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RESUMEN

Las metaheuŕısticas de búsqueda tienen una larga tradición en la informática.
Durante los últimos años, diferentes tipos de metaheuŕısticas, especialmente
los algoritmos evolutivos, han recibido una atención notable en la resolución
de problemas de optimización del mundo real [2]. Los recientes avances en este
campo, junto con el rápido desarrollo de las computadoras de alto rendimiento,
hacen posible abordar problemas de optimización en ingenieŕıa, pudiéndose al-
canzar resultados desconocidos hasta ese momento. Tras estos rápidos avances,
la comunidad cient́ıfica dirigió su atención hacia el desarrollo de nuevos algo-
ritmos y técnicas para resolver problemas en diferentes áreas de la ciencia y
la ingenieŕıa. Entre las diferentes áreas de investigación, la astrodinámica y la
ingenieŕıa espacial han sido fuente para el desarrollo de algoritmos evolutivos
espećıficos. Si se examina la cantidad de publicaciones relativas al desarrollo
de las metaheuŕıstica en las ciencias aeroespaciales, se observa que se ded-
ica un gran número de esfuerzos a desarrollar nuevas técnicas estocásticas
y, más concretamente, algoritmos evolutivos innovadores en una variedad de
temas. En el último decenio, uno de los problemas más dif́ıciles de la inge-
nieŕıa espacial, que los investigadores de la comunidad aeroespacial abordan
principalmente mediante algoritmos evolutivos novedosos, es la optimización
de la trayectoria de las naves espaciales [3].

El problema de la optimización de la trayectoria de las naves espaciales
puede describirse simplemente como el descubrimiento de una trayectoria es-
pacial para los satélites y veh́ıculos espaciales que satisfaga algunos criterios.
Mientras un veh́ıculo espacial viaja en el espacio para llegar a un destino, ya
sea alrededor de la Tierra o de cualquier otro cuerpo celeste, es fundamental
mantener o cambiar su trayectoria de vuelo precisamente para llegar al destino
final deseado. Esos viajes entre las órbitas espaciales, denominados maniobras
orbitales, deben realizarse en condiciones de máxima eficiencia, reduciendo
al mı́nimo algunos objetivos como el consumo de combustible o el tiempo de
transferencia. Desde el punto de vista de la ingenieŕıa, la optimización de la
trayectoria de las naves espaciales puede describirse como un problema de
optimización de caja negra, que puede considerar un mayor o menor número
de restricciones, según la formulación del problema.

Para aclarar la motivación principal de la investigación de esta tesis, en
primer lugar, es necesario discutir el estado de las tendencias actuales en el de-
sarrollo de los algoritmos evolutivos y abordar los problemas de optimización
de la trayectoria de las naves espaciales. En el último decenio se han dedi-
cado a estos temas numerosas investigaciones, principalmente de dos grupos
de comunidades cient́ıficas. El primer grupo es la comunidad de ingenieŕıa
espacial. Un examen general de las publicaciones confirma que el enfoque de
los métodos desarrollados en este grupo se refiere principalmente a la mod-
elización matemática y los enfoques numéricos para abordar los problemas
de optimización de las trayectorias de las naves espaciales. La mayoŕıa de las
estrategias interactúan con conceptos mixtos de métodos semi-anaĺıticos, dis-
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cretización, interpolación y técnicas de aproximación. En lo que respecta a la
optimización, normalmente se utilizan algoritmos tradicionales y se presta
menos atención al desarrollo del algoritmo. En algunos casos, los investi-
gadores tratan de afinar los algoritmos y hacerlos más eficientes. Sin embargo,
sus esfuerzos se basan principalmente en el ensayo y el error y en las repeti-
ciones, más que en el análisis de la propia naturaleza del problema de la
optimización.

El segundo grupo es la comunidad informática. A diferencia del primer
grupo, la mayoŕıa de los esfuerzos en la investigación de este grupo se ha
dedicado al desarrollo de algoritmos, en lugar de desarrollar técnicas y en-
foques novedosos en la optimización de trayectorias como la interpolación y
las técnicas de imitación aproximada. Las investigaciones de este grupo ter-
minan generalmente en algoritmos de optimización muy eficientes y robustos
de alto rendimiento. Sin embargo, estos algoritmos no suelen ser evaluados
en problemas reales. En su lugar, se seleccionan generalmente los problemas
de referencia de optimización estándar para verificar el rendimiento del algo-
ritmo. En particular, cuando se trata de resolver un problema de optimización
de la trayectoria de una nave espacial, este grupo trata el problema principal-
mente como una caja negra con poca concentración en el modelo matemático
o las técnicas de aproximación.

Teniendo en cuenta las dos perspectivas de investigación antes men-
cionadas, puede verse que hay un eslabón perdido entre estos dos esquemas
al tratar los problemas de optimización de la trayectoria de las naves espa-
ciales. Por un lado, podemos ver avances notables en los modelos matemáticos
y en las técnicas de aproximación sobre este tema, pero sin esfuerzos en los
algoritmos de optimización. Por otro lado, hemos desarrollado nuevos algo-
ritmos evolutivos para los problemas de optimización de caja negra, que no
aprovechan las nuevas aproximaciones para aumentar la eficiencia del proceso
de optimización. En otras palabras, parece que falta una conexión entre las
caracteŕısticas del problema de la optimización de la trayectoria de las naves
espaciales, que controla la forma del dominio de la solución, y los compo-
nentes del algoritmo, que controla la eficiencia del proceso de optimización.
Esta conexión faltante nos motivó a desarrollar metaheuŕısticas eficientes para
resolver los problemas de optimización de la trayectoria de las naves espaciales.

Al tener el conocimiento sobre el tipo de misión espacial, las caracteŕısticas
de la maniobra orbital, el modelado matemático de la dinámica del sistema
y las caracteŕısticas de las técnicas de aproximación empleadas, es posible
adaptar el rendimiento de los algoritmos. Conociendo estas caracteŕısticas
del problema de optimización de la trayectoria de la nave espacial, se puede
obtener la forma del espacio de soluciones. En otras palabras, es posible ver
cuán sensible es el problema en relación con cada una de sus caracteŕısticas.
Esta información puede utilizarse para desarrollar algoritmos de optimización
eficientes con mecanismos de adaptación, que aprovechen las caracteŕısticas
del problema para llevar a cabo el proceso de optimización hacia las mejores
soluciones. Esa adaptabilidad flexible hace que el algoritmo sea robusto a
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cualquier cambio de las caracteŕısticas de la misión espacial. Por consiguiente,
en la perspectiva del diseño de sistemas espaciales, los algoritmos desarrollados
serán instrumentos útiles para obtener trayectorias de transferencia óptimas
o casi óptimas dentro del diseño conceptual y preliminar de una nave espacial
para una misión espacial.

Teniendo en cuenta esta motivación, el objetivo principal de esta investi-
gación fue el desarrollo de meta-heuŕısticas eficientes para la optimización de
la trayectoria de las naves espaciales. En cuanto al tipo de problema, nos cen-
tramos en los problemas de los encuentros espaciales, que cubren la mayoŕıa de
las maniobras orbitales, incluyendo los encuentros espaciales de largo y corto
alcance. También, en cuanto a la metaheuŕıstica, nos concentramos principal-
mente en los algoritmos evolutivos basados en el modelado probabiĺıstico y
la hibridación. Tras la investigación, se han desarrollado dos algoritmos. En
primer lugar, se ha desarrollado un algoritmo evolutivo h́ıbrido autoadapta-
tivo para problemas de encuentros espaciales de largo alcance con múltiples
impulsos. El algoritmo es un método h́ıbrido, combinado con técnicas de au-
toajuste y un proceso de refinamiento individual basado en una distribución
de probabilidad. Luego, para los problemas de optimización de la trayectoria
de los encuentros espaciales de corto alcance, se desarrolla un algoritmo de
estimación de distribuciones con mecanismos de conservación de la factibil-
idad para la optimización continua con restricciones. Los mecanismos prop-
uestos implementan métodos de generación de soluciones iniciales, aprendizaje
y mapeo dentro del proceso de optimización. Incluyen mixturas de modelos
probabiĺısticos, algoritmos de detección de valores at́ıpicos y algunas técnicas
heuŕısticas dentro del proceso de la localización de las soluciones factibles.

Paralelamente al desarrollo de los algoritmos, se desarrolla también un
programa informático de simulación como aplicación complementaria. Esta
herramienta está diseñada para la visualización de los resultados obtenidos de
los experimentos de esta investigación. Se ha utilizado principalmente para
obtener ilustraciones de alta calidad mientras se simula la trayectoria de la
nave espacial dentro de las maniobras orbitales.

ORGANIZACIÓN DE LA TESIS

Esta tesis incluye cuatro caṕıtulos. En primer lugar, en el caṕıtulo 1 se lleva
a cabo una revisión bibliográfica sobre la resolución de problemas de opti-
mización de la trayectoria de las naves espaciales. El proceso de resolución se
descompone en cuatro pasos clave, que incluyen la modelización matemática
del problema, la definición de las funciones objetivo, el desarrollo de un en-
foque y la obtención de la solución al problema. Se han descrito varias subcat-
egoŕıas para cada paso. Posteriormente, se han discutido varias clasificaciones
y sus caracteŕısticas para resolver los problemas.

En el caṕıtulo 2 se presenta un enfoque evolutivo para encontrar el punto
de encuentro espacial de largo alcance óptimo en términos de combustible
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y tiempo, considerando un impulso limitado. En este enfoque, el problema
de Lambert se ampĺıa hacia una transferencia discreta de múltiples impul-
sos. Aprovechando una solución anaĺıtica de transferencia de multi-impulsos,
se calcula una solución factible que satisfaga el ĺımite de impulso. A con-
tinuación, la solución factible obtenida se utiliza como semilla para generar
individuos para un algoritmo evolutivo h́ıbrido autoadaptable para minimizar
el tiempo total, sin violar el ĺımite de impulso y manteniendo la masa global de
combustible igual o menor que la asociada a la solución anaĺıtica. El algoritmo
elimina a los individuos similares y los regenera basándose en una combinación
de soluciones prometedoras Gaussianas y de distribución uniforme. También
se aplican otras mejoras al algoritmo para que sea autoajustable y robusto a las
órbitas inicial y final, aśı como al ĺımite de impulso. Se evalúan varios tipos
del algoritmos considerando un conjunto variado de misiones de encuentro.
Los resultados revelan que el enfoque puede reducir con éxito el tiempo total
de transferencia en las transferencias de múltiples impulsos, minimizando al
mismo tiempo la masa de combustible sin violar el ĺımite de impulso. Además,
el algoritmo propuesto tiene un rendimiento superior al de los algoritmos evo-
lutivos estándar en términos de convergencia y optimización.

En el caṕıtulo 3, se desarrolla otro enfoque evolutivo incorporando una
técnica de control directo para el encuentro espacial de corto alcance en
órbitas eĺıpticas con perturbaciones. En este enfoque, los vectores de con-
trol se interpolan mediante diversos esquemas de interpolación y se propone
un enfoque evolutivo basado en el marco de los algoritmos de estimación de
la distribuciones (EDAs por su acrónimo en inglés). El algoritmo desarrollado
se beneficia de algunos mecanismos para hacer frente a problemas no lin-
eales. Estos mecanismos están asociados con diferentes etapas de los EDAs,
entre ellas la generación de la población inicial, el aprendizaje y la factibili-
dad. Es posible demostrar que si la población inicial es factible, el algoritmo
siempre mantiene poblaciones factibles durante toda la búsqueda. Antes de
aplicar el algoritmo desarrollado al problema de optimización de la trayec-
toria de encuentro en el espacio de corto alcance, se aplica en dos conjuntos
de problemas de referencia para la optimización continua con restricciones
y su rendimiento se compara con algunos algoritmos y métodos de manejo
de restricciones del estado del arte. Los experimentos realizados confirman
la velocidad, robustez y la eficiencia del algoritmo propuesto en la solución
de diversos problemas con restricciones lineales y no lineales. Tras la exper-
imentación, el algoritmo se aplica en algunos problemas de optimización de
la trayectoria en misiones de encuentro de corto alcance. Las simulaciones
numéricas muestran que pueden lograrse rápidamente trayectorias de com-
bustible mı́nimo, satisfaciendo al mismo tiempo las restricciones. El enfoque es
robusto para diferentes escenarios y condiciones iniciales. Además, se analiza
el rendimiento de los mecanismos de recuperación de la factibilidad empleados
y se demuestra que el más eficiente es independiente de la posición relativa
inicial y de la velocidad de la nave espacial objetivo. La practicidad del en-
foque propuesto se compara con un enfoque de control basado en la función
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impĺıcita de Lyapunov. Los resultados muestran la eficiencia y la eficacia del
enfoque propuesto para encontrar la solución óptima.

Por último, el caṕıtulo 4 incluye conclusiones y trabajo futuro. Dado que
la investigación fue una transacción entre la astrodinámica y la computación
evolutiva, el esfuerzo en este caṕıtulo es iluminar las nuevas ideas y logros
en esta investigación desde la perspectiva de las comunidades de ingenieŕıa
aeroespacial e informática. A este respecto, se revisa el panorama de la inves-
tigación en esta disertación, junto con los desaf́ıos y los notables hallazgos.
Además, se han señalado varios aspectos en los que la investigación puede
continuar en el futuro.

El Apéndice contiene la información relativa al marco de simulación de-
sarrollado en esta investigación. Dado que el desarrollo de este software fue
complementario al objetivo principal de la investigación, la introducción de
esta plataforma se proporciona en el Apéndice. Este programa informático es
un instrumento interactivo para la simulación de la dinámica de los satélites
y la orientación autónoma de las naves espaciales. Se proporcionan diferentes
modelos matemáticos para la propagación orbital de los satélites de órbita
terrestre, que consideran el campo gravitatorio de la tierra con diversas pre-
cisiones. El programa informático presentado previamente es una plataforma
de visualización tridimensional para la simulación de la órbita espacial con ca-
pacidad anaĺıtica a través de diversos módulos. Tiene la capacidad de simular
trayectorias de transferencia tard́ıa, obtenidas por los algoritmos propuestos, y
proporcionar visualizaciones de alta calidad del movimiento y la inclinación de
la nave espacial. Aprovechando una interfaz gráfica de usuario, puede evaluar,
analizar e ilustrar el movimiento del satélite basándose en diferentes esque-
mas de propagación orbital y aceleraciones externas. Se simulan varios casos
de satélites y naves espaciales autónomas en la misión de encuentro espacial en
relación con diferentes modelos de propagación para demostrar el rendimiento
de la aplicación de los diferentes modelos, la visualización de la trayectoria
en tierra y la optimización de la trayectoria. Los resultados se validan com-
parándolos con otras herramientas de última generación, como el conjunto de
herramientas del sistema AGI (STK).
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Preface

Abstract

Meta-heuristics has a long tradition in computer science. During the past
few years, different types of meta-heuristics, specially evolutionary algorithms
got noticeable attention in dealing with real-world optimization problems [1].
Recent advances in this field along with rapid development of high process-
ing computers, make it possible to tackle various engineering optimization
problems with relative ease, omitting the barrier of unknown global optimal
solutions due to the complexity of the problems. Following this rapid advance-
ments, scientific communities shifted their attention towards the development
of novel algorithms and techniques to satisfy their need in optimization.

Among different research areas, astrodynamics and space engineering wit-
nessed many trends in evolutionary algorithms for various types of problems.
By having a look at the amount of publications regarding the development
of meta-heuristics in aerospace sciences, it can be seen that a high amount of
efforts are dedicated to develop novel stochastic techniques and more specifi-
cally, innovative evolutionary algorithms on a variety of subjects. In the past
decade, one of the challenging problems in space engineering, which is tackled
mainly by novel evolutionary algorithms by the researchers in the aerospace
community is spacecraft trajectory optimization [2].

Spacecraft trajectory optimization problem can be simply described as the
discovery of a space trajectory for satellites and space vehicles that satisfies
some criteria. While a space vehicle travels in space to reach a destination,
either around the Earth or any other celestial body, it is crucial to main-
tain or change its flight path precisely to reach the desired final destination.
Such travels between space orbits, called orbital maneuvers, need to be ac-
complished, while minimizing some objectives such as fuel consumption or
the transfer time. In the engineering point of view, spacecraft trajectory opti-
mization can be described as a black-box optimization problem, which can be
constrained or unconstrained, depending on the formulation of the problem.
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In order to clarify the main motivation of the research in this thesis, first,
it is necessary to discuss the status of the current trends in the development of
evolutionary algorithms and tackling spacecraft trajectory optimization prob-
lems. Over the past decade, numerous research are dedicated to these subjects,
mainly from two groups of scientific communities. The first group is the space
engineering community. Having an overall look into the publications confirms
that the focus in the developed methods in this group is mainly regarding the
mathematical modeling and numerical approaches in dealing with spacecraft
trajectory optimization problems. The majority of the strategies interact with
mixed concepts of semi-analytical methods, discretization, interpolation and
approximation techniques. When it comes to optimization, usually traditional
algorithms are utilized and less attention is paid to the algorithm develop-
ment. In some cases, researchers tried to tune the algorithms and make them
more efficient. However, their efforts are mainly based on try-and-error and
repetitions rather than analyzing the landscape of the optimization problem.

The second group is the computer science community. Unlike the first
group, the majority of the efforts in the research from this group has been
dedicated to algorithm development, rather than developing novel techniques
and approaches in trajectory optimization such as interpolation and approx-
imation techniques. Research in this group generally ends in very efficient
and robust optimization algorithms with high performance. However, they
failed to put their algorithms in challenge with complex real-world optimiza-
tion problems, with novel ideas as their model and approach. Instead, usu-
ally the standard optimization benchmark problems are selected to verify the
algorithm performance. In particular, when it comes to solve a spacecraft
trajectory optimization problem, this group mainly treats the problem as a
black-box with not much concentration on the mathematical model or the
approximation techniques.

Taking into account the two aforementioned research perspectives, it can
be seen that there is a missing link between these two schemes in dealing with
spacecraft trajectory optimization problems. On one hand, we can see notice-
able advances in mathematical models and approximation techniques on this
subject, but with no efforts on the optimization algorithms. On the other hand,
we have newly developed evolutionary algorithms for black-box optimization
problems, which do not take advantage of novel approaches to increase the
efficiency of the optimization process. In other words, there seems to be a
missing connection between the characteristics of the problem in spacecraft
trajectory optimization, which controls the shape of the solution domain, and
the algorithm components, which controls the efficiency of the optimization
process. This missing connection motivated us in developing efficient meta-
heuristics for solving spacecraft trajectory optimization problems.

By having the knowledge about the type of space mission, the features
of the orbital maneuver, the mathematical modeling of the system dynamics,
and the features of the employed approximation techniques, it is possible to
adapt the performance of the algorithms. Knowing these features of the space-



Overview of the Dissertation 3

craft trajectory optimization problem, the shape of the solution domain can
be realized. In other words, it is possible to see how sensitive the problem is
relative to each of its feature. This information can be used to develop efficient
optimization algorithms with adaptive mechanisms, which take advantage of
the features of the problem to conduct the optimization process toward bet-
ter solutions. Such flexible adaptiveness, makes the algorithm robust to any
changes of the space mission features. Therefore, within the perspective of
space system design, the developed algorithms will be useful tools for obtain-
ing optimal or near-optimal transfer trajectories within the conceptual and
preliminary design of a spacecraft for a space mission.

Having this motivation, the main goal in this research was the development
of efficient meta-heuristics for spacecraft trajectory optimization. Regarding
the type of the problem, we focused on space rendezvous problems, which cov-
ers the majority of orbital maneuvers, including long-range and short-range
space rendezvous. Also, regarding the meta-heuristics, we concentrated mainly
on evolutionary algorithms based on probabilistic modeling and hybridization.
Following the research, two algorithms have been developed. First, a hybrid
self adaptive evolutionary algorithm has been developed for multi-impulse
long-range space rendezvous problems. The algorithm is a hybrid method,
combined with auto-tuning techniques and an individual refinement proce-
dure based on probabilistic distribution. Then, for the short-range space ren-
dezvous trajectory optimization problems, an estimation of distribution algo-
rithm with feasibility conserving mechanisms for constrained continuous opti-
mization is developed. The proposed mechanisms implement seeding, learning
and mapping methods within the optimization process. They include mixtures
of probabilistic models, outlier detection algorithms and some heuristic tech-
niques within the mapping process. Parallel to the development of algorithms,
a simulation software is also developed as a complementary application. This
tool is designed for visualization of the obtained results from the experiments
in this research. It has been used mainly to obtain high-quality illustrations
while simulating the trajectory of the spacecraft within the orbital maneuvers.

Overview of the Dissertation

This thesis includes four chapters. First, a review for solving spacecraft tra-
jectory optimization problems has been provided in Chapter 1. The solving
process is decomposed into four key steps, including mathematical modeling
of the problem, defining the objective functions, development of an approach
and obtaining the solution of the problem. Several subcategories for each step
have been described. Subsequently, important classifications and their char-
acteristics have been discussed for solving the problems.

In Chapter 2, an evolutionary approach is presented for finding the opti-
mal long-range space rendezvous in terms of fuel and time, considering limited
impulse. In this approach, the Lambert problem is expanded towards a dis-
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cretized multi-impulse transfer. Taking advantage of an analytical form of
multi-impulse transfer, a feasible solution that satisfies the impulse limit is
calculated. Next, the obtained feasible solution is utilized as a seed for gener-
ating individuals for a hybrid self-adaptive evolutionary algorithm to minimize
the total time, without violating the impulse limit while keeping the overall
fuel mass the same as or less than the one associated with the analytical
solution. The algorithm eliminates similar individuals and regenerates them
based on a combination of Gaussian and uniform distribution of promising
solutions. Other enhancements are also applied to the algorithm to make it
auto-tuned and robust to the initial and final orbits as well as the impulse
limit. Several types of the proposed algorithm are tested considering varieties
of rendezvous missions. Results reveal that the approach can successfully re-
duce the overall transfer time in the multi-impulse transfers while minimizing
the fuel mass without violating the impulse limit. Furthermore, the proposed
algorithm has superior performance over standard evolutionary algorithms in
terms of convergence and optimality.

In Chapter 3, another evolutionary approach incorporated with a direct
control technique is developed for short-range space rendezvous in elliptical
orbits with disturbances. In this approach, the control vectors are interpo-
lated via various interpolation schemes and an evolutionary approach based
on the framework of Estimation of Distribution Algorithms (EDAs) is pro-
pose. The developed algorithm benefits from some mechanisms to deal with
non-linear constraints. These mechanisms are associated with different stages
of the EDAs, including seeding, learning and mapping. It is shown that be-
sides increasing the quality of the solutions in terms of objective values, the
feasibility of the final solutions is guaranteed if an initial population of feasible
solutions is seeded to the algorithm. Before the implementation of the devel-
oped algorithm into the short range space rendezvous trajectory optimization
problem, it is applied on two suites of benchmark problems for constrained
continuous optimization and its performance is compared with some state-of-
the-art algorithms and constraint handling methods. Conducted experiments
confirm the speed, robustness and efficiency of the proposed algorithm in tack-
ling various problems with linear and non-linear constraints. Following the
experiments, the algorithm is applied on some trajectory optimization prob-
lems in short-range rendezvous missions. Numerical simulations show that
minimum-fuel trajectories can be rapidly achieved, while satisfying the termi-
nal constraints, and the approach is robust to different scenarios and initial
conditions. Besides, the performance of the employed mapping mechanisms
is analyzed and it is shown that the most efficient one is independent of the
initial relative position and velocity of the chaser spacecraft. The practicality
of the proposed approach is compared with a control approach based on the
implicit Lyapunov function. Results show the efficiency and the effectiveness
of the proposed approach in finding the optimal solution.

Finally, Chapter 4 includes conclusions and further works. Since the re-
search was a transaction between astrodynamics and evolutionary computa-
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tions, the effort in this chapter is to illuminate the novel ideas and achieve-
ments in this research from the perspective view of both aerospace engineering
and computer science communities. In this regard, overview of the research
in this dissertation are reviewed, along with challenges and notable findings.
Also, various aspects in which the research can be continued in the future
have been brought to attention.

The Appendix contains the information regarding the developed simula-
tion framework in this research. Since the development of this software was
complementary to the main research goal, the introduction of this platform is
provided in the Appendix. This software is an interactive tool for simulation
of satellites dynamics and autonomous spacecraft guidance. Different mathe-
matical models for orbit propagation of Earth-orbiting satellites are provided,
which consider Earth’s gravitational field with various accuracies. The pre-
sented software is a 3D visualization platform for space orbit simulation with
analytical capabilities through various modules. It has the ability to simu-
late transfer trajectories, obtained by the proposed algorithms, and provide
high-quality visualizations of the spacecraft motion and attitude. Taking ad-
vantage of a graphical user interface, it can evaluate, analyze and illustrate
the motion of satellite based on different orbit propagation schemes and ex-
ternal accelerations. Several cases of satellites and autonomous spacecraft in
the space rendezvous mission are simulated regarding different propagation
models to demonstrate the performance of the application in space mission
analysis, ground track visualization and trajectory optimization. Results are
validated by comparing with other state-of-the-art tools, such as AGI System
Toolkit (STK).





1

Overview of Spacecraft Trajectory
Optimization

1.1 Introduction

The spacecraft trajectory optimization problem can be described as the dis-
covery of a trajectory that satisfies some criteria, including initial and terminal
conditions. In recent years, considerable progress has been made in the devel-
opment of methods to find optimal trajectories for spacecraft in various space
missions. Within this progress, each step in spacecraft trajectory design can
be categorized according to the elements that are involved in finding a solution
to the optimal trajectory problem, such as the mathematical model, objective,
approach, or, more importantly, the method, technique and algorithm.

Perhaps the first serious attempt to categorize methods for spacecraft tra-
jectory optimization was made by Betts [3] in 1998. The main classification
made by Betts considered two famous methods, known as direct and indi-
rect methods, and the primary related techniques in each were summarized.
In 2012, Conway [4] made another comprehensive contribution to the nu-
merical approaches applied in dynamical systems. He provided an excellent
overview of different methods, similar to Betts’ survey, along with practical
examples. However, the dynamical systems considered in his survey are in gen-
eral forms. Other attempts have been also made but limited to specific space
missions, such as Earth-Moon trajectories [5], space rendezvous [6], planetary
entry [7] and libration points [8], [9]. Different classifications are presented
for spacecraft trajectory optimization problems in these researches. Based on
the purposes of their taxonomy, each approach or solution has its own ad-
vantages and disadvantages [10]. These surveys focused on specific steps of
the whole process rather than a general scheme for spacecraft trajectory op-
timization. Moreover, it is clear from the literature that comparing different
taxonomies can be time consuming, although it is generally less complicated
than developing one from scratch. While a great deal of research has been
done regarding the methods and techniques, an outline that categorizes the
key elements within the general process of spacecraft trajectory optimization
is missing. This chapter presents such a scheme and it is considered comple-
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mentary to all of the previously published survey articles in this subject. It
reflects the research that has been done over the past decade while simulta-
neously providing a roadmap for the general process of spacecraft trajectory
optimization.

Before proceeding to the details of the review, it is important to distinguish
between several terms in spacecraft trajectory optimization terminology. By
looking through the literature, it can be highlighted that a vast number of
papers are dedicated to spacecraft trajectory optimization with different ter-
minologies. Approaches, solutions, methods, strategies, techniques and other
terms are often used interchangeably. This review also tries to make a distinc-
tion between such terms, and uses a clear terminology in order to avoid misun-
derstandings and confusion when referring to a method, approach, technique
or algorithm. It should also be noted that sometimes different parameters are
shown with same symbols in literature. Therefore, in this review, every newly
introduced parameter in the equations is defined locally in order to avoid
misunderstandings with other possible parameters with same symbols.

The entire process of solving a spacecraft trajectory optimization prob-
lem can be divided in four steps as depicted in Fig. 1.1. This general process
includes mathematical modeling of system dynamics, defining appropriate ob-
jectives, developing an approach and, lastly, achieving the solution. Traces of
these key elements can be found in textbooks by Betts [11] and Conway [12].
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Fig. 1.1: General scheme of spacecraft trajectory optimization process

These steps are represented by model, objective, approach and solution
respectively. On the other hand, each space mission has several components
such as mission requirements, goals, expected accuracy, desired convergence,
mission plan, etc. Each of these factors affects the steps of the mentioned
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process differently. Therefore, it is important to focus on the taxonomies in
each step based on the space mission components in order to make a good
decision when choosing a model or employing a method in the spacecraft
trajectory optimization process.

The first step to solve not just a spacecraft trajectory optimization problem
but indeed any orbital mechanics problem involves a firm understanding of
the dynamics inherent in the system. It refers to the mathematical modeling
of the problem which involves choosing a set of states to represent the system
and derivation of motion equations for spacecraft.

The second step is handling the mission objectives via defining cost func-
tions. Two categories can be considered for this step, one according to the
type of the objectives and the other according to the number of objectives.

As the third step, the type of methods and techniques which are dedicated
to solving the trajectory design problem are the main feature that character-
izes the approach. This step is divided into two categories called analytical
and numerical approaches. Analytical approaches are mainly based on the
well-known optimal control theory [13]. The purpose of this theory is the de-
termination of a time history of controls that satisfies the physical constraints
of the system while minimizing some performance criteria [14] i.e., the cost
functions defined in the previous step. There also exist several numerical ap-
proaches to solve optimization problems related to space transfers [12]. They
fall essentially into two main categories. The first one is called direct meth-
ods, which attempt to find the minimum of the cost function by considering
state and input vectors. The second one is indirect methods, which involve
adjoint equations alongside state and input vectors based on the Pontryagin’s
Principle [13]. Each one of these two large categories is characterized by both
positive and negative aspects, intrinsically limiting their operational fields.

The fourth step is to solve the problem regarding the developed approach.
If the analytical approach is developed in the third step, the solution is likely
to be a closed form analytical solution. However, if the numerical approach
is used, the problem usually turns into a black-box optimization problem
and needs numerical algorithms to achieve a solution. Most of the spacecraft
trajectory optimization problems end in the latter form, to be solved by nu-
merical techniques rather than by means of an analytical solution. The reason
is that a typical spacecraft optimization problem does not have a closed form
solution due to its nonlinearity, unless specific conditions and assumptions
are considered in the approach. Such assumptions may limit the matching
between simulation and reality in spacecraft motion.

This chapter tries to propose a complete taxonomy of spacecraft trajectory
optimization problems, along with recently developed concepts and traditional
approaches, which covers most of the aspects of this field. The idea is to bring
the advantages and disadvantages of various models, objectives, approaches
and solutions based on the findings of a considerable number of papers in the
literature. In contrast, this review excludes many of the technical details and,
instead, provides a road map of currently available tools. General concepts
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are briefly described, and references are included for further investigation.
In addition, this chapter tries to consolidate seemingly different concepts,
methods, and terminology stemming from diverse applications. While a great
deal of spacecraft trajectory optimization research has been carried out in
the aerospace community, this review attempts to draw from work that has
been done in other disciplines as well. It also provides conclusions that can be
useful for other disciplines such as applied mathematics and engineering.

This chapter is organized as follows: The next four sections are dedicated
to the taxonomies of the four steps mentioned in the process of spacecraft
trajectory optimization respectively. Section 1.2 provides the mathematical
models required in order to formulate the necessary components of the space-
craft trajectory optimization problem. It outlines several choices of mathemat-
ical sets and their corresponding equations of motion according to different
categories of space missions. Objective functions in spacecraft trajectory op-
timization problems, their representation and types are discussed in Section
1.3. Section 1.4 details the approaches used in solving the spacecraft trajec-
tory optimization problem, as well as comparisons of different methods and
techniques. Section 1.5 is dedicated to optimization algorithms, including non-
linear programming and metaheuristics. This section aims to taxonomize the
optimization algorithms according to space missions and their usage in space-
craft trajectory optimization problems. Section 1.6 summarizes the discussions
from this review. It also presents suggestions for future study and new trends
in trajectory optimization of spacecraft. Finally, the conclusions are provided
in Section 1.7.

1.2 Model

As the first step of facing the spacecraft trajectory optimization problem, the
dynamics of the spacecraft need to be mathematically modeled. The spacecraft
trajectory model can be referred to a set of ordinary differential equations
representing a path or time history of position and velocity of the spacecraft.
The equations of motion for the spacecraft which serves as the model can be
generally described in first order form as follows [14]:

ẋ = f(x(t),u(t), t) (1.1)

where t represents the time, x(t) is an n-dimensional time history of the state
vector and u(t) is an m-dimensional time history of the control vector, which
serves as the system input. The state vector contains the state variables which
can be the position and the velocity vectors of the spacecraft. This general
representation is used in the literature as the basic mathematical model for
spacecraft trajectory and can be categorized in different aspects and forms,
as depicted in Fig. 1.2.

The overall taxonomy of mathematical models of the spacecraft in trajec-
tory optimization problems consists of two minor categories which are trans-
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Fig. 1.2: Taxonomy of mathematical models in spacecraft trajectory optimiza-
tion

fer type and equations of motion. While the behavior of the input u(t) is the
matter of interest in the first category, the focus in the second category is
on the representation of the whole differential equations as in f(x(t),u(t), t).
Although other aspects, such as dimensions (2D and 3D), could be also consid-
ered in the taxonomy, these two categories are chosen in this taxonomy since
they can cover and classify most of the research according to the literature.

1.2.1 Models based on transfer type

In mathematical modeling of the spacecraft trajectory in an orbit transfer,
the simulation of the system inputs is an important issue which has a great
effect on the trajectory optimization process. Depending on the type of space
mission, the model can be either impulsive or continuous.

1.2.1.1 Impulsive model

Mathematical modeling based on impulsive model is the traditional proce-
dure used to simulate the spacecraft maneuver. In this modeling, the inputs
of the system are assumed to be zero u(t) = 0 and the maneuver by the
spacecraft is considered as sudden velocity increments (∆v > 0) with zero
burn times (∆t = 0). If the gravitational acceleration of only one giant mass
(for example the Earth) is considered for the problem, the presented differ-
ential equation of motion based on state variables in Eq. 1.1 may be reduced
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and simplifies into some algebraic equations based on orbital elements. This
model is relatively simple to be used in simulation of space trajectory with
large accelerations and a rapid spacecraft response to commanded maneuvers.
It allows to simulate nearly instantaneous velocity changes necessary for large
orbital maneuvers [15]. Impulsive model is typically used when engines with
relatively low specific impulse (Isp) and high thrust level are employed. This
kind of model, better known as the Kepler model, which was first proposed
by Sims and Flanagan [16] to approximate low-thrust trajectories as a series
of impulsive ∆v’s connected by conic arcs, is depicted in Fig. 1.3.

Time 

𝑡  𝑡𝑓 𝑡  𝑡  𝑡𝑖 𝑡𝑁−  … … 𝑡𝑁 

Δ𝑣  

Δ𝑣  

Δ𝑣𝑖 
Δ𝑣𝑁−  

Δ𝑣𝑁 

Fig. 1.3: Impulsive discretization scheme

In the impulsive model, a segment (ti to ti+1) corresponds to an impulsive
∆v which can be analyzed by an analytical Kepler propagation with respect
to a primary body (Sun, Earth or other planets). Since a closed-form solu-
tion is usually known for the state propagation, no numerical integration of
the equations of motion is needed, which results in fast computations. The
well-known Hohmann transfer [15] is the most practical transfer in which the
impulsive model is taken into account for initial design and analysis of orbits
in space mission [17].

An advanced concept of impulsive model is called impulsive thrusting. In
this model, the trajectory is locally treated as continuous when the engine is
on, and the thrust level and the burn time will be considered in the problem.
This type of model is sometimes used for optimization of continuous thrust or-
bit transfers. One example is [18], in which a multi-impulse extended method
is proposed for low-thrust trajectory optimization.

As stated, the impulsive model is suitable for space missions with sud-
den velocity increment. Thrust phases for these missions are typically short
compared to the overall mission time, which makes the problem relatively
straightforward. As a result, thrust arcs are modelled as isolated, singular
events, and the continuous problem can be reduced to a discrete optimization
problem which can be represented with the impulsive model. In such cases,
the impulsive ∆v’s readily represents deep space maneuvers, especially for
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space missions with several segments (such as gravity assist maneuvers). If
no maneuver is needed at the beginning of a segment, the optimizer simply
drives the corresponding ∆v magnitude to zero. The optimization of the num-
ber of impulses, as well as their respective locations, is therefore automatically
tackled.

1.2.1.2 Continuous model

The second type for mathematical modeling of the spacecraft is the continu-
ous model. Mathematical models based on this concept are more precise but
also more complicated in comparison to impulsive models, since the trajec-
tory is dealt with considering non-zero inputs (u(t) 6= 0). The comparison
between impulsive and continuous models is implicitly a mirror of compar-
ing high and low-thrust space missions. From the viewpoint of performance,
low-thrust propulsion can improve fuel consumption efficiency for space mis-
sions due to their extremely high Isp compared with high-thrust chemical
propulsion. However, typical low-thrust trajectories present a major challenge
namely the extremely low forces that they generate. Table 1.1 provides de-
tailed characteristics for some specific low and high-thrust propulsion systems
[19], [20], [21] [22], [23].

Table 1.1: Characteristics of typical propulsion systems

Propulsion system Thrust (N) Isp (s)
Chemical engine 0.1− 106 140-460
Cold gas thruster 0.05− 200 50-250

Resisto-jet 0.002− 0.1 150-8000
Arcjet 0.002− 0.7 400-1500

Ion thruster 1× 10−5 − 0.2 1500-5000
Hall thruster 1× 10−5 − 1 1500-6000

Pulsed plasma,thruster 5× 10−5 − 0.01 500-2000
Solar sail 0.001− 0.1 ∞

Unlike high-thrust trajectories, the transfer time in low-thrust trajecto-
ries is relatively high. Therefore, the continuous model is more adequate for
low-thrust trajectories. However, there is some research which deals with the
employment of continuous model in analyzing high-thrust transfers as well.
For example, in [24], the problem of the optimal space trajectory for the mis-
sion to the Apophis asteroid approaching the Earth has been studied with the
employment of a continuous model for the departure phase from Earth.

The general representation of continuous transfer is the extension of the
Newton equation for the N-body problem as in Eq. 1.2.
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r̈ = −G
n∑
i=1

mi(r− ri)
|r− ri|3

+ Γ (1.2)

where r is the position of the spacecraft, ri are the positions of n celestial
bodies with masses mi, and G is the gravitational constant. Γ represents the
summation of all accelerations due to sources other than the gravitational
force of celestial bodies, such as the space perturbations or the thrust pro-
vided by the spacecraft propulsion system [25]. It is clear that, by consider-
ing the position vector r and its time derivative ṙ as the state vectors (i.e.,
x(t) = [r ṙ]), Eq. 1.2 will be a specific form of the general model representa-
tion as in Eq. 1.1. This is the general equation for any continuous spacecraft
trajectory optimization problem. Obviously, by setting u(t) = 0 and consid-
ering the maneuvers as sudden velocity increments, the continuous model will
turn into the impulsive model. For specific missions and applications such as
unperturbed orbits around Earth, the orbit propagation may be simplified to
orbital elements. Therefore, the complexity of the model can be changed for
various applications, from very simplistic (for example Hohmann transfer) to
heavily complicated (e.g., low-thrust interplanetary transfer).

1.2.2 Models based on equations of motion

Besides the concept of a mathematical model for spacecraft trajectory opti-
mization, the representation of the dynamics of the spacecraft motion is a
key to categorize the model. Different forms of Eq. 1.2 are considered in the
literature depending on the space mission, falling into two main groups of
two-body problems and N-body problems. Obviously, this category does not
conflict with the previous one. In other words, one can simulate two-body
problems or N-body problems with either impulsive or continuous models.

1.2.2.1 Typical two-body problems

The simplest model for spacecraft dynamics is the two-body problem model
[15]. This model begins with two point masses and describes their mutual
gravitational attraction[17]. In this modeling, the mass of the spacecraft is
assumed to be much smaller than the mass of the body it is orbiting. This
allows the spacecraft’s mass and its gravitational effects on the larger body
to be neglected. Moreover, the frame of reference is inertial. This allows for
derivatives to be taken without regarding the motion of the reference frame.
Besides, both the celestial body and the spacecraft are supposed to be point
masses and no other forces are applied to either body [26]. These assump-
tions allow for the basic formulation of the two-body problem, however they
constitute an imperfect model.

The most common mathematical model of spacecraft dynamics regarding
the mentioned assumptions for typical two-body problems can be described
as the well-known non-Keplerian two-body problem equation [15], [26]:
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r̈ = − µ
r3 r + γ (1.3)

This equation of motion is best described initially using an independent
inertial coordinate frame. In this equation, r denotes the position of the space-
craft relative to inertial coordinate system, µ is the gravitational constant of
the central mass, and γ is the acceleration due to engine thrust. Rewriting
this equation in scalar form yields the following set of first-order derivatives
[17]: 

ṙx
ṙy
ṙz
v̇x
v̇y
v̇z

 =



vx
vy
vz

− µ
r3 rx + γx

− µ
r3 ry + γy

− µ
r3 rz + γz


(1.4)

where rx,ry,rz are the position components (r = rxi + ryj + rzk), vx,vy,vz are
the velocity components (r = vxi+vyj+vzk) and γx,γy,γz are the acceleration
components (γ = γxi + γyj + γzk) in Earth Centered Inertial (ECI) frame,
where i, j, and k denote the unit vectors of the coordinate system attached
to the frame of reference.

Besides Cartesian form, cylindrical coordinates are sometimes considered
in research as follows. 

r̈ − rθ̇2 + µ

s3 r

rθ̈ + 2ṙθ̇
z̈ + µ

s3 r

 =

γrγθ
γz

 (1.5)

where s =
√
r2 + z2, and γr,γθ,γz are the acceleration components in cylindri-

cal coordinate systems. These general trajectory equations of motion are vastly
used in many spacecraft trajectory optimization problems [27, 28], specifically
for analyzing perturbed orbits [29] and low-thrust transfers [30]. Although the
Cartesian and cylindrical forms are often used for typical spacecraft trajectory
optimization problems [31], other forms based on the variation of parameters
are sometimes used in spacecraft trajectory optimization.

Another form of mathematical model for spacecraft trajectory optimiza-
tion is in terms of classical orbit elements. The six classical orbital elements
[26] can be derived from the position and velocity vectors directly [15]. Never-
theless, sometimes the following Lagrange equations are used in mathematical
modeling of spacecraft dynamics [26]:
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n

where the classical orbital elements, a, e, i, Ω, ω, M are semi-major axis,
eccentricity, inclination, right ascension of ascending node (RAAN), argument

of perigee and mean anomaly. n is the mean motion, defined as n =
√

µ

a3 and
θ is the true anomaly. The parameters γr, γt, γn denote radial, tangential,
and normal components, respectively [32].

The advantage of using this set of equations is that they provide the vari-
ation of classical orbital elements directly from the acceleration without the
need for state variables. This method of defining an orbital state is intuitive
but unfortunately has a number of singularities that tend to complicate the
equations of motion. For instance, at zero inclination the right ascension of
ascending node loses meaning. Similarly, for zero eccentricity the argument of
perigee becomes indistinguishable from the true anomaly. These singularities
can be clearly seen in their equations of motion. Due to the existence of these
singularities, the classical orbital elements are not necessarily the best set of
states for numerical analysis.

The other model of completely defining an orbit is by the use of the modi-
fied equinoctial orbital elements. This element set maintains the mathematical
advantages of the classical orbital elements without going singular for circular
or prograde equatorial orbits. The set of differential equations defining the
spacecraft dynamics based on equinoctial orbital elements is as follows [11]:
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dp

dt
= 2

√
p3

µ

1
W
fN (1.12)
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√
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µ
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)
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where the following abbreviations have been used:

s =
√

1− f2 − g2 (1.18)
X = 1 + h2 + k2 (1.19)
W = 1 + f cos(L) + g sin(L) (1.20)

A(L) = f + cos(L)(1 +W ) (1.21)
B(L) = g + sin(L)(1 +W ) (1.22)

where p, f, g, h, k and L are the modified equinoctial orbital elements. Also,
fN , fS , and fW are components of the perturbing acceleration in the direc-
tions perpendicular to the radius vector in the direction of motion, along the
outward radius vector, and normal to the orbital plane in the direction of the
angular momentum vector, respectively. This set of equations is employed in a
lot of research with various space missions including interplanetary transfers
with gravity assist maneuvers [33], [34]. Besides, the use of modified equinoc-
tial elements to describe the osculating orbits is a good choice due to the easy
formulation and robustness to uncertainties. See [35] for an instance regarding
these characteristics.

Other forms of differential equations may be used as the model for typical
two-body problems in spacecraft trajectory optimization. To be more specific,
there are twenty two identified candidate orbit element sets plus variations
defined in terms of Euler angles, Euler parameters, functions of classical ele-
ments, quaternions, set-III elements, fast or slow variables, or canonical vari-
ables. These other forms of orbital elements are well explained in a survey by
Hintz [36]. However, the model presented by the equation of state vectors in-
cluding position and velocity is used more frequently in spacecraft trajectory
optimization problems. The three sets of equations for modeling the two-body
problems are compared in Table 1.2.

As it has been demonstrated, when external acceleration is introduced,
time variation of classical orbital elements can be calculated based on the
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Table 1.2: Comparison of dynamic models for continuous thrust transfers

Inertial coordinates Classical orbital
elements

Modified equinoctial
orbital elements

Having physical meaning Normal High Low
Extending to other forms Easy Hard Hard
Suffering from singularities No Yes No
Practicality for numerical averaging No No Yes
Complexity of equations Low High Medium

standard variation of physical parameters. Euler angles are used to parame-
terize the orientation of the orbit plane. However, due to the inherent singu-
larities of the Euler angles, the variational equations may become singular for
zero eccentricity and/or zero inclination because Ω and ω are indeterminate
for i = 0, or π and ω is indeterminate for e = 0.

While the modified equinoctial orbital elements avoid the singularities of
the classical orbital elements, the main disadvantage of using them is that from
direct inspection it is not intuitively obvious what is happening physically
to the system. The classical orbital elements directly relate to the physical
geometry of the orbit and are much simpler to directly interpret than the
equinoctial orbital elements.

There is significant freedom in the choice of a suitable set of state vari-
ables or elements. The modified equinoctial element set is the only one that
is non-singular for all values of eccentricity and inclination. This set also em-
ploys elements that are not far from the classical ones, so that transforming
and interpreting them in terms of physically significant parameters is rela-
tively easier than using classical orbital elements. Therefore, it is advisable
to use the modified equinoctial orbit element set for the research and tech-
nology development task. They can also be used for the integration of orbits
with special and general perturbations, as well as differential corrections in
orbit determination. However, the other orbit element sets could prove to be
convenient in specific applications where the singularities are not a problem
[36].

1.2.2.2 Rendezvous

Besides the models for typical two-body problems, the general equation of mo-
tion can be reformulated and turned into new representations regarding any
special space missions. One of the challenging space missions in literature is
the space rendezvous. Rendezvous in space between two spacecraft is accom-
plished when both space vehicles attain the same position vector and velocity
vector at the same time. However, at the time the rendezvous sequence is
initiated, they may be very far apart, possibly with one satellite at liftoff. The
first part of a rendezvous sequence is the phasing step, which is to perform the
maneuvers in the timing sequence that will bring the two satellites into close
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proximity. For this step, the state vectors model which includes the position
and velocity [26] is usually valid and selected as the general dynamic equation
for describing the spacecraft motion.

The next step is the terminal rendezvous. It performs the maneuvers that
induce the relative motion between the spacecraft that is required for ren-
dezvous and docking, i.e., the motion of one spacecraft (chaser or active vehi-
cle) with respect to the other (target or passive vehicle). The coordinate frame
is attached to one (target) of the satellites in this maneuver [37]. The most
used model for this mission in spacecraft rendezvous is given by Clohessy-
Wiltshire equations, which have been widely adopted to study the spacecraft
relative motion problems. By assuming small distance between the chaser and
the target, the linearized equations of the relative motion between them can
be described as below [15], [37]:ẍ− 2nẏ − 3n2x

ÿ + 2nẋ
z̈ + n2z

 =

γxγy
γz

 (1.23)

where n denotes the mean motion of the target vehicle. These equations can
be used to study the forces required to perform an orbit rendezvous, the
displacements from a reference trajectory produced by maneuvers or other
velocity changes and the effects of perturbations on the displacements from
a reference trajectory. These second-order differential equations are valid for
small displacements (a few tens of kilometers in the radial and out-of-plane
directions) but remain correct for an order of magnitude (hundreds of kilo-
meter) of larger change in the down track coordinate. Several articles can be
referred to as samples of rendezvous missions for additional information [38],
[39].

The Clohessy-Wiltshire equation set is derived from the assumptions that
the two spacecraft run on neighboring two-body circular orbits and the relative
distance between the two spacecraft is much shorter than their geocentric
distance. Moreover, first-order approximations are used so that second- and
higher-order terms of relative positions and velocities are ignored. It needs
improvements in order to describe relative trajectories not satisfying these
assumptions. For the sake of brevity, the detailed description of improved
relative dynamics equations for space rendezvous is omitted here and the
reader is referred to the survey by Luo et al. in 2014 [6].

1.2.2.3 Libration points

Libration points, sometimes referred as Lagrange’s points, are essentially the
gravitational equilibrium in celestial mechanics, where a spacecraft is able
to keep stationary with respect to the primary and secondary bodies with-
out fuel consumption. Therefore, they can motivate numerous space missions
due to their special locations. Simulation of transfers to these points needs
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models based on N-body problem since the gravitational force of more than
one celestial body is considered on the spacecraft. The trajectories used by
these missions are solutions of the Circular Restricted Three-Body Problem
(CR3BP). CR3BP is the simplest model to study the three-body problem,
as well as the most useful one to investigate the motions and phase space
structure near libration points. However, it is sometimes not accurate enough
for astronautical applications.

The planar CR3BP describes the motion of a spacecraft moving in the
gravitational field of two primaries P1 and P2, with masses m1 and m2. The
equations of motion in the normalized synodic reference frame, are [26]:(

ẍ− 2ẏ
ÿ + 2ẋ

)
=
(
Ωx
Ωy

)
(1.24)

with the effective potential given by

Ω(x, y) = 1
2(x2 + y2) + 1− µ

r1
+ µ

r2
+ µ(1− µ)

2 (1.25)

and

µ = m2

m1 +m2
(m2 > m1) (1.26)

r1 =
√

(x− µ)2 + y2 (1.27)
r2 =

√
(x+ 1− µ)2 + y2 (1.28)

where r1 and r2 denote the distances from the particle to P1 and P2, respec-
tively, and µ (not to be confused with the gravitational constant in previous
subsections), known as the mass parameter of the CR3BP, is the dimension-
less mass of P2. The normalized variables are such that the distance between
P1 and P2, the sum of their masses, and their angular velocity around the
barycenter are normalized to one. So, one complete rotation of the primaries
around their barycenter with respect to an inertial frame occurs in 2π dimen-
sionless units of time, and, in the synodic frame, P1 and P2 are fixed at (µ, 0)
and (µ− 1, 0), respectively. Halo orbits located around the collinear libration
points in the CR3BP can be well established regarding this modeling. See [40]
and [41] for some instances.

The presented dynamic equations are suitable for the 2D problem. The 3D
form of CR3BP has one additional differential equation for Z axis. Besides,
the center of the main coordinate system may be modified and shifted toward
different masses in some research. The general 3D representation of CR3BP
is as follows:

ẍ− 2ẏ − x
ÿ + 2ẋ− y

z̈

 =


− (1− µ)(x+ µ)

r3
1

− µ(x− 1 + µ)
r3

2

− (1− µ)y
r3

1
− µy

r3
2

− (1− µ)z
r3

1
− µz

r3
2

+

γxγy
γz

 (1.29)
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Numerous researches use this model for libration points [42]. The more gen-
eral representation of system dynamics for Lagrange’s points is the extended
continuous thrust form for N-body problem in the Earth-centered inertial
coordinate frame as [15]:

r̈ = −µE
r3 +

N∑
i=1

µi

( ri − r
|ri − r|3

− ri

r3
i

)
+ Γ (1.30)

where µi is the gravitational constants for any of the planets considered in the
model, while ri is the position vector for that planet. An example of this model
is used in [43], which considers the solar radiation pressure as the perturbed
acceleration.

Other forms of equations describing the dynamics of Lagrange’s points
vary for different coordinate systems and expected accuracies. One represen-
tation is the Elliptical Four-body Problem (EFBP) in which the Moon moves
around the Earth in an elliptical motion and the Earth-Moon system moves
around the Sun in a circular orbit. All the central bodies are in the same
plane. Although the EFBP is not the most faithful model for the spacecraft,
it does include the most important facts, the Sun’s direct influence and the
Moon’s elliptical motion, which cannot be analyzed in the Circular Restrict
Three-Body Problem (CR3BP). More details about mathematical models for
libration points can be found in [44].

1.2.3 Summary

In spacecraft trajectory optimization, modeling the engineered system dynam-
ics is the primary step. The model of the dynamic system is a set of equations
(differential equations) that represents the dynamics of the system using laws
of physics. The model allows the study of spacecraft transients and steady
state performance. As the model becomes more detailed, it also can become
more accurate. Model accuracy needed for spacecraft trajectory optimization
is normally simpler than the model used for system simulation. Ignoring some
physical phenomena, linearly approximating nonlinear characteristics and us-
ing the approximation of lumped parameters in spacecraft are the ways which
turn complex models to simple ones for trajectory optimization.

1.3 Objective

The second key element of the spacecraft trajectory optimization process is
defining objectives based on the space mission requirements. Objectives are de-
fined by means of some functions, usually referred to cost functions in optimal
control terminology or objective functions in computer science terminology.
They may comprise fuel mass, total velocity increment, state errors, transfer
time, or acceleration. Besides, other components may be also considered in
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some space missions due to the employment of specific techniques or mission
criteria.

Although the objective functions vary from problem to problem, its general
form, better known as Bolza cost function [13], can be defined as follows [14]:

J(x,u, t) = h(x(tf ), tf ) +
∫ tf

t0

g(x(t),u(t), t)dt (1.31)

where t0 and tf are the initial and final times, respectively. The function h
represents the Mayer term which denotes the cost related to the final states
and g is referred to as the Lagrange term or the running cost which tracks
the state and control costs that occur through their entire time histories. This
general form of the objective function represents a complete cost function in
optimal control theory. The objective function may contain just the Mayer
term, just the Lagrange term, or both, depending on what is being optimized
in space travel. Various forms of objective function can be categorized in two
different aspects, including type and quantity as illustrated in Fig. 1.4.

OBJECTIVE 

TYPE 

Mayer 

Time 

Velocity 
increament 

Constraints 

... 

Lagrange 

Acceleration 

Fuel mass 

... 

QUANTITY 

Single objective 

Multi-objective 

Fig. 1.4: Taxonomy of objectives in spacecraft trajectory optimization

One common and familiar definition between all types of objective func-
tions is presented by Conway [4]. It states that the objective of any space
mission depends on two concepts, including having minimum time or mini-
mizing control effort, referring relatively to the Mayer and Lagrange terms in
Eq. 1.31. This type of definition can be considered as a subcategory for the
type of the objectives. As for the number of objectives, cost functions can be
roughly divided into single objective and multi-objective ones [45]. As will be
discussed in this section, the simplest way to deal with multipurpose space-
craft optimization problem is to consider an overall objective function being
the weighted sum of the single objective functions [46].



1.3 Objective 23

The following subsections are dedicated to the different types of objective
functions according to the taxonomy, ending with a brief discussion about the
typical techniques for dealing with multi-objective problems.

1.3.1 Mayer

The first types of objectives are those which are related to the Mayer term.
These objectives are functions of state variables at the end of a transfer tra-
jectory.

1.3.1.1 Time

The time in spacecraft trajectory optimization problems is simply the transfer
time in space travels. While the control effort has different kinds of representa-
tions as previously mentioned, such as fuel mass, thrust level or acceleration,
the time has a simple representation in most of the problems. For minimum
time problems, the cost function can be simply defined as:

J = tf (1.32)

where tf is the transfer time. One example regarding the use of this cost func-
tion is the trajectory optimization of libration points in Earth-Moon system,
in which the duration of flight to perform the mission purposes is expected
to be minimized [47]. Wang et al. [48] used this cost function to minimize the
transfer time for a Earth to Mercury space mission utilizing solar sails.

1.3.1.2 Velocity increment

In many spacecraft trajectory optimization problems the objective is to min-
imize the velocity increment or the summation of the increments in multiple
phases. A typical example is the well-known multiple gravity assist mission
with n stages [49]. In this problem each impulse causes a mass consumption
proportional to the modulus of the change of velocity. Therefore, in order to
minimize the overall mass consumption, the following objective function is
usually considered:

J =
n∑
i=0
|∆vi| (1.33)

where ∆vi is the single change of velocity dedicated to each trajectory be-
tween two astronomical body (planets or asteroids). This representation of
cost function is very popular specifically for multi-impulse problems [50], [18]
and even rendezvous missions [38], [39].
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1.3.1.3 Initial and terminal conditions

Although the terminal conditions (or even in some cases the initial conditions)
are generally considered as constraints, there are some researches which deal
with these constraints as objectives [51]. The general form will be as follows:

J = φ(x(t0),x(tf )) (1.34)

where φ is the initial and terminal constraint. Note that this function is more
general than the function h given at Eq. 1.31. This kind of cost function is
used in several articles including gravity assist maneuvers [33], [34], continuous
interplanetary trajectories [48], spacecraft reentry [52] and orbit rising mission
[53].

1.3.2 Lagrange

Unlike the objectives related to the Mayer term, the second types of objec-
tives are functions in the form of Lagrange term in Eq. 1.31. These costs are
integrals of inputs or state variables in the transfer trajectory.

1.3.2.1 Acceleration

One cost function which is usually considered to be minimized in space mis-
sions is the integration of the square of spacecraft acceleration within the
transfer trajectory. Its representation is as follows:

J = 1
2

∫ tf

t0

γ2dt (1.35)

where γ is the magnitude of the spacecraft acceleration, typically due to the
propulsion system, while t0 and tf are the initial and final time of spaceflight.
This representation is popular in researches including thrust minimization
[54], [55]. Other forms of cost functions for acceleration are popular in space-
craft trajectory optimization problems, specifically in shape-based techniques
[56]. The reason is that in these researches, the state vectors are directly inter-
polated via polynomials with discretization [43]. So the acceleration (similarly
the thrust magnitude) will be achieved as a function of optimization variables.
In such cases, the total velocity increment can be calculated by integrating
the norm of the acceleration vector as:

J = ∆v =
∫ tf

t0

√
γx2 + γy2 + γz2dt (1.36)

where γx, γy, γz are the components of overall acceleration of the spacecraft
within the transfer trajectory. Obviously, these components can be substi-
tuted by any coordinate system [57]. In some researches [58], acceleration is
sometimes represented by T/m as follows:
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J =
∫ tf

t0

T

m
dt (1.37)

where T and m are the thrust magnitude and the mass of the spacecraft,
respectively. In this case, the maximum value or the integral of thrust mag-
nitude will be considered as the cost function. Eq. 1.36 along with Eq. 1.33
are both representations of velocity increment in discrete and continuous do-
mains, respectively. The type of the model and the approach determine which
one should be used in spacecraft trajectory optimization.

1.3.2.2 Fuel mass

Besides velocity increment and acceleration, sometimes fuel mass is considered
as an alternative representation of energy. The study of fuel cost function for
spacecraft trajectories has been taken into consideration for a long time [59].
One representation is as below.

J =
∫ tf

t0

ṁfdt (1.38)

where mf is the fuel mass of the spacecraft within the transfer trajectory. If
the transfer time and the mass decreasing rate is fixed, the fuel mass will be
independent of the transfer trajectory and can be calculated directly. In such
cases, the fuel mass takes the Mayer form simply as J = mf , as in [27]. Also,
in some research the fuel mass itself is an input of the optimization process
which turns this variable into a known and fixed parameter in the overall
process.

1.3.3 Other objectives

Besides the common objectives, sometimes additional costs are considered in
some problems, depending on the approach or mission criteria. For example,
Luo and Tang [60] employed the following cost function in order to prevent
the solution from having a non-smooth trajectory:

J = 1
2

∫ tf

t0

[x(t)]TQ[x(t)]dt (1.39)

where Q is the state weighting coefficient. Employment of this cost func-
tion, besides other familiar cost functions, overcomes the production of a non-
smooth or badly scaled trajectories.

Optimization of multi-spacecraft constellations problem by Li et al. [61] is
another example of employing a special cost function. Since the problem in
this research is formation flying, a very specific cost function including several
terms is considered. Objectives such as collision, path length, execution time,
fuel consumption and fuel distribution are considered simultaneously.
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As another example in the multi gravity assist trajectory optimization
problem, the constraints on the minimum distance from the center of each
planet can be included in the objective function through appropriate penalty
terms [62]. Therefore, some modifications are applied to the objective function.
Vasile and Locatelli [49] considered the following modification to the typical
cost function in that problem:

J = J0 +
n∑
i=1

wi max[ri − γi] (1.40)

where J0 is a typical cost function in the form of Eq. 1.33, wi are given penalty
parameter values and γi are the pericentre radius of planets in n stages of the
space mission. This form of objective function has also been used in [63].

1.3.4 Scalarization

As stated, objectives can also be categorized according to their number. Single-
purpose methods attempt to determine the solution taking into account a
single criterion, whereas multi-purpose methods search for a trade-off among
several distinct criteria. Almost every advanced spacecraft trajectory opti-
mization problem involves multiple conflicting criteria and it is not possible
to mathematically define a single optimal solution. However, a set of compro-
mises called Pareto optimal solutions can be defined. In such problems, there
is no unique solution that optimizes both objectives [4]. For instance, in order
to force the optimization to meet the boundary conditions while searching the
proper set of inputs for the maximization or minimization of the given cost
function, it is convenient to attempt to minimize an augmented cost function.
This process, better known as scalarization [64], is the method which trans-
forms the problem into a single-objective optimization one involving possibly
some parameters or additional constraints. Separate terms in the cost func-
tion are given appropriate weights designating their relative importance in
the optimization. This is perhaps the most difficult part of designing the cost
function. There are an infinite number of weighting combinations if multiple
terms are present. One representation of using a weighting coefficient in a
general form is presented in [65] as the following:

J(x,u, t) = h(x(tf ), tf ) + α

∫ tf

t0

g(x(t),u(t), t)dt (1.41)

where α denotes the relative importance of minimizing cost to terminal con-
ditions. The primary purpose of this weighting factor is to balance the cost
function such that the Mayer and Lagrange terms have the same relative order
of magnitude. It has been stated that for the impulsive cases where the thrust
time is small relative to the scenario time, it required a weighting factor on
the order of 10−2. For the continuous case the thrust time was larger relative
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to the total scenario time requiring this weighting factor to decrease to the
order of 10−6 [65]. However, each scenario requires specific manipulation of
this variable in order to properly balance the cost function.

The rest of the methods in scalarization techniques are more practical
than Eq. 1.41. In these techniques, the Mayer and Lagrange terms in the
main equation are separated into several minor cost functions J1,J2,... Jp for
p number of minor cost functions. It allows the user to specify preferences,
which may be articulated in terms of goals or the relative importance of differ-
ent objectives [46]. Most of these methods incorporate parameters, which are
coefficients, exponents, constraint limits, etc, that can either be set to reflect
decision-maker preferences, or be continuously altered in an effort to repre-
sent the complete Pareto optimal set. Some forms of modified cost functions
in spacecraft trajectory optimization problems are as follows:

J =
n∑
i=1

Ji (1.42)

J =
n∑
i=1

αiJi (1.43)

J =
n∑
i=1

Ji
αi

(1.44)

J =
n∑
i=1

J2
i (1.45)

where in some of them each cost function is multiplied or divided by a weight-
ing coefficient.

Choosing proper weighting coefficients in this form is a challenging issue
and has been tackled in different ways in various researches [66]. For instance,
Bolle and Circi [67] tackled this problem by choosing the maximum propa-
gation time allowed in the simulation as the related coefficient for the time
cost function and manually tuning the other weighting coefficient (magnitude
of the error tolerance permitted during the mission design phase) in order to
make both cost functions behave in the same order. As such, extreme care
must be taken in properly balancing the relative weights in the cost function.
For fundamental background in the associated multi-objective optimization,
the reader should refer to Marler and Arora [45].

1.4 Approach

Hitherto, the spacecraft dynamics and the objectives have been modeled and
properly defined for the spacecraft trajectory optimization problem. The prob-
lem can now be introduced as a general representation as depicted in Fig. 1.5.
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Details for the dimensions of variables are provided in [68]. The next step in
spacecraft trajectory optimization is to develop an approach for finding the
optimal trajectory. Since this step is a vast subject, only an overview of ap-
proaches with a brief discussion is provided in this section. For a fundamental
background in the associated approaches, the reader should refer to [12].
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Fig. 1.5: Mathematical representation of a spacecraft trajectory optimization
problem

While proceeding to the details in this section, the distinction between the
terms approaches, methods and techniques will be provided in order to avoid
misunderstanding. Each of these terms include a specific bunch of ideas which
are illustrated in the map of trajectory optimization approaches as in Fig. 1.6.

In general, two types of approaches exist: analytical approaches and nu-
merical approaches. Analytical approaches for the optimal trajectory result in
analytical solutions. They can only be obtained in special cases, for example
for very low-thrust orbit raising [69], and sometimes in the presence of some
perturbations [38]. Therefore, results from the analytical approach are seldom
feasible for most of the spacecraft trajectory optimization problems [4].

The majority of researches are dedicated to numerical approaches for
spacecraft trajectory optimization problems [4]. These approaches can be di-
vided in two well-known methods, called direct and indirect methods [12], [70].
Through direct methods, the solution is found in an approximate way based
on the concept of parameterization on state variables x(t) and control inputs
u(t). The parameterization concept usually involves discretization which con-
cerns the process of transcription of the problem for transferring continuous
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Fig. 1.6: Taxonomy of approaches in spacecraft trajectory optimization

functions, models, and equations into discrete counterparts. Certainly, such
methods allow a candidate solution to be found, but no warranty is given
about its optimality [12]. Indirect methods, on the other hand, use the same
techniques and concepts as in the direct method, but have the feature of rely-
ing on necessary, analytic conditions for optimality. This allows the shifting of
the optimization problem onto the determination of some parameters, known
as the Lagrange multipliers, that should fulfill conditions for optimality at the
beginning and at the end of the process. These variables are often defined as
co-state, as they evolve along with the state vector. In other words, the main
difference between direct and indirect methods is the involvement of co-state
variables. The main issue related to indirect methods is the impossibility of
knowing the initial guess, permitting the meeting of the boundary conditions.
The search domain in such methods which is based on Pontryagin’s Principle
[4], is made even more complex by the fact that each Lagrange multiplier
ranges in an unbounded set [12]. The connection between these two methods
has been a challenge and a matter of interest within the community. The long
lasting history regarding the bond of these methods has resulted in the recent
advance in trajectory optimization [71]. This connection is described with re-
spect to the Covector Mapping Principle, thanks to the efforts of Ross and
Fahroo [72], [73], [74]. It describes the relationship between the multipliers
of the discretized optimization problems and the co-states of the continuous
optimal control problem.

Besides these two categories, sometimes dynamic programming is also con-
sidered as the third branch of numerical methods (dashed line in Fig. 1.6) in
which the optimality criteria in continuous time is based on the Hamilton-
Jacobi-Belman partial differential equation. However, most research in litera-
ture only consider direct and indirect methods as the only two branches of the
numerical approaches [3], [4]. An overview of the approaches mentioned along



30 1 Overview of Spacecraft Trajectory Optimization

with their related methods, techniques and theories will be briefly discussed
in this section.

1.4.1 Analytical approaches

Analytical approaches are the most desired ones since they usually provide so-
lutions based on mathematical representations directly with zero approxima-
tion. However, they are not achievable most of the time due to the complexity
of the problem. Such kinds of complexities may be because of the mathemat-
ical model or the objectives. The primary example of an analytical approach
is the well-known Hohmann transfer for a simple orbit transfer mission. Ac-
cording to the proposed terminology and taxonomy in this review, Hohmann
transfer is actually a very simple approach for transferring the spacecraft from
one orbit to another for velocity increment minimization.

As for the analytical approach in a continuous domain, generally the pro-
cess of achieving the optimal solution involves optimal control theory and
relies on Pontryagin’s Principle. The first step is establishing the problem in
mathematical representation. This consists of determining the equations of
motion, cost function, and applicable constraints. Constraints can be broken
down into two primary types: path constraints and boundary constraints [75].
Path constraints represent restrictions on either the control or state at any
time. For instance, engines have a finite amount of thrust yielding a max-
imum value for the control. It would be meaningless to look for a solution
that requires a thrust more than the maximum available limit. Boundary
constraints pertain to either the final or initial states. They may be given as a
set of equality or inequality constraints. A state vector that does not violate
any constraint is referred to as an admissible trajectory. Similarly, a control
vector that does not violate any constraint is referred to as an admissible con-
trol. Then, the cost function is formed, augmented with Lagrange multipliers
(or co-states) associated with the constraints and state differential equations
of the system. Defining a convenient Hamiltonian, the first variation of the
cost function due to differential changes in the control inputs is written. Next,
co-state differential equations and boundary conditions are chosen to simplify
this expression. This process of writing a problem in terms of the original
variables and Lagrange multipliers (or states and co-states) is often referred
to as dualization which makes the problem difficult to solve analytically. Such
difficulties are well described by Ross [13]. However, this analytical approach
is very useful as a sanity check for the numerical approaches.

As is shown in many references [12], [13], the number of Lagrange multi-
pliers equals that of the state vector components. This means that even in the
simplest case by considering the spacecraft as a material point, thus ignoring
the attitude equations, the optimal set of Lagrange parameters could poten-
tially be searched in R7 (six entries for the spatial coordinates plus one for the
spacecraft mass). If even the initial epoch of the transfer is to be determined,
the optimal set of parameters must be searched in R8.
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Notable researches are dedicated to analytical approaches in spacecraft
trajectory optimization. For example, Fernandez [76] developed a complete
first-order analytical approach for the problem of optimal low-thrust limited-
power transfers in an inverse-square force field between coplanar orbits with
small eccentricities. The presented approach eliminates the singularity for
circular orbits and can be applied for time-fixed transfers between coplanar
orbits with small eccentricities.

1.4.2 Numerical approaches

By increasing the complexity of the model and the problem, the analytical
approaches fade and numerical approaches become more favorable. A few of
the popular methods in numerical approaches are discussed here, following
the surveys [3] and [4].

1.4.2.1 Direct and indirect methods

The overall schema of numerical approaches is depicted in Fig. 1.7.
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Fig. 1.7: Methods and techniques in numerical approaches

Two distinct branches of numerical approaches have arisen. Both branches
attempt to minimize cost functions and constraint violations using discrete ap-
proximations [77]. This is performed by some gradient-based or metaheuristics
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which will be discussed in the next section. The first branch is that of direct
methods which transcribe the continuous optimal control problem into an op-
timization problem [11] considering states and control vectors. Satisfaction of
the system equations is accomplished by integrating them stepwise using ei-
ther implicit or explicit rules; in either case, the effect is to generate nonlinear
constraint equations which must be satisfied by the parameters, which are the
discrete representations of the state and control time histories. The problem
is thus converted into a nonlinear programming problem [78]. Although direct
methods are less accurate than indirect methods, the fact that they are easier
to implement, have a larger domain of convergence, and have reduced problem
size make them very attractive. One type of direct methods is the one when
only the state variables are interpolated and control variables are considered
in the objective function. Then a gradient-based technique or metaheuristic
is employed to minimize the cost by changing the values of state variables.
This method is sometimes referred to as the shape-based method, since it
pertains to the shape of the state variables. Fourier series are very popular
in this kind of method, specifically when applied to low-thrust trajectory op-
timization [30], [56], [55], [79], [80], [81]. The trajectory determined by the
shape-based methods satisfies the equation of motion, boundary conditions,
and even the constraint on the thrust acceleration. In addition, the solution
of the shape-based methods can be shown to serve as a good initial guess for
other approaches or methods. The resulting approach is very popular since it
can be used in spacecraft trajectory optimization problems considering con-
straints or any other type of limitations. They have advantage as they can be
easily manipulated for overcoming drawbacks of other methods. For instance,
Xie et. al [31] used the shape-based approach in providing a new combination
of the elevation-angle and radius shapes for the 3-D low-thrust trajectories
using the initial orbital plane as the reference plane. This new shape combi-
nation avoids the two drawbacks of the spherical shaping method, including
large out-of-plane motion and range control of state angle variation.

The second branch is that of indirect methods. An indirect method con-
siders the dualized form of the equations including states and co-states within
the time discretization. That is, the states and co-states are both considered
within the discretization. While indirect methods typically enjoy greater accu-
racy than direct methods, three major problems arise. Firstly, the analytical
forms of the necessary conditions must be expressed, including the co-state dif-
ferential equations, the Hamiltonian, the optimality condition, and transver-
sality conditions. Numerically speaking, this also makes the problem size large
due to discretization of the co-states. Secondly, the analyst must guess certain
aspects of the solution, such as the portions of the time domain containing
constrained or unconstrained control arcs. Finally, this method also requires
initial guesses for the co-states which decreases the domain of the convergence
[11].

Previously mentioned, the very rarely considered branch is the dynamic
programming method, which is seldom considered as a separate subdivision
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of numerical approaches. The basic idea is to subdivide the problem to be
solved in a number of stages. Each stage is associated with one subproblem,
and the subproblems are linked together by a recurrence relation. The solution
of the whole problem is thus obtained by solving the subproblems using recur-
sive computations. For a more detailed insight in dynamic programming, the
reader is referred to [82]. Dynamic programming has been extensively applied
with success to discrete problems. Unfortunately, its application is severely
restricted in the case of continuous state systems because of the curse of di-
mensionality; a term coined by Bellman to describe the problem caused by
the exponential increase in the size of the state space [10]. Therefore, dy-
namic programming has not been successfully used in spacecraft trajectory
problem with a large number of variables. Other methods, such as direct or
indirect methods, must be employed. It should also be noted that regardless
of whether a direct or indirect method is chosen, the states must be integrated
from some boundary condition or the equations of motion must be enforced
through constraints.

Both of the aforementioned direct and indirect methods aim at a high-
fidelity solution, but may be time consuming for evaluating thousands of tra-
jectories in the preliminary phase of the mission design. There have been
various efforts and routes taken in overcoming the difficulties associated with
the design of optimal spacecraft trajectories, for instance, by resorting to
heuristics.

1.4.2.2 Numerical techniques

Hitherto, two different methods have been introduced within the category of
numerical approaches. In this subsection, some numerical techniques will be
briefly introduced, which can be used in direct and indirect methods.

One strictly direct technique is that of differential inclusions. The differ-
ential inclusions enforce the equations of motion at each discrete time by
applying inequality constraints on the state derivatives [83]. These inequality
constraints are obtained by substituting the upper and lower bounds on the
control vector into the equations of motion. When the inequality constraints
are met, the states at one node are said to lie in the attainable set at that
node, given the state values at an adjacent node and the set of admissible
controls. The advantage given by differential inclusions is that it effectively
eliminates the explicit dependence on control values at each node. However,
techniques such as this can become numerically unstable and the formulation
can be problem dependent [3].

The shooting method is a well-known iterative technique to calculate the
state histories given the control histories of the system. Most successful shoot-
ing applications have one salient feature in common, namely, the ability to
describe the problem in terms of a relatively small number of optimization
variables. One example is [48], where the direct shooting method is employed
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with an evolutionary algorithm to solve the minimum-time orbit transfers of
solar sail spacecraft for Mercury sample return missions.

Shooting methods can be divided into two types including shooting method
and multiple-shooting method. The direct shooting method is a control pa-
rameterization method where the control is parameterized using a specified
functional form, e.g.,

u(t) ≈
m∑
i=1

aiψi(t) (1.46)

where ψi(t)(i = 1, ...,m) are known functions and ai(i = 1, ...,m) are the
parameters to be determined from the optimization. The dynamics are then
satisfied by integrating the differential equations using a time-marching algo-
rithm. Next, the cost function is determined using a quadrature approximation
that is consistent with the numerical integrator used to solve the differential
equations. The nonlinear programming problem that arises from direct shoot-
ing minimizes the cost subject to any path and interior-point constraints.

An extension of shooting the method is the multiple-shooting method. In
a multiple-shooting method, the time interval [t0, tf ] is divided into M + 1
subintervals. The aforementioned direct shooting method is then used over
each subinterval [ti, ti+1] with the values of the state at the beginning of each
subinterval and the unknown coefficients in the control parameterization being
unknowns in the optimization. In order to enforce continuity, the following
conditions are enforced at the interface of each subinterval:

x(t−i ) = x(t+i ) (1.47)

These continuity conditions result in vector root-finding problem, where it
is desired to drive the values of the difference between x(t−i )− x(t+i ) to zero.
It can be seen that the direct multiple-shooting method increases the size of
the optimization problem because the values of the state at the beginning of
each subinterval are variables to optimize. This technique can also be applied
in indirect approaches as well, where the co-states are also taken into account
during discretization. The idea of the multiple-shooting method for both direct
and indirect approaches is shown in Fig. 1.8.

Despite the increased size of the problem due to these extra variables, the
direct multiple-shooting method is an improvement over the standard direct
shooting method. The sensitivity to errors in the unknown initial conditions
is reduced since the integration is performed over significantly smaller time
intervals. Shooting methods are attractive because the equations of motion are
enforced automatically by the marching integration. This effectively reduces
the size of the problem by reducing the number of constraints that must be
applied compared with collocation techniques which will be discussed in what
follows [84].

Collocation techniques enforce the equations of motion through quadra-
ture rules or interpolation. See [85] as a typical example. An interpolating
function (interpolant) is solved such that it passes through the state values
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Fig. 1.8: Diagram of direct and indirect multiple-shooting methods

and maintains the state derivatives at the nodes spanning one interval (or
subinterval) of time. The interpolant is then evaluated at points between the
nodes, called collocation points. At each collocation point, an equality con-
straint is formed, equating the interpolant derivative to the state derivative
function, thus ensuring that the equations of motion hold (approximately)
true across the entire interval of time. This technique, sometimes referred to
transcription method [11] is based on a trajectory discretization by small seg-
ments and on a near-uniform discrete approximation of thrust directions by
a set of thrust profiles with an inequality constraint for each segment. The
problem in this case can be stated as to minimize the total characteristic ve-
locity with terminal conditions. The overall scheme of this process is depicted
in Fig. 1.9.

In fact, the technique can be considered as a sequential nonlinear program-
ming algorithm. This process has three fundamental steps. The first step is to
convert the dynamic system into a problem with a finite set of variables. The
second step is solving the finite-dimensional problem using a parameter opti-
mization method (i.e., the nonlinear programming subproblem). Finally, the
third step is to assess the accuracy of the finite-dimensional approximation
and, if necessary, repeat the transcription and optimization steps. Actually
this technique is a process including an approach (discretization), a solution
(NLP) and a minor technique (refinement). Details about these steps are pro-
vided in [11].

In this technique, one fundamental step is to discretize the spacecraft tra-
jectory as depicted in Fig. 1.10. According to Fig. 1.10, trajectory discretiza-
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tion refers to a process which can be clearly seen as a multi-phase optimization
problem. In this process, the trajectory is broken up into a finite number of
legs and segments. The stage cost and constraints are generally expressed
in terms of thrust magnitude and any violation from the maximum value.
Transition functions can be obtained from the integration of the spaceflight
equations of motion. The schematic representation of the corresponding tra-
jectory structure is depicted in Fig. 1.11.

Once the states have been discretized and fitted with a polynomial, they
are differentiated and then compared to the defined state derivatives at the
collocation points. The difference is referred to as the defect. The defect is
minimized in order to satisfy the specified equations of motion. This concept
is the main notion in a class of techniques called Pseudospectral methods.
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Fig. 1.11: Spacecraft trajectory discretization

Pseudospectral methods represent a class of direct methods that use colloca-
tion to solve optimal control problems numerically rather than analytically.
This technique has become increasingly popular over the past several decades.
In a pseudospectral method, the collocation points are chosen based on ac-
curate quadrature rules and the basic functions are typically Chebyshev or
Lagrange polynomials. They are generally known to converge spectrally as
mentioned in [86]. In these methods, the discretization is accomplished by
the use of global polynomials at collocation points. There are many sets that
are commonly used in pseudospectral methods such as Legendre-Gauss (LG),
Legendre-Gauss-Radau (LGR), Legendre-Gauss-Lobatto (LGL), Chebyshev-
Gauss-Lobatto (CGL) and Hermite-Legendre-Gauss-Lobatto (HLGL). Al-
though some researchers prefer the term orthogonal collocation, the terms
pseudospectral and orthogonal collocation have the same meaning [87]. The
reader is referred to [88, 89, 90, 91, 92, 93, 94, 95] and references therein for
recent and comprehensive reviews of pseudospectal methods along with their
applications in trajectory optimization problems.

Needless to say, each method may be more appropriate under certain con-
ditions. The accuracy of such discretizations has been compared in [53]. How-
ever, the accuracies of individual methods are not rigorously examined in this
survey since the main focus is not on the collocation method itself. While
space precludes a more detailed discussion of collocation methods, the inter-
ested reader should consult the survey by Topputo and Zhang [96].

1.4.3 Summary

The approaches for spacecraft trajectory optimization problems are numerous
and the current section is just a brief overview of current trends. As proposed
in this section, when describing an approach for solving spacecraft trajectory
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optimization problems, it can be either analytical or numerical. It is possible to
employ analytical approaches for specific space missions by a simpler process
than the procedure identified in optimal control theory. One process is semi-
analytic, which is often employed in academic-strength problems. They usually
use clever coordinate transformations and other tricks to avoid relying on
Pontryagin’s Principle or mitigate the complexity of optimal control theory.
While such ad hoc techniques are indeed useful and important for the analysis
of specific problems, they are not portable to the broader spacecraft trajectory
optimization problems. When turning into numerical approaches, a method is
often classified as either a direct method or an indirect method. As stated, the
direct methods transform the spacecraft trajectory optimization problem to
large-scale problems that require a high number of iterative computations. It
constructs a sequence of points such that the objective function is minimized.
In an indirect method, the process is also the same. However, it attempts
to find a root of the necessary condition based on Pontryagin’s Principle.
It means it focuses on the adjoint variables in addition to state and control
variables. Contrary to popular belief, Pontryagin’s Principle itself is not an
approach for achieving the solution. It is a problem generator which maps the
optimal control problem to a boundary value problem by lifting it to a dual
space [13].

It is also important to emphasize that there is no restriction with the
method used to solve the problem and the techniques. For example, with the
exception of the differential inclusion, one may consider applying a shooting
or multiple-shooting technique to either an indirect or a direct method (notice
the dashed lines in Fig. 1.7). The difference within the process for the shooting
method is depicted in Fig. 1.12. Similarly, collocation techniques can be used
not only in direct methods but also in indirect methods as well, with respect
to the Covector Mapping Principle. The reader is urged to consult the works
of Huntington et al. [53] for additional information. It should also be noted
that the Covector Mapping Principle is satisfied by not only pseudospectral
methods but also by Runge-Kutta methods. See [97] as an example in this
regard.

When using an indirect approach, the user must compute the quantities of
the Hamiltonian function. Unfortunately, this operation requires the user to
have at least some knowledge of optimal control theory. Furthermore, even if
the user is familiar with the requisite theoretical background, it may be very
difficult to construct these expressions for complicated black box applications.

The major drawback for the indirect approach is the robustness. One diffi-
culty is that the user must guess values for the adjoint variables, which is very
non-intuitive since they are not physical quantities. Even with a reasonable
guess for the adjoint variables, the numerical solution of the adjoint equations
can be very ill-conditioned.

As for the direct method, more flexibility can be gained in finding the so-
lution. Since the adjoint equations are not formed explicitly, analytic deriva-
tives are not required. Instead, equivalent information can be computed using
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sparse finite differences. Consequently, a user with minimal knowledge of op-
timal control theory can use the method. The method is flexible and new
formulations are handled readily. Path inequalities do not require an a priori
estimate of the constrained-arc sequence because the active set procedure au-
tomatically determines the arc sequence. The method is very robust since the
user must guess only the problem variables. Furthermore, the globalization
strategy, which is designed to improve a merit function, has a much larger
region of convergence than finding a root of the gradient of the Lagrangian,
which is the approach used by an indirect method. To sum up, for most ap-
plications, the direct method is quite powerful and eliminates the deficiencies
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of an indirect approach. Indeed, it is often tempting to use a direct method
simply because it is more easily implemented and understood. Nevertheless,
there may be some situations that are problematic in direct strategies, such
as singular arcs and discontinuous control.

The approach is the most important element of the four steps mentioned
in the main process of solving a spacecraft trajectory optimization problem.
The choice between the approaches vastly depends on what type of problem is
being faced and what solution is actually expected. One good example which
shows this dependency is the concept of on-line and off-line implementation of
an approach [98]. The first kind of concept assigns maximum priority to the
speed of convergence, maybe to the detriment of the accuracy or optimality
itself. An example is provided by rendezvous with a moving target or docking
maneuvers in which a real-time calculation of the approaching trajectory is
often required [99]. As for the latter category, alternatively, the time for con-
vergence is not as important as the optimality of the solution. An example is
the long-time scheduling of a space mission involving multiple fly-bys [100].

1.5 Solution

The final step of the spacecraft trajectory optimization process consists of
achieving the solution based on the approach developed in the previous sec-
tion, either analytical or numerical. In Fig. 1.13, a hierarchy of algorithms used
in the literature for spacecraft trajectory optimization is presented, which will
be used as a scheme in the rest of the section.

If the analytical approach is developed in the previous step, the exact solu-
tion will be achieved. In the case of simple spacecraft trajectory optimization
problems and sometimes very specific space missions, researchers usually use
exact methods. Once again, the simplest example is solving the problem of
impulsive orbit which arises with Hohmann transfer approach [17]. This an-
alytical approach clearly ends in an exact solution directly. When a problem
is solved analytically, it usually does not involve any iteration. There is no
need to use any special numerical technique or iterative procedure to achieve
the solution if the approach is truly analytical. As mentioned in the previous
section, such cases are very rare in spacecraft trajectory optimization.

On the contrary, when spacecraft trajectory optimization problems be-
come too complex for exact methods, numerical algorithms, heuristics and, in
particular, metaheuristics are often used. In such cases, the problem is consid-
ered as a black-box which can be tackled with computational techniques and
algorithms. Moreover, the problem imposes less restrictions to the application
of different algorithms in this way.

1.5.1 Nonlinear Programming

Of the few types of computational techniques commonly used to solve trajec-
tory optimization problems, gradient based methods such as nonlinear pro-
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Fig. 1.13: Taxonomy of solutions in spacecraft trajectory optimization

gramming seems to be the most popular. Over the past decades, nonlinear
programming (NLP) has become an indispensable tool for the optimization
of space trajectories. These tools are now applied at research and process de-
velopment stages, in the design stage, and in the online operation of these
processes. More recently, the scope of these applications is being extended
to cover more challenging, large-scale tasks. The ability to solve large-scale
problems cheaply, even online, is aided by recent breakthroughs in NLP. They
include the development of modern barrier methods, deeper understanding
of line search and trust region strategies to aid global convergence, efficient
exploitation of second derivatives in algorithmic development, and the avail-
ability of recently developed and widely used NLP codes.
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Since NLP uses gradient information, it is often capable of relatively quick
convergence and very accurate results (within the accuracy of the discretiza-
tion). They also have well-defined convergence criteria. This has led to their
popularity and the development of many individual software packages. A vast
number of NLP solvers has been developed since 1970. Some of them are
SNOPT [101], DONLP2 [102], filterSQP [103], rSQP++ [104] and KNITRO
[105] which has been developed since the late 1990s until the mid 2000s. An-
other available package is the function fmincon() of MATLAB optimization
toolbox. Developed in 2009, it is a general, multi-purpose constrained param-
eter optimizer for small, medium, and large spacecraft trajectory optimization
problems [56].

The existence of various NLP solvers has led to a number of implementa-
tions and very reliable and efficient software packages for large-scale nonlinear
programming. Certainly, one of the most recent and useful platforms for NLP
is that of the NEOS Server [106]. This server provides state-of-the-art soft-
ware free of charge to solve optimization problems. Other platforms such as
AIMMS [107], AMPL [108], and GAMS [109] have also made the formulation
and solution of optimization accessible to a much wider user base.

These NLP algorithms and associated solvers discussed in this section com-
prise only a sampling of representative codes, based on Newton-type methods.
A complete listing is beyond the scope of this survey and the reader is referred
to the NEOS software guide [106] for a more complete selection and descrip-
tion of NLP codes. Moreover, important issues such as scaling and numerical
implementations to improve precision have not been covered here. Readers
are referred to [110] for more information on NLPs.

The most noticeable problem with gradient based methods is that they
require an initial guess of all the parameters of the system. Since all nodal
state and control values are parameterized, the analyst must have some a
priori knowledge of the optimal trajectory. The consequences of poor initial
guessing are usually failure to converge or convergence upon a non-global
optimum solution in the cost function.

Having the initial guess for the gradient-based method is a challenging is-
sue in spacecraft trajectory optimization. A method to address this issue was
first proposed in 1995 [111], which leads to the presentation of metaheuristics,
an alternative way to solve the discrete direct or indirect trajectory optimiza-
tion formulations.

1.5.2 Metaheuristics

In recent years, there have been significant advances in the use of metaheuris-
tics to approximate solutions of spacecraft trajectory optimization problems.
A metaheuristic is an iterative master process that guides and modifies the
operations of subordinate heuristics to efficiently produce high-quality solu-
tions [112]. It may manipulate a complete (or incomplete) single settlement
or a collection of settlements in every iteration. The subordinate heuristics
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may be high (or low) level procedures, or a simple local search, or just a con-
struction method. The family of metaheuristics includes, but is not limited
to, genetic algorithms, particle swarm optimization, simulated annealing, and
their hybridizations.

Metaheuristics provide decision-making managers with robust tools that
obtain high-quality solutions, in reasonable time horizons, to important ap-
plications specifically in aerospace optimization problems. The well-known
survey by Blum and Roli [113] divides metaheuristics into two main cate-
gories including single solution algorithms and population based algorithms.
The first category, also referred to trajectory-based algorithms, gathers lo-
cal search, greedy heuristic, simulated annealing, tabu search, iterated local
search, etc [112]. The second category, which is more practical in spacecraft
trajectory optimization, regroups evolutionary algorithms such as genetic al-
gorithms [114], evolution strategies [115], genetic programming [116], particle
swarm optimization [117], etc. Survey by Xiong [118] also confirms this tax-
onomy with a slight difference in which the single solution algorithms are sep-
arated into two categories called trajectory based and multi-trajectory based
algorithms. Other taxonomies exist as well that try to put algorithms in dif-
ferent groups [119], [120].

Among metaheuristics, evolutionary algorithms are particularly suited for
most of the spacecraft trajectory optimization problems. A Generic diagram
for most of the algorithms in this group is presented in Fig. 1.14.

The most recurrent instances in EAs group are Genetic Algorithms (GAs)
which have been used in many papers [121]. Besides GAs, Differential Evolu-
tion (DE), has also been used frequently in the solution of spacecraft trajec-
tory optimization. In these algorithms, the information about the structure
of the problem can be incorporated in order to improve the efficiency of the
algorithms.

The performance of different algorithms on different benchmark problems
are compared in some researches. The tested algorithms in these studies in-
clude, besides GA and DE, EAs such as Particle Swarm Optimization (PSO),
Ant colony optimization (ACO) and also local search algorithms such as Sim-
ulated Annealing (SA).

It can be highlighted that GAs are the first choice for most of the space-
craft trajectory optimization problems, perhaps due to their availability and
ease of use. However, it is difficult to know the particular variant used (codifi-
cation, operators, etc.) from the contents of the papers. Another observation
regarding the literature confirms the fact that metaheuristics are more used
in problems based on impulsive models rather than continuous models. To
be more specific, gravity assist missions are the problems which are tackled
mostly by evolutionary algorithms.

According to the literature, researchers tend to use EAs more than
trajectory-based algorithms. However, the EAs have drawbacks which, to some
authors, make it unacceptable as a primary means of trajectory optimization
[3]. Firstly, as the algorithm is probabilistic, the difference in the output so-
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lution in different runs can be high. Second, there are no well-defined conver-
gence criteria (i.e., no necessary and sufficient conditions), such as those used
in NLP algorithms.

It should also be highlighted that metaheuristics has been used not only
for spacecraft trajectory optimization, but also for space orbit design problems
as well. A typical example is the use of EAs for minimizing the average revisit
time of a space mission over a particular target site during the specified days
[122].

1.5.3 Hybrid algorithms

In recent years, many works have relied on cooperative (or hybrid) optimiza-
tion techniques. In many cases, the best results are obtained with this kind of
techniques, especially in real-life problems. At the beginning, cooperation was
mainly carried out between several metaheuristics. But nowadays, more and
more cooperation schemes between metaheuristics and exact approaches are
proposed. These strategies usually give good results because they are able to
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exploit simultaneously the advantages of several types of algorithms or meth-
ods. For example, it may allow giving quality guarantees to the identified
solutions or may reduce the sensitivity to the initial guess [123].

The first attempt, in 1995 [111], was intended to be a solution of the
multi-point boundary value problem (MPBVP) for systems with Mayer cost
functions, and linearly appearing controls. The final numerical solution of the
optimality conditions was initialized using guesses for the switching times,
generated by examining the results of an NLP shooting technique initialized,
in turn, by a shooting technique incorporated with GA. The solved problem
was the reorientation of an inertially symmetric spacecraft. Other authors,
such as those of [124], have opted to concentrate on modifying the components
of the GA to improve the performance. Though the goal of that work was to
improve the GA components themselves, the framework is relevant because it
allows a more general representation of the control history in a direct shooting
technique with a GA while using the result to initialize the NLP solution of
a direct collocation method.

In the literature, for example [125] and [62], it is also demonstrated that
a hybridization between global optimization techniques, generally applicable
to black-box problems, with ad hoc branch-and-prune methods and exploit-
ing the properties of the problem (e.g., continuity and differentiability, peri-
odicity, symmetry, modularity) can greatly improve convergence, specifically
when applied to spacecraft trajectory design. Hybridization may also refer to
switching between global and local minimizers in an optimization algorithm
in some researches [62], [126], [49]. However, it does not only refer to the algo-
rithms. It sometimes refers to the approaches. For example, taking advantage
of both direct and indirect approach features in solving a trajectory optimiza-
tion problem in a space mission is sometimes called a hybrid technique [67],
[33].

Analyses regarding the effectiveness of the hybrid algorithms are encour-
aging as, for the same computational effort (measured in number of function
evaluations), hybrid algorithms were converging more accurately than com-
mon algorithms in many cases.

1.6 Summary and discussion

This review tried to provide a complete taxonomy of concepts within space-
craft trajectory optimization. This section provides the overall discussion re-
garding spacecraft trajectory optimization based on the literature referred to
in this review along with some issues in this field. Moreover, future trends
and useful considerations regarding the upcoming ideas in spacecraft trajec-
tory optimization are put forward.
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1.6.1 Highlights

By having an overview of the literature, several points can be highlighted.
They include the relation between direct and indirect methods, metaheuristics
and computational issues in spacecraft trajectory optimization which will be
discussed briefly in this subsection.

The two branches of direct and indirect methods play an important role
in categorizing the approaches. These two different philosophies have led to a
dichotomy in the space community. Researchers who focus on indirect meth-
ods are principally interested in differential equation theory, while researchers
who focus on direct methods are more interested in optimization techniques.
While seemingly unrelated, there are a lot of common characteristics between
these two methods. Specifically, as discussed in this review, in recent years
researchers have delved quite deeply into the connections between the direct
and indirect methods. They have discovered that the optimality conditions
from many direct methods have a well-defined meaningful relationship. Thus,
these two classes of methods are merging as time goes by. Covector Map-
ping Principle is actually the connectivity that fills the gap between these two
branches [13]. It renders the terms direct and indirect obsolete in the modern
viewpoint of spacecraft trajectory optimization and reveals that the obvious
and shorter path of dualization first and computing afterward is strewn with
difficulties while a longer path of reversing the operations eliminates the curse
of sensitivity.

Regarding metaheursitics, the key point is selecting an algorithm intel-
ligently for spacecraft trajectory optimization. The question remains unan-
swered about which algorithm is appropriate for a specific class of trajectory
optimization problems. One reason is the definition of a good algorithm, which
is different from paper to paper. Ideally, a good algorithm is capable of solving
most of the instances of a given spacecraft trajectory optimization problem
faster than a bad algorithm regardless of the method (direct or indirect) in
an acceptable range of accuracy. Typically computer time is used to measure
algorithm speed; however, when this is done it is imperative that all testing
be done using the same hardware, compiler options, and operating system.
The number of function evaluations can be used instead of (or in addition
to) computer time, but then one must carefully define a function evaluation.
Furthermore, in order to make a fair comparison between algorithms, it is im-
portant to consider several factors. These factors include testing a large suite
of instances of the problem, using the same initial guess, and comparing them
based on the same convergence criteria. When comparing one metaheuristic
to another in a spacecraft trajectory optimization problem, it is common to
perform benchmark tests using a suite of standard problems.

Four important computational issues that arise in the numerical ap-
proaches in spacecraft trajectory optimization are (i) consistent approxima-
tions for the solution of differential equations, (ii) the scaling of optimal control
problem (iii), exploitation of sparsity in the problem, and (iv) computation



1.6 Summary and discussion 47

of derivatives of the objective and constraint functions. The manner in which
the differential equations are discretized is of great important because an in-
consistent approximation to the differential equations can lead to either non-
convergence or convergence of the optimization algorithm to the infeasible
solution. Scaling and exploitation of sparsity in the problem are issues that
greatly affect both computational efficiency and convergence of the algorithm.
Finally, the manner in which derivatives are computed is also of great impor-
tance because accurate derivatives can greatly improve both computational
efficiency and reliability.

1.6.2 Issues

During the last few decades, every year several papers regarding an innova-
tive concept, approach or method for spacecraft trajectory optimization is
published. The majority of the publications present truly novel ideas in this
field. However, sometimes re-iteration of existing knowledge in this subject
is introduced as a novelty. One example is the application of metaheuristics,
more specifically EAs, in spacecraft trajectory optimization. Although some
novelties are perfectly introduced in many publications, some papers are ded-
icated to the application of existing algorithms or techniques in specific space
missions. The other similar issue is the parameter tuning of algorithms, which
is called a novelty sometimes. Unfortunately, some of them do not represent
a real advance in the field.

Another suggestion for improving the quality of the literature in this field
is standardization of the whole evaluation process of the algorithms. It means
using a high number of instances for evaluation of the proposed trajectory
optimization algorithms or methods in articles. When performing empirical
experiments with methods in spacecraft trajectory optimization, the goal is
to show that a specific method performs better than other methods on a class
of space mission instances with respect to some predefined objective, which
is computational time and\or solution quality. However, an overview of the
published papers in this field confirms that experiments are performed only
on a few instances or even on a single instance, instead of using a class of
space mission instances or randomly sampled orbits.

The next issue is the comparison of the results with other methods. The
best way to show that a new method is really successful is to demonstrate that
it outperforms state-of-the-art approaches. In some of the publications cited
in this review, it is not clear whether a state-of-the-art method has been used
for the comparisons or not. An alternative to show that the new method is
at least competitive or interesting is to demonstrate that it outperforms some
standard approaches. Unfortunately in most of the publications the proposed
method is only compared to a few other approaches. Even more dramatic is
the fact that in some papers no comparisons are performed at all.

There are some other issues as well, which are not discussed in detail here.
For example, the experimental conditions are not completely clear in most of
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the publications, sometimes best solutions are used for comparisons instead
of average solutions, and statistical tests are not performed in most of the
publications.

1.6.3 Suggestions for future trends

Several research lines can be identified as relevant subjects for future works
which take the field forward in promising directions. This section is not by any
means meant as a catalogue of or a roadmap for excellent research in spacecraft
trajectory optimization, its only purpose is to point out some properties that
the authors consider to be good research suggestions and practices, and some
promising areas in which a lot of research is still needed.

As the first suggestion, any research on spacecraft trajectory optimization
should be adequately framed in the general literature. Adequately framing a
method entails deconstructing it, showing which components it consists of,
and how these components were adapted to the specific space mission that
is being solved. For this to be at all possible, it is promising to explain new
spacecraft trajectory optimization approaches using the general optimization
terminology as introduced in this review. Clarifying the four key items includ-
ing model, objective, approach and the procedure for achieving the solution
can help the readers understand the structure of the problem. This leads to
deconstruction of the problem and reproducibility.

Following the proper terminology, all trajectory design should return to a
situation in which methods are developed based on insight into the structure of
the problem. Especially, research in spacecraft trajectory optimization should
be applauded if it yields insight into the reasons why specific algorithms,
methods or techniques work well on specific space missions. For example,
the application of global optimization algorithms such as GA, PSO, etc. to
space trajectory problems often considers the problem as a black box with lim-
ited exploitation of problem characteristics. However, in the component-based
view of spacecraft trajectory optimization, concepts from one or a set of dif-
ferent frameworks can be combined into ever more powerful approaches and
algorithms, such as hybrid approaches and algorithms, which are discussed
previously. Such concepts can exploit problem characteristics, providing sen-
sible improvements over the direct application of general purpose methods.
The result of such a process is a deep insight into which components are re-
sponsible for the core optimization power of the overall method. Potentially,
such analyses allow the spacecraft trajectory designer to draw important con-
clusions on why the method works as well as it does, by proving a relationship
between the properties of the optimization method and the structure of the
space mission problem that is being solved. Self-adaptive methods, specifically
metaheuristics that automatically tune their parameters according to the dy-
namic stiffness of spacecraft trajectory optimization problem, also present an
interesting line of future research.
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Rather than spacecraft trajectory optimization, space mission design is
also a challenging issue which is totally connected with spacecraft trajectory
optimization itself. This process, better known as space mission planning,
refers to two sequential steps; design the space mission and then optimizing
the trajectory related to the mission. Many space mission planning problems
are constructed in such a way that they include both real-valued variables
and categorical variables. The categorical variables will typically specify the
sequence of events that qualitatively describe the trajectory or mission, and
the real-valued variables will represent the launch date, flight times between
planets, magnitudes and directions of rocket burns, flyby altitudes, etc., [127].
For example in multi gravity assist maneuvers, the designer must choose both
a set of discrete categorical variables defining the sequence of gravity assists,
or flybys, to be performed and a set of real-valued variables that define the
trajectory corresponding to that sequence of flybys. The categorical variables
represent the planets chosen for gravity assists, and the real-valued variables
represent other parameters relevant to the trajectory, such as the date of
launch and the flight times between each planet in the sequence. Therefore,
the mission planning can thus be considered as two nested optimization prob-
lems including an inner loop that optimizes the trajectory for a given mission
sequence, and an outer-loop scheduling problem that chooses the optimal se-
quence of gravity assists. Such concepts involve using EAs in both combinato-
rial and continuous domain, which is an interesting topic for future researches,
since little research is dedicated to them.

Another interesting subject is that of scalarization techniques in spacecraft
trajectory optimization, which has not received much attention in the liter-
ature. Multi-objective trajectory optimization methods utilize various scalar-
ization functions in different researches depending on the space mission, ap-
proach, type and number of minor cost functions. In most scalarization func-
tions, preference information of the decision maker is taken into consideration.
After the scalarization phase, the widely developed theory and methods of sin-
gle objective optimization can be used to deal with the problem. However, no
current research can be found regarding the comparison of different scalariza-
tion techniques in spacecraft trajectory optimization, or at least in a specific
space mission.

The other new trend is designing global optimization metaheuristics which
are useful in automatically finding and selecting good trajectory options be-
tween the many often possibilities one has in the preliminary phases of mission
design. Their use and efficiency are established for chemical propulsion prob-
lems of high complexity (i.e., large launch windows and multiple flybys) when-
ever approaches more sophisticated than the straightforward use of standard
algorithms are adopted. Preliminary results in this sense are already available
and point to an increased need for computational resources. It seems likely
that future research results will aim at proving the use of these techniques for
the automated computation of low-thrust trajectories as well.
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Comparing different trajectory optimization approaches has so far been
a largely unstructured affair, with testing procedures being determined on
the fly and sometimes with a specific outcome in mind. Although some au-
thors have developed procedures to make a statistically sound comparison,
widespread acceptance of such procedures is lacking. Perhaps a set of tools
is needed, i.e., a collection of optimized trajectories or libraries specifically
designed to determine the relative quality of a set of methods on a set of
problem instances. These should both be easy to use, and their results should
be easy to interpret. Until such tools are available and a specific comparison
protocol is enforced by journal editors and reviewers, the door is left open
for researchers to select the method of comparison that proves the point it is
intended to prove. Moreover, such contributions can be published even if they
do not contain any novel method or a method that outperforms all existing
approaches.

1.7 Conclusion

A review for solving spacecraft trajectory optimization problems has been
given in this chapter. The solving process is decomposed into four key steps
of mathematical modeling of the problem, defining the objective functions,
development of an approach and obtaining the solution of the problem. Using
these steps, several subcategories for each step have been described. Subse-
quently, important classifications and their characteristics have been discussed
for solving spacecraft trajectory optimization problems. Finally, a brief dis-
cussion has been given on how to decide and choose in each step.

This review is considered complementary to most of the previously pub-
lished survey articles on spacecraft trajectory optimization. It reflects most of
the research and efforts that has been carried out over the past decade while
simultaneously providing a summary of the vast amount of work that was
done up to this point. The material in this review has been presented to give
the reader an understanding of how methods, techniques and algorithms are
categorized for spacecraft trajectory optimization problems. It is also worth
noting that a great deal of discussion has been given to the distinction between
different categories, not just in this review but also in previously published
surveys.

To sum up, trajectory design and optimization has a broad variety of appli-
cations in different fields, particularly in aerospace engineering. The solution
of a trajectory optimization problem that minimizes a cost function subject to
nonlinear differential equations of motion and various types of constraints may
be obtained by either an analytical approach or a numerical approach. From
the viewpoint of numerical computation, spacecraft trajectory optimization is
a hard global optimization problem, which is even more difficult when the ana-
lytical expressions of the objective function or the constraints are not usually
available. Moreover, even simple bi-dimensional cases display an enormous
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number of local optima. All of the iterative techniques and algorithms for
spacecraft trajectory optimization can present convergence difficulties (non-
convergence, slow convergence, etc.). These difficulties should be considered
for each specific problem since a general technique for all spacecraft trajectory
optimization problems does not exist. It does not make sense to ask general
questions such as “Are direct methods better than indirect methods? ”or “Is
Genetic Algorithm better than Particle Swarm Optimization in spacecraft
trajectory design?”. The answer to such questions can only be “It depends on
the space mission and the mission requirements”. This is not to say that all
approaches, methods and algorithms are equally powerful, nor that it is im-
possible to obtain meaningful insight into whether a specific method is more
suitable for solving a specific class of trajectory optimization problems than
another. Viewing spacecraft trajectory optimization concepts as sets of gen-
eral ideas allows a broader view of the literature and allows for the discovery
of similarities between the structure and inner workings of methods that re-
main opaque if only the label the author of the method has chosen for it is
considered. This is certainly true in the modern view of spacecraft trajectory
optimization, in which ideas may combine concepts from different frameworks
and the framework that is used to name the method is a matter of the author’s
personal opinion. Choosing a method for solving the spacecraft trajectory op-
timization problem is based largely on the type of problem to be solved and
the amount of time that can be invested in coding. Various extensions to the
currently employed approaches offer opportunities and challenges for future
works.
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Long-range Space Rendezvous

2.1 Introduction

2.1.1 Motivation of Research

Rendezvous orbital dynamics is a key operational element for complicated
space missions, which has a research history of several decades, and many
novel research ideas and results on this topic are still appearing in different
missions such as asteroids explorations [128], Mars missions [129] and Earth
orbit transfers [130]. The general long-range rendezvous problems are usually
solved based on the Lambert method which has been one of the most exten-
sively studied methods for decades and still is a subject of interest in many
researches [131, 132]. In a long-range rendezvous, the spacecraft is expected to
have an orbital maneuver where, in the general case, all of the orbital elements
involved suffer changes. This type of non-coplanar orbit transfer problem is
the early phase of the overall space rendezvous [6]. In this type of mission,
a two-impulse transfer obtained by the Lambert method that starts on the
initial orbit and ends on the final orbit within a specific time can be the fuel-
optimal transfer. However, for some specific cases, such as bi-elliptic Hohmann
transfers, it is analytically possible to have the same or less fuel consumption
than a two-impulse transfer for specific missions [15]. In either cases, no obser-
vation is applied to the magnitude of impulses, and thus, the solutions might
not be feasible in scenarios where impulse limits are considered. In fact, the
problem becomes more challenging when propulsion systems with low im-
pulses are used in such non-coplanar transfers. When the goal is to find the
optimal transfer in terms of fuel and time complying a given impulse limit,
finding the global optimal solution becomes challenging [133]. One effective
option to deal with this difficulty is to use meta-heuristics and evolutionary
algorithms [134, 135]. As a result, a more thorough investigation is needed to
find the best solution using these numerical methods and techniques [2].
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2.1.2 Recent Advances

In recent years, several attempts have been made to deal with impulsive
transfers in various space missions and conditions with different techniques
[136, 137]. Such conditions or constraints can be the actuation uncertainties
[138], collision avoidance constraint [139, 140] or other criteria. According to
the literature, this multi-objective problem generally includes two types of
costs and two types of constraints. The costs are fuel and time while the
initial and final orbits along with allowable impulse limit are considered as
constraints. Besides the impulse magnitude constraint, impulse direction is
also sometimes considered as another kind of constraint in the literature. It
can be the tangential impulse [141], along-track impulse [142] or continuous-
thrust transfer with specific control magnitude and direction constraints [143].
Regarding the initial and final condition, the problems can be categorized as
point to point, point to orbit and orbit to orbit maneuvers. A lot of research
has been dedicated to such problems. However, an efficient approach in fac-
ing the problem is that which can be used regardless of the problem type. In
[144], the problem of multi-impulse transfer is tackled by an analytical solu-
tion based on polynomials. However, the transfer time is not considered, and
the approach is tested on special cases. Coplanar two-impulse rendezvous is
studied in [145] and [146]. The research in [147] focused on a homotopic tar-
geting technique for space rendezvous. Although it adequately considered the
presence of orbital perturbations, the impulse limit is not taken into account.
More research can also be found in the literature in which either the time, the
impulse limit or other criteria have been taken into consideration besides the
fuel consumption [148, 149].

2.1.3 Main Contribution of the Research

Impulsive rendezvous between non-coplanar orbits considering fuel, time and
impulse limits makes the problem multi-objective and challenging to solve.
To that end, a metaheuristic algorithm combined with an analytical solution
of the multi-impulse transfer has been considered. The developed approach
minimizes both the fuel and time, keeping the minimum necessary number
of impulses without violating the impulse limit in a long-range rendezvous
mission. Particularly, the proposed strategy in the current context is a di-
rect approach based on the discretized Lambert problem and a novel hybrid
self-adaptive evolutionary algorithm. In this approach, as the first step, the
problem is solved, disregarding the impulse limit and transfer time and a so-
lution that minimizes the total fuel consumption is achieved. This solution
can be obtained either analytically or by means of an NLP or an evolution-
ary algorithm. Having this solution, the Lambert problem associated with the
obtained transfer trajectory is extended to multi-impulse transfers in which
the overall transfer is divided into a specific number of stages. Then, an ana-
lytical scheme is proposed based on dividing the velocity increments into the
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necessary number of small impulses at the intersections of space orbits corre-
sponding to each stage. This solution results in a specific sequence of impulses
within the proposed approach, which is feasible in terms of fuel consumption.
Considering this solution as a seed solution for generating individuals with
high quality, a robust self-adaptive evolutionary algorithm is proposed. The
algorithm benefits from several enhancements over the standard evolutionary
techniques by hybridizing an NLP solver with a modified Particle Swarm Op-
timization. The algorithm is constructed as a self-adaptive technique since its
parameters are auto tuned according to the orbital parameters of the initial
and final orbits as well as the specified impulse limit for the space rendezvous
mission. Combined with the proposed approach, the algorithm is tested on a
wide set of long-range space rendezvous missions with various impulse lim-
its. Results indicate that the algorithm is capable of decreasing the overall
transfer time while it satisfies the impulse limit and holds the optimal fuel
consumption.

The rest of the chapter is organized as follows. Section 2.2 introduces the
discretized Lambert problem for multi-impulse orbit transfers. The simple
feasible solution, obtained by an analytical approach is proposed in Section
2.3 based on dividing the velocity increments within the intersections of space
orbits. In Section 2.4, the robust self-adaptive evolutionary algorithm, along
with the improvements in its structure, are discussed. Section 2.5 provides
the simulation results obtained by utilizing the proposed approach in several
long-range space rendezvous missions. Finally, the conclusions are provided in
Section 2.6.

2.2 Discretized Lambert Problem

2.2.1 The Approach

Consider a general long-range rendezvous with initial and final orbital ele-
ments as p0 = [a0, e0, i0, Ω0, ω0, ν0] and pf = [af , ef , if , Ωf , ωf , νf ]. Since two
orbits do not have any intersections and no orbital elements are the same
between the two orbits, a two-impulse transfer trajectory that minimizes the
total fuel consumption exists. The transfer trajectory starts from the initial
true anomaly of θi of the initial orbit and ends in the final true anomaly of
θf of the final orbit. These two anomalies correspond with two radius vectors
ri and rf . Besides these two anomalies, a third parameter fulfills a complete
Lambert problem regarding any desired approach. The third parameter can
be semimajor axis [150] (Lagrange transfer-time equation), eccentricity [151]
(Avanzini’s approach), a universal variable [152] (Izzo’s approach), flight-path
angle [153] or any other parameter that constructs a unique Lambert problem.
Considering the Lagrange transfer-time equation, the unknown set of variables
can be established as x = [θi θf t] when only the orbit transfer is desired.
If the actual rendezvous is also desired besides the orbit change, the unknown
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variables will be x = [θi t] with respect to the relative phase difference of
chaser and target. In either case, the problem can be turned into a blackbox
optimization problem with total velocity increment ∆v as the output, which
is the summation of two impulses at intersections ∆v = ∆v1 +∆v2.

By means of an effective nonlinear programming (NLP) method or an
evolutionary algorithm (EA), the best solution with minimum fuel could be
approximated. However, no penalty is considered for the excessive magnitude
of ∆vi when low-impulse propulsion systems are utilized. In order to find the
solution with minimum fuel and transfer time in the multi-impulse maneuver
with respect to a given impulse limit, a new approach is proposed as shown
in Fig. 2.1.
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Fig. 2.1: Scheme of discretized Lambert problem.

In this approach, the original Lambert problem is divided into N number
of stages. Each stage represents a unique Lambert problem with unknown
Lambert problem variables. Having N number of stages will generate N − 1
intermediate orbits, represented by ai, ei, ii, Ωi and ωi (i = 1 to N − 1), along
with N jumps. Every jump is denoted by initial and final anomalies as θi,1
and θi,2 corresponding to the initial and final state vectors and the transfer
time ti in each stage. By considering the orbital elements of stages and the
Lambert problem variables as the inputs, a complete multi-impulse Lambert
problem with 2N impulses (∆vi,1 and ∆vi,2) will be fulfilled. Therefore, the
decision variables, denoted by the vector x, will be formed as:

x = x(ai, ei, ii, Ωi, ωi, θi,j , ti,j) (2.1)

According to this approach, a total of 2N − 1 sets of orbital elements will
be known when a solution is achieved. These sets contain N − 1 intermediate
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orbits, which are the inputs of the problem, and N jumps, which are trajecto-
ries representing the solution from each stage that represents a minor Lambert
problem. The 3N number of variables are associated with N Lambert prob-
lems, and 5(N − 1) variables are associated with the shape and orientation
of the N − 1 intermediate orbits. Therefore, a total of 8N − 5 decision vari-
ables are associated with the optimization of multi-impulse transfer in this
approach for N stages. Recalling that each stage has two impulses, the total
number of variables for n number of impulses (n = 2N) will be 4n− 5.

The initial and terminal conditions can be easily handled for various types
of long-range rendezvous missions in this approach. This can be done by ad-
justing the initial true anomaly of the first stage (θ1,1) and the final true
anomaly of the last stage (θN,2). As for orbit to orbit rendezvous, the initial
true anomalies of two spacecraft ν0 and νf are unknown and therefore θ1,1
and θN,2 are free. In this case, the problem will be tackled according to the
described optimization variables. For orbit to point rendezvous, when it is
necessary for the two spacecraft to be in the same true anomaly in the final
orbit, the parameter νf is known, which is the initial position of the target
spacecraft in the final orbit at epoch. In this case, θN,2 will be fixed and its
value can be calculated based on the total coast times and the initial true
anomaly of the target spacecraft (θN,2 = θN,2(νf , ti, t̄i)). Similarly, if it is re-
quired that the first impulse of the chaser occurs at a specific true anomaly in
the initial orbit (ν0 is known), the variable θ1,1 will be fixed. To sum up, de-
pending on what sort of long-range rendezvous is the subject of the problem,
the two optimization variables (θ1,1 and θN,2) can be either fixed or free.

This approach has some advantages over the traditional methods. First,
as with most of the multi-impulse approaches based on the Lambert problem
[50], the total number of inputs is lower in comparison to the traditional ap-
proach in which the direction, magnitude and time of impulses are considered
as the decision variables [154] (total of 4n decision variables). As an exam-
ple, in the traditional approach for a two-impulse transfer, the time of acting
for each impulse along with the impulse vector, including the magnitude and
two angles representing the direction of the impulse in three dimensions are
considered as the decision variables. However, in the current approach, only
three variables are required including the initial true anomaly, the final true
anomaly and the transfer time. Although the number of variables is lower, the
approach comes with the burden of tackling the Lambert problem in achiev-
ing the solution, which requires iterations. This is due to the fact that, by
defining multiple minor Lambert problems, the majority of the characteristics
of the transfer trajectories wil be revealed. In other words, the shape of the
transfer trajectories are taken into account instead of the impulse directions
in the Cartesian coordinate system. Regarding this fact, this approach can be
referred to as an impulsive shape-based approach.

The next advantage is handling the terminal conditions. The initial and
final condition for point to point, point to orbit and orbit to orbit cases can
be easily handled in the current approach by setting the Lambert problem
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variables as free or fixed in the first and last stages. However, satisfying the
terminal condition in the traditional approach is an issue which usually needs
to be considered as an additional term in the objective function. Besides, since
the shape of stages is defined via the actual orbital elements with physical
meanings, the method benefits from rapid convergence as the orbital elements
have known boundaries in real applications.

2.2.2 The Objectives

As the boundary conditions are already satisfied by the proposed approach,
three types of objectives are defined for the problem including fuel, time and
impulse violation. Regarding the proposed approach, the overall fuel consump-
tion in terms of ∆v in every stage is denoted by Jf and is defined as:

Jf =
N∑
i=1

(
∆vi,1 +∆vi,2

)
(2.2)

The total transfer time is the summation of all coasting times between
the impulses. Regarding the proposed approach, two types of coasting times
exist, denoting by ti and t̄i. The first type (ti) is the time associated with
each minor Lambert problem in every stage between ∆vi,1 and ∆vi,2. The
latter (t̄i) is the time between the impulses ∆vi,2 and ∆vi+1,1, in which the
spacecraft travels between two sequential Lambert problem. Therefore, the
time objective, represented by Jt, is defined as:

Jt =
N∑
i=1

ti +
N−1∑
i=1

t̄i (2.3)

The impulse violation regarding a given impulse limit needs to be calcu-
lated for each ∆v in every stage. As a result, the penalty denoted by the jth
∆v in ith stage is calculated as

Ji,j = 1 + sgn(∆vi,j − η)
2 (∆vi,j − η) (2.4)

where η is the given allowable impulse during the orbit transfer. In this equa-
tion, the typical sign function is used to extract the appropriate penalty for
each impulse. According to this equation, if the impulse is less than the pre-
defined limit (∆vi,j < η), the penalty associated with that impulse becomes
zero (Ji,j = 0). On the other hand, if the impulse exceeds the predefined limit
(∆vi,j > η), the associated penalty will be equal to the amount of exceeded
impulse magnitude (Ji,j = ∆vi,j − η).

Consequently, the overall magnitude of the penalty function due to the
impulse violations in all stages is calculated as:
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Jv =
N∑
i=1

(
Ji,1 + Ji,2

)
(2.5)

Having the cost functions, the overall objective function can be written
via scalarizing the three objectives as:

J = Jf + ζJv + ξJt (2.6)
where ζ and ξ are scalarization coefficients for impulse violation and transfer
time respectively. In the literature, the impact of the choice of the underlying
scalarizing coefficients is still far from being well understood in space orbit
design and optimization problems. Due to this matter, it is very important
and crucial to choose these parameters according to the type of the space
transfer. To demonstrate the effect of these weighting coefficients, one example
of feasible and non-feasible solutions within the solution domain of a sample
four-impulse rendezvous with one intermediate orbit is represented in Fig.
2.2 and Fig. 2.3. In this case, an orbit to orbit transfer with the initial and
final orbits as p0 = [10000, 0.1, 30, 40, 55] and pf = [16000, 0.4, 25, 50, 30] is
considered with impulse limit of η = 0.5km/s.

 

Fig. 2.2: Solution domain of J (ξ = 0) in a four-impulse rendezvous (∆v =
1.4777km/s).

In Fig. 2.2 the solutions are plotted as a function of semi-major axis and
inclination of the intermediate orbit. In this figure, the surface associated
with a set of good solutions (obtained by means of the approach in Sec. II
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and IV) is plotted, which includes the solutions with minimum fuel in this
case. In addition, neighboring solutions of the surface are plotted as green
points. Note that the time objective function has been disregarded (ξ = 0).
The points correspond to the solutions with larger objective values either
due to impulse violation or fuel consumption. Extracting the points near the
minimum-fuel region with respect to a selective threshold and recalculating J
and Jt for ξ 6= 0 are shown in Fig. 2.3. In this figure, the objective representing
the total transfer times (Jt) for fuel-optimal region versus the overall cost is
depicted.

 

Fig. 2.3: Time-optimal solutions in the neighborhood of fuel-optimal region.

In this figure, the solutions for acceptable transfers satisfying the impulse
limit are plotted along with non-feasible solutions in this matter. Local optima
regions can be obviously distinguished in Fig. 2.3 showing that the considera-
tion of ζ significantly affects the desired region and reaching the global optimal
solution is challenging in this type of problem. It is worth noting that the best
values of ζ are different from case to case. The major challenge is that the
tuned value of this parameter along with ξ for one space rendezvous does not
necessarily enhance the search process in another rendezvous problem. There-
fore, these parameters have to be tuned automatically according to the initial
and final orbits in each rendezvous mission. Such self-adaptive concepts makes
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the approach robust to every unique Lambert problem with a given impulse
limit.

2.3 Simple Feasible Solution

Regarding the proposed approach, the problem can be solved via an EA.
However, two issues will arise. First, the solution domain of the optimization
problem becomes too large when a high number of impulses are desired. The
reason is that by considering very low-impulse transfers, the number of stages
is increased which consequently increases the number of optimization vari-
ables. Following this, the landscape of the problem becomes chaotic, which
makes the convergence process slow and the quality of the final solution can
drop dramatically. The second issue is that the minimum number of impulses
required for the entire transfer is unknown.

In order to deal with these issues, individuals near the solution which min-
imized the fuel consumption can be used to improve the quality of the initial
populations of the EA and also to calculate the necessary number of impulses
regarding the given impulse limit. Seeding the EA based on a feasible solution
derived from the fuel-optimal region will effectively improve the convergence
and the optimality of the algorithm. This is due to the fact that the newly
generated populations have small values for one or two objectives while satis-
fying the impulse limit, forcing the algorithm to minimize the time near the
fuel-optimal region. The seeding technique can be used either within the initial
population at the beginning of the optimization, or during the optimization
process when the diversity of the population is less than a predefined thresh-
old, or both. To implement this concept, the problem is solved for N0 number
of stages without considering time (ξ = 0) and impulse violation (ζ = 0)
initially. This solution can be derived from either an existing analytical ap-
proach or a numerical solution. Having the solution for N = N0, the ∆vi,j
at the intersection of transfer orbit with Nith and Ni+1th intermediate orbits
can be divided into a necessary number of minor impulses. A schematic view
of this concept is depicted in Fig. 2.4.

Following this process, the impulse at each intersection is divided into mi-
nor ones keeping the impulse direction fixed. The required number of divisions
can be calculated based on the given impulse limit η as:

ϕi,j =
⌈∆vi,j

η

⌉
(2.7)

where ϕi,j is the minimum number of required impulses. Accordingly, the
actual impulse division at intersections for 1 < k < ϕi,j can be represented
by:

ϕi,j∑
k=1

∆vi,j,k = ∆vi,j (2.8)
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Fig. 2.4: Impulse division at intersection of orbits.

where ∆vi,j,k is the kth minor impulse in the jth intersection of orbits
in the ith stage. The current division keeps the impulse direction fixed as
∆vi,i,k/|∆vi,i,k| = ∆vi,j/|∆vi,j | and it satisfies ∆vi,j,k = ∆vi,j/ϕi,j if the
desired impulses are equally divided. Calculating the orbital elements based
on the newly obtained velocity vectors and rearranging them back to the dis-
cretized Lambert problem in the previous section will end in the solutions
satisfying the given impulse limit. The solution obtained here will be used
as a candidate solution to be utilized by the developed EA in the following
section. Considering the fact that the EA starts with a random distribution of
individuals within the known boundary limits, to minimize the overall transfer
time, one can take advantage of univariate Gaussian distribution and sample
individuals near the fuel-optimal region for seeding the algorithm instead of
uniform random distribution.

2.4 Hybrid Self-Adaptive Evolutionary Algorithm

The algorithm for solving the multi-impulse discrete Lambert approach is
described in this section. Particularly, a hybrid self-adaptive algorithm that
combines an enhanced evolutionary algorithm with the feasible solution is
presented. During the development of the EA, the features of the space ren-
dezvous mission are utilized to make the approach robust to any changes in
the space mission. In this section, three components are presented briefly, de-
scribing the main enhancements that have been taken into account. The aim
of this section is to present a layout of the connection between the algorithm
parameters and the elements of space rendezvous, which are utilized to make
the algorithm self-adaptive. Details regarding each modification are omitted
and the reader is urged to refer to the references provided.
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2.4.1 Hybridization of Algorithms

According to the presented approach, the search space of the discretized Lam-
bert problem is a continuous domain, possibly with a variable number of local
optima depending on the type of mission. Since the goal is to reach the global
optimal solution considering three objectives in general, there is a high possi-
bility for the solution to get trapped in the local optima regions. In order to
take advantage of the swarm intelligence and the shape of the landscape of the
problem and also compensate the weaknesses of stochastic and gradient-based
methods, hybridization of methods from two different types of algorithms has
been taken into account. In recent years, such hybrid evolutionary algorithms
have been well developed in different spacecraft trajectory design and opti-
mization problems [155].

The core of the optimization algorithm in this approach is based on an Im-
proved Particle Swarm Optimization (IPSO), hybridized with an NLP solver.
IPSO performs searching via a swarm of particles that updates from iteration
to iteration considering some enhancements. To seek the optimal solution,
each particle moves in the direction to its previously best (pbest) position and
the global best (gbest) position in the swarm [16]. One has

pbest(i, j) = arg min
k=1,...,j

[J(xi(k))], i ∈ {1, 2, ..., Np} (2.9)

gbest(j) = arg min
i=1,...,Np

k=1,...,j

[J(xi(k))] (2.10)

where i here denotes the particle index, Np the total number of particles, and
j the current iteration number. The velocity v̂ and position p̂ of particles are
updated by the following equations:

v̂i(j + 1) = wi(j)vi(j) + c1δ1(pbest(i, j)− xi(j)) + c2δ2(gbest(j)− xi(j))
(2.11)

xi(j + 1) = xi(j) + v̂i(j + 1) (2.12)

where v̂ denotes the velocity, wi(j) is the inertia weight used to balance the
global exploration and local exploitation, δ1 and δ2 are uniformly distributed
random numbers within range [0, 1], and c1 and c2 are personal and global
learning coefficients.

The inertia weight wi(j) is to bring about a balance between the explo-
ration and exploitation characteristics of the process. A large inertia weight
facilitates a global search while a small inertia weight facilitates a local search.
By changing the inertia weight dynamically, the search capability is dynami-
cally adjusted. In this algorithm, wi(j) is defined as [156].
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wi(j + 1) =


min

(
1, wi(j) + (1− w0)×

(
exp

( (xi(j + 1)− pbest(i, j))2

−2σ2

)
+ ρ
))

if δi(j) > 0 and δi(j + 1) > 0

max
(

0.1, wi(j)− w0 ×
(
1− exp

( (xi(j + 1)− pbest(i, j))2

−2σ2

)
− ρ
))

else if δi(j) < 0 and δi(j + 1) < 0

wi(j) otherwise

(2.13)
where w0 is the initial inertia weight which is considered equal for all

particles in all dimensions, in the (j + 1)th iteration. The Gaussian kernel
width (σ) is adjusted in a way that covers the maximum movement of the
particles. ρ is a small positive number used to ensure a proper increase or
decrease of the inertia weight. δi is the feedback parameter defined as:

δi(j + 1) =
{

1 if J(xi(j)) < pbest(i, j − 1)
−1 else (2.14)

According to this equation, the last two steps during the course of the run
are analyzed to be sure of making decisions about the value of the inertia
weight. When a particle succeeds in some sequential steps, it will have more
tendency to memorize its direction. Probably because it will have more success
in this direction. When a particle does not succeed in some sequential steps,
it has less tendency to memorize its previous direction. Probably because it
will have no more success in this direction.

In every generation within the process of optimization, the position of the
best particles xi(j) is improved with an NLP, leading to fast convergence.
LBFGS [157], an approximation to BFGS, which requires a lot less memory
is used as an efficient NLP for this matter. The position of the ith particle is
improved in the jth iteration as:

xi(j + 1) = xi(j)− αjHj∇J(xi(j)) (2.15)

where αj is the step length and Hj is updated at every iteration by means of
the formula

Hj+1 = V Tj HjVj + ρjsjs
T
j (2.16)

where

ρj = 1
yTj sj

(2.17)

Vj = I − ρjyjsTj (2.18)

and

sj = xi(j + 1)− xi(j) (2.19)
yj = ∇fj+1 −∇fj (2.20)

Since the inverse Hessian approximation Hj will generally be dense, the
cost of storing and manipulating it is prohibitive when the number of variables
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is large due to high number of impulses in the rendezvous mission. To circum-
vent this problem, a modified version of Hj is utilized implicitly, by storing a
certain number (λ) of the vector pairs (sj , yj) used in the formulas Eq. 2.16 to
Eq. 2.20. The product Hj∇J(xi(j)) can be obtained by performing a sequence
of inner products and vector summations involving ∇J(xi(j)) and the pairs
(sj , yj). After the new iterate is computed, the oldest vector pair in the set
of pairs (sj , yj) is replaced by the new pair obtained from the current step in
Eq. 2.19 and Eq. 2.20. In this way, the set of vector pairs includes curvature
information from the most recent iterations. Practical experience has shown
that modest values of λ often produce satisfactory results. The algorithm also
benefits from other modifications as well, such as mirror effect and velocity
clamping. The reader may refer to [158, 159, 160] for the details.

2.4.2 Generating Near-optimal Transfers

The proposed analytical seeding is utilized for generating the populations for
the developed EA. In order not to lose the diversity of the populations, uni-
form random distribution of individuals is also utilized alongside the Gaussian
random distribution to reach the optimal transfer. The new population xn is
then generated as a vector of mixed individuals. Assuming the generation of
n individuals (xn), the algorithm generates ε × n individuals based on the
uniform distribution (xu) and produces (1− ε)×n individuals based on Gaus-
sian distribution (xg) near the region in the search space which has the same
minimized-fuel as in the feasible solution as:

xg ∼ N (x∗, σ2(p0, pf , N)) (2.21)
where x∗ is the feasible solution with the minimized fuel the same as the
solution with N0 stages, which satisfies the impulse limit and σ2 is the selective
variances. One example of such a distribution is illustrated in Fig. 2.5.

Fig. 2.5 shows the intermediate orbits in a four-impulse rendezvous prob-
lem, separated in the two distribution types mentioned. The variance of the
Gaussian distribution σ2 is a vector as σ2 = [σ2

a;σ2
e ;σ2

i ;σ2
Ω ;σ2

ω;σ2
θ ;σ2

t ], rep-
resenting different variances for each type of variables in the optimization.
Regarding the proposed approach, the input vector x contains the orbital ele-
ments of the intermediate transfer trajectories along with the Lambert prob-
lem variables in each stage. Since the scale of variables in the input vector is
different, the variances should be selected properly as constant values, or as
the functions of some characteristics from initial orbit p0 and final orbit pf in
the space rendezvous mission.

2.4.3 Automatic Parameter Tuning

Since the objectives Jf , Jv and Jt have different types and scales, ζ and ξ
should be carefully tuned for each rendezvous problem. Also, the variance vec-
tor of variables σ2 used in Eq. 2.21 needs to be tuned according to a feedback
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Fig. 2.5: Distribution orbits in four-impulse rendezvous (ε = 0.4).

variable from the rendezvous problem. Rather than the seeding technique and
the optimization algorithm, the parameters ζ and ξ are also tuned as functions
of the rendezvous problem itself. Obviously, one selection of these parameters
for a specific rendezvous mission does not necessarily result in the optimal
solution in another mission. The issue is that depending on the shape and ori-
entation of the initial and final orbits or in general the amount of difference
between the orbital elements (p0 and pf ), the sensitivity of these objectives
varies. For instance, these parameters should be somehow auto-tuned to pre-
vent the algorithm from sacrificing the impulse violation in favor of time. If
this happens, the impulses achieved are not feasible, regardless of the total
transfer time. Regarding the impulse violation coefficient ζ, an arbitrary pa-
rameter Γ , representing the difference of initial and final orbits as Γ (p0, pf )
is defined by the following formula:

Γ = |a0 − af |
3Re + |e0 − ef |

0.5 + |i0 − if |
π

+ |Ω0 −Ωf |
π

+ |ω0 − ωf |
π

(2.22)

where Re is the Earth radius. This formula has five terms, corresponding to
each orbital element, divided by some scaling factors. These scaling factors
are selected in order to have the same impact on the overall value of Γ . The
proof of this claim is illustrated in Fig. 2.6 and Fig. 2.7.
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Fig. 2.6: Cumulative mean value of
Γ terms.

 

 

Fig. 2.7: Cumulative standard devi-
ation of Γ terms.

Fig. 2.6 and Fig. 2.7 show the cumulative mean value µΓ and the standard
deviation σΓ of the related term in Γ for n instances of different pairs of space
orbits as the rendezvous missions. The plots show that the scaling factors are
adjusted fairly for uniform changes of every Γ terms regarding each orbital
element as they converge almost to a same value. Besides the difference of
orbital elements, the minimum number of impulses required for the transfer
according to the impulse limit is considered as a tuning feedback. This pa-
rameter, denoted by φ, can be calculated after generating the feasible solution
described in Section 2.3. Having the required impulses at orbit intersections
ϕi,j , the total number of impulses is as:

φ =
N∑
i=1

2∑
j=1

ϕi,j (2.23)

where N is the total number of stages. The reason for considering this variable
as feedback for tuning the algorithm parameter is that when the number of
impulses increases, the likelihood of returning infeasible solutions by the algo-
rithm will be higher. Utilizing this parameter, the variance vector of decision
variables used in Eq. 2.21 is tuned as:

σ2 =
[
σ2
a σ2

e σ2
i σ2

Ω σ2
ω σ2

θ σ2
t

]′ = χ(1− e−βφ) (2.24)

where vector χ includes coefficients for each type of optimization variables.
One selective value for χ is 0.1 for eccentricity, 180 for true anomalies, 5000 for
time, and 100 for the rest of the optimization variables. Also, the value of 0.1
for β adjusts the variances into a more comprehensive amount. Such a selection
scales the variances to have the optimum distribution of the generated near
optimal solutions. Also, regarding the obtained variables, the parameter ζ is
defined as:

ζ = Γ + ln(φ) (2.25)
This tuning method adjusts the impulse violation according to the complexity
of the space mission and the number of stages which itself varies according to
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the given impulse limit. The coverage of this modeling is illustrated in Fig.
2.8.

 

Fig. 2.8: Impulse violation weighting coefficient coverage.

Fig. 2.8 shows the variation of ζ corresponding to the cost of impulse vio-
lation for the instances mentioned. A random impulse limit is considered for
each space rendezvous mission, leading it to produce a different number of
impulses for every long-range rendezvous. The points referring to high num-
ber of impulses are shown as big markers while smaller markers refer to the
space missions with a low number of impulses. The proposed method makes
the cost of impulse violation comparable to the fuel cost with respect to the
complexity of the rendezvous mission and the impulse limit. Similarly, the
weighting coefficient for the transfer time is defined as:

ξ = (J∗t )−1 (2.26)

where J∗t is the overall maneuver time of the multi-impulse transfer obtained
within the analytical seeding phase of the algorithm. Since the algorithm
attempts to find time-optimal solutions from the fuel-optimal region of the
solution domain within the process of optimization, it is cruicial to have a
dynamic coefficient for this cost with respect to the maximum transfer time
between the initial individuals. Considering this value as the weighting coeffi-
cient for the time scale, the overall time will be scaled to one with respect to
the initial seeds, making the value of Jt comparable to the rest of the costs.

Once all of the parameters have been tuned, the proposed EA can be
utilized to search for the best solution. The pseudocode for this strategy is
presented in Algorithm 1.

As shown, the proposed strategy in dealing with the multi-objective space
rendezvous ends up facing an optimization problem while having candidate
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Algorithm 1: Long-range rendezvous optimization algorithm
Input: p0, pf , η
Data: SeedingMethod,DiversityCheck,NLPMethod

1 N0 ← 1
2 ζ0 ← 0
3 ξ0 ← 0
4 Construct problem From [p0, pf , N0, ζ0, ξ0]
5 solution← Solve(problem)
6 Extract ∆vi,j From solution
7 if ∆vi,j ≤ η then
8 Extract X From solution
9 else

10 Calculate ϕi,j(∆vi,j , η)
11 Calculate φ(ϕi,j)
12 Calculate Γ (p0, pf )
13 Calculate ζ(Γ, φ)
14 Extract J∗t From solution
15 Calculate ξ(J∗t )
16 Calculate σ2(χ, β, φ)
17 if SeedMethod = ”Gaussian” then
18 Extract X From solution
19 Construct X0 From N (X,σ2)
20 else if SeedMethod = ”Uniform” then
21 Construct X0 From U
22 end if
23 Calculate N(φ)
24 nPop← 10N
25 nGen← 20N
26 Construct problem From [p0, pf , N, ζ, ξ]
27 for i← 1 to nGen do
28 Update wi
29 Xi ← PSOiter(problem,Xi−1)
30 if NLPMethod then
31 Xi ← SolveNLP (problem,Xi, NLPMethod)
32 end if
33 if DiversityCheck then
34 Xi ← RefinePop(Xi, σ

2)
35 end if
36 end for
37 X ← Xi

38 end if
Result: X
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solutions near the fuel-optimal region that satisfies the impulse limit. If the
diversity of the populations is not satisfactory, such solutions are regenerated
during the optimization process. Also, the parameters involved in the process
are automatically tuned based on the orbital elements of the orbits and the
required impulse limit.

2.5 Numerical Simulations

The proposed approach is investigated in several aspects in this section. First,
a sample space rendezvous is solved considering two various impulse limits
and the obtained orbital maneuvers are analyzed. The performance of the
approach in finding the best minimum transfer time while having the near
optimal fuel consumption without violating the impulse limit is studied when
different impulse limits are considered for the same space rendezvous. Next,
experiments are performed in which the approach is utilized in many different
space rendezvous missions. Following the experiments, the performance of
the proposed algorithm is compared with other standard EAs, indicating the
superiority of the proposed algorithm due to the enhancements.

2.5.1 Long-range Rendezvous

A space rendezvous mission with two different impulse limits is evaluated.
Consider an orbit to orbit rendezvous as in Table 2.1.

Table 2.1: Orbital elements of the orbit to orbit rendezvous

Orbital elements Initial Final
a (km) 11300 32600
e 0.2 0.5
i (deg) 40 50
Ω (deg) 275 270
ω (deg) 280 265

This space rendezvous is a non-coplanar transfer problem and two sce-
narios are considered with impulse limits of η = 200m/s and η = 50m/s.
As for the first step, disregarding the impulse limit and the transfer time,
the best solution found for the optimal two-impulse transfer with minimum
∆v is the one that starts at ri = [−3887;−7694.2;−3811.9] km on the initial
orbit and finishes at rf = [4454.4; 25862; 5308.5] km on the final orbit. This
solution is obtained with the NLP method described in the previous section
with few iterations. This transfer takes 24157 seconds with the total ∆v of
2.1353km/s. Considering this solution as the fuel-optimal transfer, the ana-
lytical multi-impulse transfer is extracted and seeded to the developed hybrid
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Fig. 2.9: Optimized multi-impulse
orbit rendezvous (η = 200m/s).

 

 

Fig. 2.10: Optimized multi-impulse
orbit rendezvous (η = 50m/s).

self-adaptive algorithm. The algorithm parameters are tuned automatically
based on the multi-impulse solution and the orbital parameters of the initial
and final orbits as tabulated in Table 2.2.

Table 2.2: Auto-tuned parameters of the self-adaptive algorithm

φ ζ ξ σ2
a σ2

e σ2
i σ2

Ω σ2
ω σ2

θ σ2
t

η = 0.20 12 4.36 2.40× 10−6 77.79 0.0419 3.88 1.94 5.82 125.79 3494
η = 0.05 44 5.66 7.27× 10−7 109.95 0.0592 5.48 2.74 8.23 177.79 4938

The impulse discretization is performed at the intersections. Having the
impulses at each intersection, the required number of divisions (ϕ) are cal-
culated using Eq. 2.7. It gives 6 divisions at each intersection for the first
case and 23 and 21 divisions for the second case based on the desired impulse
limit. Based on the obtained number of divisions in each intersections, the
total number of impulses φ are achieved for each case using Eq. 2.23. The pa-
rameter Γ representing the difference of orbits is 1.8799 for this transfer based
on Eq. 2.22. Then, the scalarization coefficient ζ is obtained from Eq. 2.25 for
both cases. Besides, the variances of optimization variables in σ2 vector can be
obtained from Eq. 2.24 Also, division of the impulses yields the multi-impulse
transfers with the overall mission duration of 4.8214 days and 15.905 days for
η = 200m/s and η = 50m/s respectively. By having these transfer times from
the initial solution, the scalarization coefficient ξ can be calculated from Eq.
2.26. Having all of the tuned parameters, the main problem can be tackled by
the presented approach. The best time-optimal solutions are obtained with
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respect to the tuned parameters utilizing the developed self-adaptive algo-
rithms. 3D visualization of the obtained transfers are depicted in Fig. 2.9 and
Fig. 2.10.

In these maneuvers, the spacecraft travels between the stages which are
optimized to have minimum overall transfer time, resulting in different Lam-
bert problems in each revolution. The sequence of intermediate orbits along
with the solution of the Lambert problem in each stage is optimized in order
to minimize the overall transfer time. As shown in the figures, a lower impulse
limit generally yields longer maneuver with more revolutions and impulses.
The variations of impulses for both maneuvers are depicted in Fig. 2.11.

As shown, the impulse limits are satisfied for both maneuvers, leading to
the conclusion that the weighting coefficients are almost properly tuned using
the proposed method. Usually the untuned parameters lead the algorithm to
sacrifice the impulse limit in the favor of transfer time which is not desired in
the current concept. The optimized variables, such as solutions to the Lambert
problems, can be plotted for either case. As previously mentioned, the problem
input vector includes the true anomalies of the points where the spacecraft
travels between two sequential stages. Their optimized values for two cases
are illustrated in Fig. 2.12 and Fig. 2.13.

In these figures, the optimized anomalies are plotted during the overall
orbital maneuver. Small points refer to the jumps at the beginning of the
maneuver while bigger points are related to the impulses near the end of the
mission. Comparing the location of the optimized true anomalies in the plots
for two cases indicates that two potential regions can be identified as the
near-optimal region for true anomalies between Lambert problems.

Regarding the obtained solution, the time histories of orbital elements
can be simulated for the spacecraft as it travels from the initial orbit to the
final orbit. The variation of orbital elements are shown in Fig. 2.14 to Fig.
2.17. Several observations can be inferred from the time histories of orbital

 

Fig. 2.11: Sequence of impulses in multi-impulse long-range rendezvous.
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Fig. 2.12: True anomalies of the
Lambert problem (η = 200m/s).

 

Fig. 2.13: True anomalies of the
Lambert problem (η = 50m/s).

elements. The non-linear variation of the elements shows that considering the
linear variation of elements is generally not an optimal choice, which is a
confirmation for the practicality of the proposed method as it is actually a
shape-based approach. Another observation is the time distance between two
sequential impulses in the results. According to the variation of elements, this
time distance increases as the spacecraft reaches the final orbit in both cases.
This increment is in agreement with the variation of a(t). Since the semi-major
axis of the initial orbit is less than the final orbits, the time of one revolution
will increase as the spacecraft travels between the intermediate orbit. This is
due to the fact that the orbital period depends only on the semi-major axis
in each stage.

       

        

Fig. 2.14: Time histories of semi-
major axis and Eccentricity (η =
200m/s).

       

        

Fig. 2.15: Time histories of semi-
major axis and Eccentricity (η =
50m/s).
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Fig. 2.16: Time histories of incli-
nation, Arg. of Perigee and RAAN
(η = 200m/s).

       

        

Fig. 2.17: Time histories of incli-
nation, Arg. of Perigee and RAAN
(η = 50m/s).

The solutions can be also analyzed when various impulse limits are con-
sidered for a space rendezvous. As the impulse limit decreases, the tendency
of the problem shifts to complicated solution domains, which are more diffi-
cult to optimize. Table 2.3 shows the characteristics of the previously defined
space rendezvous problem considering various impulse limits.

In this Table, the entire process of tuning the parameters, generating near-
optimal feasible solutions, and solving the problem is performed for each im-
pulse limit. First, the proposed simple feasible solution is obtained initially
for each impulse limit, and the transfer times that were obtained before using
the main algorithm are presented in the table. Then, the main algorithm is
utilized to find the best solution based on the initial feasible solution. The
obtained solutions are presented in the table to make a comparison regarding
the difference between the transfer times. According to the results from the
optimizations, the absolute improvement of the objective related to transfer
time varies from case to case. Fig. 2.18 illustrates a representation of the best
solution found so far regarding each impulse limit.

Table 2.3: Characteristics of space rendezvous problems.

Impulse limit (m/s) 300 250 200 150 100 75 50 25
Optimization variables 59 75 91 115 179 235 347 691
Initial transfer time (day) 4.088 4.536 4.821 6.899 10.304 13.123 15.906 36.922
Best transfer time (day) 2.301 2.992 3.710 4.673 7.466 9.854 14.828 29.701

In this representation, the best 1000 solutions are saved during every op-
timization and are plotted altogether to give an insight to the near-optimal
region. For each unique impulse limit, the best solution is considered as the
target and the relative distance of the rest of the solutions, denoted by di, is
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computed as:
di = xi − x∗

max
i∈{1,...,n}

[xi − x∗]
(2.27)

where n is the number of solutions, i is the index of each solution, xi is the
input vector of each solution, and x∗ is the best solution so far. Having, di
vector for each solution, the euclidean distance for that solution, denoted by
Di, can be computed as:

Di =

√√√√ k∑
j=1

di(j)2 (2.28)

where k here is the size of the input vector which varies from case to case in
the current analysis. Regarding the distances, the two local optima regions can
be identified, which is very near the global best solution, leading to conclu-
sion that the optimization process successfully identified the solution within
the actual near-optimal region. As the impulse limit decreases, the absolute
value of the overall transfer time increases. However, it does not have a linear
behavior with respect to the given limits. The distribution of points also indi-
cates that the gradient of the solution domain within the near-optimal region
is higher in the low impulse limit in comparison to the high impulse limit,
confirming that the problem is more difficult to deal with in the first case.
The absolute amount of solution improvement within the selected solutions
is different regarding the results. In order to have an insight about the rela-
tive percentage of the improvement, the scaled values of the objectives convey
more comprehensible data regarding the percentage of the improvement. One
representation of the relative improvement of the selected solutions is shown
in Fig. 2.19.

Here, τ is the relative objective improvement calculated by:

τ = J∗ − J
J∗

(2.29)
 

 

 

  

Fig. 2.18: Euclidean distances of the best solutions in minimum-time
minimum-fuel rendezvous.
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  Fig. 2.19: Relative objective improvement for various impulse limits.

where J∗t is the total transfer time obtained by the simple feasible solution.
Comparing the τ values indicates that, although the absolute amount of the
improved objective in impulsive rendezvous with very low impulse limit is
high, the relative improvement is lower than those with higher impulse limits.
This is the observation which confirms that the complexity of the optimiza-
tion problem significantly increases and less improvement is gained by the
algorithm as more impulses are taken into account for the space rendezvous.

As stated, the algorithm utilizes the analytical solution in two ways. First
is the initial seeding in which the initial population is generated based on
near-optimal region according to the obtained feasible solution. The second
one is a trigger during the optimization process which eliminates similar in-
dividuals and regenerates them based on a method the same as the initial
seeding. The initial seeding of the algorithm and regeneration of individuals
during the optimization process is handled by ε as described in this approach.
This parameter specifies the balance between the Gaussian distribution and
the uniform distribution when generating new individuals. The quality of the
final solution achieved by the algorithm depends on the choice of ε. Compar-
ing the best solutions achieved with different values of ε considering various
impulse limits is a matter of interest as it shows the rather optimal value of
these parameters in different rendezvous problems. An illustration of such a
comparison is shown in Fig. 2.20.

In this analysis, the problem is solved for each impulse limit considering
different values for ε. In each case, the optimization is carried out 10 times
and all the objective improvements (τmax) are stored. Then, the average of
improvement is calculated as:
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Fig. 2.20: Average performance of the algorithm in 20 runs.

τm = 1
nr

nr∑
i=1

τmax(i) (2.30)

where nr is the total number of optimization runs for each case, τmax(i) is the
improvement in the ith run. The surface illustrating the average performance
of the algorithm shows that typically a value of 0.4 to 0.6 results in almost the
maximum performance for all of the cases. It can also be concluded that in the
rendezvous missions with higher impulse limits, the performance is affected
more by the ε in comparison to missions with low impulse limits.

2.5.2 Empirical Experiments

When comparing one metaheuristic to another in a spacecraft trajectory op-
timization problem, it is crucial to perform benchmark tests using a suite
of standard problems [2]. In order to make a practical comparison between
algorithms, it is important to consider several factors. These factors include
testing a large suite of instances of the rendezvous problems, using the same
initial guess, and comparing them based on the same convergence criteria. To
achieve this end, 100 instances of orbit to orbit rendezvous are tested by the
proposed approach and some standard evolutionary algorithm. The orbital
elements of the initial and final orbits are plotted in Fig. 2.21.

According to Fig. 2.21, the orbital elements are uniformly distributed as
6600km < ai, af < 50000km, 0 < ei, ef < 0.8, 0◦ < ii, if < 90◦, 0◦ <
Ωi, Ωf < 360◦ and 0◦ < ωi, ωf < 360◦. The elements are considered to satisfy
the conditions as −5000km < ∆a < 5000km, −0.4 < ∆e < 0.4, −30◦ <
∆i < 30◦, −30◦ < ∆Ω < 30◦, −30◦ < ∆ω < 30◦. A random impulse limit is
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Fig. 2.21: Distribution of orbital elements for empirical experiments.

dedicated to each space mission within the range of 50m/s < η < 500m/s,
resulting in problems with different number of variables and complexities. In
Fig. 2.21, larger impulse limits are plotted with big markers while smaller ones
represent space rendezvous missions with lower impulse limits.

The algorithm presented has many features for robustness and self adap-
tiveness including hybridization with NLP, adaptive weighting coefficient, re-
generation of individuals based on near fuel-optimal region, dynamic damp-
ing ratio, and analytical seeding based on discretization of orbit intersections.
Therefore, numerous versions of this approach can be implemented by en-
abling or disabling any of these features. They will have a different effect
on the obtained solution. However, due to brevity, only three types of the
approach are implemented and compared with other EAs. The first one is
the Hybrid Self-Adaptive Evolutionary Algorithm (HSAEA), which is the full
developed algorithm with all of the improvements. The second is the Self-
Adaptive Evolutionary Algorithm (SAEA-I), which is the same as HSAEA
but no hybridization with NLP is applied during the optimization process.
The third one is another reduced version of the Self-Adaptive Evolutionary
Algorithm (SAEA-II), which is the same as SAEA-I, but no regeneration of
individuals for diversity correction is used during the optimization process.
On the other hand, all these three versions benefit from the tuning of the pa-
rameters based on the characteristics of the rendezvous problem and dynamic
damping ratio. Standard Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) are also taken into account for comparison.

Since each space rendezvous mission with a distinct impulse limit gener-
ates a different optimization problem, the problems will have different com-
plexities and a different number of optimization variables due to the various
necessary numbers of impulses. Therefore, the common parameters of the al-
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gorithms have been chosen in such a way that a fair comparison between the
performance of each algorithm is achieved. For each problem, the number
of populations and the number of generations for all algorithms are set as
10n and 20n respectively, where n is the number of optimization variables
for that space rendezvous mission. Regarding the three versions of the pro-
posed approach, HSAEA, SAEA-I and SAEA-II, all algorithm parameters are
tuned automatically for each problem according to the presented process in
Section 2.4. For PSO, the values of 1.8 and 2.0 are chosen for personal and
global learning coefficients respectively. Also, the inertial weight is set to 1.0
with the damping ratio of 0.95 per generation. For GA, crossover percentage
and crossover range factor are chosen as 0.6 and 0.3 respectively. Also, the
mutation percentage and the mutation range are selected as 0.4 and 0.2 re-
spectively. The reason for choosing these parameters for PSO and GA is that
they are statistically shown to have the best performance for these algorithms
in most of the space rendezvous missions with the current setup. Since the
proposed algorithms benefits from the automatic tuning of parameters, the
best settings of the two selected EAs are chosen for performance comparison.
Although tuning the algorithm parameters is another optimization problem
itself, the effort in this research is to use the best performance of PSO and
GA for comparison as these values outperform other combinations in most
instances of space rendezvous missions.

For this analysis, HIPATIA cluster setup of BCAM is used with 18 nodes
including 624 cores (Processor Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz)
and 4352 GB RAM. Having 100 space rendezvous problems, each problem
is solved with the 5 aforementioned algorithms (HSAEA, SAEA-I, SAEA-II,
PSO, GA) and each algorithm is run 10 times. Therefore, a total number of
5000 jobs are submitted to the cluster to run the optimizations in parallel. The
solutions obtained are saved for each algorithm and the best solution between
all of the runs is assumed to be the global best solution for each rendezvous
mission. Then, for each problem, the relative score of the all solutions obtained
is calculated as:

γi,j = Ji,j − Jbest
J∗ − Jbest

(2.31)

where Ji,j is the objective function obtained for the ith run of the jth algo-
rithm (0 < i ≤ Nr, 0 < j ≤ Na), considering 10 runs (Nr = 10) for the 5
aforementioned algorithms (Na = 5). J∗ is the objective function obtained by
the simple feasible solution, and Jbest is the best obtained solution between all
of the runs, which is assumed to be the global best for the rendezvous mission
as:

Jbest = arg min[Ji,j ] (i = 1, ..., Nr, j = 1, ..., Na) (2.32)

The reason of considering such a type of score is that different rendezvous
missions with various impulse limits will have different values of objective
functions, and therefore it is difficult to make a comparison between different



80 2 Long-range Space Rendezvous

instances. This definition scales the performance of algorithms in each run into
a dimensionless score between 0 and 1, where 0 indicates that the algorithm
successfully reached the global solution, while 1 shows that the algorithm did
not make any improvement over the simple feasible solution and could not
decrease the objective function within the optimization process. Any score
value in this range shows how much improvement the algorithm obtained in
reaching the global best solution. Having all of the scores for the algorithms,
an insight to the overall performances can be achieved. Fig. 2.22 shows the
performance comparison between the algorithms.

 

Fig. 2.22: Absolute scores of the algorithms for multi-impulse space ren-
dezvous.

Fig. 2.22 indicates the absolute score of the algorithms applied to different
space rendezvous problems. This figure shows the results for 5000 obtained
scores (10 runs for each of the 5 algorithms in 100 instances). This score gives
an insight into the performance of the algorithms. However, it does not convey
the average performance of the algorithms for each instance. The average
performance of an algorithm is the mean value of all obtained solutions out of
the optimization runs for that algorithm regarding a specific problem. It can
be simply calculated as:

γ′j = 1
Nr

Nr∑
i=1

γi,j (2.33)

where γ′j is the average performance of the jth algorithm considering all op-
timization runs. The relative performances of the algorithms based on this
score are illustrated in Fig. 2.23.
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Fig. 2.23: Relative scores of the algorithms for multi-impulse space rendezvous.

Regarding the results, the HSAEA has superior advantage over the rest of
the cases, showing the effectiveness of the proposed algorithm when comparing
to the standard EAs. Noticing the best scores for each algorithm indicates that
only HSAEA and SAEA-I reached the scores of 0 (global best) while SAEA-II,
PSO and GA failed to achieve the global best in any of the instances, lead-
ing to the conclusion that hybridization of the algorithm with the proposed
NLP and regeneration of populations near the fuel-optimal region is neces-
sary to achieve the global best. The comparison between HSAEA and SAEA-I
also shows that both algorithms most likely have reached the global optimal
solution in the majority of space rendezvous missions and the difference is
the probability of reaching the optimal solution. Therefore, it can be implic-
itly concluded that hybridization with NLP increases the rate of reaching
the global optimal solution in different optimization runs, while regeneration
of populations near the fuel-optimal region within the optimization process
guarantees the convergence to the global optimal point. Comparing the results
from SAEA-II and PSO shows that, although the general performance of two
algorithms is almost the same, the SAEA-II has a slight advantage in some of
the cases over PSO due to dynamic damping ratio. Also, the standard PSO it-
self outperforms the standard GA in all of the cases, leading to the conclusion
that hybridization of GA with the proposed NLP probably does not outper-
form the presented HSAEA since the proposed HSAEA is generally based on
an improved PSO.

While the effectiveness and reliability of the algorithms are compared by
showing how close the algorithms get to the best solution, their efficiency can
be evaluated by comparing their running time. For the sake of completeness
in this research, the speed of the algorithms is measured and compared in



82 2 Long-range Space Rendezvous

ten selective instances of space rendezvous missions. Results are tabulated in
Table 2.4.

Table 2.4: Comparison of dimensionless running time (running time relative
to the one associate with GA [s/s(GA)]) of the algorithms, omitting the time
of cost function evaluations.

Instance HSAEA SAEA-I SAEA-II PSO
1 7.3198 2.0986 1.1328 1.0898
2 6.2147 2.2233 1.1143 1.0165
3 4.2777 2.0138 1.0457 1.0348
4 5.2043 1.2076 1.0404 1.0274
5 5.3826 1.3224 1.2031 1.0966
6 4.3526 3.1734 1.1279 1.0967
7 6.4117 2.4191 1.0880 1.0501
8 7.1940 2.3722 1.1475 1.0825
9 3.3919 2.5298 1.1231 1.0833
10 4.0869 1.7127 1.1404 1.0682
Average 5.3836 2.1073 1.1163 1.0646

In this comparison, the running time of GA is considered as the base score
for the speed of other algorithms, since GA has the minimum processing time
in this set of algorithms. The time of objective function evaluations are ne-
glected and the calculated running time for each algorithm is divided by the
base time of GA for each instance. It has been shown that typical PSO has
the least running time as it does not involve any modifications described in
this research. SAEA-II, which benefits from automatic parameter tuning and
dynamic damping ratio during optimization, requires slightly more time com-
pared to PSO. The comparison of speed between SAEA-I and SAEA-II shows
the effect of diversity correction within the optimization. Since regeneration
of new individuals is triggered when the diversity of the population is not
satisfactory, its occurrence is largely due to the randomness of movement of
individuals. Finally, the HSAEA has the slowest process as the NLP employ-
ment for improving the quality of the individuals requires more iterations and
calculations. It can be observed that the running time is significantly high for
HSAEA in comparison to the other algorithms. However, it has the highest
possibility to end up finding the best possible solution.

2.6 Conclusions

The long-range space rendezvous problem was addressed using the proposed
evolutionary discretized Lambert approach in this chapter. In this research,
all objectives, including fuel, time and impulse limit were considered. The
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proposed approach attempts to find the global optimal solutions which sat-
isfy the impulse limit while minimizing the fuel and time simultaneously. The
fuel-optimal region is identified by means of a discretized approach in which
the minimum necessary number of impulses is achieved by dividing the im-
pulses within the intersection of trajectories between two sequential Lambert
problems. The obtained solution is utilized to generate near-optimal solutions
for seeding the optimization algorithm in order to find the optimal sequence
of impulses which results in minimum-time minimum-fuel orbit transfer. The
developed self-adaptive algorithm is a hybrid method, combined with auto-
tuning techniques and an intelligent individual refinement procedure. The
approach is used to solve some multi-impulse rendezvous problems. Results
confirm the feasibility of the approach and show that it successfully improves
the the optimality of the solution in terms of fuel and time without violat-
ing the impulse limit. The percentage of optimality is significant when the
approach is used with the developed self-adaptive algorithm. Also, the ro-
bustness of the approach is tested by applying the proposed method in differ-
ent types of rendezvous problems. Comparing the obtained results with the
output of standard non-adaptive algorithms indicates the superiority of the
developed algorithm. It has been shown that the probability of reaching opti-
mal solutions is significantly higher with the current approach in comparison
to other algorithms, since the approach benefits from self-adaptive tuning and
hybridization. However, the running time burden is relatively high when the
NLP is involved with the optimization process. Increasing the optimality of
the solution and the robustness of the technique by means of considering more
tuning techniques will be the next step in future research.





3

Short-range Space Rendezvous

3.1 Introduction

Successful short-range rendezvous is a key objective in many space missions
as it directly affects various space operations, such as the capturing of a mal-
functioned satellite, removing space debris, on-orbit refueling, docking, and
repairing spacecraft. In this type of mission, the whole relative spacecraft ma-
neuvering process consists of getting the chaser spacecraft from one orbit to a
distance with small relative speed near the target spacecraft. During the past
few decades, considerable attention has been paid to spacecraft trajectory op-
timization of short-range rendezvous problems in the literature [2]. However,
due to multiple constraints, it is still challenging to design a robust and effi-
cient algorithm such that the chaser can fly along an optimum feasible path
and fulfill different mission requirements.

In short-range space rendezvous, the actual limits and considerations such
as thrust limit [161], power limit [162], terminal conditions or other crite-
ria [163] makes spacecraft trajectory optimization a problem with hard con-
straints, with respect to the definition by Malan [164]. In contrast to soft
constraints, the priority in such short-range space rendezvous missions is to
find a feasible solution (reaching the target spacecraft) with the best objective
value (minimum fuel), while in a problem with soft constraints, objectives and
constraints have same priorities.

3.1.1 Short-range Space Rendezvous Trajectory Optimization

Various techniques are employed in different research to satisfy constraints
in spacecraft trajectory optimization problems. In some cases, such as multi
gravity-assisted interplanetary trajectory optimization [165], simplifying the
thrust model from continuous thrust to impulsive, means the problem has
only upper and lower bounds for decision variables. However, when it comes
to facing short-range rendezvous, more thorough efforts are needed as the
problem formulation makes the trajectory optimization challenging in the
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sense of finding high quality feasible solutions. For instance, in addition to
closed-loop control approaches, such as those based on the Lyapunov function
[166], one option is to modify the variables or the formulation to satisfy the
constraints, similar to shape-based techniques [167, 168]. These approaches
are heavily problem dependent, thus they can not be generalized [169]. Be-
sides these options, another approach is to deal with the constraints within
the optimization algorithm [170, 171]. This approach is not a robust method
when gradient-based algorithms are employed since the convergence totally
depends on the initial guess [172]. Alternatively, Evolutionary Algorithms
(EAs) are very popular to deal with constraints in short-range rendezvous. In
order to approach constrained continuous optimization problems, EAs utilize
a variety of techniques to hold either soft or hard constraints and return the
best possible solutions. Coello [173] taxonomized these techniques in different
categories: penalty functions, multi-objective approaches, specific operators,
repair algorithms and hybrid methods. In addition, the author presented the
advantages and disadvantages of each technique.

Regarding the penalty functions, recent advances are mainly on adap-
tive penalty functions [174] and stochastic ranking [175]. Such an approach
can be found in various spacecraft trajectory optimization problems, such
as aeroassisted trajectory optimization [176], optimal orbit rising [177] and
interplanetary trajectories [178]. These methods are highly competitive over
the older methods of penalty functions, such as death penalty functions and
static/dynamic penalty functions, which commonly require the derivation of
good penalty functions or the penalty factor. However, there are still no guar-
antees that the methods in [174] and [175] end up in feasible solutions. Regard-
ing the multi-objective approaches, the idea is to consider each constraint as a
separate objective function and deal with the problem from a multi-objective
perspective [179]. This approach mainly involves Pareto ranking mechanisms,
which shows relatively good performance over the other methods. However,
in some cases they are more time consuming than penalty functions and may
not be able to find solutions with high quality. The approaches based on re-
pairing, and/or hybrid techniques, either suffer from generality, as they are
problem-dependent, or they are time consuming. An overview of these de-
veloped methods indicates that not all of the techniques are appropriate for
dealing with short-range rendezvous problems with constraints, where feasi-
bility is the first priority [173].

3.1.2 Motivation and Contribution

Considering the mentioned facts, developing novel methods for handling con-
straints, which are independent from the problem and are robust to any types
of constraints (equality, inequality, linear, non-linear, etc.) is a need in the
literature. In this research, several mechanisms for Estimation of Distribution
Algorithms (EDAs) [180] are proposed for handling constraints. EDAs are a
class of EAs that work based on the probabilistic models [180]. In an EDA, a
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probabilistic model is learned at each iteration and new solutions are sampled
from that model. The obtained solutions have similar characteristics as those
used for learning the model. One of the characteristics of EDAs is to have an
explicit description of the promising solutions in terms of probabilistic models.
Following this feature, they have a great potential for enhancement toward
further improvements. This characteristic is the main motivation in this re-
search and the effort here is to enhance the mechanisms of EDAs for handling
constraints in trajectory optimization of short-range space rendezvous mis-
sion. In recent years, there have been some efforts in developing probabilistic
models that only generates feasible solutions regarding specific types of con-
straints [181]. However, up to now, the developments were only applicable in
combinatorial optimization [182].

Motivated by the above discussion, in this research, an EDA is proposed
specially suited to deal with problems with hard constraints. Particularly, it
uses a mixture of probabilistic models and try to better model the feasible re-
gion of solutions, and a few mechanisms associated with seeding, learning and
mapping methods are proposed, which force the algorithm to generate only
feasible solutions, while the optimization process goes on. The proposed seed-
ing mechanism tries to provide initial population of feasible solutions for the
algorithm. Within the learning mechanism of the EDA, several operators in-
cluding feasible conserving clustering and outlier detection are proposed. The
first operator initializes the mixture of probabilistic models, centered in fea-
sible region of the solution domain, while the latter improves the convergence
of the optimization process. Also, within the sampling stage, various heuris-
tic mapping mechanisms are proposed, which guide the optimization process
within the feasible region of the solution domain. The proposed algorithm
always returns feasible solutions if the initial feasible population is available
and therefore has a great potential to be utilized for spacecraft short-range
rendezvous problems.

The EDA with the proposed mechanisms is tested on various benchmarks
and space rendezvous problems. First, it is applied on two suites of benchmark
problems for constrained continuous optimization and its performance is com-
pared with some state-of-the-art algorithms and constraint handling methods.
Conducted experiments confirm the speed, robustness and efficiency of the
proposed algorithm in tackling various problems with linear and non-linear
constraints. Then, it is tested and analyzed in a short-range space rendezvous
mission with different initial conditions considering disturbances in elliptical
orbits. Also, the quality of the solutions obtained by the proposed algorithm
is compared with another method based on implicit Lyapunov function. Con-
ducted experiments confirm the robustness and efficiency of the proposed
algorithm in tackling short-range space rendezvous problems.

The remainder of this chapter is organized as follows. Section 3.2 presents
spacecraft dynamics for the short-range rendezvous problem along with math-
ematical modeling of the control variables. In Section 3.3, an overview of the
proposed algorithm is presented, where the mechanisms associated with the
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seeding, learning and mapping stages are briefly introduced. The next sections
describe each of these mechanisms in detail. Section 3.4 is dedicated to the
enhanced seeding mechanism. The learning mechanism based on feasibility
conservation is elaborated in Section 3.5. In Section 3.6, the mapping mech-
anism is explained. The results of the numerical experiments for algorithm
verification are provided in Section 3.7 along with comparisons with state-of-
the-art algorithms and methods. Afterwards, Section 3.8 is dedicated to the
simulation results for validation and verification of the proposed algorithm.
Finally, Section 3.9 concludes this chapter.

3.2 Problem Formulation

The mathematical formulation of the motion of the chaser spacecraft rela-
tive to the target spacecraft and modeling the input vectors are the primary
steps for solving the trajectory optimization problem in short-range space
rendezvous. In this research, firstly, relative dynamics with disturbances in
elliptical orbits is provided. Then, a direct approach based on discretization
and interpolation of the thrust vectors is presented.

3.2.1 Relative spacecraft Dynamics

The dynamics models of the relative motion of the spacecraft are diverse and
subject to many considerations and assumptions. A comprehensive survey of
models of the dynamics of spacecraft relative motion is available in [183]. In
this work, Yamanaka-Ankersen state transition matrix [184] is utilized since
it is widely accepted as the state-of-the-art mathematical model for propa-
gation of the relative position and velocity in eccentric orbits, considering
disturbances [185, 186]. In this model, it is assumed that the relative distance
between the chaser and the target is far smaller than the target orbit radius.
Considering r = [X,Y, Z] and v = [Ẋ, Ẏ , Ż] as the relative state vectors
in the local-vertical-local-horizontal (LVLH) coordinate frame, the linearized
dynamic equation of the relative motion can be described as:

ẌŸ
Z̈

 =


ω2X − µ

R3X + 2ωŻ + ω̇Z

− µ

R3Y

ω2Z + 2 µ

R3Z − 2ωẊ − ω̇X

+ u + d (3.1)

where u = [ux, uy, uz] represents the actual control acceleration input
vector applied to the chaser, µ is the Earth’s gravitational constant and d =
[dx, dy, dz] is the external disturbance acceleration vector. Also, ω is the orbital
rate of the rotating coordinate system, which is the time-derivative of true
anomaly ν (i.e. ω = ν̇) and can be derived from the following augmented
equations [187]:



3.2 Problem Formulation 89

ω̇ = −2ω Ṙ
R (3.2)

R̈ = Rω2 − µ

R2 (3.3)

where R stands for the relative displacement vector of the target spacecraft
from the center of the Earth. With ri = [Xi, Yi, Zi] and vi = [Ẋi, Ẏi, Żi] as
the initial states, the transfer trajectory can be integrated.

The mass of the chaser is decreased during the rendezvous, depending on
the amount of thrust acted on the spacecraft. Having T = [Tx, Ty, Tz] as the
thrust vector, the variation of the spacecraft mass can be formulated as:

ṁ = − T

Ispg0
(3.4)

where Isp is the specific impulse of the propellant that is used, g0 is the
sea-level standard acceleration of gravity (g0 = 9.807m/s2) and T is the mag-
nitude of the thrust vector. Consequently, u = T/m gives the actual control
acceleration input from the thrust vector. Considering tf as the final ren-
dezvous time, if the time profile of the thrust vector T is known, integrating
the proposed system of equations in the time interval 0 < t < tf yields the
time histories of the relative position and velocity of the chaser spacecraft.
The final states as rf = [Xf , Yf , Zf ] and vf = [Ẋf , Ẏf , Żf ] are obtained at
the end of the space rendezvous.

3.2.2 Continuous Thrust Modeling

Parameterizing the thrust vector has a significant impact on the convergence
of the optimization algorithm in direct approaches. In this research, the mag-
nitude of thrust in each direction Tx, Ty and Tz is approximated by considering
Np number of interpolation points in the desired time interval 0 < t < tf in
the allowable thrust limits of Tmin < [Tx, Ty, Tz] < Tmax. Having Np number
of uniformly discretized points, the overall time span is divided into Np − 1
sub-intervals. The interpolating polynomial for the time interval can be rep-
resented by:

T̂ (t) =
N∑
k=1

(
∏
j 6=k

t− tj
tk − tj

)pk (3.5)

where T̂ (t) denotes any of the thrust components (Tx, Ty, Tz), tk is the dis-
cretized times, and pk is the discrete points within the time interval. Given the
number of discrete points Np for each thrust component, the thrust profile
may be interpolated with different shapes. One of the most popular meth-
ods is using piecewise cubic Hermite interpolating polynomials [188]. Various
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types of splines can be obtained depending the choice of tangents in each
node. Three practical types of splines from the family of Hermite splines,
which are frequently used in many applications, are illustrated in Fig. 3.1 for
approximating the thrust components.
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Fig. 3.1: Thrust profile interpolating with piecewise cubic Hermite splines.

These splines include Shape Preserving (SP) spline [189], Not-a-Knot (NK)
spline [190], and Catmull-Rom (CR) spline [191]. All of these are continuous
and have a continuous first derivative. The difference between these polyno-
mials is the choice of tangents in the internal and end nodes. SP spline is
designed so that it never locally overshoots the data. The slope at each in-
terior point is taken to be a weighted harmonic mean of the slopes of the
piecewise linear interpolant. One-sided slope conditions are imposed at the
two end points. The slopes at the nodes can be computed without solving a
linear system. NK spline is smoother spline and it also has continuous second
derivatives. Even the third derivative is continuous up to some round-off er-
ror [192]. CR spline is yet another member of the Hermite family, and it has
a balanced smoothness. The slope of the CR spline at data points depends
directly on the points before and after. The resulting piecewise cubic does not
have a continuous second derivative and it does not always preserve shape.
However, it can be evaluated quickly by a convolution operation. More details
regarding the derivation of each of these splines is beyond the scope of this
chapter and the reader is urged to refer to the provided references for details
[189, 190, 191].

3.3 Optimization Approach

Having the orbital elements of the target space vehicle and initial relative
position and velocity of the chaser, the initial state values of Eq. 3.1 becomes



3.3 Optimization Approach 91

known. Also, knowing the initial mass of the chaser, along with the specific im-
pulse of the propellant, makes it possible to propagate the transfer trajectory
if the thrust profile is known. Aiming at the short-range space rendezvous,
it is now possible to formalize a continuous optimization problem. Particu-
larly, for a predefined short-range rendezvous mission, the main goal is to find
the optimal variation of thrust components in each axis, so that the chaser
reaches the target spacecraft with minimum fuel consumption. While the fuel
mass is considered as the objective function, the final relative distance and
final relative velocity of the chaser are the main constraints in the problem.
Regarding this explanation, short-range space rendezvous can be defined as
a constrained optimization problem with inequality constraints. The general
form of such a constrained optimization problem is:

Minimize F (x) x = (x1, x2, ..., xn)
Subject to Gi(x) ≤ 0 i = 1, ..., ng

Hi(x) = 0 i = 1, ..., nh
xmin < xi < xmax

(3.6)

where the goal is to minimize the objective function F (x) with respect to n
dimensional parameter vector x ∈ Rn, while the feasible region is restricted by
xmin and xmax as the lower and upper boundaries, Gi(x) as the function for
ng inequality constraints and Hi(x) as the function for nh equality constraints.
Based on the proposed formulation of the short-range space rendezvous prob-
lem, the decision variables x = (x1, x2, ..., xn) are the interpolation points for
three components of thrust vector:

x = pi (i = 1, ..., 3Np) (3.7)

where n = 3Np, and the boundaries are xmin = Tmin and xmax = Tmax. Also,
the objective function is defined as:

F (x) = mf =
∫ tf

0
ṁdt (3.8)

where mf is the fuel mass, consumed by the chaser spacecraft within the
transfer. Regarding the constraints, the distance and velocity of the chaser
relative to the target at the end of the transfer are represented as:

G(x) =
[
|rf | − σr
|vf | − σv

]
(3.9)

where σr and σv are the expected final distance and velocity of the chaser
relative to the target spacecraft, and these are specified as the space mis-
sion requirement. In the trajectory optimization of spacecraft short-range ren-
dezvous in this research, the employed approach does not force any equality
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constraints. However, the proposed algorithm is developed for facing the con-
strained optimization problems in general form, i.e., dealing with all types of
constraints.

To deal with this constrained continuous optimization problem, an EDA-
based algorithm is proposed in the following section. In this research, the
main contribution is to present a new concept toward EDAs for handling
constraints. In this regard, two of the mechanisms in EDAs including SEED-
ING and LEARNING have been enhanced and one additional mechanism,
named MAPPING, have been developed in this research. Having these new
mechanisms, the optimization process is modified towards satisfying the con-
straints, while minimizing the objective function. It is noteworthy that in the
developed algorithm, if an initial feasible population is provided either directly
or as the output of the seeding process, the feasibility of the final solution is
guaranteed. Simplicity and robustness relative to the type of the problem and
constraints are two main aims in developing this method.

EDAs are a type of population-based evolutionary algorithms designed for
solving numerical optimization problems. Based on machine learning tech-
niques, at each iteration, EDAs learn a probabilistic model from a subset of
the most promising solutions, trying to explicitly express the interrelations
between the different variables of the problem. Then, by sampling the proba-
bilistic model learned in the previous iteration, a new population of solutions
is created. In other words, EDAs work based on two major key methods: learn-
ing and sampling, where a probabilistic model that estimates the probability
distribution of the selected solutions is learned and then utilized for sampling
new individuals [180]. However, in constrained continuous optimization, there
are no guarantees that the newly obtained solutions satisfy the constraints
of the problem. As previously mentioned, the mechanisms proposed in this
work are introduced in the framework of EDAs, named EDA++. The overall
pseudocode of the proposed algorithm is in Algorithm 2.

Following the pseudocode of Algorithm 2, the overall optimization pro-
cess is as follows. In EDA++, the optimization process starts by forming the
function C(x) for measuring the infeasibility of solutions as the constraint
violation:

C(x) =
∑ng

i=1 Ĝi(x) +
∑nh

j=1 Ĥj(x)
ng + nh

(3.10)

with Ĝi(x) and Ĥj(x) defined by:

Ĝi(x) = max(0, Gi(x)) (3.11)

Ĥj(x) =
{
|Hj(x)| |Hj(x)| > ε

0 |Hj(x)| ≤ ε
(3.12)
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Algorithm 2: Overall pseudocode of EDA++
Input: F (x), Gi(x), Hi(x), xmin, xmax
Parameters: N,M, ε, γ, S, τ, α, λ,Nδ, MapType

1 CONSTRUCT C(x) FROM [Gi(x), Hi(x), ε]
2 [x,c,i] ← SEEDING(C(x),xmin,xmax,N ,M ,γ,S,τ)
3 f ← EVALUATION(x,F (x))
4 if i < M then
5 for iter ← i to M do
6 [xsel, fsel] ← SELECTION(x,f ,γ)
7 [Φ, φ] ← LEARNING(xsel,fsel,C(x), α,λ)
8 xsam ← SAMPLING(Φ,φ,N)
9 xrep ← REPAIRING(xsam,xmin,xmax)

10 xmap ← MAPPING(xrep,Φ,φ, C(x),Nδ,MapType)
11 fmap ← EVALUATION(xmap,F (x))
12 [x, f ] ← REPLACEMENT(xmap,fmap,x,f)
13 EXTRACT [xbest, fbest] FROM [x, f ];
14 if stopping criteria are met then
15 BREAK;
16 end if
17 end for
18 else
19 EXTRACT [xbest, fbest] FROM [x, f ];
20 end if

Output: xbest, fbest

where ε is the error margin for equality constraints. Having N as the pop-
ulation size and M as the maximum number of iterations, the SEEDING
mechanism is utilized to generate an initial feasible population. Having the
initial feasible solutions, with corresponding objective values f obtained from
EVALUATION, the main optimization loop starts. At each iteration, the
algorithm begins by selecting the top promising individuals in the current pop-
ulation according to the SELECTION method. Truncation selection method
[180] is used in this research, with γ as the truncation factor. Having the
selected population xsel and the corresponding objective values fsel, a prob-
ability model is learned via the LEARNING mechanism. In the proposed
learning mechanism, the selected population is divided into several clusters of
solutions (Φ and φ) with respect to their constraint violation. Then, a mix-
ture of models is learned, one component on top of each cluster, in such a way
that the probability of sampling feasible solutions becomes high. Having the
mixture of model, new solutions are sampled via the SAMPLING method
as xsam. The REPAIRING method, simply refines the newly sampled solu-
tions based on the boundaries of the solution domain xmin and xmax. Up to
this point, the obtained solutions xrep are likely to be inside the feasible region



94 3 Short-range Space Rendezvous

thanks to the seeding mechanism and the proposed learning mechanism that
is intended to generate feasible solutions. However, even doing that, the al-
gorithm sometimes generates infeasible solutions. As a result, a MAPPING
mechanism guarantees the feasibility and maps all possible infeasible solu-
tions to the feasible region to form a completely feasible population xmap.
After evaluating the objective value of the obtained solutions fmap via the
EVALUATION process, the new individuals are combined with the indi-
viduals from the previous population, and the REPLACEMENT mecha-
nism is invoked to form the new population and the corresponding objective
values f in the current iteration. Population aggregation method is used for
this mechanism in this research.

The mentioned process continues until at least one stopping criteria are
met. As explained, EDA++ benefits from three newly developed mechanisms,
which are distinct from the typical EDAs. These mechanisms, including seed-
ing, learning and mapping, are described in details in the following sections.

3.4 Seeding

Providing initial feasible solutions is a priority in EDA++. The aim of the
seeding mechanism is to ensure that the initial population is feasible regardless
of the objective value of the solutions. The initial population containing only
feasible solutions may be available and seeded to the algorithm initially. In
this case, the seeding mechanism is skipped. However, if no initial feasible
population is provided, the seeding mechanism is invoked. The pseudocode of
this mechanism is shown in Algorithm 3.

As it is shown, the seeding mechanism includes an iterative optimization
process based on a multivariate Gaussian EDA that considers the constraint
violation function C(x) in Eq. 3.10 as the temporary objective function. In
this process, first an initial random population is created based on a uni-
form distribution of solutions within the boundaries of xmin and xmax. Then,
the amount of constraint violation of the population is evaluated and if any
infeasible solution exist within the population, the mechanism performs the
multivariate Gaussian EDA to minimize the constraint violation. This EDA
simply includes the sequence of learning, sampling, repairing, evaluation, and
replacement. In this research, the learning and sampling stage within the seed-
ing mechanism is based on multivariate Gaussian distribution. However, it can
be other EDAs as well, including the one with the advanced learning mecha-
nism, which is described in the next section. This iterative process stops when
all of the solutions in the population are feasible. Also, this process restarts
every S number of iterations, while saving the high quality solutions in terms
of constraint violation. In case of a restart, the top τ fraction of the solutions
with lowest constraint violation is saved and added to a new population of
solutions with random uniform distribution. The goal of this restart procedure
is to speed up the process of reaching feasible solutions, while avoiding the
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Algorithm 3: Pseudocode of the seeding mechanism
Input: C(x),xmin,xmax,N ,M ,γ,S,τ

1 retryF lag ← false
2 i← 0
3 while i < M do
4 i← i+ 1
5 if i = 1 then
6 x← UNIF. DIST. [xmin,xmax,N ]
7 c ← EVALUATION(x,C(x))
8 else if retryF lag = true then
9 retryF lag ← false

10 x1 ← SELECTION(x,c,τ)
11 x2 ← UNIF. DIST. [xmin,xmax,N(1− τ)]
12 x← [x1, x2]
13 c ← EVALUATION(x,C(x))
14 else
15 [xsel, csel] ← SELECTION(x,c,γ)
16 Φ ← LEARNING(xsel,fsel)
17 xsam ← SAMPLING(Φ,N)
18 xrep ← REPAIRING(xsam,xmin,xmax)
19 crep ← EVALUATION(xrep,C(x))
20 [x, c] ← REPLACEMENT(xrep,frep,x,c)
21 end if
22 if max(c) = 0 then
23 BREAK;
24 else if min(c) = 0 then
25 CONTINUE;
26 else if REMINDER(i, S) = 0 then
27 retryF lag ← true;
28 end while

Output: x, c, i

seeding mechanism to get trapped in a local optima. Note that the seeding
mechanism does not trigger the restart flag if at least one feasible solutions
is found. The seeding mechanism stops once the sufficient number of feasible
solutions are achieved, or the mechanism reaches the maximum number of
iterations. After the seeding mechanism, the objective values of the obtained
solutions are evaluated.
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3.5 Learning

Having a feasible population, obtained from the seeding mechanism, the main
loop of the optimization starts. A selection of high quality feasible solutions
xsel along with their corresponding objective values fsel is chosen from the
current population, and these are used to estimate the parameters of the
probability model. The pseudocode of the learning mechanism is shown in
Algorithm 4.

Tha main idea of the learning process is based on utilizing a mixture
of Gaussian distributions as probabilistic model whose density function is
formalized as:

f(x) =
N∑
k=1

πkfk(x|µk, Σk) (3.13)

where each fk(x|µk, Σk) component of the mixture is a multivariate Gaus-
sian distribution and µk and Σk are the mean value (the centroid) and the
covariance matrix of the k model for k = 1, . . . , N respectively with πk as the
mixing coefficient for the kth component.

Algorithm 4: Pseudocode of the learning mechanism
Input: xsel,fsel,C(x), α,λ

1 Nsel ← size(xsel)
2 for i← 1 to Nsel do
3 [ι, µ] ← kmeans(xsel,i);
4 cµ ← EVALUATION(µ,C(x))
5 if max(cµ) = 0 then
6 BREAK;
7 end for
8 CONSTRUCT Φ FROM [µ, xsel(ι)]
9 Nc ← size(Φ)

10 for i← 1 to Nc do
11 EXTRACT [x̂, f̂ , µ̂, σ̂] FROM Φ(i)
12 [x̂sel, f̂sel] ← SELECTION(x̂,f̂ ,α)
13 d← ||x̂sel − µ̂||
14 j ← 0
15 if d > λ× σ̂ then
16 j ← j + 1
17 CONSTRUCT φ̂ FROM [µ̂, x̂sel]
18 φ(j)← φ̂

19 end for
Output: Φ, φ
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In the proposed learning stage, the Gaussian mixture model is constructed
in two steps. The first step consists of finding the minimum number of mixture
components in which all the centroids (µk) are placed inside the feasible region.
To this end, an iterative clustering process is developed. The scheme of this
process is illustrated in a schematic instance in Fig. 3.2.
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Fig. 3.2: Clustering the selected population within the learning mechanism

In the plots, the infeasible region due to the constraints is depicted in
black, while the feasible region is illustrated as the color-mapped area. The
selected population is plotted and different numbers of clusters (k) are consid-
ered. In this research, k–means++ is chosen as the clustering method [193].
However, other methods could also be considered. In plot (a), just one clus-
ter is considered (k = 1) and thus there is one centroid, which is the mean
value of the population. As can be seen, in this case the centroid resides in
the infeasible solution, and therefore, this probabilistic model does not meet
the requirement of satisfying the constraints as the sampled solutions will be
mostly in the infeasible region. In the plot (b), the population is divided into
two clusters (k = 2). The positions of the centroids indicate that one of them
is inside the feasible region, while the other one is not, leading to the conclu-
sion that this mixture model is also not suitable for constraints satisfaction.
Considering three clusters (k = 3), yields the plot (c) in Fig. 3.2. As can be
appreciated, all centroids are inside the feasible region. Therefore, the mixture
of Gaussian distributions model is learned by calculating the maximum like-
lihood estimators of the parameters of the components in this mixture, using
the solutions in the respective clusters. Since all of the centroids are feasible
in this case, any solution that is going to be sampled is likely to be inside the
feasible domain.

This process is the first loop in Algorithm 4, representing the first step
of the learning process. The obtained number of clusters Nc in this scenario
is the minimum number of clusters with feasible centroids. Finalizing the
process, the components Φ, referred to as the parent clusters are extracted,
which contain corresponding solutions x̂, objective values f̂ , centroids µ̂ and
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covariances σ̂. Although, it is possible to continue increasing the number of
components and obtain other mixtures of Gaussian distributions, the com-
putation time will increase without any actual necessity as the objective is
to find a minimum number of mixture components with feasible centroids.
The main benefit of such process is that having all of the centroids (µ̂) from
the components inside the feasible region significantly reduces the chance of
sampling infeasible solutions later on during the sampling process.

The described learning process satisfies the primary requirement for sam-
pling feasible solutions. However, when the mapping mechanism (explained
in the next section) is applied to the model that has been created based on
this learning process, the covariance matrix tends to shrink, i.e. looses diver-
sity. This effect reduces the convergence rate of the optimization process. To
overcome this drawback, in the next step of the learning process, more com-
ponents are added to the model. This step is to compensate the covariance
loss due to the mapping mechanism that is going to be used in the algorithm
[194] after the sampling stage. In this step, for each component Φi, first, the
top α percentage of the best solutions (x̂sel and f̂sel) are selected. Then, the
selected set of solutions is analyzed to see if they have outliers using the Z-
score outlier detection method [195] with respect to a given distance threshold
λ from their respective centroids µ̂. According to this mechanism, if an outlier
solution is at the top α percentage of the best solutions, it will be considered
as the centroid of a new component in the mixture φ̂, referred to as a outlier-
based cluster. For the newly formed components, we assume an independent
multivariate Gaussian distribution, where the variance of each dimension is
calculated as the half of the distance from the initial centroid in each com-
ponent. The illustration of this approach in a schematic instance is shown in
Fig. 3.3. 

New Variance Main centroid 

Outlier (New Centroid) 

Outlier (New Centroid) 

New Variance 

Fig. 3.3: Formation of outlier-based clusters within the learning mechanism
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As shown in this instance, the selected population inside the feasible re-
gion is depicted along with the corresponding centroid. According to these
parameters, two outliers are detected that have the objective function val-
ues above a predefined threshold in this population, and they are therefore
considered as the centroids for two new components in the mixture. The vari-
ance of the independent multivariate Gaussian distributions for each newly
generated component is considered as half of the distance from the outlier to
the centroid in the component. Overall, a mixture model of three Gaussian
models is determined in this iteration: one initial component (parent cluster)
and two additional components (outlier-based clusters) due to outliers.

3.6 Mapping

Although the proposed learning mechanism generates mixture components
with mean values inside the feasible region, when sampling, it is still possible
that some samples are generated outside the feasible region. In order to solve
this problem, a mapping mechanism is introduced, which is utilized after the
repairing process. The application of this mapping mechanism in a schematic
instance is illustrated in Fig. 3.4.

The presented plots illustrate the mapping mechanism in one iteration of
the optimization process. As it is shown, the mapping method is based on
the idea of shifting infeasible points toward their respective centroid in Nδ
number of steps until they enter the feasible region. As shown in Fig. 3.4
(a), the probabilistic model in this iteration is a mixture of two Gaussian
models. New solutions are sampled around the centroids. However, not all the
samples are inside the feasible region. The feasible and infeasible solutions
are marked separately, connected to their respective centroid. The points are
mapped in a deterministic equally-spaced form toward the centroids with Nδ
as the maximum number of steps. The amount of displacement in each step
is (µi − xj)/Nδ, where xj is the infeasible solution to be mapped toward the
centroid µi in the ith cluster. As a result, the distance between the infeasible
point and the respective centroid is divided into Nδ steps. It is worth noting
that, at the final step, the last displacement will be on the centroid. So, the
feasibility is guaranteed no matter what the number of Nδ is. However, the
higher the number of Nδ is, the more accurate the feasible and infeasible
borders that will be discovered. Note that while moving toward the centroids,
the mapping is stopped as the point enters the feasible region. The mapped
solutions are shown in Fig. 3.4 (b).

Regarding the mapping mechanism, one can consider different approaches
depending on their non-linear or stochastic nature. In the following, four al-
ternatives are proposed.
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Fig. 3.4: The process of shifting infeasible individuals toward the centroids,
(a) Before mapping (b) After mapping.

3.6.1 Linear Deterministic Mapping

The linear deterministic (LD) mapping is a straight forward method for shift-
ing the infeasible point toward the respective centroid. In this method, the
distance between the infeasible solution and the centroid is linearly divided
into equal steps. The infeasible solution is moved from its initial position to-
ward the centroid with respect to the steps. In each step the feasibility of
the new solution is checked. The process stops when the shifted solution has
entered the feasible region.

This mapping process can be represented as:

xnewj = xj + δ (3.14)

where xj is the current point within the infeasible region, xnewj is the new
shifted solution towards the respective centroid µi in the component, and δ is
the step calculated as:

δ = |µi − xj |
Nδ

(3.15)
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where Nδ is the selective total number of steps for this mapping mechanism.

3.6.2 Linear Stochastic Mapping

The linear stochastic (LS) mapping is similar to LD. The only difference is
that in each step, after obtaining the new solution, it will also be shifted in a
random direction with a variable radius r as:

xnewj = xj + r × δ (3.16)

where 0 < r < 1. This forces a random movement of the point while map-
ping and may have some advantages depending on the solution domain as it
produces diversity to the search.

3.6.3 Bisection Deterministic Mapping

Bisection deterministic (BD) mapping is based on repeatedly bisecting the
interval defined by the centroid and the infeasible solution. At each step, the
distance is divided in two by computing the midpoint of the interval as:

δ = |µi − xj |2 (3.17)

The feasibility of the midpoint solution is evaluated. If the new solution is
feasible, the process stops. Otherwise, the process continues considering the
interval between the new obtained solution and the centroid. This process is
similar to the well-known bisection method in finding the root of a continuous
function.

3.6.4 Bisection Stochastic Mapping

Likewise, the bisection stochastic (BS) mapping is similar to BD. The dif-
ference is that in each step, after obtaining the new solution, it will also be
shifted in a random direction with a variable radius 0 < r < 1.

3.7 Algorithm Verification

In order to analyze the performance of the proposed EDA++, the experiments
have been carried out on different benchmarks of problems. The algorithm per-
formance is compared with state-of-the-art algorithms and constraint handling
methods1. First, the efficiency of the algorithm is tested against other con-
straint handling techniques on the well-known benchmark suite [196], which

1 All materials for the experiments, including the codes and the results are available
at https://github.com/abolfazlshirazi/EDAPP
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contains 13 constrained optimization problems, and also the proposed map-
ping mechanisms are analyzed. In the second experiment, the performance of
the algorithm is compared with state-of-the-art algorithms on CEC 2020 test-
suite benchmark [197], which contains 57 non-convex constrained optimization
problems.

3.7.1 Common parameters setup

The experiments are conducted on HIPATIA cluster setup of BCAM, with
18 nodes including 672 cores (Processor Intel(R) Xeon(R) Gold 6140 CPU @
2.30GHz) and 3360 GB RAM for the aforementioned runs. In all of the ex-
periments, the following predefined parameters are chosen for EDA++ since
the main goal of the experiments is to compare the performance of EDA++
without tuning the parameters. The initial parameters of N , M , and ε are
set according to each benchmark. In the seeding mechanism, parameters S
and τ are considered as 100 and 0.2. The truncation factor γ for the selec-
tion method is chosen as 0.5. Within the learning process, the multivariate
Gaussian model is utilized as the component mixture and k–means++ [193]
is used as the clustering method. The outlier detection parameters are cho-
sen as λ = 1 and α = 0.01. Within the sampling process, for a new size N
population, several choices exist for the number of samples for each mixture
component. The typical option, which is used in this research, is to dedi-
cate an equal sample size to each component (i.e., N/k) for k components.
However, this is an optional choice. Obviously dedicating more samples to
the parent clusters or outlier-based clusters acts as a balancing parameter
for exploration/exploitation behavior of the optimization algorithm. Also, the
number of steps for the mapping mechanism is chosen as Nδ = 10 for all
proposed mapping methods. The type of the employed mapping mechanism
will be specified in each experiment.

3.7.2 Analysis of EDA++ components

In the first experiment, the efficiency of the proposed algorithm is analyzed
with respect to other constraint handling techniques, combined with well-
known EAs. The benchmark suit consists of 13 constrained optimization prob-
lems in the well-known benchmark of [196] is considered in this experiment. In
this regard, the performance of the proposed EDA++ is compared with three
algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO)
and Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [198].
As for the GA, the crossover rate, crossover range factor, mutation percentage
and mutation rate of 0.7, 0.4, 0.3 and 0.2 are chosen, respectively. Also, the
PSO is a vectorized Particle Swarm Optimization with personal learning coef-
ficient and global learning coefficients equal to 2, and inertia weight damping
ratio of 0.99. For CMA-ES, default values are used for its parameters as de-
scribed in [198]. Since the best parameter selection for the algorithms depends
on each specific problem, these values are chosen arbitrary for each algorithm.
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RBP
# GA PSO CMA-ES EDA++ (LD) EDA++ (LS) EDA++ (BD) EDA++ (BS)
1 4.01e-09 0 1.51 2.73e-07 2.34e-06 3.64e-06 5.42e-06
2† 2.5 42.5 50.1 5.59 0 21.6 9.4
3†∗ 27.4 0.476 91.9 0.00177 0.00187 0.00269 0
4 0.161 4.31e-06 0.229 1.48e-08 0 6.19e-08 1.6e-08
5∗ 0.000272 0.000272 0.000717 0 2.71e-07 5.07e-07 1e-06
6 1.04 1.48 1.27 0.00016 0.000133 0 5.7e-05
7 0.871 0 17.3 1.47 0.104 2.38 1.66
8† 1.45e-14 3.48e-07 0 1.45e-14 1.45e-14 1.45e-14 1.45e-14
9 0.00707 0.00402 0.761 0.00387 0 0.00724 0.000272
10∗ 2.78 0 84.2 3.06 2.8 7.81 4.2
11 0.0237 0.00323 0.151 2.6e-06 2.26e-05 0 4.24e-07
12† 0 2.91e-11 6.82e-07 0 0 0 0
13∗ 0.202 0.202 228 0.0446 0.046 0 0.0463
ARPD
# GA PSO CMA-ES EDA++ (LD) EDA++ (LS) EDA++ (BD) EDA++ (BS)
1 5.82e-09 7.49 3 3.48e-05 1.33 1.33 1.33
2† 5.44 52.4 63.1 17.9 15.1 41 27.3
3†∗ 51.5 1.52 98.3 1.06 0.274 0.0199 0.00575
4 0.436 3.21e-05 1.91 3.23e-05 5.87e-06 1.9e-05 2.63e-05
5∗ 0.000715 0.000715 4.44 0.000466 0.000446 0.000439 0.000425
6 9.4 2.88 6.26 0.00209 0.00188 1.07e-06 0.000209
7 2.63 2.22 545 5.5 2.76 6.16 7.76
8† 3.77e-14 3.91e-05 0.085 2.03e-14 1.74e-14 2.03e-14 2.17e-14
9 0.043 0.0138 18.9 0.0172 0.00802 0.0246 0.00606
10∗ 8.24 2.69 193 16.7 13.7 20.5 16.5
11 0.101 0.0643 2.58 0.00113 0.00133 0.000164 0.000248
12† 0 4.54e-10 0.00414 0 0.0563 0.0563 0.0563
13∗ 10.8 10.8 5.7e+03 10.6 10.5 10.4 10.2

Table 3.1: RBP and ARPD values of the feasible solutions obtained after 10
runs.
∗ Equality constraints are converted into inequality constraints with ε = 10−3.
† Maximization problems are converted into minimization problems.

Different constraint handling methods are employed in GA, PSO and
CMA-ES. Handling the constraints in GA and PSO is based on a static penalty
function with a constant coefficient. Several penalty factors, such as 1, 100 and
10000, are tested and the best performance of GA and PSO was found to be
that with the highest value. In CMA-ES, the resampling technique, as used
in [199], was considered as the constraint handling technique and the best
obtained feasible solution is saved in each iteration.

In the first experiment, each algorithm is run 10 times for each of the
13 problems of the benchmark. All algorithms started with feasible initial
populations. Also, the same initial population is considered in the run of each
algorithm in order to have a fair comparison. Considering D as the number of
dimensions in each problem, the population size and the number of iterations
are considered as 20×D and 30×D respectively and no additional stopping
criterion is assumed.
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A summary of the obtained results are tabulated in Table 3.1. In this table,
the four proposed mapping mechanisms are tested in EDA++ along with GA,
PSO and CMA-ES. The Relative Best Percentage (RBP) and Average Relative
Percentage Deviation (ARPD) values [182] of the obtained feasible solutions
across 10 repetitions by each algorithm are provided. The results for PSO and
GA are regarding the penalty factor of 10000 and as mentioned, CMA-ES
benefits from the resampling technique for handling constraints. According to
the obtained results, although none of the algorithms could find the global
optimal solution in all problems, the performance of the proposed algorithm
is competitive against GA and PSO incorporated with penalty function and
CMA-ES with resampling technique. Comparing the best and mean values of
the final solutions confirms the high efficiency of EDA++ relative to others. It
is worth noting that unlike GA, PSO and CMA-ES, EDA++ always returns
feasible solutions. In some cases, GA or/and PSO failed to reach feasible
solutions, even when the provided initial population is feasible. These cases
include 1 run of GA for problem g10, 2 runs of PSO for problem g06 and
4 runs of PSO for problem g10. On the other hand, the feasibility of the
final solution is guaranteed in EDA++, when the initial feasible solution is
provided.

CMA-ES does not return infeasible solutions as it is associated with a
trigger that returns the best feasible solution found so far in every iteration
after the resampling process. Evaluating the results for CMA-ES shows that
despite returning feasible solutions in all cases, solutions by CMA-ES have
the lowest quality in comparison to GA, PSO and EDA++. Considering the
quality of the obtained solutions in Table 3.1, EDA++ is either quite superior
or has the same performance as the other algorithms in finding good feasible
solutions.

 

Fig. 3.5: Comparison of the execution times of the algorithms
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Analysis of the time burden of the proposed algorithm shows how com-
petitive the presented EDA++ is in comparison to other algorithms. This
analysis is depicted in Fig. 3.5. In this figure, the boxplot for the execution
time of all algorithms is plotted for each problem. All runs are considered in
this plot, regardless of whether they achieve feasible or infeasible solutions.
Results indicate that the vectorized PSO has the fastest process, due to the
parallel computing associated with the structure of the code. On the other
hand, the execution time of the proposed algorithm is competitive with GA
and CMA-ES. Also, it can be seen that the variance of execution time is
higher in EDA++. This is due to the fact that various mapping mechanisms
perform several iterations per each infeasible individual in every generation.
Depending on how the infeasible solutions are distributed, the mapping mech-
anism takes variable times. Therefore the number of iterations for mapping
infeasible solutions toward the respective centroids, makes the algorithm take
longer to converge. However, in an exchange for having all feasible solutions
by the proposed EDA, the time burden is acceptable and competitive.

Detailed comparison between the proposed mapping mechanisms is de-
picted in Fig. 3.6. In this figure, two kinds of plots are illustrated for each of
the problems. The top graphs are dedicated to the boxplots for the quality
of the obtained solution and the second graphs include the boxplots for the
execution times of the algorithms. Each boxplot separates the data for all four
aforementioned mapping mechanisms. Results shows that none of the map-
ping mechanisms outperforms the rest in all problems. Therefore, the efficient
mapping mechanism depends on the type of the constrained optimization
problem.

 

Fig. 3.6: Comparison of mapping mechanisms
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3.7.3 Comparison with the state-of-art algorithms

In this experiment, we focused on the state-of-the-art algorithms in CEC 2020
competition for real-world single objective constrained optimization and the
corresponding benchmark problems [197]. An overview of the problems’ fea-
tures in this benchmark is shown in Fig. 3.7. This figure shows the dimension,
number of inequality and equality constraints and the feasibility ratio (F.R.)
percentage 1 of the solution domain for all 57 problems. As it is shown, the
majority of the problems have zero F.R. percentage due to the existence of
equality constraints. Even some of the problems with only inequality con-
straints have zero F.R. percentage, since the defined inequality constraints
have the effect similar to equality constraints. Also, two problems have F.R.
percentage of 100%, which makes them almost unconstrained problems.

 

Fig. 3.7: Features of the benchmark problems in CEC 2020 competition on
real-world constrained optimization

Some of the state-of-the-art algorithms in this competition were chosen ini-
tially as candidate algorithms for comparison2. The algorithms include SASS
[200], COLSHADE [201], εsCMAgES [202], EnMODE [203], and BP-εMAg-
ES [204]. Although these algorithms showed quite good performance in the
competition, detailed analysis indicates that some of the them take advan-
tage of specific features, which makes the comparison not quite reasonable
and fair. Some remarks regarding the comparison worth to note here. For
example, SASS and εsCMAgES use analytical Jacobian, while satisfying the
constraints and minimizing the objective function. It means the algorithms
will not work if the Jacobian matrix is not provided. On the other hand,
calculating the Jacobian matrix numerically takes enormous number of func-
tion evaluations. In other words, analytical derivation of Jacobian prior to
the optimization saves thousands of function evaluations, which makes the
comparison unfair since the rest of the algorithms do not take advantage of
analytical Jacobian. The other issue for SASS and εsCMAgES is that they use

1 This feature is measured by evaluating 10000 random inputs, with uniform dis-
tribution between the upper and lower bounds for each problem.

2 Please refer to the CEC 2020 RW Constrained Optimization repository for
the available codes: https://github.com/P-N-Suganthan/2020-RW-Constrained-
Optimisation
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MATLAB optimization toolbox functions internally. In other words, there are
no actual mechanisms to deal with constraints in these algorithms. The other
issues, not only with these two algorithms, but also in some other algorithms
in this competition is exceeding the function evaluation limits and tuning the
parameters1.

Having these considerations into account, COLSHADE, EnMODE, and
BP-εMAg-ES are chosen for this experiment. LSHADE44 [205] from CEC 2017
competition is also considered as a complementary algorithm. The comparison
setup is implemented same as CEC 2020 competition. Regarding this, the
maximum allowable function evaluation for each problem is considered as:

MAXFEs =



1× 105 D ≤ 10
2× 105 10 < D ≤ 30
4× 105 30 < D ≤ 50
8× 105 50 < D ≤ 150
106 150 < D

(3.18)

where D is the dimension of the problem. LD mapping method is chosen in
this experiment and equality constraints are converted into inequality con-
straints with the threshold of ε = 10−4. The population size N for EDA++
is considered as

N = min(200,max(10×D, 50)) (3.19)

Also, the default values of the parameters are considered for the rest of
the algorithms. According to this setup, each algorithm is run 25 times for
each problem and all of the solutions are saved. Results are provided in Table
3.2, including the percentage of feasibility rate (FR) and the mean value of
constraint violations (MV). As it is shown, EDA++ managed to find at least
one feasible solution (non-zero FR) similar to COLSHADE, LSHADE44 and
EnMODE. In this regard BP-εMAg-ES has the best performance. However,
for the majority of the problems (1 to 33) EDA++ outperforms BP-εMAg-ES
in terms of FR percentage. Moreover, for the rest of the problems, EDA++
has competitive performance with COLSHADE, LSHADE44 and EnMODE.
Same results can be observed regarding the MV values. Superior performance
has been observed for EDA++ in most of the problems (2-6, 8-10, 12-15, 17-24,
27-33, 44, 45). The performance of COLSHADE and EnMODE are compet-
itive in this matter and they are close to EDA++. For the other problems,
one observes reasonable performance for EDA++ in lowering the constraint
violations.

Besides the FR and MV values, the execution time of the algorithms are
compared in Fig. 3.8. As the number of function evaluations are the same for
each problem, the relative difference in the execution times can be analyzed.

1 Detailed discussions are omitted here due to brevity, and the reader is urged to
refer to the provided codes in the CEC 2020 repository.
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1 28 80 0 4 100 2.0e-03 1.0e+01 1.9e-01 3.1e-03 0.0e+00
2 100 44 100 100 100 0.0e+00 2.3e+01 0.0e+00 0.0e+00 0.0e+00
3 100 64 100 100 100 0.0e+00 8.9e+02 0.0e+00 0.0e+00 0.0e+00
4 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
5 100 52 100 100 100 0.0e+00 1.8e+01 0.0e+00 0.0e+00 0.0e+00
6 0 20 0 0 0 5.6e-01 1.6e+00 6.9e-02 1.7e-01 2.2e-01
7 0 0 0 0 0 1.1e+00 6.7e-01 1.0e-01 7.5e-02 3.8e-01
8 100 60 100 100 100 0.0e+00 8.7e-02 0.0e+00 0.0e+00 0.0e+00
9 100 88 100 100 100 0.0e+00 1.6e-01 0.0e+00 0.0e+00 0.0e+00
10 100 80 100 100 100 0.0e+00 7.2e-02 0.0e+00 0.0e+00 0.0e+00
11 20 80 4 96 100 1.3e-01 2.5e-01 9.4e-02 1.3e-01 0.0e+00
12 100 64 100 100 100 0.0e+00 6.2e+01 0.0e+00 0.0e+00 0.0e+00
13 100 76 100 100 100 0.0e+00 2.3e-01 0.0e+00 0.0e+00 0.0e+00
14 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
15 100 92 100 100 100 0.0e+00 1.0e-02 0.0e+00 0.0e+00 0.0e+00
16 88 96 100 100 100 6.5e-02 6.5e-02 0.0e+00 0.0e+00 0.0e+00
17 100 100 100 100 96 0.0e+00 0.0e+00 0.0e+00 0.0e+00 1.2e-01
18 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
19 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
20 100 80 100 100 100 0.0e+00 5.2e-02 0.0e+00 0.0e+00 0.0e+00
21 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
22 100 68 96 100 100 0.0e+00 4.0e+00 9.1e+04 0.0e+00 0.0e+00
23 100 88 100 100 100 0.0e+00 1.4e-03 0.0e+00 0.0e+00 0.0e+00
24 100 92 100 100 100 0.0e+00 9.8e-01 0.0e+00 0.0e+00 0.0e+00
25 100 100 100 88 100 0.0e+00 0.0e+00 0.0e+00 1.5e-04 0.0e+00
26 68 20 100 100 100 2.3e-02 9.3e+00 0.0e+00 0.0e+00 0.0e+00
27 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
28 100 88 100 100 100 0.0e+00 2.0e-01 0.0e+00 0.0e+00 0.0e+00
29 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
30 100 36 100 28 92 0.0e+00 8.1e+04 0.0e+00 2.3e+03 6.8e-02
31 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
32 100 92 100 100 100 0.0e+00 1.2e-02 0.0e+00 0.0e+00 0.0e+00
33 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
34 0 76 0 0 0 4.3e-01 1.3e-02 1.7e-02 4.3e-02 1.5e-01
35 0 76 0 0 0 4.9e+00 5.7e+00 1.0e-01 1.5e-01 2.0e+00
36 0 80 0 0 0 4.5e+00 2.5e-02 1.2e-01 2.9e-01 3.2e+00
37 0 40 0 0 0 2.9e-01 8.3e-02 3.6e-02 5.6e-02 2.4e-01
38 0 40 0 0 0 2.8e-01 6.3e-02 3.8e-02 5.8e-02 1.3e-01
39 0 36 0 0 0 2.8e-01 3.6e-01 3.8e-02 5.8e-02 1.3e-01
40 0 60 0 0 0 8.7e+00 4.7e-01 9.5e-01 1.9e+00 1.6e+00
41 0 100 0 0 0 9.1e+00 0.0e+00 6.7e-01 1.7e+00 7.4e+00
42 0 60 0 0 0 1.5e+01 2.9e+00 9.3e-01 2.1e+00 2.3e+00
43 0 60 0 0 0 1.4e+01 1.5e+00 1.0e+00 2.1e+00 2.8e+00
44 100 100 100 100 100 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
45 100 92 100 100 100 0.0e+00 1.2e-02 0.0e+00 0.0e+00 0.0e+00
46 84 60 100 100 100 1.4e-02 3.0e-01 0.0e+00 0.0e+00 0.0e+00
47 92 84 100 100 100 3.8e-03 2.3e-01 0.0e+00 0.0e+00 0.0e+00
48 28 84 100 88 88 4.8e-02 2.5e-03 0.0e+00 1.3e-02 1.7e-02
49 32 60 100 100 88 2.1e-02 9.6e-04 0.0e+00 0.0e+00 1.6e-02
50 4 96 88 0 8 3.3e-02 6.7e-04 2.7e-03 7.6e-03 1.5e-02
51 0 0 0 0 0 3.8e-02 1.5e-01 2.8e-06 1.6e-05 6.8e-04
52 88 68 100 100 100 1.6e-02 1.5e-02 0.0e+00 0.0e+00 0.0e+00
53 16 4 100 100 4 3.5e-02 4.8e-02 0.0e+00 0.0e+00 5.2e-03
54 0 0 100 100 0 5.8e-02 1.0e+00 0.0e+00 0.0e+00 1.3e-03
55 0 0 24 0 0 1.2e-01 1.9e-02 2.4e-04 3.7e-03 4.9e-03
56 0 0 0 0 0 6.6e-02 2.0e-02 1.1e-03 8.3e-03 1.0e-02
57 0 4 92 0 0 1.9e-01 2.2e-02 1.5e-04 2.0e-03 1.4e-03

Table 3.2: Comparison of feasibility rate (FR) and mean value of constraint
violation (MV) of the algorithms in CEC 2020 benchmark



3.7 Algorithm Verification 109

In this figure, the logarithmic scale of the algorithms’ execution time for every
of the 57 problems in the 25 executions are compared. Each plot is dedicated
to the problems in a unique category in this benchmark. As it is observed,
EDA++ superbly overpowers the rest of the algorithms in almost all cases
since it requires lower execution time. This difference is high in problems 34
to 44 and low in problems 15 to 33. It is worth to note that COLSHADE
generally has the highest execution time in all of the categories except the
last one, in which BP-εMAg-ES is the slowest algorithm.

Having the execution time and the quality of the obtained solutions, the ef-
ficiency of the algorithms can be analyzed. To this end, the following efficiency
parameter is defined for each solution x:

Γ (x) =
{

1 + Γc(x) Γc(x) > 0
Γf (x) Γc(x) = 0

(3.20)

where Γc and Γf are the scaled values of objective function and constraint
violation as:

Γf (x) = F (x)− Fmin
Fmax − Fmin

(3.21)

Γc(x) = C(x)− Cmin
Cmax − Cmin

(3.22)

where Fmin and Fmax are the minimum and maximum objective values found
by any of the algorithms in the competition regarding a specific problem.
Similarly, Cmin and Cmax are the lowest and highest constraint violation,
achieved by any algorithms for each problem. The defined parameters scale
the objective score Γf and constraint score Γc in the interval of 0 and 1 for
each solution. Having these scores, the efficiency score Γ will be a score within
the interval of 0 ≤ Γ ≤ 2. Regarding this, all feasible and infeasible solutions
will be inside the interval of 0 ≤ Γ ≤ 1 and 1 ≤ Γ ≤ 2 respectively. Obviously
Γ = 0 means that the solution is feasible with the best objective value found.
If 0 < Γ < 1, it shows that the solution is feasible, but it is not the best
solution found in terms of the objective value. If Γ = 1, it indicates that
the solution is feasible (or almost feasible) with the worst objective value in
comparison to other obtained feasible solutions. If 1 < Γ < 2, it shows that
the solution is infeasible with constraint violation less than the worst solution
found. Finally, Γ = 2 indicates that the solution is infeasible and it has the
highest amount of constraint violation. The scaled execution time ∆(x) is also
defined as:

∆(x) = T (x)− Tmin
Tmax − Tmin

(3.23)

where T (x) represents the execution time in obtaining the solution x, and Tmin
and Tmax are the lowest and highest execution times between all algorithms
for the corresponding problem.

The defined parameters are scaled scores, thus are independent from the
problem, and can be used to analyze the algorithms considering the entire
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Fig. 3.8: Algorithms execution times in all repetitions
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Fig. 3.9: Comparison of the algorithms’ efficiency Γ vs the scaled execution
time ∆

benchmark. This analysis is shown in Fig. 3.9. In this figure, each graph is
dedicated to an algorithm, plotting the efficiency score and the execution time
score for all of the 1425 obtained solutions (25 runs for 57 problems). Obvi-
ously, the points closer to the origin represent better solutions in both terms of
quality of the solution (objective value and feasibility) and the execution time.
The border between feasible and infeasible regions (Γ = 1) is marked with
dashed line. Comparison of the distribution of points indicate that EDA++
has superior efficiency in comparison to the other algorithms. In this regard,
EnMODE has the efficiency closest to EDA++. Also, BP-εMAg-ES has the
highest number of points inside the feasible region. However, it generally has
longer execution times in exchange for constraints’ satisfaction. To be more
accurate in this analysis, the Pareto set of the solutions for each problem
is extracted and plotted in Fig. 3.10. The main goal of this plot is to find
out the group of points that forms the Pareto sets from each algorithm. In
other words, Fig. 3.10 indicates which algorithm has the highest number of
dominant obtained solutions in terms of execution time and quality. As it is
shown, the majority of the points correspond to EDA++. LSHADE44 has

 

 

 

 









Fig. 3.10: Pareto sets of each of the 57 constrained problems from CEC2020
benchmark regarding 25 repetitions. Colored markers have been used to high-
light the solutions obtained from each algorithm.
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the lowest number of points within the Pareto sets, and the most competitive
algorithm in comparison to EDA++ is BP-εMAg-ES, which has fair amount
of dominant solutions with high qualities.

3.8 Simulation Results

In order to validate the effectiveness of the proposed algorithm, in this section,
we provide several numerical simulations. First, a specific rendezvous mission
is solved with four different initial conditions. Then, in a comparative anal-
ysis, the performance of the algorithm is compared with a Lyapunov-based
approach from the literature.

The initial feasible solutions for each optimization run are obtained by
solving the unconstrained version of the proposed algorithm, i.e., with feasi-
bility conserving clustering, and mapping mechanisms disabled. In this initial
run, Eq. 3.9 (the constraints) is considered as the objective function and the
algorithm is run until the necessary number of initial feasible solutions are
collected. Then, the proposed algorithm starts with the obtained initial seed,
with all proposed mechanisms enabled. For all of the runs, the population
size Npop and the maximum number of generations Ngen are considered re-
spectively as 20× n and 30× n, where n is the number of decision variables,
which itself, depends on the number of polynomial points for each case. The
outlier detection distance and threshold are considered as λ = 1σ and α = 0.1
respectively.

3.8.1 Robustness Verification

For the purpose of this experiment, the rendezvous mission in an elliptical
orbit with orbital elements and space mission parameters presented in as
Table 3.3 is considered.

Parameter Value Parameter Value
Semi-major axis a 12500 km Initial mass m0 170 kg
Eccentricity e 0.4 Thrust limit T ±120 N
Inclination i 10◦ Specific impulse Isp 300s
Right ascension Ω 15◦ Final distance σr 100 m
Arg. of perigee ω 65◦ Final velocity σv 0.1 m/s
True anomaly ν 230◦ Total time tf 5 min

Table 3.3: Mission parameters for spacecraft short-range rendezvous

As regards the disturbances, utilizing lumped periodic functions for mod-
eling the disturbances are common in short-range rendezvous problems [185,
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206]. In this scenario, the following periodic disturbance function is consid-
ered:

d = [2 sin(0.1t) 2 cos(0.2t) 2 sin(0.3t)]′ (3.24)

In order to put the robustness of the proposed algorithm into test and also to
analyze the practicality of the presented interpolation schemes, four different
initial conditions are considered for this short-range rendezvous mission as in
Table 3.4.

Relative distance Relative velocity
C1 ri =

[
+1300 +500 −1900

]
m vi =

[
−2.9 −1.2 +1.7

]
m/s

C2 ri =
[
+800 −1500 +1250

]
m vi =

[
+7.3 +6.8 +1.1

]
m/s

C3 ri =
[
−120 +2700 +1430

]
m vi =

[
+1.5 −12.1 −5.4

]
m/s

C4 ri =
[
−560 −320 −1790

]
m vi =

[
−2.1 +4.3 −14.8

]
m/s

Table 3.4: Initial conditions for short-range rendezvous scenario

According to the approach presented, for each initial condition, the prob-
lem can be solved with different choices for the number of polynomial points
for thrust components, mapping mechanisms, and the polynomial schemes. A
number of points ranging from 5 to 24 is considered, which makes 20 choices
in this regard. It will be shown that considering more points than 18 does not
end in better solutions. Having three choices for interpolation schemes (SP,
CR and NK) and four choices for mapping mechanisms (LD, LS, BD and BS),
the total number of combinations of problem setup for each initial condition
is 240. In this research, the optimization algorithm for each combination is
run 10 times. In each run, the final solutions obtained are saved along with
its corresponding setup. The top ten best solutions for each initial condition
are sorted and presented in Table 3.5.

As can be seen, the best solutions correspond to the amount of 18 inter-
polation points for thrust components. The employment of other amounts of
points near this number ended with, more or less, the same solutions by the
optimizer. Considering a higher number of points did not help the algorithm
find better solutions. Therefore, it can be concluded that there is a high possi-
bility that the global optimal solution is reached at this point. Regarding the
mapping mechanisms, it can be observed from Table 3.5 that the majority of
the best solutions are found by BS mapping method regardless of the initial
condition, leading to the conclusion that the most effective mapping method
seems to be independent of the initial condition. Relative state vectors for
the best solution for all initial conditions are illustrated in Fig. 3.11. In this
figure, for each initial condition (C1, ..., C4), the variations of relative distance
and relative velocity are illustrated and the final values are displayed at the
top of each plot.
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C1 C2 C3 C4
mf Map. Np mf Map. Np mf Map. Np mf Map. Np
1.81272 BS 18 2.41731 BS 18 1.59422 BS 18 2.56913 BS 18
1.82008 BS 19 2.41991 BS 21 1.59428 BS 19 2.57063 LD 18
1.82061 BS 20 2.42470 BS 21 1.59774 BD 19 2.57300 BD 17
1.82092 LS 18 2.53698 BD 18 1.59804 BS 21 2.57338 LD 18
1.82363 BS 19 2.53884 BD 21 1.60652 LS 18 2.57483 BS 21
1.83340 BS 18 2.54913 LD 18 1.61041 BS 19 2.57642 LS 18
1.83557 LD 18 2.55159 BS 20 1.61129 BS 18 2.57704 BD 18
1.83562 BS 19 2.55721 BS 19 1.61427 BS 19 2.57757 LS 19
1.83741 BS 19 2.56299 LD 21 1.62225 BS 20 2.57796 BS 18
1.83764 BS 17 2.56483 LD 20 1.63085 BS 17 2.57864 LD 21

Table 3.5: Minimized fuel of top ten solutions for short-range space rendezvous
with corresponding mapping mechanism and number of interpolation points

According to Fig. 3.11, the algorithm successfully achieved the best solu-
tion while satisfying the terminal conditions. The magnitude of thrust vector
and the decrease in spacecraft mass within the transfer are shown in Fig. 3.12.

As shown, the chaser with initial condition C4 needs the highest amount
of fuel for space rendezvous with maximum thrust level of 122.3N . Initial
condition C3 on the other hand, corresponds with the lowest thrust level as
45.46N .

It is also possible to analyze the polynomial schemes within the results. The
top solutions in Table 3.5 are all obtained via the SP polynomial interpolation.
Best solutions obtained by other interpolation methods are presented in Table
3.6.

C1 C2 C3 C4
mf Np mf Np mf Np mf Np

Shape Preserving 1.81272 18 2.41731 18 1.59422 18 2.56913 18
Catmull-Rom 1.84521 20 2.64096 18 1.65746 19 2.69233 18
Not-a-Knot 1.92706 17 2.92966 20 1.93098 18 3.05119 19

Table 3.6: Best solution obtained (mf ) via different interpolation schemes

The solutions obtained indicate that SP scheme outperforms the other
methods for current application in interpolating the thrust components, pos-
sibly due to less overshoot at the nodes. The thrust components corresponding
to the solutions in Table 3.6 are depicted in Fig. 3.13.

In Fig. 3.13, each row of plots corresponds to one of the initial conditions,
while each column is dedicated to a different interpolation scheme. It can
be observed that having overshoot in splines significantly affects the solution
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Fig. 3.11: State vectors in short-range space rendezvous for initial conditions
C1, C2, C3 and C4

domain of the optimization problem, and, as a result, has a direct impact
on the solution obtained by the optimizer. SP interpolation has the least
overshoot, and its utilization with the presented algorithm results in feasible
solutions with higher qualities.
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Fig. 3.12: Variation of thrust |T| and mass mf in the best solutions for each
initial condition

3.8.2 Comparative Results

The approach presented is compared with an analytical control approach
based on implicit Lyapunov function as in [166]. The orbital parameters, the
problem setup and the external disturbances are chosen accordingly. Since the
specific impulse is not provided in [166], the total ∆v is considered as a metric
for comparison. For this problem, the optimization algorithm is utilized with
respect to the four types of aforementioned mapping mechanisms, three types
of polynomial schemes and ten numbers of polynomial points as 3 < Np < 12
(each choice of problem setup is run ten times). It is worth mentioning that by
setting Np to 1 or 2, the algorithm can not find any initial feasible solutions.
On the other hand, the feasible percentage of the solution domain decreases
as the number of interpolation points increases. This variation is shown in
Fig. 3.14 .

As can be seen, the feasibility percentage is high when interpolation points
are low. This is due to a lower number of decision variables as (n = 3Np).
However, the quality of the obtained solutions increases by adding more inter-
polation points. They are roughly illustrated in Fig. 3.15 for each optimization
run. The best obtained solution based on the proposed approach corresponds
to Np = 8 based on SP interpolation and LS mapping scheme. Relative states
for this solution are shown in Fig. 3.16.

The solution obtained is a transfer trajectory with final states as rf =
[8.6903 4.1487 − 1.6112] m and vf = [0.058532 0.066082 − 0.046753] m/s.
According to the results in Fig. 3.15, only a small number of runs managed
to find a solution better than the analytical solution based on the Lyapunov
function. However, comparing the quality of the best solution obtained via
the proposed approach as ∆v = 42.4854 m/s with the solution associated
with the Lyapunov function as ∆v = 44.9481 m/s shows the capability of
the proposed approach in finding the better solution. The variation of thrust
components for two solutions is compared in Fig. 3.17.

As can be seen, the maximum thrust value is larger in the proposed ap-
proach. However, the integration of the thrust profiles, which yields the ∆v,
is lower than the analytical solution. Besides the comparative analysis of the
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Fig. 3.13: Thrust components within the best solutions obtained for each
initial condition and interpolation scheme

solutions, it is also possible to compare the performance of the proposed algo-
rithm regarding the choices for interpolation schemes and the mapping mech-
anisms. This comparison is provided in Fig. 3.18.

In Fig. 3.18, each row of box plots corresponds to a unique number of
interpolation points, while each column is dedicated to a specific interpolation
scheme. Each box plot contains the statistical information of the quality of
the solutions obtained for the proposed mapping mechanisms, along with the
best objective function value found between the solutions, shown in the title.
As presented, and similar to the previous simulation, SP spline has a superior
advantage in finding the high quality solutions, while CR spline generally
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Fig. 3.14: Feasible ratio of the solu-
tion domain as the number of inter-
polation points

 

Fig. 3.15: Quality of the obtained so-
lutions. Each point is a full execution
of the algorithm

 

Fig. 3.16: Relative states of the chaser spacecraft |rf | = 9.7637 m, |vf | =
0.099 m/s

 

Fig. 3.17: Comparison of the thrust profiles between the proposed approach
and analytical solution based on the Lyapunov function

overpowers NK splines. Also, it can be noted that increasing the number of
interpolation points up to eight improves the quality of the obtained solutions.
However, similar to the previous scenario, dedicating more points makes the
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Fig. 3.18: Comparison of mapping mechanisms and interpolation schemes

algorithm find similar solutions with more effort and almost the same quality.
Regarding the mapping mechanisms, there is no optimal mapping mechanism
when NK and CR splines are used, due to the fact that these interpolation
schemes are not the best at finding the global optimal solution. However, when
SP splines are employed, LD mapping shows a significant advantage over the
other mapping mechanisms.
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3.9 Conclusions

In this chapter, the trajectory optimization problem for short-range space
rendezvous is tackled. In this direct approach, the thrust components of the
spacecraft are interpolated with various Hermite interpolation schemes. The
short-range rendezvous problem turned into a black box optimization problem
with nonlinear constraints. Then, an optimization algorithm based on EDAs,
named EDA++ is proposed, which benefits from several feasibility conserving
mechanisms.

The proposed mechanisms interact with the seeding, learning and map-
ping methods within the optimization process. They include a mixture with
feasible centroids, outlier detection and heuristic techniques for the mapping
process. Taking advantage of these mechanisms, it has been shown that the
algorithm has competitive performance in comparison to other state-of-the-
art algorithms in this matter. Also, it is capable of generating only feasible
solutions if the initial feasible population is provided, regardless of the type
of the constraints or the problem. However, there are no guarantees that
other techniques reach feasible solutions. Also, the analysis shows that the
proposed algorithm is generally faster than the state-of-the-art algorithms in-
cluding COLSHADE, EnMODE, BP-εMAg-ES and LSHADE44. However, it
consumes more time in comparison to traditional algorithms like GA and PSO
equipped with typical constraint handling techniques. Nevertheless, the feasi-
bility of the solutions is a fair exchange when tackling continuous optimization
problems with hard constraints.

After algorithm verification, it has been applied to the short-range ren-
dezvous trajectory optimization problem. The effort was to figure out which
interpolation scheme has the advantage in finding the high quality solutions
in terms of fuel mass or total ∆v and how the performances of the developed
mapping mechanisms are. It has been shown that SP is the most effective
spline in this approach, while the best mapping method is independent of the
initial condition for a specific space mission. However, when the SP splines
are employed, a unique mapping mechanism exists that slightly outperforms
other mapping mechanisms in finding the high quality solutions. Results also
indicate that the proposed approach is robust to different initial conditions
and space missions. Moreover, the presented approach managed to find solu-
tions with higher quality in comparison to the analytical solution by implicit
Lyapunov function. Improvement regarding the performance of the presented
mechanisms is considered as future research.

In overall, the aim of the research was to initially fill the gap in handling
constraints with some mechanisms associated with EDAs. This research can
be extended to consider the vast majority of the characteristics of the pro-
posed algorithm. One noteworthy point is that the high percentage of the time
burden in the proposed method was due to the mapping process, which makes
further enhancements in this mechanism in continuous domain a crucial need.
Other subjects that can be considered in the future research are improving the
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outlier detection methods, enhancing the seeding mechanism and analyzing
various sample assignments for the components in the proposed algorithm.
Future research can also be dedicated to the performance of the algorithm
based on changing each of the algorithm’s parameter.
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General Conclusions and Future Work

4.1 Conclusion

Spacecraft trajectory optimization is one of the challenging subjects in astro-
dynamics. Cutting-edge technology for orbital maneuvers of the space vehicles
turns this subject into a matter of interest for the aerospace community, as it
has major impact in space mission analysis and design. At the same time, rapid
development of computational capabilities allows computer science areas such
as artificial intelligence to get involved with real-world problems. Within this
advancement, the development of meta-heuristics and the employment of evo-
lutionary algorithms in spacecraft trajectory optimization gained significant
attention in recent years. However, no major research has been done in devel-
oping novel meta-heuristics with adaptive performance relative to the charac-
teristics of the spacecraft trajectory optimization problems. This dissertation
was an effort to make this connection and to develop novel meta-heuristics
with high efficiency, concentrating on the adaptive behavior of the algorithms
relative to the characteristics that describe the space orbit transfer mission.
To this end, first, a comprehensive review was carried out, evaluating all state-
of-art techniques and methods to deal with spacecraft trajectory optimization
problems. The review was not only beneficial to choose a correct path for
the research in this dissertation, but also ended up in an extensive survey,
reflecting most of the research and efforts that have been carried out over the
past decade while simultaneously providing a summary of the vast amount of
work that was done up to this point. Then, long-range and short-range space
rendezvous transfers were chosen as two general target problems to be tack-
led in this dissertation. Consequently, two algorithms, HSAEA and EDA++,
were developed for long-range and short-range space rendezvous missions re-
spectively. In the development of these algorithms, special attention has been
paid to the discovery of the features of the problems and connecting them
to the parameters of the algorithms. The algorithms were mainly developed
relying on probabilistic basis. Conducted experiments confirm the robustness
and the efficiency of the proposed algorithms in tackling different problems.
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Besides the algorithms, a simulation software is also developed to provide a
framework for the visualizing of space trajectories. The main contributions of
this dissertation can be summarized as follows:

• A review for the spacecraft trajectory optimization is provided. In this
review, the main process of spacecraft trajectory optimization has been
decomposed into several key elements. Each element has been categorized
and recent advances towards them have been identified. This review not
only ended in a comprehensive survey of the literature, but also illumi-
nated the road map for upcoming works in this matter. In this regard, it
has been revealed that a new trend in this subject is designing adaptive
meta-heuristics, which are useful in automatically finding and selecting
good trajectory options between many possibilities one has in the prelim-
inary phases of mission design. Also, it has been realized that it is crucial
to obtain meaningful insight into whether a specific method is more suit-
able for solving a specific class of trajectory optimization problems than
another. In other words, we found out that connecting the elements of
spacecraft trajectory optimization problems and the components of algo-
rithms is a new research line, which can lead to the development of adap-
tive heuristic mechanisms for dealing with complex spacecraft trajectory
design problems.

• A hybrid self-adaptive evolutionary algorithm (HSAEA) was developed for
solving trajectory optimization problems in long-range space rendezvous
missions. The developed algorithm benefits from auto-tuning operators
that work based on the complexity of the orbit transfer, and mechanisms
based on Gaussian distributions for generating near-optimal transfers. The
algorithm is capable of achieving orbit transfers with high quality in terms
of fuel consumption and transfer time. Conducted experiments showed
that the algorithm is robust to the changes in the orbital characteristics of
the space mission and therefore is a practical tool in conceptual and pre-
liminary design of space vehicles. Disabling the adaptive operators in this
algorithm, makes it a hybrid optimization algorithm, capable of optimizing
any types of optimization problems in continuous domain.

• An estimation of distribution algorithm based on feasibility conserving
techniques (EDA++), was developed for trajectory optimization of short-
range space rendezvous. Novel heuristic techniques within the framework
of estimation of distribution algorithms were developed to make the algo-
rithm compatible with non-linear constraints. The algorithm was the first
attempt in developing EDAs toward constraints satisfaction in continuous
optimization. It has been shown that the feasibility of the final solutions is
guaranteed if the initial feasible population is available. Also, the proposed
algorithm is faster than the state-of-art algorithms for optimization prob-
lems with constraints. When dealing with short-range rendezvous prob-
lems, the concentration was towards the discovery of the relation between
the employed mapping mechanisms and the mathematical modeling of the
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problem. Results indicate that the best mapping method is independent
of the initial condition for a specific space mission. However, when specific
splines are employed as the mathematical model for the thrust vector, a
unique mapping mechanism exists that slightly outperforms other map-
ping mechanisms in finding high quality solutions. Results also indicate
that the proposed algorithm is robust to different initial conditions and
space missions. Moreover, the presented approach managed to find so-
lutions with higher quality in comparison to the analytical solution by
implicit Lyapunov function.

• Taking advantage of graphical user interfaces, a simulation software was
developed that generates numerical data of space orbit simulation in a
3D visual representation. This software makes the trajectory design and
optimization process much easier as it is incorporated with a framework
that gives the scientists in astrodynamics and space engineers the ability
to achieve accurate results from the simulations. This toolbox is aimed at
developing a customizable application, which addresses the mission needs
of satellite orbit simulations, and which analyzes scenarios considering
all the perturbations influencing the orbit propagation. The results were
assessed against simulations of commercially available simulation tools and
were found to match satisfactorily.

4.2 Further Works

The research in this dissertation can be continued in many directions. Since
the subject was a transaction between astrodynamics and evolutionary tech-
niques, future works can be defined in either perspectives. The most important
subjects that can be referred as great potentials for continuing the research
are as follows:

• The review that has been carried out in this research provided a broad
survey of the state-of-art methods in spacecraft trajectory optimization.
In this review, it has been realized that in recent years, the development
of hybrid algorithms are becoming more popular in solving spacecraft tra-
jectory optimization problems. Similar to the survey in this dissertation,
a new review of state-of-art techniques in hybridization of algorithms in
spacecraft trajectory optimization is a promising area that seems to be
missing in the literature. Decomposing and taxonomizing the methods
and techniques in a review can lead to a comprehensive survey in this
area. It is beneficial to know, which algorithms have been utilized in hy-
bridization more and what algorithm components are usually involved in
hybridization within the research in the literature.

• The other subject, which is a matter of interest, particularly in aerospace
community, is comparing the features of the problems, when direct and
indirect methods are combined with evolutionary algorithms. Landscape
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analysis of trajectory optimization problems with direct and indirect meth-
ods, and comparing the difficulty of the problems when they are combined
with evolutionary algorithms is a vast area. The analysis of the solution
domain in these methods makes it possible to explore the reasons why a
particular combination of a method with a specific evolutionary algorithm
leads to better solution achievement.

• As for obtaining fuel-optimal and time-optimal transfers in long-range ren-
dezvous, the research can be continued in studying the changes in the shape
of the solution domain of the problems with respect to the variations of or-
bital elements. Further investigation in the landscape analysis of Lambert
problem enables the path to develop more adaptive operators for HSAEA
in dealing with long-range rendezvous trajectory optimization.

• In short-range rendezvous, similar type of research can be conducted to-
wards the effect of various interpolation schemes in the landscape of so-
lution domain for short-range rendezvous problems. In this dissertation,
three types of Hermite splines have been adopted, and it has been shown
that the employment of SP splines generally ends up in achieving solutions
with higher qualities. A good potential in this area is to employ more flex-
ible splines, such as Fourier series, which has been already shown to be
quite useful in continuous thrust trajectory optimization problems [80, 81].
Extensive research in this area leads to know how much the quality of the
solutions can be increased via Fourier series.

• Regarding the algorithm enhancement, the proposed EDA++ is devel-
oped with truly novel concepts within its mechanisms. Therefore, various
improvements can be the aim for the future research. As for the seeding
mechanism, the improvement can be towards obtaining initial feasible pop-
ulation in a more efficient method. For instance, the current mechanism
does not use any information from the gradient of the solution domain of
the constraints function. Therefore, future works can be conducted in con-
sidering gradient-based methods within the seeding mechanism to improve
the process. Incorporation of such techniques, more specifically, gradient-
based stochastic operators, in minimization of the objective function is
also a new area for further research.

• The proposed seeding mechanism in this research performs the multivari-
ate Gaussian EDA to minimize the constraint violation. This EDA simply
includes the sequence of learning, sampling, repairing, evaluation, and re-
placement. However, as mentioned, it can be other EDAs as well. When
having multiple constraints, one novel idea is to satisfy the constraints in
a sequential manner, using the proposed EDA++. In this concept, the fea-
sible region is discovered in different steps. In these steps, the constraints
are considered one after another in the constraint violation function, and
therefore the feasible region is discovered smoothly. Investigation of this
concept to verify its effectiveness opens a new subject area for further
research.
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• In the learning mechanism, several works can be conducted for improve-
ment. In obtaining the parent clusters within the proposed learning mech-
anism, the selected population is divided in a sequential manner until all of
the centroids are inside the feasible region. In other words, the number of
parent clusters Nc depends on the position of the centroids, which are the
average value of the solutions in each cluster. However, one can consider
other criteria in dividing the selected population. For instance, it is possi-
ble to check the position of the best solution instead of the average value of
the solutions in each cluster in forming the parent clusters. Applying this
concept makes the number of parent clusters different, which itself affects
the distribution of the newly sampled solutions after the mapping process.
This concept, and also similar ideas in dividing the selected population
into different clusters are a vast field of research, in which lots of novel
heuristic methods can be developed in the future.

• Regarding the formation of the outlier-based clusters, the two involving
parameters are α and λ, representing the percentage of top solutions, and
distance threshold for outlier detection respectively. These parameters are
assumed fixed during optimization. However, since the main idea of creat-
ing outlier-based clusters is to compensate the covariance loss due to the
mapping mechanism, it is implied that making these parameters adap-
tive, relative to the diversity of the solutions, will probably enhance the
performance of the algorithm. Therefore, one interesting research line for
developing an enhanced learning mechanism is to make these parameters
adaptive according to the diversity of solutions.

• As for the mapping mechanisms, other heuristic techniques can be de-
veloped instead of the four proposed mapping methods in this research.
These mechanisms perform shifting the infeasible solutions towards their
respective centroid inside the feasible region. Similar to the seeding mech-
anism, the proposed mapping mechanisms do not use any information
from the gradient of the solution domain of the constraint function. The
employment of gradient-based techniques in the mapping mechanism can
significantly improve the performance of the algorithm, and therefore is
an important area for further works. However, more research need to be
conducted in this area to realize the burden of function evaluation in such
methods as well.

• Sampling new individuals from a mixture of probabilistic models has a
noticeable impact on the convergence of the algorithm. In the proposed
EDA++, the mixture model consists of parent clusters and outlier-based
clusters, and the optimal number of sampled solutions from each com-
ponents remained unknown. In this research, equal number of solutions
are sampled for parent clusters and outlier-based clusters. However, in a
future research, it is possible to consider adaptive number of samples for
each type of clusters to create a dynamic balance between exploration and
exploitation within the optimization process.
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• Lastly, the simulation platform described in this dissertation can be ex-
panded to a wider range of designs and analyses of space orbits, such
as libration points and interplanetary trajectories. Given the flexibility of
this application, it can be extended to perform extensive studies in or-
bital mechanics. Future research can also be dedicated to the development
of a platform for the comparison of algorithms in terms of accuracy and
computational time in optimizing a transfer trajectory.
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Appendix

A.1 Introduction

Modeling and simulation of autonomous spacecraft have made momentous
strides in recent years, and the space industry, and other aerospace professions
are on the verge of being able to use computing power. The aim of this usage
is to simulate reality for all kinds of applications in space engineering such as
autonomy of nanosatellites [207], flight simulation [208], satellite performance
simulation [209], and orbit propagation [210]. In space engineering, rapid sim-
ulation of space orbits and trajectories is essential in different aspects of space
engineering including trajectory optimization [2], orbit transfers, orbit deter-
mination [211] and attitude control. Representation of the dynamical states of
spacecraft while moving in an orbit is non-trivial for Earth orbiting satellites.
Although preliminary analysis of satellite space orbits can be done without
extensive simulation, interactive environments in simulation frameworks allow
researchers to design space missions in a broad view that are difficult, expen-
sive, or time consuming to deal with. Programming languages such as Java
have been well used in different aspects of space engineering [212]. However,
the amount of simulation frameworks in space engineering with MATLAB has
increased in recent years. This is due to the fact that the capability of MAT-
LAB to manage matrices is dominant and the vast number of libraries and
toolboxes are available in this programming language. In recent years, sev-
eral applications for orbit simulation have been developed including various
MATLAB-based toolboxes. The simulation package of AGI, named Systems
Tool Kit (STK) [213] is a reputed analytical framework. It has the capability of
simulating dynamic environment and scheduling of events within a space mis-
sion and has a great contribution in the space engineering community. It also
has the capability of integrating with MATLAB, which makes it more flexible
for different types of users. The General Mission Analysis Tool (GMAT) [214]
is another space mission analysis software package developed by NASA. The
MATLAB interface in this software supports connections to the MATLAB
environment, letting GMAT to run MATLAB scripts simultaneously.
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In addition to the applications with MATLAB integration capabilities,
some MATLAB toolboxes have also been developed in recent years for space
orbit simulation and design. In 2015, Carrara [215] presented PROPAT, a
satellite attitude and orbit analysis tool developed in MATLAB. Although
the system’s attitude simulation is well-developed based on attitude kinemat-
ics and dynamics, the orbit simulation process on the other hand is limited.
The propagation model is based on a solution that is achieved analytically,
called as Brower model [216]. Based on this model, only three orbital elements
including right ascension of ascending node, argument of perigee and mean
anomaly are affected by the orbital perturbations. The toolbox SPACSSIM
has been introduced in [217] as another software for orbit propagation and at-
titude control. There are other toolboxes in this matter as well [218]. However,
there is a need for a user friendly MATLAB-based application with interac-
tive visualization capability, in which the design, simulation and trajectory
optimization within the preliminary design of space systems can be tackled.

In this appendix, a simulation platform, called HOMA, is presented to sim-
ulate space trajectories around any celestial masses along with orbit analysis.
The toolbox includes an orbit propagator, linked to a visualization platform
with a user-friendly interface. Various orbital perturbations can be consid-
ered including Earth atmospheric drag, Earth harmonic gravity field, solar
perturbations and the perturbations of other planets. Three orbit propaga-
tors are included regarding these perturbations such as two-body propagator,
Simplified General Propagator (SGP4) and High Precision Orbit Propagator
(HPOP). Several ordinary differential equation (ODE) solvers are considered
to be used within the orbit propagation. Moreover, simulation of the satellite
ground track is also included along with several scripts to perform coordinate
transformation and calculation of ephemeris.

HOMA toolbox has been developed in two versions, including a MATLAB-
based version and an online version [219] for space orbit simulation and
analysis. Compared with other similar available MATLAB toolboxes, the
MATLAB-based version benefits from a user friendly GUI and a 3D visualiza-
tion platform, where the user can interact with the space orbit environment
while simulating space trajectories. Rapid and instant computation and re-
sult generation make the application very practical in the preliminary design
of space orbits. This appendix presents the description of the HOMA frame-
work, as well as some simulations performed in this application. Results are
validated with similar software and toolboxes.

This appendix is organized as follows. An overview of the space orbit
propagation process in HOMA is provided and the main architecture of the
application is described in Section A.2. Following the structure of space or-
bit simulation, different orbit propagation schemes in HOMA are presented
in Section A.3. The environment of HOMA is introduced in Section A.4, in
which the different elements of the application interface are presented. Several
examples of space orbits are simulated with the application and the results
are provided in Section A.5. Besides, a multi-impulse orbit transfer problem is
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simulated and analyzed. This section also includes the comparison of the re-
sults with those of state-of-art toolboxes. Finally, the conclusions are provided
in Section A.6.

A.2 Overall Application Scope

Simulation of space orbit trajectories involves two elements. The first is the
mathematical model of the spacecraft, which describes the dynamics of the
system’s motion, and the second is the propagation scheme, in which the
simulation process marches through the specified time. Following these bases,
the overall architecture of HOMA for simulation of space orbits is illustrated
in Fig. A.1.
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Fig. A.1: The main architecture of the simulation platform

As shown, the application has an input module in which the inputs of
the simulation are defined. Generally the initial state of the spacecraft can
be defined in several ways in orbital mechanics. The state vector describes
the position and the velocity of the spacecraft, which can also be converted
to other forms. There are two other possible representations supported in the
software, including classical orbital elements and equinoctial orbital elements
[26]. The difference between these representations is their practicality in space
missions [220]. In addition to these representations, the well-known two-line-
elements sets (TLEs) [221] can also be imported in the software in order to
define the state of satellites.

The simulation module includes a propagator and a solver. In the first step
of simulating the space vehicle in a space orbit, the dynamics of the spacecraft
needs to be mathematically modeled. The motion of the space vehicle in orbit
is defined with a set of ordinary differential equations. These equations express
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a trajectory in terms of position and velocity of the space vehicle as time-
dependence variables. Such mathematical model relies on having two point
masses and the mutual gravitation force between these masses is taken into
account [17]. In this type of mathematical model, it is assumed that the mass
of the space vehicle is much smaller and negligible in comparison to central
body. Having this assumption, the gravitational effect due to the mass of the
space vehicle is ignored.

Considering this set of ordinary differential equations, orbit propagators
are utilized to find the propagated position and velocity of the space vehicle.
Various perturbations, faced by the satellite in space, are also incorporated
to portray the actual behavior of the spacecraft throughout its space mission.
Details regarding the orbit propagation in HOMA, such as SGP4 and HPOP
propagations, are provided in the following section.

Regarding the propagation model (except for SGP4), a solver is needed
to deal with the system of ODEs in several time steps. The solver part offers
different ODE solvers for this where the user can specify which solver should be
implemented. The choice of the solver makes it possible for the user to analyze
and compare different integration methods with each other and evaluate their
accuracy and computation time. It is worthy to note that the computation
time varies by the propagation model when simulating several trajectories of
satellites. Since the propagation process depends on the complexity of system
dynamics and the stiffness of the equations, the user needs to take a balance
between the expected accuracy and the dedicated time for simulation.

After the simulation process, results can be reported and illustrated in dif-
ferent forms including 2D plots of state variables, variation of orbital elements
and satellite ground track. 3D renders of satellite motion can also be generated
with different rendering options and settings as images or animations.

A.3 Spacecraft Dynamics

The process of orbit propagation for an autonomous spacecraft in HOMA
is based on simulating the orbit for an extended time period using the dy-
namic equations of motion, models of environmental forces, torques and other
physical parameters. In any space mission analysis, prediction of the orbits of
satellites is an essential part and it, directly or indirectly, has impacts on the
satellite’s power system, attitude control, other systems [222]. The main fac-
tors affecting the orbit of a satellite are the non-spherical geometry of Earth,
atmospheric drag, perturbed effects from the gravitational pull of the Sun
and other planets, electromagnetic forces, radiation pressures and so forth.
As stated, the software considers a number of propagators available including
two-body, SGP4 and HPOP. The mathematical representation for the dy-
namics of the space vehicle regarding the aforementioned assumptions can be
defined as the non-Keplerian two-body problem equation, [26]:
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r̈ = − µ
r3 r + γ (A.1)

This representation is defined based on the inertial coordinate system,
where r is the position of the space vehicle (r = |r|), respect to the inertial
coordinate frame, µ is a constant, describing the central mass gravitational
property, and γ is the acceleration, which affects the space vehicle motion
because of orbital perturbations.

A.3.1 Two-body Propagation

The simple and traditional space orbit simulation method is the two-body
orbit propagation. Considering γ = 0 in Eq. A.1, the two-body model will
provide a rough idea of a spacecraft’s orbit. There are two ways to simulate
the spacecraft motion in this model. The first way is by solving the ODE set
of equations in Eq. A.1 using iterative methods. Different ODE solvers can be
utilized in this case. The second way is to simulate the satellite motion and
velocity in the form of orbital elements. Since the perturbation is assumed to
be zero, the motion will be on a Keplerian trajectory and the true anomaly
domain will be considered instead of time for simulation. Conversion of time
to true anomaly for different conic sections can be found in [15].

A.3.2 SGP4 Propagator

The SGP4 model simulates the motion of the space vehicle with a few consid-
erations. In this model the effect of perturbations has been taken into account
while computing the state vectors. The perturbations due to the shape of the
Earth, the drag force due to atmosphere, Sun radiation, and the accelera-
tion due to the gravity of other giant masses such as the Sun and Moon are
involved in this model. The two-line element sets from United States Space
Command are utilized for orbit propagation with SGP4 model. The general
scheme of SGP4 propagator is presented in Fig. A.2 based on its available
package [223]. This flowchart does not provide the details in this propagator,
but it does provide an overview of the process.

The propagator includes two main steps which are the initialization and
the main loop. It is coupled with many callbacks and scripts. However, the
key-element functions are limited. The structure containing all the SGP4 satel-
lite information is stored in SatRec. This variable will be read and updated
throughout the whole process. After setting the input data, initialization will
be handled first. Then a time loop updates the propagator structure and cal-
culates the state vectors. Finally, the results will be generated according to
the desired form.
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CALL INITL /* Constants and initial parameters */ 

SET SatRec /* Initialize near Earth and deep space 

variables */ 

IF PerigeeRadius < 156 

UPDATE SatRec /* Modify near Earth variables */ 

END 

IF OrbitalPeriod > 225 

CALL DSCOM /* Common items */ 

CALL DPPER /* Long period periodic */ 

CALL DSINIT/* Deep space initialization */ 

UPDATE SatRec /* Modify deep space variables */ 

END 

CALL SGP4 /* Propagate to zero epoch */ 

START

END 

SGP4

initialization

SGP4

main loop

Saving data

Defining inputs
and constraints

WHILE time < tmax 

UPDATE SatRec /* Secular gravity, atmospheric 

drag, ... */ 

IF DeepSpaceMethod 

CALL DSPACE /* Common items */ 

CALL DPPER /* Long period periodic */ 

UPDATE SatRec /* Modify deep space variables 

*/ 

END 

CALL RV2ELEMENTS /* Convert state vector to 

orbital elements */ 

END 

Fig. A.2: Flowchart of SGP4 propagator

A.3.2.1 Initialization

The SGP4 propagation includes several constant variables, which do not de-
pend on time. Therefore, the propagation process starts with calculating these
terms (INITL). This step is outlined as follows [224, 225]:
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where k2 = 1
2J2aE

2 (units of Earth radii), J2 = 1.082616×10−3, ke =
√
GM =

0.0743669161, G is the universal gravitational constant, M is the mass of
Earth, and aE is the equatorial radius of Earth.

Acceleration due to atmosphere drag is the next variable that is considered
in initialization. The mathematical model of this term is based on a density
function from power law as in [226].
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ρ = ρ0
(q0 − s)4

(r − s)4 (A.8)

In this equation, r represents the distance between the space vehicle and
the Earth’s center, q0 and s are the parameters for the density function. The
value of q0 is 120 km plus the radius of Earth and the value of s is the height
of the spacecraft at perigee. In this model, if the perigee altitude becomes less
than 156 km, the value of some of the parameters will be altered within the
initialization. So the SatRec structure will be updated accordingly:
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2
3a0

2ξ3(221a0 + 31s)C1
4 (A.20)

where A3,0 = −J3aE
3, and J3 = −0.253881 × 10−5. Zonal harmonics of the

Earth are considered in initialization as:
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Ṁ =
[3k2(−1 + 3θ2)

2a02β0
3 +

3k2
2(13− 78θ2 + 137θ4)

16a04β0
7

]
n0 (A.21)

ω̇ =
[
−

3k2(1− 5θ2)
2a02β0

4 +
3k2

2(7− 114θ2 + 395θ4)
16a04β0

8 +

5k4(3− 36θ2 + 49θ4)
4a04β0

8
]
n0 (A.22)

Ω̇ =
[ 3k2θ

a02β0
4 +

3k2
2(4θ2 − 19θ3)
2a04β0

8 +
5k4θ(3− 7θ2)

2a04β0
8

]
n0 (A.23)

where k4 = − 3
8J4aE

4, and J4 = −1.65597× 10−6.
The secular coefficient and the long-period coefficient for solar and lunar

gravity are also initialized as the mentioned variables are calculated. This com-
putation includes some additional terms if the orbital period of the space ve-
hicle is greater or equal to 225 minutes (DSCOM, DPPER, DSINIT ). Details
are provided in [227]. Lastly, when all of the initial variables are computed,
the orbit is propagated once to initialize the states at epoch time.

A.3.2.2 Update and Iteration

After the initialization, the simulation goes through a loop in time domain
in which the spacecraft trajectory is propagated with the constant variables
calculated previously. The updating steps considers short-period and long-
period effects of solar and lunar gravity, resonance effects of Earth gravity,
and atmospheric drag effects.

Considering these updates, propagation yields the updated parameters
in SatRec in each iteration. Then, the vectors representing the unit orien-
tations are computed and the state vectors will be obtained. Knowing the
state vectors, the rest of the orbital characteristics can be calculated accord-
ingly (RV2ELEMENTS) as rk, ṙk, rḟk, uk, ik and Ωk in each iteration. Unit
orientation vectors, as U and V are determined as:

U =M sin uk +N cosuk (A.24)
V =M cosuk −N sin uk (A.25)

where

M =

− sinΩk cos ik
cosΩk cos ik

sin ik

 (A.26)

N =

cosΩk
sinΩk

0

 (A.27)
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Then, the position and velocity vectors are calculated by:

r =rkU (A.28)
v =ṙkU + rḟkV (A.29)

The simplified general perturbations consider secular effects of J2, J4, and
long-periodic effects of J3, and short-periodic effects of J2, along with atmo-
spheric drag. This propagation method is very popular due to its widespread
application for various kinds of missions. More detailed description of the
SGP4 model as applied for the generation of NORAD 2-line elements is pro-
vided in [223].

A.3.3 High-Precision Orbit Propagator (HPOP)

The HPOP model consists of a propagation process in which the general
orbital perturbations along with the gravitational forces due to other planets
(N-body problem) are taken into account. As a result, this model provide more
accurate prediction in comparison to other propagation models and provide a
base for modeling much more complicated trajectories.

As in HPOP, the equations of acceleration in Eq. A.1 of a space vehicle
are computed in the inertial reference frame as:

γ = γg + γng (A.30)

where γg is the sum of the accelerations due to gravitational forces, affecting
the spacecraft motion other than the typical term for Earth-gravity (−µ/r3r)
in Eq. A.1, and γng is the sum of the non-gravitational forces, which are acted
on the space vehicle surface areas.

Obviously, the main difference between this model and the two-body model
is that the perturbation term is not assumed to be zero (γ 6= 0). The main
challenge in HPOP is the precise calculation of different perturbation terms.
For the sake of brevity, details of these terms are omitted here and the reader
is urged to refer to the references in the following sections.

The first group of terms in HPOP is the gravitational perturbations. The
acceleration due to gravitational forces in this term can be expressed as fol-
lows.

γg = γgeo + γst + γot + γrd + γn + γrel (A.31)

where γgeo is the term describing the orbital perturbations caused by the
Earth’s geopotential, γst is the perturbation caused by solid Earth tides, γot
is the perturbation caused by the ocean tides, γrd is the effect of rotational
deformation, γn is the gravitational effect of other giant masses such as Sun,
Moon and planets, and γrel is the perturbations caused by the general rela-
tivity.
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The gradient of the potential function, U , that satisfies the Laplace equa-
tion, ∇2U = 0, represents the Earth gravitational attraction. The resulting
perturbation acceleration can be specified as follows:

∇U =∇(Us +∆Ust +∆Uot +∆Urd) (A.32)
=γgeo + γst + γot + γrd (A.33)

In this equation, Us denotes the potential caused by solid-body mass dis-
tribution. The effect of solid-body tides is represented by ∆Ust, ∆Uot denotes
the effect of potential changes due to the ocean tides, and ∆Urd is the effect
of the rotational deformations.

As for Us, spherical harmonic expansion is usually utilized to express this
variable, with respect to the body-fixed reference frame [228]. Also, since a
non-rigid elastic body is the real formation of the Earth, its mass distribution
varies with a non-uniform pattern. The solid Earth tides that affect the varia-
tion of (∆Usd) are commonly expressed by external geopotentials as described
in [229]. Moreover, details regarding the computation of oceanic tidal pertur-
bations (∆Uot) and rotational deformation (∆Urd) can be found in [230] and
[231] respectively.

Acceleration due to the gravity of other planets is determined based on
point mass approximations with high accuracy. The N-body accelerations with
respect to the geocentric inertial coordinate frame, can be calculated as the
following:

γn =
N∑
i=1

GMi

[ ri
ri3
−

∆i

∆i
3

]
(A.34)

in this equation, universal gravitational constant is represented by G, Mi

denotes the mass of the i-th body-mass, ri represents the position vector of
the i-th body-mass and ∆i is the position vector of the i-th body-mass relative
to the space vehicle. Details regarding the calculation of these parameters can
be found in [232]. Also, the mathematical model of relativistic perturbations
for Earth-orbiting spacecraft is discussed in details in [233] and [234].

Finally, the accelerations due to non-gravitational forces that affects the
motion of the spacecraft are the second group of terms and can be expressed
as the following.

γng = γdrag + γsolar + γEarth + γthermal (A.35)

where γdrag is the acceleration due to the atmospheric drag [235], γsolar is the
effect of solar radiation pressure [236], γEarth is the perturbations because of
the radiation pressure of Earth [237], and γthermal is the perturbations owing
to the thermal radiation [238]. All of these parameters are surface-dependent
and therefore their calculations depend on the shape and orientation of the
space vehicle [239].
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A.4 Application Environment

Within HOMA, the user can design and construct trajectories that reflect
the space mission orbit regarding the desired orbit propagation schemes as
described previously. The user interface of the application is shown in Fig.
A.3.

Fig. A.3: Main GUI of the HOMA toolbox

The user can specify state vectors, orbital elements or load TLEs to define
the orbits. These values are then propagated in the simulation environment
incorporating different perturbations according to the type of propagator. It
is also possible for the user to use their own propagator within the simulation.
This process may involve numerical iterations.

As Fig. A.3 shows, the orbit browser has the ability to save and keep the
highly used and most frequent types of orbits which are simulated by the user.
Regardless of the propagator or the solver, the application instantly converts
the state vectors and orbital elements to each other. A module is also available
for manually entering TLEs.

The graphic frame can be switched between two types of visualization:
3D view and ground track. In the 3D view frame, the orbit alongside the
central space mass is illustrated and it enables the user to perform a number
of viewing operations interactively. The camera position can be set as free or
fixed with respect to a specific point relative to the spacecraft. In the ground
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track frame, the ground track of the satellite is shown. Different numbers of
revolutions can be specified by the user for plotting the ground track as well as
various epoch times for simulation. Illustrations can be saved as high quality
images or animation files while the satellite is in motion within its orbit.

The interface also has a status bar, displaying the current status of oper-
ations in the application. It is also possible to change the verbose style and
save the status report accordingly. The panel for visualization settings includes
several options for controlling the graphic frame. These options include the
renderer type, lighting options, 3D segments control, planet textures, display
options, settings for simulating stars, etc.

A.5 Simulation

In this section, several space orbit instances are simulated and the results
are presented to demonstrate the performance of the application. First, the
simulation capabilities of the software are demonstrated via some orbit anal-
ysis. Variation of state vectors, anomalies, and visualization of orbits have
been taken into account in some space orbit examples. Second, the simulation
of ground track is taken into consideration. Different geosynchronous orbits
are simulated and the results are evaluated regarding the differences in or-
bital elements. Then, a trajectory optimization problem for long-range space
rendezvous is analyzed and simulated to demonstrate the practicality of the
proposed application [240]. Finally, comparisons are illustrated between the
results from HOMA and two other space orbit simulation software packages
including PROPAT and STK.

A.5.1 Orbit Analysis

Consider a spacecraft traveling in an orbit with semi-major axis of 14000 km
and eccentricity of 0.5, inclined by 60◦ with argument of perigee of 10◦ and
right ascension of ascending node of 80◦. The position of the spacecraft is
considered to be at a true anomaly of 170◦. Visualization of this orbit based
on two-body propagation with ode45 solver is illustrated in Fig. A.4, relative
to inertial frame.

As shown, the instant conversion of the orbital elements is performed
within the application. This conversion renders the state vectors as r =
[−3592;−20371; 0]km and v = [1.4471;−0.79836;−2.7085]km/s. Some of the
rendering options are also displayed in the rendered scene. As time progresses,
no periodic behavior is observed with the orbital elements, but it can be ob-
served with the state vectors since the two-body model is employed. These
variations are depicted in Fig. A.5 and Fig. A.6.

In these figures, the variations of radius and velocity vectors are illustrated
as functions of true anomaly. For the shown space mission, one revolution with
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Fig. A.4: 3D visualization of a space orbit

 

Fig. A.5: Position (|r| = 20685 km)

 

Fig. A.6: Velocity (|v| = 3.1729 km/s)

the orbit corresponds to the total time of 16486 seconds. While using the two-
body propagation scheme, the analytical solution of the equation of relative
motion is available. However, the simulation is always performed numerically
in HOMA, unless specified by the user for special cases.

As another example, one shot of the ballistic view of a satellite moving in
an elliptical orbit with perigee radius of 7000 km and apogee radius of 40000
km is illustrated in Fig. A.7.

As shown, it is possible to give different representations of satellite and
orbit in 3D visualization frame. Within the simulation of the spacecraft motion
in an elliptical space orbit, one can not picture mean anomaly as a physical
element of the motion as the eccentric anomaly; rather it is related to time.
However, eccentric and mean anomalies can be calculated as functions of each
other. Mean, eccentric, and true anomaly are all equal to zero at perigee.
Likewise, all three elements are equal to 180◦ at apogee. These variations are
depicted in Fig. A.8 for the an orbit with a given eccentricity.

Fig. A.8 also represents the flight path angle. This angle is simply the
one that the local horizon makes with the velocity vector v which is normal
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Fig. A.7: Orbit visualization (ballistic view)

 

Fig. A.8: Variation of flight path angle, mean and eccentric anomalies (e = 0.7)

to the position vector. The sign of this angle is positive as the space vehicle
travels away from perigee and is negative as the space vehicle is approaching
the perigee point. This angle plays an important role while calculating the
required velocity increment within an orbit transfer. When a ∆v is computed
for an impulsive orbit transfer at a point that is not on the apse line, including
the variations of direction is an important matter as well as the magnitude
of the velocity vector. The difference in the magnitude of the two vectors
identified the change in the velocity, and the difference in the flight path
angles shows the change in the direction.
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A.5.2 Ground Track

Simulation of the ground track is one of the key elements in orbital mechan-
ics, specifically for space mission design and tracking control [26]. It helps to
generate appropriate track distance and revisit frequency over a given area.
Different approaches in space engineering are based on ground track analysis,
which permits the construction of ground track patterns and the determina-
tion of satellite arrangements. One sample representation is illustrated in Fig.
A.9 for a space orbit with semimajor axis of 28000 km and eccentricity of 0.3,
inclined by 60◦.

In Fig. A.9, the projection of a satellite’s orbit onto the Earth’s surface is
plotted for 5 days of satellite motion. As can be seen, the satellite reaches a
maximum and minimum amplitude during each revolution while passing over
the equator twice, therefore on a mercator projection, the ground track of the
satellite resembles a sine-like curve. Since the Earth rotates eastward beneath
the satellite orbit at 15.04 deg/h, the ground track advances westward at that
rate.

Another family of orbits which is a matter of interest while examining
the satellite ground tracks is the geosynchronous orbits. The elliptical geosyn-
chronous orbits create drifts east and west as the spacecraft travels faster or
slower at different points on its trajectory. Different combinations of inclina-
tion and eccentricity yields a motion relative to a fixed point on the ground
track. Fig. A.10 illustrates three instances of geosynchronous orbit ground
tracks.

The eight-like ground track (green line) is that of the geosynchronous orbit
with no eccentricity. Obviously, changing the inclination of this orbit to zero

 

Fig. A.9: Satellite ground track (a = 28000 km, e = 0.3, i = 60◦, Ω = 30◦, ω =
190◦)
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Fig. A.10: Geosynchronous ground tracks

makes this geosynchronous a geostationary orbit in which the satellite sits
fixed at the crossover point of the eight-like shape (over the equator). On
the other hand, if the eccentricity is increased, it results in a slanted teardrop
shape. Typically, eccentric geosynchronous orbits will result in a slanted figure-
eight. It just happens to have the crossover point at the northern apex of
the ground track. Combining these modifications with various argument of
perigees results different coverage areas for the geosynchronous orbits (orange
and purple lines).

A.5.3 Autonomous Space Rendezvous

The presented framework is capable of linking with various optimization al-
gorithms for solving spacecraft trajectory optimization problems such as in-
terplanetary transfers [241] and space rendezvous [242]. In this section, a
multi-impulse trajectory optimization problem is optimized and simulated to
illustrate the capability of this tool. An evolutionary algorithm based on a
discretized Lambert problem as described in [240] is linked to the platform to
solve a long-range space rendezvous problem considering impulse limit.

In a rendezvous maneuver, two orbiting vehicles observe one another from
each of their own free-falling, rotating, clearly non-inertial frames of refer-
ence. A rendezvous maneuver usually involves a target space vehicle, which
is passive and non-maneuvering, and a chase spacecraft, which is active and
performs the maneuvers required to bring itself alongside the target. In the
long-range space rendezvous, the chaser executes several maneuvers under the
guidance of the ground telemetry tracking and command network, so that the
navigation sensors of the chaser can catch the target. The major objectives
of this phase include adjusting the phase angle between the two spacecraft,
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reducing the orbital plane differences, increasing the orbital height, and ini-
tiating the relative navigation. The initial states of the chaser and the target
spacecraft for the selected mission are provided in Table A.1.

Table A.1: Initial states of two spacecraft in long-range space rendezvous

Orbital elements Chaser Target
a (km) 7000 30000
e 0.0 0.1
i (deg) 60 0
Ω (deg) 0 80
ω (deg) 205 225
θ (deg) 3 120

The optimal sequence of impulses is obtained and transfer trajectories
are simulated within the proposed framework. 3D illustration of the transfer
trajectories are depicted in Fig. A.11.

Fig. A.11: 3D visualization of multi-impulse long-range space rendezvous

In this figure, the initial and final orbits are illustrated along with coasting
trajectories between the impulses during the space mission. In this scenario,
eight impulses fulfill the orbital maneuver with respect to the mission criteria.
The location and the corresponding radius of the impulses are shown in the
figure, indicating the anomalies of the space vehicle at the intersection of
transfer trajectories. Details regarding the variation of orbital elements due
to the act of impulses are shown in Fig. A.12.

As it is shown, the changes of five orbital elements, including semi-major
axis (a), eccentricity (e), inclination (i), right ascension of ascending node
(Ω), argument of perigee (ω), along with true anomaly indicates the time
of the impulses acted on the chaser spacecraft. The fluctuations within the
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Fig. A.12: Variation of orbital elements of the chaser spacecraft

plots are due to the fact that when the impulse is acted on the chaser, the
orbital plane and the shape of the orbit is changed, placing the chaser on a
new trajectory during the process of reaching the target space vehicle. These
variations correspond with the changes of the state vectors of the chaser,
including the position (r) and the velocity (v) of the vehicle as shown in Fig.
A.13 and Fig. A.14. Similarly, non-continuity in the velocity components are
due to the fact that the maneuvers are impulsive, not with continuous thrust.

As the figures indicate, the state vectors of the chaser converge to the states
of the target as the spacecraft travels on the coasting trajectories. According
to the simulation results, the time between two sequential impulses, which
increases as the chaser approaches the target is increasing. It agrees with the
fact that since the orbital period of the target orbit is more than the initial
orbit, the chaser transfers to orbits with higher angular velocities. Fig. A.15
indicates the location of the impulses on the map.

In this figure, the ground track of the chaser within the orbital maneuver
is also illustrated. The size of the red circles corresponds to the magnitude of
impulses in each location. Each impulse is acted on the chaser in a different
altitude, as detailed in Table A.2.
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Fig. A.13: Position states of the chaser and the target spacecraft

 

Fig. A.14: Velocity states of the chaser and the target spacecraft

According to the results, the chaser starts its first transfer in its initial
trajectory, which is an inclined orbit. As the maneuver proceeds, the impulses
occur at higher altitudes, which makes the distance between target and chaser
decrease. After the final impulse, the chaser is at the same position and ve-
locity of the target where the orbit inclination becomes zero.
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Fig. A.15: Ground track of the chaser and the location of impulses

Table A.2: Geographic coordinates of the impulses acted on the chaser

Impulse Time (s) Latitude (deg) Longitude (deg) Altitude (km)
1 1600 -45.5765 146.2579 632.7572689
2 7200 32.33925 -40.4453 5670.861950
3 21300 35.80216 -106.418 5899.997229
4 30700 -19.3534 62.62282 12282.44339
5 55700 -19.5134 -42.1559 12285.10654
6 74500 7.51914 87.68698 14559.53319
7 110200 11.53168 -82.4076 16475.49403
8 131700 0.105248 62.70357 24837.11411

A.5.4 Results Validation

Several verification tests are performed for validating the simulation results
in HOMA. The orbit propagation process is the main subject which has been
verified through different comparisons. The two perturbed orbit propagation
models, SGP4 and HPOP are considered for validation. Results are com-
pared with the outputs of two similar simulation platforms, STK by Analyt-
ical Graphics, Inc. and PROPAT by Carrara. While the SGP4 propagation

Table A.3: IRIDIUM 162 two-line element (June 26th 2018)

1 43482U 18047G 18177.64341180 +.00000099 +00000-0 +23569-4 0 9999
2 43482 086.4507 225.5608 0002381 102.6517 257.4950 14.43275512005031
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scheme is tested with the former toolbox, the HPOP propagation model is
compared with the latter framework.

The two-line element set in Table A.3 is considered as the input for SGP4
propagation in STK as well as in HOMA. The TLE is given for IRIDIUM
162, retrieved from CelesTrak [243]. The satellite is a part of the Iridium
constellation, launched in May 2018. The simulation results are illustrated in
Fig. A.16 to A.21. Each figure shows the variation of one orbital elements
and the variations are depicted for HOMA and STK respectively. Also, the
maximum value of absolute error, (E), for each quantity is extracted from the
figures.

Since the SGP4 model is used here, the orbital elements are not constant as
the time passes. According to the comparison, the overall shape of the outputs
are the same, leading to conclude that the perturbed trajectory is formulated
properly regarding the SGP4 orbit propagation model. The differences are also
negligible regarding the type of each element, and acceptable for preliminary
space orbit simulation and design as in typical space missions.

 

 

  

Fig. A.16: Semi-major axis (Ea =
6.4m)

 

 

  

Fig. A.17: Eccentricity (Ee = 1.38e−6)

 

 

  

Fig. A.18: Inclination (Ei = 0.073◦)

 

 

  

Fig. A.19: RAAN (EΩ = 0.241◦)
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Fig. A.20: Arg. of perigee (Eω =
0.142◦)

 

 

  

Fig. A.21: True anomaly (Eθ = 0.072◦)

The results regarding the high precision orbit propagation are compared
with the Brower model in PROPAT, in which the gravitational field of
the Earth along with the flattening of the poles are considered. Consider-
ing an elliptical orbit with semi-major axis of 19000 km and eccentricity
of 0.45, inclined by 65◦ with right ascension of ascending node of 5◦ and
argument of perigee of 25◦. The state vectors of the satellite at perigee is
r = [9489.07 2507.12 3598.32]km and v = [−3.16 2.62 6.19]km/s in the
ECI frame. Propagation of space orbit is done within 10 uniform time steps.
The relative percentage errors (Ê) for state variables with respect to PROPAT
results are tabulated in Table A.4.

As can be seen, the maximum value of relative percentage error is within
the order of 10−2 after one period. Note that the orbital period of the selected
orbit is 26064 seconds.

Table A.4: Relative percentage error of state vectors

Time (s) Êrx
Êry

Êrz
Êvx

Êvy
Êvz

2600 2.19E-04 3.56E-04 1.13E-04 1.92E-04 1.24E-02 3.96E-04
5200 8.55E-05 1.22E-03 2.56E-04 1.76E-04 5.65E-04 3.39E-04
7800 1.54E-04 1.32E-02 1.35E-03 9.07E-04 1.54E-05 3.27E-04

10400 3.60E-04 1.54E-04 2.45E-03 1.51E-02 4.35E-05 1.82E-04
13000 7.57E-04 2.00E-04 8.74E-04 3.46E-03 3.71E-04 1.95E-04
15600 1.55E-03 1.34E-04 3.87E-04 2.14E-03 2.22E-03 1.27E-03
18200 3.56E-03 3.05E-04 1.70E-04 1.61E-03 7.14E-02 7.60E-03
20800 1.75E-02 1.57E-03 1.31E-03 8.14E-04 7.68E-03 1.20E-02
23400 8.17E-03 6.80E-03 5.46E-03 3.36E-03 4.82E-03 5.94E-03
26000 3.96E-03 2.74E-02 5.78E-02 2.66E-02 3.83E-03 1.79E-03
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