account. These factors are:

1) Noise, miscalibration and misalignments in wave front sensors causing uncertain-

ties in wave front slopes measurements.

2) Exact action of the actuator command on the deformable mirrors because of

noise and miscalibration in electrical and mechanical circuits transferring the actuator

command signal to DMs.

3) Exact action of DMs on the whole AO system because of misalignments in its

components.
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Nevertheless, the impact of all uncertainties mentioned is expected to be reasonably

small for the recovered vector ~s pol
t to represent the open loop data quite correctly. This

suggests that C−1
φφ is nearly the right regularization term in the Pseudo Open Loop

minimization problem:

~̂ut = arg min
~u
{‖~s pol −Gφ~u‖2

C−1
nn

+ ‖~u‖2
C−1

φφ

}, (4.25)

where ~ut = 4~φt + ~̂φt, i.e. the sum of closed loop turbulence correction and a turbulence

estimate. Solving Eq.(4.25) for the optimal vector 4~̂φt yields

4~̂φt = Êol(~s cl
t + Ga~at)− ~̂φt. (4.26)

We next investigate robustness of this scheme, i.e. its stability and performance de-

terioration with respect to the previously mentioned discrepancies between theoretical

system model and the real system.

4.3 Pseudo Open Loop Control robustness

analysis

In the previous section we have shown that the performance of POLC and its very

ability to work in closed-loop depends on the sensitivity of this algorithm to numerous

system errors and uncertainties. Possible error factors affecting the system performance

are:

1) Misalignments such as shift, rotation and tilt in position of wave front sensors

as well as the mismagnification in their conjugation optics. These errors will induce

changes in the phase-to-WFS influence matrix Ĝφ assumed when computing the recon-

structor and result in the real system matrix Gφ representing misaligned wave front

sensors.
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2) Wave front sensor calibration errors to result in some uncontrolled time invariant

contribution δ~s to the slopes.

3) Geometrical misalignments such as shift, rotation, tilt and mismagnification in

the deformable mirrors. This will induce changes in the DM-to-WFS influence matrix

Ĝa assumed for phase reconstruction and result in the real system matrix Ga. It is

important to note that since Ga is also related to WFS all misalignments in wave front

sensors affect this matrix as well. Deformable mirror misalignments affect also the

DM-to-aperture interaction matrix Ha.

4) Calibration and alignment errors in deformable mirrors mechanics, miscalibration

and noise in their electrical circuits resulting in the uncontrolled contribution δ~a + ~na

to the actuator command ~at, where δ~a is the unknown time invariant contribution to

the actuator command, ~na the actuator commands noise.

The combined effect of the turbulence and actuator commands on the pseudo open-

loop WFS measurement and the residual phase can be written as

~s pol
t = Gφ

~φt −Ga(~at + δ~a + ~na) + δ~s + ~nt, (4.27)

~εt = Hφ
~φ−Ha(~at + δ~a + ~na), (4.28)

The corrupted G- and H-matrices appearing in the above equations are computed in

a straightforward way with the aid of grid points’ coordinate transformations intended

to account for misalignments. Appendix B contains a description of the effective nu-

merical procedure to compute the elements of G-matrices.

The z-domain block diagram of the AO system with Pseudo Open Loop Controller

and all error factors taken into account is shown on Fig. 4.3. Here c(z) is a servo

compensator filter connected in the negative feedback loop and responsible for the

system temporal behavior.
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Figure 4.3: z-domain block diagrams of non-ideal MCAO system driven by POLC.

Note that the system depicted on Fig. (4.3) should be viewed as consisting of two

independent parts:

1) boxes with hatted transfer matrices represent the “reconstructor part”, which

involves only information about the idealized system and is “unaware of” the errors

present;

2) all the remaining blocks represent the model for the “real” AO system and involve

all the information about various error factors.

It is this interplay between the “ideal” reconstructor and a “real” system that

enables one to reveal and estimate the possible stability and performance degradation

that may occur in practice. It is easy to find the expression for T (z):

T (z) = g(z)[I + g(z)(I − ÊGaF̂ )]−1Ê (4.29)

and for the closed-loop transfer matrix function HCL(z):

4~s(z) = HCL(z)~φ(z), HCL = GaF̂Q(z)ÊGφ, (4.30)

where

Q(z) = g(z)[I + g(z)M ]−1, (4.31)
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M = I + Ê(Ga − Ĝa)F̂ (4.32)

Eqs. (4.30)-(4.32) are the basis for stability analysis of the POLC system. The

system is stable, if all poles of HCL(z) lie inside the unit circle on the complex z-plane.

It is obvious from Eq. (4.30) that these poles are the same as those of Q(z). Note

that, as it follows from Eq. (4.32), all pole movement caused by the system errors is

driven only by the DM-to-WFS matrix Ga − Ĝa, which comprises information about

misalignments in both WFSs and DMs. It is not difficult to see using the spectral

representation of Q-matrix (see Appendix C) that poles of Q(z) are those of the scalar

functions

ci(z) =
c(z)

1 + λic(z)
, (4.33)

where λi are the eigenvalues of M-matrix. Eq. (4.33) is the basic tool for the theoretical

stability analysis of MCAO system. The important fact about stability of the POLC

is that in the perfectly aligned case the M -matrix has only one and zero eigenvalues

and the system temporal behavior is completely determined by poles and zeros of the

servo compensator closed-loop transfer function c(z)/(1 + c(z)).

Remarkably, the stability pattern of the POLC depends solely on the misaligned

DM-to-WFS matrix Ga. On the other hand, provided the system is stable, its overall

performance will depend on all error factors involved. To estimate the performance

degradation due to the various errors mentioned previously, Monte-Carlo simulations

were performed. Residual phase errors and average Strehl ratios were used as perfor-

mance metrics. The results of these simulations are presented in the next section.

4.4 Simulation results

The simulation results presented below are obtained for a representative case of the

system similar to the Gemini-South 8 m telescope MCAO system [59]. Its basic setup
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is:

- Primary mirror diameter is 8 meters, no central obscuration is considered.

- 5 mesospheric (altitude 90 kilometers) LGS Shack-Hartman wave front sensors, 4

single-aperture NGS sensors for global tilt measutemnts, whose parameters are given

in Table 4.1. LGS wave front sensors subaperture arrangement is shown on Fig. (4.4).

Note that the NGS WFS contain only single subaperture that inscribes the system

entrance pupil.

LGS WFS NGS WFS

Number of sensors 5 4

Subaperture grid size 16× 16 1× 1

Subaperture dimensions, m 0.5 8.0

Total number of subapertures in each sensor 224 1

Table 4.1: Wave front sensors of the Gemini-South 8 m telescope MCAO system.

- LGS & NGS 90/60 arcsec arrangement and 60 arcsec scientific field of view as

shown on Fig. (4.5).

- Noise equivalent angles for LGS and NGS wave front sensors are fixed to be around

30 mas and 3 mas, respectively.

- 3 deformable mirrors, whose parameters are given in Table 4.2. Only the actuators

within beamprints created by the main aperture projections along scientific directions

are kept active. The active actuators arrangement for each DM is shown on Fig. (4.6).

Bilinear splines are taken to approximate the DM influence functions.

- Turbulence is represented by 6 phase screens, whose altitudes, strengths and wind

velocities have been obtained from 57 layer Cerro Pachon turbulence profile [6] using

the technique described in Sec. 3.1. Fried parameter r0 is equal to 0.16 m at 0.5 µm.
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Figure 4.4: Subaperture arrangement in LGS wave front sensor. 224 active subaper-

tures fill the main aperture.

Figure 4.5: Representative Gemini-South 8 m telescope MCAO system guide stars

arrangement and scientific field of view (ScFoV).
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Figure 4.6: Deformable mirrors actuator grids. Active actuators are shown with crosses.

The circles are the main aperture projections onto DMs along the scientific directions.
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Deformable mirror number 1 2 3

Conjugation altitude, km 0.0000 5.1546 10.3090

Actuator grid size 15 20 12

Total number of actuators 193 329 113

Inter-actuator spacing, m 0.5 0.5 1.0

Table 4.2: Gemini-South 8 m telescope MCAO system deformable mirror parameters.

Bilinear splines (3.7) are taken for basis for phase approximation. The phase screens

and their simulation and reconstruction phase grids parameters are given in Table 4.3.

The reconstruction phase grids geometries for all phase screens are shown on Fig. 4.7.

Only phase points that contribute to the imaging and WFS measurements are kept to

minimize computational burden. These are the points within the beamprint, i.e. the

union of main aperture projections onto a phase screen along the scientific and guide

star directions, shown as circles on Fig. 4.7. Note that the resolution of simulation

phase grids is taken to be 8 times higher than the resolution of the densest DM actuator

grids.

- System’s temporal behavior in closed loop is driven by the servo compensator,

whose transfer function is

c(z) =
δ

z2 − αz − β
, (4.34)

where the parameters are taken to be α = β = 0.495 and δ = 0.5 to represent the

leaky integrator with 2-frame latency. The closed-loop |c(ν/νs)/(1 + c(ν/νs))|2 and

error rejection |1/(1+c(ν/νs))|2 power spectra of this integrator are shown on Fig. 4.8.

With the sampling rate taken equal to νs = 800 Hz, the -3 dB closed-loop bandwidth

of the compensator is equal to 88 Hz and the rejection bandwidth is 32 Hz, which

corresponds to the ability to work stable for average wind speeds up to ' 12 m/s for

λ = 0.55 µm.
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Figure 4.7: Reconstruction phase grids on the six phase screens, whose parameters are

given in Table 4.3. Grid points positions are shown with crosses. The circles are the

main aperture projections onto the phase screens along the scientific and guide stars

directions.
78



Phase screen number 1 2 3 4 5 6

Altitude, km 0.0000 2.5773 5.1546 7.7320 12.8870 15.4640

Weight 0.6523 0.1723 0.0551 0.0248 0.0736 0.0219

Wind speed vector, m/sec (5,0) (13,0) (20,0) (30,0) (20,0) (10,0)

Reconstruction grid size 33 39 43 47 29 31

Reconstruction grid spacing, m 0.5 0.5 0.5 0.5 1.0 1.0

Reconstruction grid points # 1149 1405 1629 1933 773 877

Simulation grid size 133 145 157 169 193 205

Simulation grid spacing, m 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

Simulation grid points # 14197 17533 21157 25069 33717 38437

Table 4.3: Six-layer turbulence model used in the simulation of the Gemini-South 8 m

telescope MCAO system.

Figure 4.8: Closed-loop (circles) and rejection (triangles) power spectra of the servo

compensator used in the system.
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Performance of the system was analyzed in two ways:

1. Stability behavior was investigated based on Eqs. (4.30)-(4.33). Position and

evolution of closed loop transfer matrix poles with respect to various kinds and

amounts of misalignment were computed. Approximate stability margins were

found. The stability results for POLC were compared to those of the Least

Squares Control (LSC) described in Sec. 3.6.1. Monte-Carlo simulations were

performed to confirm the stability/instability conclusions made based on the

eigenvalue analysis.

2. Provided the AO system was stable, its performance degradation was analyzed

by running Monte-Carlo simulations as described in Sec. 3.7 and with sparse

MV reconstructor applied as described in Sec. 4.1. Input phase screens with

Kolmogorov statistics were generated via Fourier domain method with tilt cor-

rection [41]. Wind shift was modeled via Fourier shift theorem (3.59). System

performance metrics computed are the piston-removed aperture phase residuals

as a function of time and long-exposure Strehl ratios.

Of course, it is hardly possible to analyze the effect of all combinations of error factors

on system performance. Presented below are certain benchmark results illustrating the

effect of each error factor isolated from the others, though the computation approach

used in this work is general enough to consider any combination of system errors.

Following errors were considered:

1) shifts, rotations and mismagnifications in deformable mirrors and wave front sen-

sors;

2) tilts in DMs and WFSs to represent a possible kind of constant miscalibration

errors δ~s and δ~a;
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3) noise in DM command vector ~a (see Eqs. (4.27), (4.28)).

Note that two last error factors do not affect stability but can deteriorate performance

of an AO system.

4.4.1 Stability analysis results

The eigenvalues of the matrix M in Eq. (4.32) and, therefore, poles of closed-loop

transfer function were found numerically for the sequences of increasing values of system

misalignments. The threshold at which at least one of the poles moves outside the unit

circle gives the approximate stability margin for a given type of error. Presented on

Fig. 4.9 is the sequence of frames showing the POLC closed-loop transfer function

poles evolution in the case of DM shift misalignment increasing from 10 % to 60 % of

the inter-actuator spacing. It is seen from the position of the poles with respect to the

circle of stability that the system remains stable up to the shifts equal 50 % .

The stability margins are presented in Tables 4.4 and 4.5 . It is clearly seen that the

POLC is remarkably stable against misalignments in DMs and WFSs. It can tolerate

shifts as large as 50% of subaperture size or inter-actuator spacing and 4 deg rotational

misregistration. Moreover, it significantly outperforms in this respect LSC, which is

also confirmed by Monte-Carlo simulations.

4.4.2 Performance analysis results

Following are the examples of performance deterioration caused by the system errors,

which are small enough to keep the system stable. Table 4.6 gives the long exposure

Strehl ratios for different types and levels of system errors. Figs. 4.10-4.13 show the

plots of the aperture residual phase variance (3.42) time histories for shift, rotation,

mismagnification and tilt misalignment errors, respectively, in both DMs and WFSs.
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Figure 4.9: Transfer function poles evolution as a function of the DMs shift misalign-

ment value. Each frame gives positions of the closed-loop system poles for different

degree of misalignment. All three DMs are shifted simultaneously from their perfect

alignment position in directions that make a 120 deg angle with one another.
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Mirror misaligned Shift, % Rotation, rad Mismagnification

1st 10 / 50 0.07 / 0.07 -

2nd 30 / 50 0.03 / 0.07 -

3rd 30 / 50 0.07 / 0.07 -

All three 30 / 50 0.03 / 0.07 1.03 / 1.15

Table 4.4: Approximate stability margins for the various misalignments in DMs for LSC

(first number) and for POLC (second number). Single-mirror shifts are done in 45 deg

direction, i.e. x-component of the shift is equal to the y-component. Three-mirror

shifts are done such that the shift directions of the mirrors make an angle 120 deg with

one another. Three-mirror rotations are done such that the rotation directions of the

mirrors are opposite to one another. Mismagnification is the same for each DM.

Shift in all WFSs, % Rotation in all WFSs, rad Mismagnification in all WFSs

50 / 50 0.07 / 0.07 1.10 / 1.11

Table 4.5: Approximate stability margins for misalignments in WFSs. Shift directions

in WFSs make a 120 deg angle with one another. WFS rotation is done clockwise in

all sensors. WFS mismagnification is the same for each sensor.
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Fig. 4.14 shows the residual phase variance time histories for the different levels of

additive noise in the DM commands. The error history graph simulated for the perfectly

aligned system is added in all figures for comparison. The cases when the system runs

unstable in Monte-Carlo simulations confirm the same stability/instability conclusions

drawn from the transfer function spectral analysis in the sense that the POLC runs

stable or unstable for the values of system errors predicted by the spectral analysis.

Another observation is that the performance of the MCAO system driven by POLC

deteriorates quite slowly with the increase of system errors. For instance, it is virtually

unaffected by the 10% shift, 0.01 rad rotation or 1% overmagnification in DMs or WFSs.

The same can be said for 25 mas tilt in each DM or 2.5 mas tilt in each WFS or 1%

additive noise in actuator command. Relatively high sensitivity to WFS tilt is mostly

due to the tip-tilt WFSs. As it is clear from Fig. 4.13 (lower panel), performance of

the system with only LGS WFSs tilted is very close to that of ideal system. Necessity

for the tip-tilt correction to be done more carefully is in agreement with the fact that

tilt is the most significant fraction of the entire phase error to be corrected.

4.5 Robustness analysis conclusions.

Stability and performance analysis carried out in this chapter clearly show the superior

robustness of POLC and its capability of running adaptive optics system in closed loop

despite the initial assumption about the precise knowledge of the current system state

for POLC to work [48]. Favorable performance behavior is undoubtedly owing to the

use of a priori information about turbulence statistics inherent in minimum variance

approach, which helps to compensate the information loss in the form of system errors.

The theoretical stability margins and tolerable system error values obtained can be

used as benchmarks in the course of designing new MCAO systems.
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Figure 4.10: Wave front phase error variance time histories for a number of shift mis-

alignments levels in DMs (upper panel) and WFSs (lower panel). DM shift directions

make a 120 deg angle with one another. WFS shift directions make a 45 deg angle with

one another.
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Figure 4.11: Wave front phase error time histories for a number of rotation misalign-

ment levels in DMs (upper panel) and WFSs (lower panel). Rotations in each DM are

opposite to one another. All WFSs are rotated clockwise.
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Figure 4.12: Wave front phase error time histories for different levels of mismagnifica-

tion in DMs (upper panel) and WFSs (lower panel). Mismagnifications are set equal

for each DM or WFS.
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Figure 4.13: Wave front phase error time histories for different tilt levels in DMs (upper

panel) and WFSs (lower panel). Tilt directions in each DM make a 120 deg angle with

one another. Tilt directions in each WFS make a 45 deg angle with one another.
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Figure 4.14: Wave front phase error time histories for different levels of additive noise

in the DM actuator command vector. White Gaussian noise is assumed. The noise

level is given as a fraction of the largest actuator command vector component at each

time step.
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System error type J band H band K band

Perfect alignment .53 .33 .25 .69 .52 .43 .81 .68 .60

10% shift in all DMs .52 .32 .24 .68 .51 .41 .80 .68 .59

10% shift in all WFSs .53 .32 .25 .69 .50 .43 .81 .67 .60

30% shift in all DMs .47 .27 .18 .64 .46 .35 .77 .64 .53

30% shift in all WFSs .41 .22 .18 .59 .41 .33 .74 .59 .49

0.01 rad rotation in DMs .53 .33 .24 .69 .52 .42 .81 .69 .60

0.05 rad rotation in DMs .45 .25 .19 .62 .43 .35 .76 .61 .54

0.03 rad rotation in WFSs .50 .32 .21 .67 .50 .39 .80 .67 .58

0.06 rad rotation in WFSs .43 .25 .18 .61 .44 .32 .75 .62 .51

1% overmagnification in DMs .50 .34 .23 .67 .52 .41 .80 .69 .60

5% overmagnification in DMs .45 .29 .17 .60 .45 .35 .75 .65 .54

1% overmagnification in WFSs .54 .32 .25 .70 .50 .42 .82 .67 .60

5% overmagnification in WFSs .37 .16 .12 .55 .33 .27 .71 .52 .40

25 mas tilt in all DMs .51 .33 .22 .68 .52 .34 .80 .69 .58

75 mas tilt in all DMs .46 .19 .16 .63 .34 .24 .77 .53 .42

2.5 mas tilt in all WFSs .53 .31 .26 .69 .45 .41 .81 .63 .55

12.5 mas tilt in all WFSs .37 .14 .13 .56 .31 .27 .72 .50 .44

1% actuator command noise .53 .34 .22 .69 .53 .40 .81 .69 .59

5% actuator command noise .13 .07 .06 .28 .20 .18 .48 .39 .36

Table 4.6: Average Strehl ratios obtained for various types and degrees of system errors.

In each triad first, second and third numbers correspond, respectively, to the center,

right side and upper right corner of the field of view. The statistical error in the Strehl

ratios computation does not exceed 10% in all cases.
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CHAPTER 5

Performance Analysis of Minimum Variance

and Kalman Filter Controllers

This chapter concentrates on the comparison of Minimum Variance (MV) and Kalman

Filter (KF) control algorithms. As it has been shown in the previous chapters, the

MV algorithm uses a priori information about atmospheric turbulence statistics in the

form of covariance matrices, which enables better error rejection in comparison to the

Least Squares approach widely used in conventional AO and also improve robustness

because the statistical priors tend to fill the information gaps caused by imperfect

measurements and system errors. It has also been shown that the zonal MV algorithm

can be implemented in sparse form with computational complexity nearly O(N), where

N is a number of system’s degrees of freedom. On the other hand, the MV approach

has at least two major shortcomings:

- It is non-dynamic, i.e. uses only the current WFS measurement to find the turbu-

lence phase estimate. But, since the atmospheric turbulence is highly temporally

correlated, the use of previous measurements, which are also available, could

significantly reduce the estimation error.

- In its classical form [52], the MV approach does not have the means for system

state temporal prediction in order to compensate for the lag always present in

real AO systems.
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These two serious problems motivate investigation into alternative approaches. Having

much in common with MV approach, the KF, whose idea was briefly described in Sec.

3.6.3, has the potential to overcome the drawbacks of the MV. KF approach has been

considered in conventional single conjugate AO for decades [53, 54, 56]. New promising

results have been also obtained for MCAO in the frame of modal approach [57]. The

main problem of the KF approach is that in the standard form it has O(N2) complexity

and its computational structure is not suitable for further complexity reduction, which

is crucial for large scale AO. Therefore, it is prudent to evaluate the possible pay-

off, that is the performance advantage achievable with KF in comparison to other,

computationally less intense approaches. The goal of the work presented in this chapter

is to show the performance modelling results for KF as atmospheric phase distortion

estimator for an MCAO system in the frame of a zonal correction approach with direct

comparison to the zonal MV estimator. The other goal is to evaluate capabilities of

simple turbulence dynamics models in resolving the time delay issue for both KF and

MV. In many ways the results presented below can be considered an MCAO extension

of the D. Gavel and D. Wiberg’s work [56] on KF for SCAO.

5.1 Near-Markov turbulence model.

As it was pointed out in Sec. 3.6.3, in order to use the KF for atmospheric turbulence

estimation it is necessary to come up with some linear autoregressive (AR) model

approximating turbulence dynamics. On one hand, the form of Kolmogorov (2.4)

or von Karman (2.5) turbulence power spectral density is impossible to approximate

really well with a low order AR model. On the other hand, higher order models can

be computationally prohibitive as the size of state vector ~Xt will increase drastically.

In our simulations we used the simplest first order AR(1) model, i.e. only the current

phase ~φt is taken for the system’s state. Since in such a model the next state value
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depends on the previous one only, which represents Markov random process, we call it

“near-Markov approximation” after D. T. Gavel and D. M. Wiberg [56], who introduced

the term. For this model the state transition matrix can be found as

Â = arg min
A
〈||~φt+1 −A~φt||22〉, (5.1)

yielding

Â = 〈~φt+1
~φT

t 〉〈~φt
~φT

t 〉−1, (5.2)

where ~φt are the coefficient vectors of the turbulence phase approximations (3.5). With

the frozen flow hypothesis and bilinear spline approximation (3.9) assumed, the covari-

ance matrices appearing in Eq. (5.2) take the form

〈~φt+1
~φT

t 〉ij = 〈φ(xi − vx4t, yi − vy4t, t)φ(xj , yj , t)〉, (5.3)

〈~φt
~φT

t 〉ij = (Cφφ)ij = 〈φ(xi, yi, t)φ(xj , yj , t)〉, (5.4)

where φ(x, y, t) is a space-time phase distribution on each phase screen, (xi, yi) are

points of the spline grid, (vx, vy) are the wind velocity components. These matrices

can be evaluated theoretically in the case of piston- or point-removed Kolmogorov or

von Karman turbulence by Eqs. (3.17) and (3.18), respectively. Note that the state

transition matrix for several independent phase screens is block-diagonal with the blocks

of the form given by Eq. (5.2).

With a known state transition matrix Â the system driving noise steady state

covariance matrix Cww can be found from the Lyapunov equation [66]

Cφφ = ÂCφφÂT + Cww. (5.5)

The form of Cφφ- and A-matrices determined by Eqs. (5.2) - (5.4) guaranties that

matrix Cww is positive semi-definite, which is necessary for the Kalman filter to be

stable.
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5.2 Kalman Filter equations.

According to the Separation Principle, the KF reconstructor can be split into two

stages: dynamic phase estimator to be derived from the orthogonality principle (3.58)

and DM fitter given by Eq. (3.52), i.e. the same as that for the MV control. In the

simulations below only estimation stage, i.e. the KF itself, will be considered, which

will allow the lower limit for the AO system errors to be evaluated. The recursive

solution to Eq. (3.58) is called the Kalman-Bucy equations [66]. With state vector ~Xt

equal to the current turbulence vector ~φt in accordance with the near-Markov model,

these equations for the state estimate ~Xt and the estimator matrix Êt are

~̂φt+1|t = Â~̂φt|t,
~̂φ0|0 = 〈~φt〉 = 0, (5.6)

~̂st+1|t = Gφ
~̂φt+1|t, (5.7)

~̂φt+1|t+1 = ~̂φt+1|t + Êt(~st+1 − ~̂st+1|t); (5.8)

Cε
t+1|t = ÂCε

t|tÂ
T + Cww, Cε

0|0 = Cww, (5.9)

Êt+1 = Cε
t+1|tG

T
φ (GφCε

t+1|tG
T
φ + Cvv)−1, (5.10)

Cε
t+1|t+1 = Cε

t+1|t − Êt+1GφCε
t+1|t, (5.11)

where Cε is the estimation error covariance matrix, subscripts t+1|t and t+1|t+1 stand

for the estimate at time t + 1 given the data up to time t or t + 1, respectively. Note

that the steady-state solution Ê∞ of Eq. (5.10) can be taken for the time-invariant

Kalman estimator.

An important fact from the linear estimation theory is that for the system driven by

the dynamics model (3.56) the optimal linear state estimate φ̂t+n|t (n-step prediction)

is given by [64]

~̂φt+n|t = Ân ~̂φt|t. (5.12)
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It should be noted that Eq. (5.12) is valid independently of the way the current state

estimate is obtained, i.e. it is good for both KF and MV approaches. According to

Eq. (5.12), the n-step rms prediction error of the application the near-Markov state

transition matrix Â obtained in the previous section is

ε = 〈‖~φt+n − Ân~φt‖2〉1/2, (5.13)

where ~φt is a vector of bilinear phase approximation coefficients, that is, the turbulence

phase values at the discrete grid points at time t, ~φt+n is a vector of phase values of

wind-shifted turbulence at the same grid points at time t+n. Fig. 5.1 shows the graphs

of prediction error (5.13) as a function of a delayed time samples number n for a single

moving discrete Kolmogorov phase screen consisting of 248 grid points imbedded into

5.1-meter circular pupil of Palomar telescope. The phase error due to pure lag is shown

on the same figure for comparison. As it is seen from the figure, the prediction ability

of the near-Markov model is very moderate for small, one- or two-sample delays typical

for AO control, and becomes relatively better for the bigger delays. Nevertheless, as it

will be shown in the next section, AO systems simulations show adequate ability of the

near-Markov model to compensate for the 2-sample latency in both SCAO and MCAO

systems.

5.3 Simulation results.

The performance of the MV and KF estimators was simulated for two AO systems.

1. Multi conjugate Gemini South telescope with primary mirror diameter 8 m

and secondary mirror diameter 1.22 m. The AO system has one 90 km sodium laser

quide star (LGS) WFS on axis, three LGS WFSs at 30 arcsec off axis arranged in

a equilateral triangle (subaperture size 0.5 m), and three natural guide star (NGS)

WFS for tip-tilt correction at 30 arcsec off axis arranged in equilateral triangle. FoV
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Figure 5.1: Turbulence phase prediction error as a function of delayed samples number

for the near-Markov model computed by Eq. (5.13). Piston-removed Kolmogorov

turbulence with Fried parameter r0 = 0.166 m is assumed. Wind speed is equal to

|~v| = 10 m/s, the system sampling rate is f = 100 Hz. A single discrete phase screen

with 248 equidistant phase grid points fill the 5.1-meter circular pupil of the Palomar

telescope.
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consisted of nine scientific directions arranged equidistantly in 1’ × 1’, as shown on

Fig. 5.2. 7-layer Kolmogorov turbulence model (Table 5.1) for average Cerro Pachon

site seeing conditions [59] with integral Fried parameter r0 = 0.166 m and Greenwood

frequency fG = 29 Hz (λ = 0.55 µm) was assumed.

Figure 5.2: Guide stars (left panel) and field of view (right panel) alignment for Gemini

South MCAO system.

Turbulence phase on all phase screens was estimated on the equidistant square grids

with the grid size 0.5 m. Typical phase screen grid with the beamprint and the LGS

WFS subaperture geometries are shown on Fig. 5.3.

2. Single conjugate Palomar telescope AO system with primary mirror diameter 5.1

m and secondary mirror diameter 0.77 m. One 90 km sodium LGS WFS (subaperture

size 0.32 m) and one single-subaperture NGS WFS, both on optical axis. Field of view

consisted of one scientific direction along optical axis. Turbulence was modelled as

a single ground-based screen approximation of the same Cerro Pachon 7-layer profile

with integral Fried parameter r0 = 0.166 m, equivalent wind speed V = 10 m/s and
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Layer altitude, km Relative weight Wind velocity, m/s

0.0 .646 6.6

1.8 .080 12.4

3.3 .119 8.0

5.8 .035 33.7

7.4 .025 23.2

13.1 .080 22.2

15.7 .015 8.0

Table 5.1: Cerro Pachon 7-layer turbulence model.

Greenwood frequency 29 Hz (λ = 0.55 µm). The turbulence phase was estimated on

an equidistant square grid with the grid size 0.32 m.

Open-loop operation was assumed. Although the KF algorithm described by Eqs.

(5.6) - (5.11) can work in closed-loop mode with only minor modifications, the questions

of closed-loop stability and sensitivity to system errors were not considered. The MV

controller used in the simulations is described by Eqs. (3.51), (3.52). Full matrix

approach was used for MV control, i.e. no sparse methods and approximations were

employed.

Monte-Carlo simulations have been performed for the controllers with two-frame

delay (one frame for CCD readout and one for computation) operating at 500, 250 and

125 Hz sampling rates. WFS noise was set to 1 rad rms per subaperture (λ = 0.5

µm) for 500 Hz and was reduced accordingly to 0.71 and 0.5 rad per subaperture for

lower sampling rates to model working with the guide stars of fixed magnitude. The

integrated aperture phase residual

〈‖~εt‖2
W̃
〉t = 〈‖Hφ

~φt −Hφ
~̂φt||2W̃ 〉t (5.14)

for different FoV directions averaged over simulation time (transient excluded) has been
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Figure 5.3: Left panel: fifth phase screen reconstruction phase grid and beamprint.

The circles are projections of the annular aperture onto the screen along both scientific

and guide stars directions. Right panel: LGS WFS subaperture geometry for Gemini

South MCAO. Big and small circles are the outer and inner borders of the annular

main aperture of the system.

taken as a measure of estimators performance. Residual vector ~εt was estimated on the

square aperture grid with grid sizes 0.04 m (Palomar), 0.0625 m (Gemini).

The input random phase screens were generated using Fourier transform method

with tilt correction [41]. Wind shift was performed in frequency domain by the means

of the Fourier shift theorem (3.59). Input phase grid size was taken equal to one eighth

of the DM actuator grid size to account for higher spatial frequencies present in real

turbulence (see Sec. 3.7). To ensure the best fit of the statistical model employed

in KF and MV estimators to the input, the covariance matrices appearing in Eqs.

(3.51), (5.9), (5.2) were computed directly from sample statistics of the phase screen

generator. Typical simulation results for Palomar and Gemini South AO systems are
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shown on Figure 5.4. The averaged estimation errors for different estimation strategies

and different AO systems are collected in Tables 5.2 and 5.3.

Figure 5.4: Estimation error time evolution graphs obtained by Monte-Carlo simula-

tions of the Palomar (left panel) and Gemini South (right panel) AO systems. Sampling

rate 500 Hz. The KF curves correspond to the case of 2-step prediction, whereas MV

curves correspond to pure 2-step lag.

Results for the SCAO show superior performance of KF in all cases, which is ex-

pected and in agreement with the results of the previous work [56, 57]. The lag com-

pensation effect of even the moderately accurate near-Markov predictor is apparent.

Note the only slight performance deterioration of KF with predictor for reduced sam-

pling rates. This clearly shows how the lag compensation allows to benefit from WFS

noise reduction due to increased WFS integration time.

Results for MCAO, however, do not show an advantage for the KF approach. In all

cases KF performance is only slightly better than that of MV with pure 2-step lag and

even worse than that of MV with 2-step temporal prediction. The worse KF algorithm’s

correction for off-axis points is also apparent. This fact can be accounted for higher
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500 Hz 250 Hz 125 Hz

KF, prediction on 79 82 88

KF, prediction off 84 103 157

MV, prediction on 98 90 91

MV, prediction off 101 108 157

Table 5.2: Estimation errors (in nanometers rms) for Palomar AO system averaged

over simulation time for KF and MV with 2-step prediction switched on/off.

500 Hz 250 Hz 125 Hz

KF, prediction on 141/182/292 141/180/326 143/184/320

KF, prediction off 143/185/295 153/193/333 199/232/349

MV, prediction on 134/169/248 132/170/277 141/186/315

MV, prediction off 141/172/249 146/181/282 193/228/340

Table 5.3: Estimation errors (in nanometers rms, center/side/corner of FoV) for Gemini

South AO system averaged over simulation time for KF and MV with 2-step prediction

switched on/off.

sensitivity of MCAO KF algorithm to the assumed statistical model discrepancies (up-

sampling in our case). But the most surprising result is that the performance of MV

algorithm with state prediction added can be comparable or even better than that

of KF. This makes questionable the use of the more computationally expensive KF

algorithm and, on the other hand, calls for effective turbulence predictors.
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5.4 Conclusions.

The ability of zonal KF with Near-Markov temporal dynamics model to effectively

estimate atmospheric turbulence has been demonstrated for both SCAO and MCAO

cases though KF performance for MCAO proves to be worse than expected. It has also

been shown that classical MV estimator performance can be significantly improved by

adding a temporal predictor to it. It is common knowledge that the success of Kalman

filter implementation largely depends on the choice of state dynamics model, which

affects both estimation and prediction performance. Although the feedback nature of

KF can compensate to some extent for the model discrepancies, simple AR models

may not be capable to represent the real random process estimated thus reducing the

effectiveness of KF approach. This can be the case for these simulations because the

moderate accuracy of the Near-Markov dynamics model may well be inadequate in

MCAO case. Another possible reason for worse KF performance in multiple conjugate

case is relatively higher sensitivity of KF to the errors introduced by the high frequency

part of the input. Finding ways for KF MCAO performance improvement is the goal

for further research.
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CHAPTER 6

Sparse Predictive Minimum Variance

Controller.

As it has been shown in the previous chapter, the non-dynamic Minimum Variance con-

troller with a prediction algorithm added to it performs surprisingly well even in com-

parison to the dynamic Kalman Filter. This gives additional motivation for working on

predictive MV control algorithms for MCAO. The serious drawback of the near-Markov

turbulence dynamics model used for temporal prediction in the KF-based approach is

that the state transition matrix Â is fully populated, which brakes the O(N) behavior

of sparse MV algorithm described in detail in Sec. 4.1. In this section we will show

that it is possible to use a temporal prediction strategy, which is not only O(N) but

also requires no additional computations to perform phase prediction.

6.1 Idea of the sparse phase prediction.

According to Sec. 5.2, the phase estimate ~φt at time t based on the concatenation

vector ~St−k of the measurements up to time t− k consists of two steps. The first step

is to find the phase estimate at time t− k:

~̂φt−k = E ~St−k, (6.1)
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where E is a general phase estimation operator. The second step is the k-step predic-

tion:

~̂φt = A k ~̂φt−k, (6.2)

where A is a general one-step prediction operator, which in the case of the frozen

flow hypothesis assumed is nothing but the pure shift operator, generally nonlinear.

When making phase estimation, as it was done in the previous chapter, some linear

approximation to the A , such as the near-Markov (see Sec. 5.1), is necessary to come

up with a linear controller. The situation is different if the full control is considered,

when the DM fitting

~̂at = F̂ ~̂φt (6.3)

follows the phase estimate. Eq. (3.52) for the fitting matrix F̂ contains the phase-to-

phase interaction matrix Hφ (see Eq. (3.40)) that projects vector ~̂φt of phase estimate

values assigned to the points of the phase screen grids, like those shown on Fig. 4.7, onto

the main aperture grid. If the phase estimate vector ~̂φt−k is available, then, according

to the frozen flow hypothesis, the best possible k-step prediction of it is the same vector

~̂φt−k but assigned to the phase screen grids shifted from their initial positions by

4~x = k4t~v, (6.4)

where ~v is the wind speed, 4t is the sampling interval. This simply results in a new

matrix Hpred
φ , which projects onto the main aperture the phase estimate assigned to

the shifted phase grids. Correspondingly, a new fitting matrix F̂pred, which fits the

DM commands to the predicted phase estimate, can be computed, with Hφ replaced

by Hpred
φ in Eq. (3.52). A few comments need to be made:

• The initial phase grids should be made slightly larger than the aperture beamprint

on the screen to fill the gap created by the finite point grid on the “downwind”

side of the beamprint after the grid shift. Fig. 6.1 shows the example of the extra
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points addition to the ground layer phase grid that make a “guard band” outside

the aperture. Since the guard band points are outside the aperture beamprint,

(a) (b)

Figure 6.1: Illustration of the guard band addition to the phase grid. (a): initial

position of the grid. Main grid points are denoted by “*”. Guard band points are

denoted by “x”. (b): grid position after a wind shift.

they are not coupled to the WFS measurements and phase values at these points

are only the statistical extrapolation of the phase within the beamprint by means

of the regularization term C−1
φφ in Eq. (3.51) or its sparse approximation ηLT L

(4.4). This results in an error in the otherwise exact phase prediction, which must

be small for the small wind shifts, when the gap filled with guard band points is

small relatively to the rest of the aperture. This condition is well satisfied for the

big apertures of giant telescopes. Note that, in the absence of the regularization

term, the phase values on the guard band would be just zeros, thus significantly

increasing the estimation error.

• Another prediction error source is the frozen flow assumption, which does not
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exactly hold for real turbulence over any but the shortest time intervals.

• Since computation of the matrix Hpred
φ needs just specification of the new grid, its

computational cost is the same as that for the no prediction case save for a small

overhead due to guard band addition. Therefore, the entire sparse predictive MV

controller still has computational cost around O(N).

6.2 Simulation results.

The same two Palomar SCAO and Gemini South MCAO systems as those in the

previous chapter were simulated to evaluate the performance of the Predictive Pseudo

Open Loop Controller (P-POLC). The z-domain diagram of it is shown on Fig. 6.2.

Figure 6.2: z-domain block diagram of the MV Pseudo Open Loop Controller with the

sparse predictor.

In contrast to the analogous system from Chapter 4, a perfectly aligned system was

considered, which is reflected by the absence of the error inputs in the diagram. Another

difference is that more realistic simple 2-frame delay in the measurement acquisition

is considered instead of the negative feedback integrator (4.34) used to model the

delay in the POLC system of Chapter 4. The phase prediction is implemented by
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the replacement of fitting matrix F̂ by the F̂pred computed as explained above. Much

lower sampling rate of 100 Hz was used, in contrast to the 800 Hz sampling rate in the

case of POLC of Chapter 4. This accounts for a different and more effective paradigm

of predictive control. Namely, in conventional adaptive optics an integrator-type lead

compensator is used with bandwidth equal to ∼ 3fG (see Sec. 4.4) and sampling rate

equal to ∼ 30fG to avoid possible instability due to the lag. No information about

turbulence dynamics is employed. In the approach of this chapter, the 3fg ≈ 100

Hz sampling rate is used together with effective phase predictor based on the known

turbulence dynamics used for lag compensation. The advantage of this approach is

obvious: the dramatic sampling rate reduction leads to the corresponding reduction of

computational complexity. In addition, the increased integration time leads to bigger

signal-to-noise ratio in the WFS channel.

To accurately simulate the turbulence dynamics the Fourier transform based input

phase screens generation with tip-tilt correction [41] and direct phase grid shifting (see

Sec. 3.7) was used. The spatial sampling on the generated phase screens was equal to

one eighth of that on the reconstruction phase screens. Direction and magnitude of the

wind shift were taken the same for all screens and equal to one simulation grid spacing,

which is equivalent to the wind speed 6.25 m/s for the sampling rate of 100 Hz.

The typical results of P-POLC reconstructor Monte-Carlo simulations are presented

on Fig. 6.3, where both Palomar SCAO and Gemini South systems reconstruction phase

error time evolutions computed via Eq. (3.42) are shown. The system performance is

shown for the cases of temporal prediction turned on/off.

Conclusions that can be drawn from the simulations can be summarized as follows:

• The AO systems are stable for the prediction turned both on and off. The stability

in the second case must be accounted for the robustness of POLC shown in

Chapter 4.
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Figure 6.3: Reconstruction error time evolution graphs obtained by Monte-Carlo sim-

ulations of the Palomar (left panel) and Gemini South (right panel, center of FoV) AO

systems driven by sparse MV controller with 2-step prediction turned on/off.

• The reconstruction errors for Palomar and Gemini South AO systems averaged

over simulation time with 2-step prediction switched on/off are given in the Ta-

ble 6.1. The positive influence of the prediction is obvious and the results are

in agreement with the ones obtained in the previous chapter for the MV recon-

structor with near-Markov prediction model. The difference is, however, in the

significantly lower computational cost of the sparse predictive algorithm.

Palomar Gemini

center of FoV center/side/corner of FoV

prediction off 157 189/212/256

prediction on 102 160/186/234

Table 6.1: Reconstruction errors (in nanometers rms) for Palomar and Gemini South

AO systems averaged over simulation time with 2-step prediction switched on/off.
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CHAPTER 7

Conclusions and the future work.

In this dissertation, the following new results on the design and performance modeling

of effective control algorithms for the large scale AO systems for the new generation of

giant astronomical telescopes has been obtained.

1. Robustness of the Minimum Variance Pseudo Open Loop Control (POLC) algo-

rithm proposed by B. Ellerbroek and C. Vogel [47] as a simple method for the

stable MCAO system operation in closed loop has been carefully investigated.

The initial assumption about the precise knowledge of the system for the POLC

to work has been disapproved and high robustness of this algorithm against sys-

tem errors has been demonstrated. Currently, a sparse O(N) version of POLC

described in Sec. 4.1 is considered the main control concept for the AO in the

Thirty Meter Telescope project [1].

2. The limiting performance of the non-dynamic Minimum Variance and dynamic

Kalman Filter (KF) based phase estimation algorithms for MCAO has been eval-

uated in the framework of zonal control. The validity of near-Markov auto-

regressive phase dynamics model has been tested. It has been found that despite

the larger amount of information involved in dynamic KF control there is no

performance improvement in comparison to the much simpler Minimum Vari-

ance algorithm in the case of MCAO. This is most likely due to the lack of an
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adequate linear model for the turbulence dynamics. However, more careful in-

vestigation of the KF algorithm is needed. The positive outcome of this work

is the surprisingly good ability of the simple near-Markov turbulence dynamics

model to compensate for the 2-frame latency in the system, which opens the way

to further complexity reduction of the AO control.

3. The low complexity sparse predictive MV control algorithm has been proposed.

It has been shown that turbulence phase temporal prediction can be done very

effectively and is able to significantly reduce the error due to the measurement

and control latency always present in real AO systems. It has been shown by

Monte-Carlo simulations that with the phase prediction added it is possible to

significantly reduce the sampling rate in comparison with usual servo compensator

approach without loss of stability and accuracy of wave front reconstruction. It

should be pointed out that the corresponding complexity reduction due to smaller

sampling rate can be achieved without any additional computational burden per

single sample.

4. The last result that could be mentioned is the development of the MCAO system

simulation software capable to evaluate the performance and robustness against

numerous errors of the AO systems driven by Least Squares, Minimum Variance

and Kalman Filter controllers.

The results presented are only a little fraction of the research that can be done

in the vast area of the Adaptive Optics control. The following ramifications of the

research work in this area can be, in the author’s opinion, pursued in the future.

1. It is a well known fact that the Taylor Frozen Flow Hypothesis described in Sec.

2.3 is not valid for the large apertures. During the time necessary for wind to

blow the turbulence across more than 10-meter aperture the “boiling” fraction of
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turbulence temporal dynamics becomes appreciable, so the Frozen Flow Hypoth-

esis becomes an inaccurate assumption for the new giant telescopes with primary

mirror diameters in excess of 10 m. All the simulations presented in this disser-

tation are made with the Frozen Flow assumption for the AO systems with the

main apertures no more than 8 meters, and scaling these results to the bigger di-

ameters can be incorrect. On the other hand, methods of phase screen generation

that account for the “boiling fraction” exist [17, 39]. Their software implemen-

tation, verification and routine use in the large-scale AO systems simulations is

the important task for the future.

2. Another unsolved problem is the optimal discrete representation of the continuous

phase distributions through Eq. (3.5). It is well known that neither Zernike

polynomials nor bilinear splines are optimal basis sets to approximate the random

phase functions with Kolmogorov or von Karman statistics in the sense that for

a fixed number of terms in Eq. (3.5) the approximation error is minimized.

Other basis sets can be considered for the purpose. The multi-grid expansions

and control algorithms [10, 11] based on them appear to be one of the most

interesting directions of the future research in AO control. This makes it possible

the design of new low-complexity control algorithms finely tuned [8] to achieve

optimal performance on different spatial frequency components of the signal. The

wavelet-based expansions are the natural choice for the multi-grid algorithms

but, strangely enough, to the author’s best knowledge, wavelets has never been

considered as the basis sets for AO.

3. It is interesting to notice that the sparse approximation (4.4) of the inverse

turbulence phase covariance matrix C−1
φφ formally turns the minimum variance

phase estimation problem (3.53) into classical LS problem with Laplacian-square

Tikhonov regularization operator like that described by Eq. (3.48). The use
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of a priori information about the turbulence statistics gets formally reduced to

just choosing the appropriate regularization operator, which does not depend on

the turbulence strength, and regularization coefficient η, which depends on the

turbulence only very weakly. This similarity of the MV approach and the much

simpler least squares technique has been pointed out recently by C. Vogel and Q.

Yang [45]. They proposed not to separate the control problem into estimation

and fitting stages but to solve the following regularized least squares problem

ât = arg min
~a

(~st −Ga~a + αI + ηLT L), (7.1)

where L is the discrete Laplacian matrix and α, η are two regularization parame-

ters, whose optimal values can be easily found by trial and error. The information

about turbulence statistics is used here only implicitly in the form of “right” regu-

larization operator. Note that Eq. (7.1) results in the same sparse reconstruction

algorithm that can be effectively implemented with the aid of multi-grid iterative

methods. In the case of SCAO this approach is reported to be as accurate as the

full MV reconstructor. It would be interesting to extend the idea to the MCAO.

If the same result holds for MCAO, since the size of DM command vector ~at is

at most one half the size of turbulence phase vector ~φt estimated in the MV con-

trol and because the fitting stage can be excluded, one can expect the additional

fourfold complexity reduction. The difficulty is, however, expected with the pre-

diction implementation. In the case of LS control DM commands vector ~at has

to be predicted. But, its temporal behavior cannot be predicted by the simple

shift operator as in the case of the phase estimate for the absence of one-to-one

correspondence between turbulence and DM commands for MCAO. Some ap-

proximate linear, desirably sparse, model for DM commands temporal dynamics

needs to be developed instead. This represents another important ramification

of the future research.
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4. As it has been shown in Chapter 5 the accurate linear models for turbulence

dynamics or the dynamics of turbulence-driven quantities like DM command

vector become crucial for further progress of the control algorithms for AO. These

models can be derived either theoretically or, which is better, directly from the

data sequences measured by the AO system wave front sensors by statistical

system identification methods as it has been described, for instance, in [12]. The

second way is preferable because no assumptions, like layered atmosphere or

Frozen Flow Hypothesis, have to be made about the physics of turbulence. On

the other hand, the main drawback of the work [12] is that the ARMA model for

the turbulence dynamics proposed there is not sparse. The existence of simple

but adequate linear models for turbulence temporal dynamics depends entirely

on the physical nature of turbulence and is, for now, an open question.

5. It was assumed for both MV and KF control approaches considered in this disser-

tation that the turbulence characteristics, such as C2
n and wind velocities profiles,

are known in advance from the independent measurements and do not change

during the exposure time. This assumption is quite restrictive in practice but

can be eliminated by the use of the well known adaptive control approach, when

the sample statistics of the measurements are continuously accumulated within

a moving time window and used for the control commands estimation. Theory

and mathematical tools of the adaptive control are a very well developed part

of modern control theory. A simple version of adaptive control for SCAO in the

framework of the modal approach with decoupled channels has been investigated

in a series of papers by J. S. Gibson et. al. [7]. Implementation of the adaptive

control in the zonal framework by combining the sparse methods described in

this dissertation with the existing mathematical methods for the systems with

multiple coupled channels is another promising branch of the future research.
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6. One more important observation about AO control is its fuzzy nature. Indeed,

because of the statistical nature of the input signal and a number of the techni-

cal errors the DM correction cannot be applied in exact way. Simple calculation

shows that if the local wave front residual error does not exceed λ/10 rms, which

corresponds to very good performance, and DM dynamic range is a few wave-

lengths, the number of distinct positions of each actuator is no more than 100.

The DM commands calculated on a standard computer using 8-byte arithmetics

with billions of distinct positions allowed seem to be a great waste of resources.

The new methods are necessary to take the full advantage of the fuzzy nature

of the AO control, which can lead to a huge leap in the technology with respect

to complexity reduction and simplicity of hardware implementation. It should

be pointed out that simple reduction of the word length used in the computa-

tions by conventional algorithms does not solve the problem for it may lead to

numerical instability because of the ill-conditioned equations involved. The use

of statistical methods for creation the sets of fuzzy decision rules that can replace

the deterministic algorithms of AO control is another nontrivial research task.
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Appendix A.

Multi-grid recursive linear solvers.

As it was pointed out in Sec. 4.1.2, iterative methods have poor convergence rate if

applied to ill-conditioned equation systems. On the other hand, it was observed that

the way the standard iterative linear solvers like Jacobi, Gauss-Seidel or conjugate

gradients [67] act on the ill-conditioned matrix can be characterized as “stagnation”.

The high-frequency components of the solution error are effectively dumped after a

few iterations, whereas the low-frequency error components are very slow to converge.

For this behavior the iterative techniques are called “smoothers”. The simple idea

of the multi-grid (MG) methods [69] is to project the solution error on successively

coarser grids and apply the smoother iterations to damp the error components that are

of relatively low-frequency on a fine grid but become of relatively high frequency on a

coarse grid. The second key idea of MG methods is to solve directly, i.e. non-iteratively,

the equation system on the coarsest grid. This solver will null the lowest frequency

error component remained after smoothers application and will not increase the overall

computational complexity because the coarsest grid equation system has small size.

Thus, multi-grid is a very effective combination of iterative and non-iterative methods.

The MG method for solving a linear system of equations A~x = ~b defined on a

computational grid Ω requires:

1. A nested sequence of increasingly coarse grids Ω = Ω1, . . . ,ΩL. On each grid,

the set of restricted equation matrices A = A1, . . . , AL, algebraic residuals rl and

solution errors el, such that Alel = rl, l = 1, . . . , L, is defined.

2. The down- and up-sampling operators I↓l , I↑l that project the matrices and vectors

115



onto coarser and finer grids

~vl+1 = I↓l ~vl, Al+1 = (I↓l )T AlI
↓
l , (A.1)

~vl−1 = I↑l ~vl, Al−1 = (I↑l )T AlI
↑
l . (A.2)

These operators are usually taken such that I↑l = (I↓l )T in order to preserve the

symmetry of matrices Al.

3. Smoother, i.e. iterative method to solve systems Al~el = ~rl that rapidly elimi-

nates high frequency components from the solution error ~el. Since in the case

of MV wave front reconstructor for MCAO the system matrices are symmetric

the preconditioned conjugate gradient (CG) method is of the greatest appeal.

The result obtained from ν smoother iterations with initial guess ~e is denoted by

S(Al, ~rl, ~e, ν).

The multi-grid algorithm to approximately solve the fine grid problem A~x = ~b

consists of 3 stages. On the first, or “pre” stage, the sequence of problems on the

increasingly coarse grids are solved. On the second stage, the problem on the coarsest

grid is solved via direct method. On the third, or “past” stage, one solves the sequence

of problems on the sequence of the increasingly fine grids. The operation flow of this

process is summarized as follows.

Multi-grid algorithm for solving A~x = ~b.

• BEGIN

– Initialize residual ~r1 with initial guess ~x0

~r1 = ~b−A1~x0

– for l = 1, 2, . . . , L− 1

116



∗ Apply pre-smoother

~el = S(Al, ~rl,~0l, νpre)

∗ Update residual

~rl = ~rl −Al~el

∗ Project residual on coarser grid

~rl+1 = I↓l ~rl

– end for l

– Direct solve on coarsest grid

~eL = A−1
L ~rL

– for l = L− 1, L− 2, . . . , 1

∗ Accumulate solution error on finer grid

~el = ~el + I↑l−1~el−1

∗ Apply post-smoother

~el = S(Al, ~rl, ~el, νpost)

– end for l

– ~x = ~e1

• END

The computational cost of this algorithm is approximately

4/3[νpre + νpost + 1][nz(A)]p,
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where nz(A) is the number of nonzero elements in A, p accounts for the additional cost

for preconditioning. For sparse matrices appearing in the MV reconstructor nz(A) is

O(N) and p is around 4/3 for the CG algorithm preconditioners described in [44].

It is also worth mentioning that MG algorithms are very well suitable to paralleliza-

tion and dedicated hardware implementation, such as Field Programmable Discrete

Arrays (FPDA).
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Appendix B.

Computation of the Phase-to-WFS Interaction Matrix

with Misalignments Taken into Account

The correct computation of the phase-to-WFS interaction matrix elements with various

geometrical misalignments taken into account proves to be the crucial part of the POLC

robustness analysis. Matrix Gφ defined in section 3.2 or matrix Ga defined in section

3.3 represent the discretized form of WFS measurement operator defined as a WFS

measurement is the phase gradient averaged over illuminated part of the subaperture sx

sy


i

= Mφ(x, y) =
1
|Wi|

∫
Wi

∇φ(x, y)dxdy, (B.1)

where φ(x, y) is the turbulence phase, |Wi| =
∫
Wi

dxdy is the area of the ith subaper-

ture’s illuminated part

Wi = Wa ∩Wo ∩W i
sa, (B.2)

W i
sa is a square domain of ith subaperture, Wa, Wo are the interior of primary and ex-

terior of secondary mirrors, respectively. Approximation of phase with bilinear splines

(3.7) turns Eq. (B.1) into  sx

sy


i

≈
M∑

j=1

Gijφj , (B.3)

where

Gij =

 Gx

Gy


ij

=
1
|Wi|

∫
Wi

∇fj(x, y)dxdy. (B.4)

Eq. (B.4) gives the form of phase-to-WFS matrix element that needs to be evaluated

numerically. It should be noted that no restrictions are applied to the mutual position

or sizes of a spline and a subaperture because due to both geometrical misalignments
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and sheer projection of elevated phase screen onto the main aperture the spline and

subaperture grids can be arbitrarily shifted and rotated with respect to each other.

The most general case of the mutual alignment is shown on Fig. (7.1), where the single

spline and subaperture are not only arbitrarily shifted and rotated but also partially

barred by the borders of the main annular aperture. This results in quite complex

shape of the integration domain Wi.

Figure 7.1: Mutual alignment of a WFS subaperture and a bilinear spline. W i
sub, W j

h

are the domains occupied by a ith subaperture and jth spline, respectively

One can consider two methods to evaluate the double integral appearing in Eq.

(B.4). First, with the aid of the Stokes theorem the double integral can be turned into

a linear one:

Gij =
∫ s2

s1

h(x(s)− xj , y(s)− yj)

 dy/ds

−dx/ds

 ds, (B.5)

where [x(s), y(s)], s ∈ [s1, s2] is a parametric representation of the Wi-domain bound-

ary, which in our case is piecewise continuous. The integral over each piece of the

boundary can be found analytically. This gives the fastest way of G-matrix elements

evaluation. However, the computation of the segment intersection points is a very te-
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dious process because of the quite complicated shape of the intersection domain (see

Fig. 7.1). Another problem of Eq. (B.5) is that the value of derivatives appearing in

the integrand can be much larger than the value of the integral itself, which results

in severe numerical instability when we try to add up the contributions from each

boundary segment.

A more convenient way for numerical implementation of the Eq. (B.4) is to use

direct 2D integration and take advantage of the special form of the integrand to reduce

computation complexity. Indeed, we note that the bilinear spline gradient

Of(x, y) =

 − sgn(x)
δ (1− |y|

δ )

− sgn(y)
δ (1− |x|

δ )

 , |x, y| ≤ 1 (B.6)

is a linear function on each quadrant, where the bilinear spline is continuous. We also

note that the integral of linear function over some rectangular region is

∫
�

Of(x− x0, y − y0)dxdy = Of(xc − x0, yc − y0)S�, (B.7)

where (xc, yc) are the rectangle’s center of gravity coordinates, S� is the rectangle’s

area. Eq. (B.7) enables to convert double integral into the single one. The intersection

region Wi is approximated with a set of narrow rectangles as it is shown on Fig. 7.2.

Then, using Eq. (B.7) we get for the G-matrix element

Gij ≈
∑N

k=1 Of(xk − xj , ck − yj)(bk − ak) M x∑N
k=1(bk − ak) M x

, (B.8)

where ak, bk are the y-coordinates of the kth rectangle central line intersection with

the Wi-domain boundary, ck = (ak + bk)/2 are the kth rectangle’s center of gravity

y-coordinate, M x is the width of the rectangle.

In order to compute the integral it is necessary to find intersections of lines x = xk

with the domain Wi. Using the properties of set intersections we have
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Figure 7.2: Illustration of the numerical integration method.

(x = xk) ∩Wi = (x = xk) ∩ (Wa ∩Wo ∩W i
sa) (B.9)

= ((x = xk) ∩Wa) ∩ ((x = xk) ∩Wo) ∩ ((x = xk) ∩W i
sa).

Despite the quite complicated shape of the region Wi, each of the elementary in-

tersections in Eq. (B.9) is very simple to find. Thus, in the frame of the integration

algorithm described the difficult problem of finding the intersection between arbitrary

aligned WFS subaperture and bilinear spline turns into a set of simple manipulations

that can be easily implemented in computer code.

In order for Eq. (B.7) and, respectively, Eq. (B.8) to be valid we need to operate

in the coordinate system oriented along the sides of bilinear spline and also account for

geometrical misalignments. This requires the following coordinate transformation

 x

y


′

= K

 cos(θ + θm) sin(θ + θm)

− sin(θ + θm) cos(θ + θm)


 x

y

+

 δx

δy

 , (B.10)
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where [x, y]T are the spline (subaperture) coordinates in laboratory frame, K is mismag-

nification factor, θm is rotational misalignment angle, [δx, δy] is a shift misalignment

vector, θ is the spline (subaperture) orientation angle with respect to the coordinate

system oriented along spline grid. In order to find the components of x- and y-slopes

in the WFS coordinate system the inverse transformation is done

 Gx

Gy


ij

=

 cos(θsp − θsa) − sin(θsp − θsa)

sin(θsp − θsa) cos(θsp − θsa)


 Gx

Gy


′

ij

, (B.11)

where θsp, θsa are the spline subaperture grid orientation angles, respectively, in labo-

ratory frame.
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Appendix C.

Poles of Q(z).

We are to find the poles of matrix function

Q(z) = c(z) [I + c(z)M ]−1 . (C.1)

Matrix M assumes a Jordan canonical factorization

M = SJS−1, (C.2)

where S is some invertible matrix, Jordan form J and its ith Jordan block are

J =



J1

J2

. . .

Jk


n×n

, Ji =



λi 1 0 . . . 0

0 λi 1 . . . 0
... 0 λi . . .

...
... . . . . . .

. . . 1

0 . . . . . . 0 λi


m×m

, (C.3)

where k is the number of linearly independent eigenvectors of M , λi is one of M ’s

eigenvalues, m is a geometrical multiplicity of λi. With factorization given by Eq.

(C.2) matrix Q(z) takes the form

Q(z) = Sc(z) [I + c(z)J ]−1 S−1. (C.4)

The ith block of (I + c(z)J) is

Bi(z) = (1 + λic(z))



1 c(z)
(1+λic(z)) 0 . . . 0

0 1 c(z)
(1+λic(z))

. . .
...

... 0 1
. . . 0

...
...

. . . . . . c(z)
(1+λic(z))

0 . . . . . . 0 1


. (C.5)

124



The B−1
i can be easily found:

c(z)B−1
i =

c(z)
(1 + λic(z))



1 − c(z)
(1+λic(z))

(
c(z)

(1+λic(z))

)2
. . . (−1)n

(
c(z)

(1+λic(z))

)n

0 1 − c(z)
(1+λic(z)) . . .

...
... 0 1 . . . (−1)n−1

(
c(z)

(1+λic(z))

)n−1

... . . . . . . . . . − c(z)
(1+λic(z))

0 . . . . . . 0 1


.

(C.6)

It is obvious from Eq. (C.6) that the poles of matrix c(z) [I + c(z)J ]−1 and, therefore,

of matrix Q(z) are those of functions c(z)/(1 + λic(z)).
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