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This research addresses the problem of modeling time-dependent traffic flow 

with real-time traffic sensor data for the purpose of online traffic estimation and 

prediction to support ATMS/ATIS in an urban transportation network.  The 

fundamental objectives of this study are to formulate and develop a dynamic traffic 

flow model driven by real-world observations, which is suitable for mesoscopic type 

dynamic traffic assignment simulation.  

A dynamic speed-density relation is identified by incorporating the physical 

concept in continuum and kinetic models, coupled with the structural formulation of 

the transfer function model which is used to represent dynamic relationship.  The 

model recognizes the time-lagged response of speed to the influential factors (speed 

relaxation, speed convection and density anticipation) as well as the potential 

autocorrelated system noise.  The procedures adapted from transfer function theory 

are presented for the model estimation and speed prediction using the real-time data.  

Speed prediction is performed by means of minimum mean square error and 

conditional on the past information. 



  

In the context of real-time dynamic traffic assignment simulation operation, a 

framework based on the rolling-horizon methodology is proposed for the adaptive 

calibration of dynamic speed-density relations to reflect more recent traffic trends.  

To deal with the different time scales in the data observation interval and the traffic 

simulation interval, an approximation procedure is proposed to derive proper impulse 

responses for traffic simulation.  Short term correction procedures, based on feedback 

control theory, are formulated to identify discrepancies between simulation and real-

world observation in order to adjust speed periodically. 

Numerical tests to evaluate the dynamic model are conducted in a standalone 

manner firstly and then by integrating the model into a real-time DTA system.  The 

overall conclusion from the results is that the proposed dynamic model is preferable 

in the context of real-time application to the use of conventional static traffic flow 

models due to its higher responsiveness and accuracy, although many other aspects 

remain to be investigated in further steps. 
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Chapter 1: Introduction 

1.1 Research motivation and objectives 

Traffic congestion remains a major societal concern across the world, with no 

visible signs of substantial reduction in the future.  The growth rate for the number of 

U.S. vehicles from 1980 to 2003 is roughly nine times that for the lane-miles of 

highway [Bureau of Transportation Statistics, 2004].  Statistics for 85 U.S. cities 

indicate that the annual person-hours of highway traffic delay per person increased by 

243 percent from 1982 to 2002.  It is widely agreed that physical capacity addition 

cannot and will not keep up with increasing demand.  Modern and efficient 

management of existing systems is called upon to deliver considerable improvement 

in transportation service levels and productivity.  Intelligent Transportation System 

(ITS) technologies (including sensing, location, communications and information 

technologies) have become essential for the modern management of transportation 

networks [National ITS Architecture, 2003].  Advanced Traveler Information System 

(ATIS) and Advanced Traffic Management System (ATMS) integrate such 

technologies (advanced surveillance systems over a road network, digital sensing and 

communication between a control center and vehicles) to monitor, manage and 

control vehicular traffic in a road network, and provide travelers information and 

guidance, in order to mitigate congestion and enhance safety. 

The objectives of ATIS/ATMS call for the monitoring and the response 

actions to occur in real time, which places particular challenges on the models and 

algorithms used in these applications.  The availability of advanced real-time traffic 



 

 2 
 

simulation tools is critical in order to provide a quasi-continuous view of the state of 

the traffic system over time and space.  These tools are intended to perform real-time 

system-wide traffic estimation and prediction, based on the existing surveillance 

system, and meet the information requirements for decision making for operators and 

users of the traffic network.  Simulation-based Dynamic Traffic Assignment (DTA)-

type models address these needs, in support of complex traffic control and 

management functions in the dynamic ITS environment.  The information provided 

by DTA systems, generally including descriptive traffic conditions (current and near 

future) and normative route guidance, provide a basis for reducing delays on major 

highways, improving the safety, efficiency, and capacity of existing transportation 

systems, and enhancing area-wide emergency response through information sharing 

and coordination.  All these intelligent functions in the simulation-based DTA tools 

are predicated on the availability of reliable and robust traffic flow models capable of 

representing the dynamic evolution of traffic over space and time. 

This research addresses the problem of modeling time-dependent traffic flows 

when real-time traffic sensor data are available on a subset of the network links for 

the purpose of online traffic estimation and prediction to support ATMS/ATIS in an 

urban transportation network. 

Traffic flow models have developed over nearly seven decades of research 

and application; these models can be broadly categorized into microscopic, 

macroscopic, and mesoscopic in terms of level of detail and process representation.  

Microscopic traffic flow models provide a detailed representation of individual driver 

behavior processes in situations such as car-following [Herman et al. 1959, Herman 
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and Potts 1959], lane changing and gap acceptance.  As such, these models seek to 

represent the traffic flow process by describing the behavior of the entities that make 

up the traffic stream as well as their interactions in detail.  This makes microscopic 

traffic flow models suitable for evaluation of complicated traffic operations under 

fine-grained representation of road geometries, but usually only for a small network 

due to their intensive computational requirements.  On the other hand, macroscopic 

traffic flow models, such as the LWR model [Lighthill and Whitham 1955, and 

Richards 1956], describe the traffic state at a certain level of aggregation as volume 

(density, or speed) without considering its constituent particles.  The lower level of 

detail not only reduces the computational burden but also facilitates model 

calibration. It is important to note in this regard that the success of macroscopic 

models of traffic derives from the well-documented existence of so-called “collective 

effects”, resulting from the complex, generally nonlinear, interaction of individual 

particles in the traffic stream [Herman, 1992].  These collective effects result in 

relatively simple relations between averages that describe the traffic state, which have 

proven to be considerably more robust than individual-level microscopic models.  

Mesoscopic traffic flow models [Prigogine 1961, Prigogine and Herman 1971], at an 

intermediate level of detail, describe traffic flow dynamics in aggregated forms but 

distinguish driver behavior individually. 

Conforming to the above distinction, traffic simulation modeling has 

developed either microscopically or macroscopically in the conventional simulation 

packages like CORSIM (a microscopic simulation model) and FREFLO (a 

macroscopic simulation model).  On the other hand, mesoscopic simulation modeling 
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is gaining popularity because it is appropriate to larger networks when computation 

resources must be managed effectively and some level of detail is still needed.  Note 

that it may not be necessary in a so-called mesoscopic simulation model that traffic 

interactions be represented according to theories that are classified as mesoscopic 

(e.g. gas-kinetic traffic flow theory).  For instance, DYNASMART [Mahmassani et 

al. 1994 and 2001] traces individual vehicles, but moves them according to local 

speeds determined consistently with macroscopic traffic flow relations.  Other 

representative mesoscopic simulation models are DYNAMIT [Ben-Akiva, 1998] and 

CONTRAM [Leonard, 1989]. 

Traffic flow modeling in real-time is a new and challenging area of 

application of traffic theories, motivated by developments in intelligent transportation 

technologies and their widespread deployment.  To the extent that it is used as the 

fundamental core of traffic estimation and prediction capabilities, traffic flow 

modeling in real time gives rise to challenging theoretical and methodological 

questions, which directly affect the quality of the traffic estimation and prediction, 

and as such would impact decisions made by traffic operators and users on the basis 

of these predictions.  Meanwhile, surveillance installations have dramatically 

increased the availability of quasi-continuously collected surveillance data, which 

could enable more accurate and responsive modeling of traffic flows.  Generally, the 

parameters in any traffic flow model should be estimated using actual data to reflect 

traffic characteristics of the facility under study.  Considering the dynamics in traffic 

time-series data, traffic flow modeling in real-time is meant to interpret the real-time 

data rapidly so as to calibrate and update the internal traffic flow model in the traffic 
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state estimation and prediction system.  Therefore, it is anticipated that the online 

traffic simulation results could provide better agreement with actual real-world 

conditions if based on real-time traffic flow modeling, compared to a traffic flow 

model pre-calibrated with historical data.  As noted, online traffic flow modeling is a 

relatively new topic, for which the related research and application are, to date, 

limited, preliminary and far from mature. 

Driven by the motivation mentioned above, this study is concerned with how 

time-dependent traffic flow patterns can be represented sufficiently and efficiently 

within the mesoscopic type DTA model and how the collected real-time traffic data 

can be applied to enhance the accuracy and reliability of the traffic estimation and 

prediction system. 

Therefore, the problem addressed in this dissertation research is as follows: 

Given a stream of real time observations (traffic speed and density) of the time-

varying traffic on a subset of links in a network, it is sought to predict in real time the 

dynamic traffic speeds within the network, which would be used to move vehicles 

and determine travel time along paths within the simulation-based dynamic traffic 

assignment system, so as to result in a maximally consistent match between actual 

data and predicted values of the network traffic states. 

To address the above problem, the fundamental objectives of this research 

include: 

1. formulate a dynamic traffic flow relation which is adapted from the higher order 

macroscopic continuum model, powered by the general concept of dynamic system 

modeling and driven by quasi-continuous real-world observations. 
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2. develop and test an efficient algorithmic implementation for the dynamic traffic 

flow relation to provide speed predictions in real-time. 

3. develop an effective framework for integrating the dynamic flow model into the 

online simulation-based DTA system (e.g. DYNASMART-X). 

The first objective is mainly to enhance the traffic flow model in the 

mesoscopic-simulation-based DTA system from the simple order macroscopic 

continuum model to the higher order one, recognizing the massive amount of 

information available in the form of real-time traffic measurements, and the role of 

adaptive techniques that have been developed in the area of time-series analysis. 

The second objective is to configure an algorithmic procedure specific to the 

proposed dynamic traffic flow model.  The major concern for the algorithm is to be 

able to calibrate the model and make predictions adaptively with sufficient accuracy 

and computational efficiency. 

The last objective recognizes the importance of certain aspects that could 

impact the model compatibility and efficiency in the entire DTA system.  The 

difference in the time scale of the traffic sampling and the traffic simulation pace is 

one of the examples.  The possibility of having short term correction to further 

enhance the prediction accuracy is another interesting aspect.  The corresponding 

strategies are to be put forward to address these issues. 

In sum, the application of the dynamic traffic flow model is taken as part of an 

online operational capability for dynamic traffic assignment (DTA) simulation 

modeling to predict network traffic conditions in real-time, in order to support traffic 

operations management and information distribution. 
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1.2 Overview of approach  

In the approaches explored in this research, a dynamic speed-density relation 

is defined by incorporating the physical concept in continuum and kinetic models, 

with the structural formulation of the transfer function model. 

The proposed model explicitly includes phenomena such as speed relaxation, 

speed convection and density anticipation, which are found to affect the dynamics of 

traffic speeds.  In other words, the average speed in a section is not only dependent on 

the traffic density in that section but also on the traffic dynamics of the local and 

neighboring sections. 

The proposed model recognizes the time-lagged response of speed to the 

influential factors as well as the autocorrelated system noise, which forms a general 

modeling structure for a time-based dynamic system.  By applying techniques 

adapted from time-series theory, procedures based on the least squared method are 

presented for model estimation using the real-time data.  Minimum mean square 

errors prediction of speeds is given by the expected prediction at present time.  This 

expectation is conditional on the knowledge of the series of the past information. 

A rolling horizon framework is proposed for the adaptive calibration of 

dynamic speed-density relations in the context of online dynamic traffic assignment 

simulation operation.  Such an adaptive mechanism provides a systematic way to 

maintain an updated traffic flow relation that is consistent with the most recent traffic 

states. 



 

 8 
 

The integration of the dynamic traffic flow model within network dynamic 

traffic assignment procedures is then explored.  The difference in time resolution of 

observation intervals and simulation intervals is encountered when applying the 

calibrated model to the traffic simulation.  The problem is resolved by implying a 

supposed underlying continuous system for a discrete system.  The procedure 

includes the steps of approximation and re-discretisation to generate the parameters 

with a desired time interval. 

Furthermore, to lower the potential inconsistency due to unknown and 

uncontrolled factors in the whole simulation modeling system, the short term 

correction procedures are formulated to identify discrepancies between simulation 

and real-world observations periodically (usually every sampling interval).  The 

discrepancies are used to direct the adjustment of speeds.  The adjustments could be 

triggered by speed-deviations or density-speed-deviations.  The associated tuning 

factors are estimated adaptively using the least-squared-error method, constrained by 

the DTA model to reach internal and external consistency. 

The test results indicate that the proposed model is preferable to the use of 

conventional static traffic flow models in the context of real-time application. 

 

1.3 Dissertation organization 

A review of the related literatures is presented in Chapter 2.  Classical traffic 

flow theories, including microscopic, macroscopic and mesoscopic ones, are 

discussed in general terms.  Traffic flow modeling in the mesoscopic simulation-

based DTA system is briefly introduced.  Particular attention is devoted to the 
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approaches and techniques pertaining to traffic flow forecasting.  In Chapter 3, the 

formulation of dynamic speed-density relations is presented.  The transfer function 

model from the time-series theory is proposed to provide the formulation structure for 

the dynamic traffic flow relation.  A brief introduction of the transfer function method 

is followed by description of the model specification based on higher-order 

continuum traffic flow theories.  The approaches to estimate the model and perform 

forecasting using the real-time traffic data are then presented.  To accommodate the 

requirement of online operations, an adaptive procedure for model calibration and 

speed prediction is proposed.  In Chapter 4, a series of standalone link-level 

experiments are designed to evaluate the performance of the model presented in 

Chapter 3 under various scenarios.  The model is evaluated via these standalone tests 

before it can be properly integrated into the dynamic traffic assignment simulation 

environment.  In Chapter 5, the approach for real-time traffic flow modeling is 

discussed.  First, the strategy to deal with the different discrete dynamic systems in 

the observations and the simulation is provided by recognizing the connection to the 

underlying continuous dynamic system.  In addition, feedback control theory is 

applied to the online traffic flow modeling to ensure the maximum consistency 

between simulation and real-world observations.  The short term correction procedure 

which is meant to adjust speed periodically is formulated based on either speed 

deviations or density-speed deviations.  Finally adaptive estimation of control factors 

for short term correction is proposed.  In Chapter 6, the performance of the proposed 

model and methodology is examined by conducting extensive experiments.  In 



 

 10 
 

Chapter 7, overall summary and research contributions, as well as future extensions, 

are presented. 
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Chapter 2: Background Review 

2.1 Introduction 

As mentioned in the previous chapter, modeling traffic flow is an essential 

requirement and capability in a traffic analysis simulation model.  The representation 

of traffic flow has a great impact on the simulation performance.  Advanced 

surveillance technology provides rich data sources to identify the properties of traffic 

flows.  In the following sections, the relevant researches are reviewed.  First, traffic 

flow theories are described briefly since the study presented here is conducted by 

absorbing the essence of the theories developed and the findings discovered over 

decades.  Then, an introduction of the simulation-based dynamic traffic assignment 

system DYNASMART-X and description of traffic flow modeling in the traffic 

simulation part are presented.  Finally, the previous studies and various practices 

regarding traffic flow estimation and prediction with real-time data are summarized. 

 

2.2 Overview of traffic flow theories 

Modeling link traffic flow behavior has been a subject of considerable interest 

and brought on much debate in transportation science and its applications for more 

than a half century.  Traffic flow theories are classified in terms of their level of 

detail, namely, microscopic, mesoscopic and macroscopic traffic flow theory.  Traffic 

flow theory plays a central role in a traffic simulation model which basically imitates 

traffic dynamics in the real-world to meet the needs of traffic planning and 

management.  In the following parts, physical background, model development and 
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computation implementation as well as corresponding simulation models are 

addressed for each type of traffic flow theories.  Since the dissertation research 

presented here is mainly based on macroscopic continuum traffic flow theory, 

macroscopic models are discussed in more detail than the other two types.  Extensive 

bibliographic information about various traffic flow theories can be found in the 

recent reviews by Hoogendoorn [1999] and Helbing [2001]. 

 

2.2.1 Microscopic traffic flow theories 

Microscopic traffic flow theory aims to achieve the highest fidelity about 

traffic processes, describing the individual behavior of the entities making up the 

traffic stream as well as their interactions in detail. 

Car following models (also called follow-the-leader models), emerging from 

1950’s as the first and mainstream type of microscopic traffic flow models, describe 

the dynamics of one vehicle following another and their interactions.  The models 

assume that the acceleration of a vehicle is given by the neighboring vehicles among 

which the next vehicle ahead (leading vehicle) has the dominant influence [Helbing 

2001].  Many variants of microscopic car following models have been developed, 

such as the general force model as the earliest concept [Pipes 1953], the stimulus 

response model with sensitivity factors which avoids unrealistic variation of vehicle 

velocities [Gazis et al. 1961], the optimal velocity model which reflects an adaptation 

to a headway-dependent velocity [Newell, 1961], and the recent IDM (intelligent 

driver model) containing a driver response to the relative velocity with respect to the 

leading vehicle [Treiber et al. 2000].  Car following models are mainly used to 
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analyze traffic stability [Herman et. al. 1959] and suitable for evaluation of 

complicated traffic operations, but only for a small network (e.g. corridor, subarea) 

due to its excessive computation requirement caused by its elaborate nature.  

Exemplary simulation packages applying car following theory are PARAMICS (by 

EPCC, Quadstone and SIAS, UK), VISSIM (by PTV, Germany), CORSIM (by 

FHWA), and MITSIM (by MIT) where lane-changing behavior is incorporated for 

multilane cases. 

Cellular automata (CA) or particle hopping models started to be applied in 

microscopic traffic flow studies in 80’s.  CA can model complicated dynamic 

behavior and is efficient in terms of computation speed.  In the model, a street section 

is split into small cells (typically 7.5 meter) and time is also discretised into small 

intervals (typically 1 second) which play the role of an updating step of the adaptation 

time and the safe time clearance.  The positions of the vehicles are changed according 

to the updated speed as a function of the previous speed, maximum speed, headway 

and probability of spontaneous deceleration [Nagel and Schreckenberg 1992].  Some 

other sophisticated variants are also developed [Nagel and Paczuski 1995, Brilon and 

Wu 1999].  Due to their relative compactness, the models are applicable to larger 

networks compared to car following models.  One of the developed simulation 

packages, OLSIM (by the University of Duisburg), bases the micro-simulation on 

Cellular Automata. 
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2.2.2 Macroscopic traffic flow theories 

Research on the macroscopic traffic flow modeling starts when the solution of 

the conservation equation applied to traffic flow is presented [Lighthill and Whitham 

1955, Richards 1956].  Typical macroscopic modeling employs the first-order or 

higher-order continuum representation of traffic flow by analogy with flow of 

continuous media like fluids, thus also called kinematic traffic theory or 

hydrodynamic traffic theory.  Two basic equations always hold in all the macroscopic 

traffic flow models.  One is the conservation equation which is an accurate physical 

law.  It implies leaving vehicles are equal to entering vehicles plus vehicles stored in 

the traffic system, expressed as a partial differential equation (see Equation [2-1]).  

Another equation is the basic traffic flow equation by definition, namely volume 

equals density times speed (see Equation [2-2]).   

0=
∂
∂

+
∂
∂

t
k

x
q         [2-1] 

ukq ⋅=         [2-2] 

where q  stands for volume, k  for density and u  for speed; x  is for space; t  

is for time. 

In the first-order continuum model which is also known as LWR model, speed 

at a temporal and spatial point is merely determined by the equilibrium speed given a 

concurrent density at the same point, say 

)(kuu e=         [2-3] 

where u  and k  are simplifications of speed ),( txu and density ),( txk for 

convenience;  )(ku e  represents the equilibrium speed determined by the equilibrium 
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speed-density relationship.  The relation originates from empirical observations for 

traffic stream characteristics that reveal the phenomena of decreasing speeds with 

increasing densities.  Several forms for the speed density relations have been 

proposed over the years through the empirical observations, for instance the 

Greenshields’ model [Greenshields 1935] [Equation 2-4] and the Greenberg’s model 

[Greenberg 1959] [Equation 2-5]. 
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where fu  in Equation [2-4] is the free mean speed and 0u  in Equation [2-5] is 

the optimum speed, respectively; jk  in both equations is the jam concentration. 

The LWR model is the most popular model applied in practice due to its 

simplicity and ability to reproduce the most important features of traffic flow (shock 

waves and rarefaction waves).  However, when apply Equation [2-4] or [2-5] to 

Equation [2-3], the speed u  is adjusted instantaneously to the density k , which is a 

stationary relation.  Mathematical discontinuity (infinite deceleration brought by 

shock wave) exists in the model.  It is a violation of reality in which there exist some 

time delay and certain traffic propagation along a link, to which speed is adapted.  

Other shortcomings of the LWR models include inabilities to characterize stop-start 

waves, hysteresis phenomenon and bifurcation behavior, and non-stationary dynamics 

[Kuhne and Michalopoulos, 1998]. 



 

 16 
 

In many cases, the ‘deficiencies’ of the LWR models can be tackled by 

switching to higher-order models.  Payne [1971] and Whitham [1974] show that the 

actual speed of a small ensemble of vehicles is obtained from the equilibrium speed-

density relation after a reaction time and from an anticipated location, which is often 

called acceleration and inertia effects.  It results in the higher-order continuum model 

(or PW model) which introduces higher order terms to form the following momentum 

equation:   

x
k

k
cuku

x
uu

t
u e

∂
∂

−−=
∂
∂

+
∂
∂ 1])([1 2

0τ
     [2-6] 

where τ  is a reaction time coefficient; 2
0c  is an anticipation coefficient. 

In the partial differential equation [2-6], the speed is no longer modeled as a 

stationary variable but one deviating from the equilibrium state by an inherent rule 

associated with flow nature and driving behavior.  The left-hand side of Equation [2-

6] represents acceleration that is separated into a local acceleration 
t
u
∂
∂  and a 

convection term 
x
uu
∂
∂ .  The right-hand side of Equation [2-6] includes a relaxation 

term which reflects drivers’ speed adjustments to the equilibrium one, and an 

anticipation term which implies drivers’ reactions to traffic condition ahead. 

In the higher-order model, Payne identified three different aspects for the 

momentum equation [2-6]: a convection term, 
x
uu
∂
∂ , describing how the space-mean 

speed changes due to the arrival and departure of vehicles at the time-space location 

( t , x ); a relaxation term, ])([1 uku e −
τ

, describing how vehicles adapt their speed to 
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the conditions dictated by the fundamental diagram, but with respect to a certain 

reaction time (as opposed to the instantaneous adaptation in the LWR model); and 

finally an anticipation term, 
x
k

k
c

∂
∂12

0 , describing how vehicles react to downstream 

traffic conditions.  As a result, vehicles no longer instantaneously change their speed 

when crossing a shock wave.  The higher-order continuum model can be derived from 

microscopic car-following theory as done by Payne [1971] and is intended to be a 

response to the apparent shortcomings of the simple order continuum model. 

Since its creation, the higher-order continuum model faces extensive debates 

about the theoretical soundness and practical usefulness.  Some researchers show that 

the model did not outperform the simple order one, especially in heavier traffic 

[Hauer and Hurdle 1979, Derzko et.al. 1983, Michalopoulos and Beskos, 1984].  

Daganzo [1995] argues forcefully that 1) the inference that wave characteristics 

resulting from the higher-order continuum model may be faster than the mean speed 

of traffic is a main reason to disqualify the model; 2) the higher order continuum 

model given certain circumstances could yield unstable behavior, like negative flows 

and negative speeds (“wrong way travel”) although smoothing out all discontinuities 

in density.  However, Papageorgiou [1998] opposes these arguments.  He states that 

macroscopic mean speed is just the average of the speeds of all individual vehicles 

and hide the variation of the individual speeds, therefore “it is not a physical 

contradiction if the speed of wave characteristics in Payne's model is higher than the 

macroscopic mean speed (but consistent with some maximum value of individual car 

speeds).  The possible negative speeds incurred in the higher-order continuum model 

are not even thought to be a real obstacle to the model validity after applying a very 
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minor adjustment to the model.  On the other hand, some efforts have been made to 

extend and improve the model to circumvent its limitations.  The anticipation term is 

adjusted by a factor )/( 0kkk +  with a positive constant 0k  by Cremer, M., and M. 

Papageorgiou [1981] to enhance the model accuracy at small density.  Comparison 

between the two models against real data from different sites under various traffic 

conditions shows higher accuracy of the higher-order continuum model over the first-

order model [Cremer and Papageorgiou 1981, Papageorgiou et al. 1983, 

Papageorgiou et al. 1989].  A viscosity term, 2

2

0 x
uv

∂
∂ , is proposed to add to the right-

hand side of Equation [2-6] to smear out sharp shock fronts and present realistic 

transients [Kühne 1984].  The viscosity term shows contribution to the ability of 

describing traffic from free flow conditions to highly congested region through the 

mathematical stability analysis on a basis of a truncated expansion [Kühne and 

Beckschulte 1993].  Michalopoulos et. al. [1992] proposes a new formulation which 

mainly replaces the equilibrium speed with free flow speed and introduces a friction 

term to address the effect of ramp flows.  The quantitative testing of the revised 

higher-order model which is implemented based on a finite difference method 

(upwind scheme with flux vector splitting) is conducted for freeway segments with 

entrance and exit ramps.  The improved model is declared to have a good capability 

of describing queue propagation and dissipation.  Its promising superiority compared 

to the simple order model has been concluded based on the test results.  More recent 

progress on improving the higher order continuum models can be found in the 

publications by Liu et. al. [1998] and Zhang [1998, 1999].  Both models are claimed 

to be consistent with LWR theory in a limit case with higher superiority and remove 



 

 19 
 

the potential deficiencies (negative speeds and unrealistic disturbance propagation 

speed) of PW theory described by Daganzo [1995].  Comparisons of numerical 

results with field data are made in the work of Liu et. al. [1998], which concludes that 

the improved high-order model yields lower error levels than the simple continuum 

model. 

Typical macroscopic simulation models apply the macroscopic traffic flow 

theory to determine the condition of traffic by dealing with an aggregation of vehicles 

rather than treating each individual vehicle.  Payne’s FREFLO is the most well 

known macroscopic freeway simulation package.  Other simulation models include 

NETFLO (I and II), TRANSYT (by the University of Florida).  The lower level of 

fidelity makes these models appropriate to static planning applications for typically 

large areas.  To satisfy a higher requirement of traffic flow details, another type of 

traffic simulation models, mesoscopic ones, are emerging.  Individual vehicle is 

tracked and moved according to macroscopic traffic flow relations in these simulation 

models.  A few of the leading mesoscopic simulation models are DYNASMART, 

DynaMIT and CONTRAM.  The attractive aspects of computation efficiency and 

modeling effectiveness of these simulation packages are gaining increasing attention 

as well as DTA-related applications.  In the section 2.3, the DYNASMART 

simulation structure is overviewed with zoom-in on the central traffic flow modeling. 

 

2.2.3 Mesoscopic traffic flow theories 

Mesoscopic traffic flow models are models that have aspects of both macro 

and microscopic models and describe traffic flow at an intermediate detail level.  
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Traffic flow dynamics are described in aggregated forms but driver behavior is 

distinguished individually.  Mesoscopic modeling is viewed as a consistent link 

between microscopic and macroscopic modeling.  The most well-know mesoscopic 

flow models are gas-kinetic traffic flow models.  Other developed mesoscopic traffic 

flow models include cluster models and headway distribution models. 

A gas-kinetic traffic flow model was initially proposed by Prigogine and 

Herman [Prigogine 1961, Prigogine and Herman 1971] who suggest an analogy 

between traffic and gas behavior.  In the model, the concept of the speed distribution 

function is of importance.  In the basic kinetic equation, the temporal and spatial 

dynamic changes of the speed distribution function are mainly caused by two separate 

processes, namely relaxation process and interaction process.  The relaxation process 

reflects drivers’ intention of driving at desired speeds which are dependent on traffic 

conditions.  The interaction process describes the response of faster vehicles to slower 

vehicles, say, passing or slowing down with certain probabilities.  Munjal and Pahl 

[1969] questioned the validity of the assumption of vehicle chaos in the model, which 

in fact neglects correlation inside platoon especially apparent at signalized urban 

roads.  Although the criticism, the earliest gas-kinetic traffic flow model seems 

interesting to researchers and gets continuous attentions and improvements.  Paveri-

Fontana [1975] considers the desired speed an independent variable instead of a 

parameter in the kinetic equation.  Recently, Nelson [1995] improved the gas-kinetic 

model by introducing mechanical and correlation models into the kinetic equation and 

treating the relaxation and interaction processes in the same principle.  Hoogendoorn 

and Bovy [Hoogendoorn 1997, Hoogendoorn and Bovy 1999] innovated gas-kinetic 
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multi-class traffic flow models which distinguish the distribution functions for each 

user class and result in rational asymmetric behaviors for the faster user class and the 

slower user class.  Meanwhile, Helbing [1997] developed a gas-kinetic multilane 

traffic flow model where lanes are treated specifically and additional terms (i.e., 

velocity diffusion term, lane-changing term, vehicle entering and leaving rate) are 

incorporated in the kinetic equation.  The latter three contributions led to a 

generalized platoon-based multilane multi-class traffic flow model by Hoogendoorn 

[1999].  The models developed so far are dominantly used in theoretical research 

instead of practical applications due to their implemental complexity and lack of 

appropriate data available. 

 

2.3 Traffic flow modeling in mesoscopic simulated-based DTA system 

2.3.1 Introduction of DYNASMART 

DYNASMART is a state-of-the-art Traffic Estimation and Prediction System 

(TrEPS) which supports transportation network planning and operations decisions (in 

the offline version DYNASMART-P) and ATMS/ATIS capabilities in the ITS 

environment (in the real-time version DYNASMART-X).  The model structure of 

DYNASMART is illustrated in Figure 2-1.  Given the network representation, link 

characteristics as well as control/operation settings, the simulation component will 

load a time-dependent OD flow matrix and process the movement of vehicles on 

links, as well as the transfers between links.  These transfers require instructions that 

direct vehicles approaching the downstream node of a link to the desired outgoing 

link.  The user behavior component is the source of these instructions, as it 
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determines individual path decisions of users in the network.  Alternatively, path 

decisions may be pre-assigned for some or all users according to a particular 

assignment scheme, as is the case when DYNASMART is used as a simulator in the 

context of algorithmic procedures (e.g. system optimal dynamic traffic assignment). 

 

 

Figure 2-1 Dynasmart Model Structure 

 

The offline version is called DYNASMART-P.  It is a dynamic transportation 

network design, analysis, planning, evaluation and traffic simulation tool.  

DYNASMART-P models the evolution of traffic flows in a traffic network resulting 

from the travel decisions of individual drivers.  The model is also capable of 

representing the travel decisions of drivers seeking to fulfill a chain of activities, at 
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different locations in a network, over a given planning horizon.  The model is an 

efficient hybrid traffic simulation-assignment approach due to its richer 

representation of travel behavior decisions, the explicit description of time-varying 

traffic processes and the explicit representation of traffic network elements (e.g. 

different link types, signalization and other operational controls).  The modeling 

features chosen for implementation of DYNASMART-P achieve a balance between 

representation detail, computational efficiency, and input data requirements.  

DYNASMART-P is carried out in an offline mode whose prime distinction from the 

online mode (in DYNASMART-X, as described in 2.3.3) is that the OD demand 

matrix are input externally and are fixed for the analysis period.  Also, 

DYNASMART-P, as an operational planning tool, has no real-time interaction with 

sensor data collected throughout the network. 

In the following sections, the simulation component embedded in 

DYNASMART is described.  Then an introduction is given to the online version 

DYNASMART-X. 

 

2.3.2 Traffic simulation component in DYNASMART 

In DYNASMART, the traffic flow simulation is based on macroparticle 

simulation concept where the model moves vehicles in discrete macroparticles at the 

prevailing local speeds determined from the established speed-density relations.  The 

macroparticle concept is adapted from plasma physics (Leboeuf et al. 1979) which 

exhibits similar properties in this regard.  The simulation model is an extension of the 

macroparticle simulation model (MPSM) (Chang et al., 1985), initially developed as a 
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special-purpose code for experimental studies of commuter behavior dynamics in 

congested traffic corridors.  In the previous work, 5 to 20 vehicles were used as a 

macroparticle (Chang et a1. 1985; Mahmassani and Jayakrishnan l988).  In its current 

implementation, DYNASMART uses a macroparticle of one vehicle, meaning that it 

effectively track the movement and location (thereby itinerary) of individual vehicles 

through a network.  However, it does not keep track of the microscopic details of 

individual traffic maneuvers, such as in car-following models.  In this sense, the 

model is called mesoscopic simulation due to the combined aspects of macroscopic 

relationship and microscopic details. 

The traffic simulation in the current DYNASMART uses the equilibrium 

speed-density relationships in conjunction with the conservation law to describe 

traffic flow evolution.  In general, this approach is practically LWR-type macroscopic 

traffic flow theory.  The continuity equation, expressed in finite difference form, is 

solved numerically using discrete time steps.  Virtually, both average link volume and 

average link speed are eligible to move the vehicles in the simulation since the 

identity “volume = density × speed” is hold always.  However, for links of finite 

lengths, moving vehicles according to this identity may lead to physically unrealistic 

speeds, as discussed in Chang et al. (1985).  For this reason, DYNASMART moves 

vehicles through a network at the prevailing local speeds determined from the 

equilibrium speed-density relations. 

The traffic simulation consists of two primary modules: link movement and 

node transfer, which are described hereafter in the following sections. 
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2.3.2.1 Link movement 

The link movement module consists of a process for moving vehicles on links 

during every simulation time step or scanning time interval in the simulation.  Note 

that the network's links are subdivided into smaller sections or segments for traffic 

simulation purposes.  The vehicle concentration prevailing in a section over a 

simulation time step is determined from the solution of the finite difference form of 

the above continuity equation, given the concentration as well as inflows and 

outflows over the previous time-step.  Using the current concentration, the 

corresponding section's speeds are calculated according to a speed-density relation, 

e.g., 
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where, 

t
iV  , t

iK  = mean speed and concentration in section i during the t-th time step, 

fV , 0V  = mean free speed and minimum speed, respectively, 

jK  = jam concentration, and 

α = a parameter used to capture the sensitivity of speed to the concentration. 

 

2.3.2.2 Node transfer 

The node transfer module performs the link to link or section to section 

transfer of vehicles at nodes.  For interrupted link flow, the node transfer allocates 

appropriately the right of way according to the control strategy at this intersection.  It 
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determines the number of vehicles that are traversing each intersection in the network 

at each simulation time step as well as the number of vehicles entering and exiting the 

network.  The output of the node transfer includes the number of vehicles that remain 

in queue and the number added to and subtracted from each link section for each 

simulation time step.  A wide range of traffic control measures for both intersections 

and freeways are reflected in the outflow and inflow capacity constrains of the node 

transfer module. 

The outflow capacity constraints limit the maximum number of vehicles 

allowed to leave each approach lane at an intersection.  These constraints are 

described in the following equation which states that the total number of vehicles that 

enter an intersection (from a given approach) depends on the number of vehicles 

waiting in the queue at the end of the current simulation interval (time step), AT, and 

the capacity of this approach.  The definition of capacity follows the 1985 Highway 

Capacity Manual (HCM), and consists of the maximum number of vehicles that can 

be served under prevailing traffic signal operation. 

( )iii VSVQVI ,min=  

where, 

  i: link index; 

iVI : number of vehicles that can enter the intersection from link i during AT; 

iVQ : number of vehicles in queue on link i at the end of AT; 

iVS : maximum number of vehicles can enter the intersection from link i 

during AT, i.e. ii SG ⋅ ; 
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iG : remaining effective green time during AT for the movement from link i 

(for unsignalized intersection, the calculation is based on the equivalent green time); 

iS : saturation flow rate for the movement from link i; and 

AT: the simulation interval. 

The inflow capacity constraints determine the maximum number of vehicles 

allowed to enter a link.  These constraints bound the total number of vehicles from all 

approaches that can be accepted by the receiving link; they include the maximum 

number of vehicles from all upstream links wishing to enter the receiving link, the 

available physical space constraint and the section capacity constraint of the receiving 

link. 









∆= ∑
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where, 

  j: link index; 

jVO : number of vehicles that can enter link j 

U: set of inbound links into link j (i.e. in the backward star of j) 

kjVI : number of vehicles wish that to move from k to j 

jVE : the available space on link j 

jC : the approach capacity of link j 

T∆ : duration of a simulation interval 
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2.3.3 Overview of DYNASMART-X 

2.3.3.1 Functionality 

With the identical simulation-assignment framework with DYNASMART-P, 

DYNASMART-X interacts continuously with multiple sources of real-time 

information, such as loop detectors, roadside sensors, and vehicle probes, which it 

integrates with its own model-based representation of the network traffic condition.  

It is designed for Traffic Management Centers (TMCs) to interact with ATMS, ATIS, 

surveillance systems, incident management systems, and other ITS sub-systems.  The 

system combines advanced network algorithms and models of trip-maker behavior in 

response to information in an assignment-simulation based framework to provide 

traffic estimation/prediction and routing guidance. 

Besides the most important simulation-based DTA model for traffic state 

estimation and prediction, consistency checking and updating is a crucial function 

incorporated in DYNASMART-X to ensure consistency of the simulation-assignment 

results with actual observations, and to update the estimated state of the system 

accordingly.  Another external supporting function is intended to perform the 

estimation and prediction of the origin-destination (OD) trip desires that form the load 

onto the traffic network and are, as such, an essential input to the simulation-

assignment core. 
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2.3.3.2 Description of components and modules 

A schematic view of the DYNASMART-X system, as implemented, is shown 

in Figure 2-2.  The arrows represent the data flows between modules and 

components. 
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Figure 2-2 DYNASMART-X Schematic View 

 

The algorithmic component is the main entity of the system.  It is responsible 

for implementing various DTA tasks.  The purpose of the state estimation module 

(RTDYNA) is to estimate the prevailing traffic state in the network.  The state 

prediction module (PDYNA), on the other hand, provides future network traffic states 
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for a pre-defined horizon.  The OD estimation module (ODE) is responsible for 

estimating the coefficients of a time-varying polynomial function that describes the 

OD demand for the current stage.  These coefficients are then utilized by the OD 

prediction module (ODP) to predict the demand - number of vehicles that travel 

between each OD for every departure time interval in the future stages.  Finally, two 

consistency checking modules (namely LTCC and STCC) are responsible for 

minimizing the deviation or discrepancy between what is estimated by the system and 

the real world, in an effort to control error propagation.  The module STCC, which 

stands for short term consistency checking, compares the estimated densities with the 

observed values, and adjusts the simulated link speeds to minimize discrepancies.  

Note that this technique of adjusting speeds to minimize density deviations is 

currently implemented in the prototype system.  The technique used currently is 

advantageous when density or occupancy measurements, instead of speed 

measurements, tend to be more readily available.  Other techniques could be used 

instead, or in conjunction with the current prototype logic, such as correcting the 

speed itself, if reliable speed measurements are available.  The module LTCC, which 

stands for long term consistency checking, adjusts the OD demand based on the 

observed densities.  The predicted link proportions are used to match observed 

densities to their ODs.  Based on this matching, correction factors are calculated to 

update the estimated OD values.  These two variants are intended as prototypes that 

fit within a hierarchical approach to the consistency checking and updating problem.  

It is the intent to further develop these capabilities in an actual real-time operational 

setting, because the underlying logic and embedded algorithmic procedures must be 
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guided by actual traffic system observations.  However, the present capabilities have 

been shown to be effective and provide a good starting point for further elaboration. 

The remaining components in the system serve as supporting entities to the 

algorithmic components.  Graphical User Interface (GUI) aims to provide a 

convenient environment for executing the algorithmic component by allowing users 

to enter input data, and to view and analyze simulation results “on the fly”.  Users can 

see both the current and future network traffic states as generated by the state 

estimation and state prediction modules, respectively.  Traffic statistics are provided 

at both the link and network levels.  Also available are performance plots of the short-

term and long-term consistency checking modules.  Other features include the ability 

to view paths, temporal demand patterns, as well as attributes of nodes, links and 

network. 

The intent of the database is to store input and output data.  The database 

primarily stores input data for the state estimation and state prediction modules, as 

specified by the user through the GUI.  The role of the database is two-fold.  First, it 

serves as a gateway through which the DYNASMART-X system communicates with 

external components (e.g. surveillance, incident detection).  Secondly, it allows the 

system to be responsive to network changes through periodic querying of the 

database. 

In contrast to the database, which is used as a repository for storing long-term 

data, the data broker provides means for transferring run-time data between modules 

and components. 
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Finally, the entire DYNASMART-X is driven by a scheduler, which triggers 

the execution of each module.  Its main duty is to schedule the execution of different 

processes and perform resource allocation such that all modules satisfy their real-time 

requirements (soft deadlines are imposed on all modules).  Resource allocation refers 

to the concept of assigning or distributing programs to different computer resources.  

It is within the scheduler that the data broker is interleaved to manage internal 

information interchange between modules.  That is, the scheduler takes into account 

data dependency between modules by activating data transfers prior to triggering 

certain modules.  In the current implementation, the scheduling is done in a multi-

cycle driven manner.  Furthermore, the system is inherently conceived for 

asynchronous parallel execution.  However, all the processes in this version could be 

executed sequentially besides in real-time.  The sequential implementation is intended 

to accommodate the preferred testing environment requested by the project sponsors. 

 

2.4 Traffic flow estimation and prediction 

Short term traffic flow forecasting is needed by modern traffic management 

and control system.  Reliable and accurate traffic flow forecasting through continuous 

contact with advanced surveillance system will support decision-making process on 

various control strategies and enhance the performance of overall network.  Real-time 

traffic flow estimation and prediction becomes one of the important capabilities for 

ATMS/ATIS in ITS environment.  Many efforts have been focused in this area and 

various approaches and techniques have been developed to provide traffic forecasts.  

The works on traffic flow analysis and forecasts take into account the fact that traffic 
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characteristics are stochastic in nature and usually collected as a series of data at 

regular time intervals from detectors.  Time series analysis methods provide a general 

and systematic approach for capturing the trends in time-ordered data, and 

representing the variable evolution and even the dynamic interrelationship of system 

variables.  Examples of these models are the smoothing method, the non-parametric 

regression method, Artificial Neural Network (ANN) model, Kalman filtering model, 

ARIMA model, and Transfer Function model. 

 

2.4.1 Univariate methods 

Smoothing is one of the straightforward and intuitive techniques for 

combining information contained in a time-series of measurements.  The traffic 

prediction algorithm in the second generation UTCS, UTCS-2 [FHWA, 1973], makes 

use of smoothed historical traffic data and current traffic measurements from the 

vehicle detector.  The third generation UTCS, UTCS-3 [Lieberman, 1974], relies the 

prediction on smoothed current traffic measurements only.  Stephanedes et al. [1981] 

provides a more efficient prediction equation compared to the two versions of UTCS.  

The proposed algorithm predicts the volume during the next time period by linearly 

combing the current volume, the difference between current volume and previous 

volume, and the average volume during the previous three, four, or five time periods 

as the independent variables.  The simpler version of the algorithm is obtained by 

ignoring the first two independent variables, resulting in a simple moving average 

equation.  More recently, Lu [1990] presents an adaptive filtering model to 

recursively forecast traffic flow on freeway.  The state variable in the model is a 
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smoothing of the past values.  The approach uses a simplified least-mean-square 

algorithm to search for the optimal weights in the smoothing, which results in faster 

responses.  However the solution stability and convergence are impacted by the 

model structure specified as pointed out by the author. 

Recently, a method called non-parametric regression has been considered for 

traffic flow prediction [Oswald 2000, Smith 2002].  The method searches a collection 

of historical observations for records similar to the current conditions and uses these 

to estimate the future state of the system.  However, its accuracy is largely dependent 

on a historical database and does not outperform the stochastic type approach, 

although it tends to decrease computation time by avoiding data fitting. 

Another time-series forecasting technique is Artificial Neural Network 

(ANN).  An ANN is an information processing paradigm that is inspired by the way 

biological nervous systems (such as the brain) process information.  An ANN is 

configured for a specific application, such as pattern recognition or data 

classification, through a learning process.  The use of ANN computing for 

transportation applications began recently [Ledoux 1997, Vythoulkas 2000, Yin et al. 

2002, Annunziato et al. 2003].  However, the approach is black-box-based and 

provides little physical insight into the underlying structure of the system [Vythoulkas 

2000], which restricts its widespread uses. 

Kalman filtering is based on theory proposed by Kalman [1960] and applied 

in modern filter and control theory.  It may be applied to short term stationary or non-

stationary stochastic phenomena.  Gazis, D.C. and C.H. Knapp [1971] proposed a 

method for estimating the number of vehicles on a section of a roadway from 
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measurements at the entrance and exit points of the section.  In their algorithm, pre-

estimated rough densities are adjusted by means of a “sequential estimator” which is 

derived based on Kalman filter theory.  Okutani and Stephanedes [1984] employed 

the Kalman filtering theory in dynamic prediction of traffic flow.  Their models base 

volume prediction of a link on data from a number of links and appropriately use the 

most recent prediction error to improve the prediction.  The study revealed that the 

proposed model outperforms UTCS-2 and is even better if the difference between 

traffic data on the day under study and that on the same day one week before is used 

as input.  Vythoulkas [2000] investigates the adaptive estimation and prediction 

accomplished by the Kalman filter technology to address the problem of short term 

forecasting of traffic condition in urban road networks.  One of the procedures 

proposed in that work is to take the ratio between predicted and historical flow as the 

state variable to be predicted.  In such a way, the similarity of traffic flow patterns 

from day to day is taken into account and hence the procedure conceptually improves 

the prediction performance.  The approaches are tested using real data and show 

capability of online traffic flow estimation and prediction.  The ratio prediction 

procedure mentioned provides better results. 

The well-known ARIMA (autoregressive integrated moving average) model is 

a univariate time series method which describes how a single time series variable is 

related to its own past values.  ARIMA forecasting is founded on the stochastic 

system theory.  It was first developed in the late 60’s but was systemized by Box and 

Jenkins in 1976 [Box and Jenkins 1976].  ARIMA processes are nondeterministic 

with linear state transitions.  An ARIMA model forecast is typically a weighted 
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average of past values of the series and the number of lags and weights are identified 

by auto-correlation function (ACF) as well as partial auto-correlation function 

(PACF).  The earliest application of ARIMA in traffic prediction is the work by 

Ahmed and Cook [Ahmed and Cook 1979].  Traffic time-series volume and 

occupancy data were analyzed in their work by ARIMA approach and an ARIMA (0, 

1, 3) model was found to be most accurate for freeway system in terms of the mean 

absolute error and mean square error compared to other simple smoothing 

approaches.  Levin and Tsao [1980] compared the performance of two ARIMA 

model forms using data from Chicago expressway.  The study by Williams et al. 

[1998] provided recommendations for using ARIMA time-series analysis to generate 

forecasts for traffic management and control systems. 

The above methods take into account only the dynamics of single variable, 

and lack representation of any underlying structural relations that influence or drive 

these dynamics.  For instance, it is well established, both theoretically and 

empirically, that changes in prevailing speed are strongly related to changes in traffic 

density.  It would be inefficient to ignore the influence of the dynamic pattern of 

density when forecasting traffic speeds.  In this perspective, transfer function model, 

the transportation applications of which are reviewed in the following session 2.4.2., 

is more informative to produce more realistic traffic forecasting. 

 

2.4.2 Transfer function model 

Unlike the previous univariate predictions, a more sophisticated way to model 

time-series data is to describe how a time series variable is related to another time 
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series variable measured with the same resolution.  The transfer function model is an 

example of this strategy. 

Transfer function model analysis means that 1) system output is adjusted 

according to its past values and a series of current and past input values; 2) system 

disturbance series are correlated [Box and Jenkins 1976, Pankratz 1991]. 

Tavana and Mahmassani [2000] first investigated the ability of transfer 

function models to capture traffic flow dynamics for speed estimation given density 

measurements on a highway section.  The model specification was directly based on 

the classical speed-density forms in first-order continuum models.  In the model, 

deviation of the speed from an equilibrium value given by a static equilibrium speed-

density relation, instead of speed itself, is taken as the output time series.  In the 

experimental test using field data from San Antonio, TX, the model exhibited 

promising results in terms of robustness and satisfactory transferability in estimating 

speed for ITS application. 

Williams [2001] also proposed multivariate vehicular traffic flow prediction 

through transfer functions with autoregressive integrated moving average errors 

(called ARIMAX in the paper).  Data from upstream sensors are explicitly modeled 

as impacting factor in the prediction of traffic flow at the location of interest.  The 

real data test revealed that superiority, as well as higher complexity, of the 

multivariate prediction over the univariate prediction in ARIMA. 

The afore-cited woks are both performed offline, which means no adaptations 

of parameters are made once they are calibrated.  However, the particular function 

parameters are actually varying with time and space.  Therefore, in the context of 
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intelligent transportation systems, the interest is in developing effective methods for 

parsing large amounts of real-time traffic data adaptively to improve the efficiency of 

the DTA system for the purpose of satisfactorily estimating and predicting future 

traffic conditions in real time.  However, like on-line estimation with other types of 

data, adaptive modeling must reflect a compromise between computational effort and 

accuracy in its choice of methodology.  There is limited experience in the use of real-

time data for online traffic flow modeling and forecasting. 

Huynh et al. [2002] extended Tavana and Mahmassani’s work [2000] by 

applying the transfer function model in a real-time DTA system, and implemented 

nonlinear optimization algorithm to enable adaptive estimation and prediction.  The 

experimental results suggested that the adaptive model approach outperforms the non-

adaptive model, and confirmed the anticipated advantages of transfer function models 

in on-line application.  However, that study was based purely on simulated synthetic 

pseudo-real time data, and provided no validation for the transfer model form. 

Qin and Mahmassani [2004] extend and formalize that approach for real-time 

implementation in actual systems, and provide validation with actual traffic data from 

the Irvine network.  The model form is slightly different from the former studies 

[Tavana and Mahmassani 2000 and Huynh et al. 2002] and is derived from the 

simplified higher-order continuum models with negligence of spatial anticipation 

term. 
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2.5 Summary 

In this chapter, the relevant background concerning traffic flow modeling with 

real time data is reviewed.  Traffic flow theories developed over decades play a 

fundamental role in the study conducted here.  Three types of the theories, 

microscopic, macroscopic, and mesoscopic traffic flow theories, are overviewed.  

Since this dissertation research is mainly based on macroscopic continuum traffic 

flow theory, macroscopic models are discussed in more details.  Then the simulation-

based dynamic traffic assignment tool DYNASMART-X is briefly introduced and 

traffic flow modeling in the simulation part is described.  Finally, the previous studies 

and practices regarding traffic flow estimation and prediction through real-time 

sampling traffic data are reviewed.  Among those approaches, the transfer function 

methods are viewed as the ones with higher potency to model traffic flow dynamic by 

incorporating other driving factors for the dynamics of the variable of interest. 
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Chapter 3: Dynamic Speed-density Relation Formulation 

3.1 Introduction 

Performance of a traffic simulator depends to a great extent on the embedded 

traffic flow model.  As a new generation of traffic simulation tools oriented to online 

traffic management applications, the real-time simulation-based dynamic traffic 

assignment model needs a reliable traffic flow representation that can rapidly adapt to 

traffic dynamics observed quasi-continuously from surveillance systems. 

Static speed-density relations capture essential traffic stream phenomena.  

Calibration and parameter estimation of these models for specific facilities are 

typically performed by applying standard regression techniques to field traffic data.  

An implicit assumption made in these approaches is that traffic measurements taken 

over consecutive intervals are independent, and that the resulting static relation holds 

over a wide range of traffic conditions, without considering potential dynamic effects 

in the relation.  However, traffic flow realizations generally occur in a time sequence 

over which independence assumptions may not hold.  The possibility of a time-lagged 

relation between speed and density, as well as the possible presence of a temporal 

pattern of the system noise, are ignored in conventional static models and approaches. 

Although the stationarity assumed is a deficiency, the conventional models 

still form the basis for representing traffic flow in networks in virtually all existing 

practice and past research.  Especially when online modeling is not a requirement and 

real-time data is not available, the conventional static models perform quite well in 

terms of reflecting the key traffic stream phenomena.  For instance, as mentioned in 
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section 2.3.2, the traffic flow simulation in DYNASMART is based on mesoscopic 

simulation concept where the model moves individual vehicles at the prevailing local 

speeds determined by Greenshields’ model from the established speed-density 

relations under the condition of continuity rule.  Traffic flows are represented 

rationally and efficiently by this simple order continuum based model for the offline 

DTA operation [University of Maryland DTA Group, 2003] which long term 

planning could rely on. 

However, the models have two limitations when applied to online traffic 

estimation and prediction.  First, the parameters in the static speed-density relation are 

set as fixed and invariant with respect to time.  The adaptive calibration of the static 

relation using real-time traffic data is not wise because data during any particular time 

period is not guaranteed to reflect a full data regime to identify an accurate and 

reliable model form.  As such, the model cannot be properly adaptive to the traffic 

dynamics, which is an essential requirement for real-time traffic management 

systems.  Second, the equilibrium states implied in this model are rarely observed in 

practice, especially when the time period over which the traffic stream variables are 

averaged is short (< 1min).  In fact, the sampling rate of loop detectors is usually 20-

sec or 30-sec. 

A traffic flow model which is oriented to online application needs to be 

amenable to calibration under any traffic condition.  In addition, a robust model 

should be able to reproduce or approach as much as possible the behavior of real 

traffic.  As mentioned earlier, speed is adapted after a certain time delay (time-lagged 

correlation) and reflects traffic conditions downstream (space-lagged correlation).  
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The higher order continuum model (PW model) uses a momentum equation to 

describe such speed evolution over time and space. 

There are numerous studies on the calibration and application of the higher 

order continuum model.  However, no conclusive result has been reached yet since 

the coefficients tend to be time-variant and are related to complicated user behaviors.  

Besides, the temporal and spatial discretisation scheme is also an important tuning 

factor for the implementation of higher order continuum models.  In this dissertation, 

as a variant and extension of the higher order continuum model, a dynamic speed-

density relation is proposed by exploring the capability of the transfer function (TF) 

method to identify and adaptively calibrate the relation, as well as perform 

forecasting.  The use of transfer function models, based on time series theory, can 

capture the manner in which system output is related to its past values, and respond to 

current and past values of system inputs. 

In the following sections of this chapter, we will at first introduce the transfer 

function and discuss why it becomes a powerful method to model and adaptively 

calibrate dynamic relation with actual data.  Then, the derivation of the formulation 

for the dynamic speed-density relation will be addressed.  The model calibration 

algorithm and the forecasting logic will be described.  At last, the rolling horizon 

scheme is presented as an application of adaptive calibration and forecasting to real 

time operation. 
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3.2 Review of transfer function method 

Study of dynamic response is a topic of considerable interest in engineering, 

economics and many other fields.  Suppose that in a system, the level of one variable 

is influenced by the level of another variable, which are called system output and 

system input, respectively.  The response by the system output is usually not 

immediate but delayed when the system input changes from one level to another.  

Such a change is referred as dynamic response.  It is only when the dynamic 

characteristics of a system are understood that more reliable forecasting and better 

system control are possible.  A model that describes the dynamic response occurring 

in a dynamic input-output system is called a transfer function model.  Transfer 

function model should be distinguished with the regular regression model which 

answer the question of “how is y related to x?”.  Instead, transfer function deals with 

1) lags in the variables to answer the question "how is y(t) related to x(t-k), for 

various k?"; and 2) autocorrelation in the residuals.  In fact, the ordinary regression 

can be viewed as a particular subset of a transfer function with certain assumptions on 

the internal structures.  As mentioned above, the assumption made in the regression 

model is not valid in typical time-series traffic data and transfer function shall be a 

more general methodology to identify the complexity presented in the traffic flow 

dynamics.   

In practice, the system input and output are measured at equispaced intervals 

of time.  Hence, the widely-used transfer function model is in a discrete form.  It is 

often the case that the response of the system output is affected by uncontrollable 

disturbance (or, noise) other than the system input.  To take account not only of the 
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dynamic relationship associating the input and the output but also of the noise 

infecting the system, combination of a deterministic transfer function model with a 

stochastic noise model is necessary. 

A general transfer function model of order ( r , s ) with a stochastic noise 

model of order ( p , q ) is given by 

ttt NXBBY += − )()(1 ωδ       [3-1a] 

or       ttt NXBvY += )(       [3-1b] 

where 

tY  is the system output at time interval t. 

tX  is the system input at time interval t. 

B  is the backward shift operator, defined as ntt
n YYB −= . 

r
r BBBB δδδδ −⋅⋅⋅−−−= 2

211)( , iδ  ( ri ,...1= ) are a series of parameters.  

The estimated value of iδ  could reveal how the current output is related to its past 

values. 

s
s BBBB ωωωωω −⋅⋅⋅−−−= 2

210)( , iω  ( si ,...0= ) are a series of 

parameters.  The estimated value of iω  could reveal how the current output is related 

to the current and past values of the input. 

...)( 2
210 +++= BvBvvBv , or )()()( 1 BBBv ωδ −=  is called the transfer 

function (or impulse response function), represented by the ratio of two polynomials 

)(Bω  and )(Bδ .  It can be viewed as a linear filter linking the input tX  and the 

output tY . 
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tN  is the stochastic noise at time interval t which is independent of the input 

series tX .  tN  is often an autocorrelated sequence and can be specified in an ARIMA 

model of order ( p , q ). 

tt aBBN )()(1 θϕ −=        [3-2a] 

or       ( ) tt aBN ψ=        [3-2b] 

where 

p
p BBBB ϕϕϕϕ −−−−= ...1)( 2

21 , iϕ  ( pi ,...1= ) are a series of parameters. 

)(Bϕ  represents an internal autoregressive process. 

q
q BBBB θθθθ −−−−= ...1)( 2

21 , iθ  ( qi ,...1= ) are a series of parameters.  

)(Bθ  represents an internal moving average process. 

( ) ...1 2
21 +++= BBB ψψψ , or ( ) ( ) ( )BBB θϕψ 1−=  is represented by the ratio 

of two polynomials ( )Bθ  and ( )Bϕ .  It can be viewed as a linear filter linking the 

white noise ta  and the colored noise tN . 

ta  is white noise, which is a uncorrected random series with mean zero and 

stationary variance. 

Equivalently, Equation [3-1] or [3-2] can be represented as 

ttt aBBXBBY )()()()( 11 θϕωδ −− +=     [3-3a] 

or          ( ) ( ) ttt aBXBvY ψ+=      [3-3b] 

The transfer function framework takes into account the possible time-lagged 

relationship between output and input, as well as the possible time series pattern of 

the system noise.  Figure 3-1 indicates the structure of the single-input transfer 
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function model with noise model.  In fact, it is often the case that the dynamic system 

to be studied has more than one driving force, so a multiple-input transfer function 

model is not more complicated but has an additive form as 

t
i

tiiit aBBXBBY )()()()( 1
,

1 θϕωδ −− += ∑    [3-4a] 

or       ( ) ( ) t
i

tiit aBXBvY ψ+= ∑ ,     [3-4b] 

 

 

Figure 3-1 Transfer Function Model for Dynamic System with Noise 

 

3.3 Dynamic speed-density relation 

3.3.1 Determination of system input and output 

  The application of transfer function approaches in dynamic transportation 

network modeling brings a new perspective to the specification, calibration and 

application of speed-density relations.  The conventional transfer function model 

deals with system output that has a linear transferring relation with the system input.  

Actual speed and density measurements generally exhibit a non-linear relation, 

Output tY  

White noise ta  

Input tX  

Noise ( ) tt aBN ψ=  Linear Filter 
( ) ( ) ( )BBB θϕψ 1−=  

Linear Dynamic 
System 
( ) ( ) ( )BBBv ωδ 1−=  

( ) tXBv  
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reflected in most functional forms considered in the literature [May 1990].  To handle 

nonlinear transfer function forms, Box et al. [1976] proposed a linearized 

approximation.  But linearization of those traffic stream relations is too unwieldy to 

use in on-line applications.  In this dissertation, determination of system input and 

output is inspired by the macroscopic higher-order continuum model.   

Observations of traffic show that the average speed in a section is not only 

dependent on the local traffic state in that section but also on the state of the 

neighboring sections.  Three major mechanisms that influence the average speed can 

be distinguished as: relaxation, convection and anticipation, which are presented in 

the higher order continuum model (Equation [3-5]): 

x
k

k
cuku

x
uu

t
u e

∂
∂

−−=
∂
∂

+
∂
∂ 1])([1 2

0τ
     [3-5] 

where 

u  and k  denote the speed ),( txu and density ),( txk  at location x and at time 

t, for convenience;   

)(ku e  represents the equilibrium speed determined by the equilibrium speed-

density relation (e.g. Greenshields model); 

τ  is the reaction time of a driver with respect to speed change; and 

 2
0c  is an anticipation coefficient. 

The first term on the right-hand-side of Equation [3-5] is generally interpreted 

as a relaxation term (of the prevailing speed to the equilibrium value); the second 

term is an anticipation term (e.g. of density changes ahead); and the second term of 

the left-hand-side of Equation [3-5] is a convection term.  Extensive discussion and 
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interpretation of the various terms in Equation [3-5] is found in the literature [Kuhne 

and Michalopoulos, 1998] and a brief review is given in Chapter 2 of the dissertation. 

The canonical discretised form of the higher order continuum model is shown 

in Equation [3-6]. 

( )[ ] ( )[ ] 
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 [3-6] 

where i is for geographic section; t is for time interval. 

The speed adjustment from one time interval to the next time interval is 

contributed by the factors of relaxation, convection and anticipation. 

Relaxation is proportional to the difference between the actual average speed 

and the desired average speed (equilibrium speed), ( ) i
t

i
t

e uku − .  The desired speed is 

dependent on the prevailing density i
tk .  By observing the density, the drivers tend to 

accelerate or decelerate towards the desired speed.  The larger the difference, the 

greater speed adaptation will be.  The impact of the relaxation is also dependent on 

the drivers’ reaction time which is expressed as τ in the formulation.  The shorter the 

reaction time, the faster the drivers will respond to the speed deviation, thus the 

greater impact of the relaxation on the speed change, i
t

i
t uu −+1 . 

Convection is proportional to: 1) the speed difference between the two 

sections i-1 and i, i
t

i
t uu −−1 .  The higher the speed difference, the longer time the 

vehicles in section i-1 will need to accelerate or decelerate while entering the section i 

and the greater the impact on the speed adjustment in the section i; 2) the average 

speed in the section i, i
tu .  The higher the speed, the longer time the vehicles will 

need to adapt their speed thus the greater the impact on the speed adjustment in the 
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section i.  Convection is also reversely proportional to the length of the section il .  

The longer the section, the more vehicles drive at their desired speeds thus the lower 

impact on the average speed in the section i. 

Anticipation is affected by the relative difference of the density in section i+1 

and i, i
t

i
t

i
t

k
kk −+1

.  If drivers observe more congested traffic ahead, they tent to slow 

down; oppositely, if the traffic density ahead is lower, drivers will accelerate.  

Anticipation is proportional to the coefficient 2
0c  which has the meaning of the 

standard deviation of the vehicular speed distribution.  The higher speed variance, the 

greater impact of the density difference on the speed adjustment in section i.  Besides, 

anticipation is reversely proportional to the length of the section il .  The longer the 

section, the more vehicles drive at their desired speeds thus the lower impact on the 

average speed in the section i. 

Therefore, as the transfer function method is explored to model dynamic 

traffic flow, one output and three inputs are identified by the awareness of the 

potential dynamic interrelationship mentioned above.  The following are the 

specifications of the system output tY  and the system inputs tX  1, , tX  2, , and tX  3, . 

⋅ System output: i
t

i
tt uuY −= +1 ;     [3-7] 

⋅ System input 1: ( ) i
t

i
t

e
t ukuX −= 1, ;     [3-8] 

⋅ System input 2: ( )i
t

i
t

i
tt uuuX −= −1

 2, ;    [3-9] 

⋅ System input 3: i
t

i
t

i
t

t k
kk

X
−

=
+1

 3, .     [3-10] 
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where 

i
t

i
t uu −+1  is the time-differenced speed between the time t+1 and t at the 

section i; 

( ) i
t

i
t

e uku −  is the speed relaxation from the equilibrium at the time t and the 

section i; 

( )i
t

i
t

i
t uuu −−1  is the convection term which is the product of the average speed 

at the time t and the section i and the differenced speed between the section i-1 and i 

at the time t; 

i
t

i
t

i
t

k
kk −+1

 is the anticipation term which is the ratio of the differenced density 

between the section i+1 and i at the time t and the density at the time t and the section 

i. 

 

3.3.2 Model formulation 

Following the determination of the system inputs and output, the proposed 

dynamic speed-density model based on a transfer function model form can be 

expressed as follows.  

( ) ( ) ( ) ( ) ttt XBBXBBY  2,2
1

2 1,1
1

1 ⋅+⋅= −− ωδωδ  

       ( ) ( ) tt NXBB +⋅+ −
 3,3

1
3 ωδ      [3-11] 

where 
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)(Biδ  and )(Biω  are polynomials functions for the ith input series.  The 

detailed definitions are as follows, which are similar to the ones described earlier in 

section 3.2. 

ir
iriii BBBB δδδδ −⋅⋅⋅−−−= 2

211)( , ijδ  ( irj ,...1= ) are a series of 

parameters for the ith input series tX  i,  (i = 1, 2, 3). 

s
isiiii BBBB ωωωωω −⋅⋅⋅−−−= 2

210)( , ijω  ( isj ,...0= ) are another series of 

parameters for the ith input series tX  i,  (i = 1, 2, 3). 

tN  is a noise series that is independent on the inputs.  Generally, tN  is not a 

white noise, but an auto-correlated time series which follows a certain ARIMA model 

of order ( p , q ), say ( ) ( ) tt aBBN θϕ 1−= , where ( )Bϕ  and ( )Bθ  are autoregressive 

and moving average parameters, and ta  is white noise, as specified in Equation [3-2]. 

Hence, the formulation in [3-11] can also be expressed as 

( ) ( ) ( ) ( ) ttt XBBXBBY  2,2
1

2 1,1
1

1 ⋅+⋅= −− ωδωδ  

        ( ) ( ) ( ) ( ) tt aBBXBB θϕωδ 1
 3,3

1
3

−− +⋅+     [3-12] 

If Equation [3-7] to [3-10] are substituted into Equation [3-12], a dynamic 

speed-density relation model can be formulated as 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]i
t

i
t

i
t

i
t

i
t

ei
t

i
t uuuBBukuBBuu −⋅+−⋅+= −−−
+

1
2

1
21

1
11 ωδωδ  

          ( ) ( ) ( ) ( ) ti
t

i
t

i
t aBB

k
kk

BB θϕωδ 1
1

3
1

3
−

+
− +







 −
⋅+    [3-13] 

The three key influential elements in the higher order continuum model, 

namely relaxation, convection and anticipation, are explicitly incorporated into the 
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dynamic speed-density relation model [3-13] as the system inputs.  So, the theoretical 

basis for the dynamic model is not a new or different one, but is that which has been 

derived from a physical point of view for decades.  However, it should be careful to 

compare the higher order continuum model and the new dynamic model.  In Equation 

[3-13], more than one time interval is under consideration since the coefficients are 

basically sequences of weights applied to the past values of the input/output series.  

How many past values to be considered would be determined by the order ir  and is  (i 

= 1, 2, 3).  This structure essentially allows flexibility on the time interval of the data 

sampling because the model captures the various impacts of what happened in the 

past on the current value of the interest variable.  If the data sampling interval is short, 

the order ir  and is  might be high; and vice versa. 

 

3.3.3 Model estimation approach 

Considering the dynamic speed-density relation in Equation [3-12], we can 

have the following mathematical transformation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ttttt aBBXBBXBBXBBY θϕωδωδωδ 1
 3,3

1
3 2,2

1
2 1,1

1
1

−−−− +⋅+⋅+⋅=

⇒ 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ttt XBBBBXBBBBYBBBB  2,231 1,132321 ⋅+⋅= ωϕδδωϕδδϕδδδ  

            ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) tt aBBBBXBBBB θδδδωϕδδ 321 3,321 +⋅+   [3-14] 

Equation [3-14] can be further simplified as   

( )[ ] ( ) ( ) ( ) ( ) ttttt aBXBXBXBYBB Θ+⋅Ω+⋅Ω+⋅Ω=⋅Ω−  3,3 2,2 1,101    [3-15a] 

  or ( ) ( ) ( ) ( ) ( ) tttttt aBXBXBXBYBY Θ+⋅Ω+⋅Ω+⋅Ω+⋅Ω= −  3,3 2,2 1,110    [3-15b] 
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if the following definitions are given. 

⋅ ( ) ( ) ( ) ( ) ( )[ ] FBBBBB ⋅−=Ω ϕδδδ 3210 1    [3-16] 

           ( F is the forward shift operator, defined as ntt
n YYF += .  It performs 

the inverse operation of the backward shift operator B .) 

⋅ ( ) ( ) ( ) ( ) ( )BBBBB 1321 ωϕδδ=Ω     [3-17] 

⋅ ( ) ( ) ( ) ( ) ( )BBBBB 2312 ωϕδδ=Ω     [3-18] 

⋅ ( ) ( ) ( ) ( ) ( )BBBBB 3213 ωϕδδ=Ω     [3-19] 

⋅ ( ) ( ) ( ) ( ) ( )BBBBB θδδδ 321=Θ     [3-20] 

Substitute the definitions in [3-7]-[3-10], the following dynamic model is 

derived. 

( ) [ ] ( ) ( )[ ]i
t

i
t

ei
t

i
t

i
t

i
t ukuBuuBuu −⋅Ω+−⋅Ω+= −+ 1101  

          ( ) ( )[ ] ( ) ( ) ti
t

i
t

i
ti

t
i
t

i
t aB

k
kk

BuuuB Θ+






 −
⋅Ω+−⋅Ω+

+
−

1

3
1

2   [3-21] 

By performing the simple polynomial function operations, we can see that, 

i

i

M
iMiiii BBBB Ω+⋅⋅⋅+Ω+Ω+Ω=Ω 2

210)( , for i = 0, 1, 2, 3 [3-22] 

and 

( ) L
L BBBB Θ−−Θ−Θ−=Θ L2

211      [3-23] 

where 

ijΩ  is the coefficients in the polynomial function )(BiΩ  (i = 0, 1, 2, 3 and j 

= 0, 1, …, iM ); 

iM  is the order for the )(BiΩ  (i = 0, 1, 2, 3); 
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jΘ  is the coefficients in the polynomial function ( )BΘ  (j = 1, 2, …, L). 

L  is the order for the ( )BΘ ; 

)(BiΩ ’s in Equation [3-15b] are similar to the transfer function (or impulse 

response function) ( )Bvi ’s in Equation [3-4b] but they actually have a different 

definition.  ( )Bvi  is the ratio of two polynomials which are used to describe the 

deterministic transfer function model, however )(BiΩ  is the product of several 

polynomials which are used to describe the transfer function model with the noise 

model.  In addition, the noise term ( ) taBΘ  becomes a pure moving average process 

since the autoregressive process has been already absorbed into )(BiΩ ’s.  The aim 

of converting Equation [3-12] to Equation [3-15] is to facilitate the model estimation 

as we can see hereafter. 

The best known estimation approach for the transfer function model is due to 

Box and Jenkins [1976].  Their approach is a procedure for the one-input situation.  

The sample cross-correlation function between the prewhitened input series and the 

corresponding filtered output series is studied and used to estimate the transfer 

function model.  Although the method is very capable of solving the one-input 

situation, it is difficult to generalize it for multiple-input models.  Other approaches 

such as the ones proposed by Priestley [1971] and Haugh and Box [1977] are also 

appropriate for one-input case.  However, the popularity of these methods is limited 

due to the cumbersome-to-derive structure.  As an alternative to time-domain 

analysis, a frequency-domain approach (spectral methods) has been used to estimate 

the transfer function models, e.g., Box and Jenkins [1976] and Priestley [1971].  
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However, it is rather difficult to apply spectral methods in practice.  Liu and Hanssens 

[1982] proposed a procedure which mainly applies linear least-squares estimation on 

the original or filtered series for transfer function identification.  The method 

performs well according to the test result described in the work.  The most important 

benefit of the method is to handle the multiple-input transfer function model through 

a simple and straightforward procedure.  In this dissertation, the method based on 

least-squares is explored to perform model estimation for the dynamic speed-density 

relation.  It should be emphasized that although the underlying computing algorithm 

is same in Liu and Hanssens’s paper and this dissertation, the parameters to be 

estimated are different.  In Liu and Hanssens’ work, the impulse response function 

weights are estimated and then continued to be used to identify the lag distribution for 

the transfer function.  Instead of struggling with lag determination for which there is 

no fast and automatic way, the approach in the dissertation is trying to estimate the 

values of the parameters in the model directly assuming that a maximum lag order 

exists.  By this way, the subjective and tedious selection of the lag distribution can be 

avoided.  The possible errors resulting from the assumption are expected to be 

alleviated via the adaptive estimation mechanism (described in the section 3.3.5).  

The experimental results which are to be presented in the Chapter 4 show the 

promising performance of the proposed estimation procedure. 

The procedure of estimating the parameters in the dynamic model [3-15b] is 

discussed below. 

For each input, select a sufficiently large iM ’s.  [3-15b] can be expressed as 

( ) 10
2

020100
0

0 −⋅Ω+⋅⋅⋅+Ω+Ω+Ω= t
M

Mt YBBBY  
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       ( ) ( ) tt
i

M
iMiii aBXBBB i

i
Θ+⋅Ω+⋅⋅⋅+Ω+Ω+Ω+∑

=
 i,

3

1

2
210  

       for Nt ,......,1=         [3-24] 

Using  

( )3210 ,,,Max MMMMM =  

MNL −=  

[ ]T
3210 3M31302M21201M11100M0100                                ΩΩΩΩΩΩΩΩΩΩΩΩ= LLLLβ

 

[ ]LMMM YYYY +++= ,,, 21 L  

[ ]3210 M
3

1
3

0
3

M
2

1
2

0
2

M
1

1
1

0
1

M
0

1
0

0
0 ,,,, , , ,,,,,,,, XXXXXXXXXXXXX LLLL=  

where  0
i

jj
i XBX =  and [ ]TLMiMiMii XXXX )()2()1(

0          +++= L  

[ ]LMMM nnn +++= ,,, 21 Lε    where ( ) tt aBn Θ=  

Equation [3-24] can be expressed as an ordinary least-squares problem. 

εβ +⋅= XY         [3-25] 

It is known that the solution for the ordinary least-squares estimates of β  is 

( ) YXXX TT 1ˆ −
=β        [3-26] 

It should be pointed out that the noise series ε  is not white noise in most 

cases, therefore the ordinary least-squares estimates of β  is in fact not efficient.  

Thus, estimation of β  can be improved by using generalized least squares method.  If 

the covariance matrix Γ  of ε  is known, the generalized least squares estimator of β  

which is consistent and efficient is 
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( ) YXXX TT 111ˆ̂ −−− ΓΓ=β       [3-27] 

It is complicated to compute β̂̂  directly through [3-27].  Instead, X  and Y  

are first transformed into X~  and Y~  by 

XHX =~         [3-28] 

YHY =~         [3-29] 

where H  is the Cholesky decomposition of 1−Γ , say HH T=Γ−1 , thus is H  

an upper triangular matrix. 

Therefore, we obtain β̂̂  by using the ordinary least square estimation on the 

transformed series X~  and Y~ . 

( ) YXXX
TT ~~~~ˆ̂ 1−

=β        [3-30] 

The transformations in [3-28] and [3-29] are approximately equivalent to 

filtering the input and output series by the ARIMA model of the noise series (Ljung 

and Box 1979).  For instance, in [3-25], using the transformations ( )YBY 1~ −Θ=  and 

( )XBX 1~ −Θ=  results in the following equation which can be viewed as a set of 

ordinary regression equations. 

aXY +⋅= ~~ β         [3-31] 

where a  is the vector form of the white noise series ta . 

However, the noise model is in fact unknown but can be identified from 

ARIMA analysis on the OLS residuals (Liu and Hassens 1982).  An iterative 
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procedure of filtering and the ordinary least square estimation could then be set up 

until the estimates of β̂̂  and the ARIMA model converge (Figure 3-2). 

 

 

Figure 3-2 Iterative Procedure of Filtering and OLS Estimation 
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Initial OLS estimate 

( ) YXXX TT 1ˆ̂ −
=β  
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XY ⋅−= βε ˆ̂  

ARIMA analysis 
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( )YBY 1~ −Θ=  
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OLS estimate 

( ) YXXX
TT ~~~~ˆ̂ 1−

=β  Start 

( )BΘ  and β̂̂  
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Model estimation is done. 

No 

1st iteration? 



 

 59 
 

 

Two issues related to the model estimation should be considered.  First, how 

to determine the value of iM  for each input i?  Secondly, how to deal with the non-

stationary data? 

The first problem is actually to choose most significant past time intervals at 

which the exogenous variables occur.  In other words, one group of the explanatory 

variables of tY  is tX , 1−tX , 2−tX ,…… gtX − ,…… It is reasonable to assume that the 

larger the lag g, the smaller the influence of  gtX −  on tY .  There exists a maximum 

lag,  iM , beyond that the influence can be neglected.  The magnitude of iM  is quite 

dependent on the length of time interval on which the time series is sampled.  The 

longer the time interval, the smaller iM  could be; vice versa.  In practice, we can set 

a sufficiently large value to iM  and continue with the ordinary least square 

estimation.  The t-statistics for each estimates of  β̂̂  could help to rule out the 

insignificant variables, which basically is to reduce the size of iM .  As we can see 

from the notation for Equation [3-25], smaller iM  means less coefficients to be 

estimated and the model becomes more parsimonious which is a desirable property.  

With newly updated equations, another ordinary least square estimation can be 

performed.  If it is necessary, an iterative procedure could be used to obtain the 

convergence of the values of iM ’s. 

The second problem is usually resolved by filtering the time series data using 

difference method.  A stochastic stationary process, which has a constant mean level 
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and finite variance over time, can make the transfer function model well-conditioned 

and with controllable forecasting.  A non-stationary process can transform to a 

stationary process by the dth difference [Box and Jenkins 1976], as follows: 

( ) t
d

t ZBW −= 1        [3-32] 

tW  is the stationary series.  tZ  is the non-stationary series.  In practice, d is 

usually 0, 1, or at most 2 to obtain a stationary series.  Time series might transit 

between stationary and non-stationary state back and forth gradually.  Therefore, 

employing the differenced input and output series in [3-15b] rather than the original 

series is more advantageous especially in infinite online estimation framework.  For 

instance, one degree time differencing is applied to the inputs and output and we 

obtain 

( ) 11 −−=−⇐ tttt YYYBY       [3-33] 

( ) 1,,,, 1 −−=−⇐ titititi XXXBX  for i = 1, 2, 3   [3-33] 

Once the differenced series are prepared, the subsequent estimation procedure 

remains unchanged. 

 

3.3.4 Minimum mean square error forecast 

To obtain an optimal speed forecast using information from both density and 

speed occurring in the near past, we first estimate the dynamic model [3-15b] in the 

manner already outlined in the section 3.3.3.  Suppose, using the previous notations, 

that a dynamic model is 
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( ) ( )[ ] ( ) ttitt aBXBYBY Θ+⋅Ω+⋅Ω= ∑
=

−

3

1i
 i,10     [3-35a] 
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 [3-35b] 

where 10 =Θ . 

Assume that stochastic ARIMA models [Box and Jenkins 1976] for tiX , and 

tY  are 

( ) ∑
∞

=
−==

0
,

j
jtjYtYt BY βψβψ       [3-36] 

where ( ) ( ) ( )BBB YYY θϕψ 1−=  and 10, =Yψ  

( ) ∑
∞

=
−==

0
,,,,

j
jtijXtiXti ii

BX αψαψ      [3-37] 

where ( ) ( ) ( )BBB
iii XXX θϕψ 1−=  and 10, =

iXψ . 

Now [3-35b] may be written as 
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So the theoretical value for the output at time t+l is: 
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Suppose that the best forecast ( )lYt̂  of ltY +  made at origin t, which is a linear 

function of current and previous tβ ’s, tα ’s and ta ’s, is of the form 

( ) jt
j

jl
j

jtijlX
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jtjlYt alY
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The mean square error is 
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since the conditional expectations of series hβ ’s, hα ’s and ha ’s (for h>t) 

given the past observations up to t are all zeros.  Thus the minimum mean square 

error forecast ( )lYt̂  of ltY +  at origin t is given by the conditional expectation of ltY +  at 

time t.  The forecast is actually conditional on the knowledge of the series from the 

past up to the present origin t. 

Now, using  to denote conditional expectations at time t, we can compute 

the forecast as 
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Hence, the minimum mean square error forecast ( )lYt̂  of ltY +  at origin t is 

based on the past observations for the inputs and output up to time t as well as the 

previous (yet after the current time t) forecasts. 

Meanwhile, the variance of the forecast error for ( )lYt
ˆ  is 
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It is apparent to see that the larger the forecast horizon l , the higher the 

variance would be. 

 

3.3.5 Adaptive calibration and forecasting 

In the context of online application, the parameters in the dynamic speed-

density model based on the transfer function could be recalibrated using the above 

ordinary least square based approach when fresh real-time traffic data become 

available.  Such an adaptive mechanism would provide a systematic way to maintain 

an updated speed-density relation that is consistent with the most recent traffic states. 

A rolling horizon scheme is designed for the proposed adaptive calibration 

and forecasting.  In this scheme, the observed data in one finite time period (the 

horizon) are chosen at each time to obtain estimates of the coefficients.  The derived 

coefficients are applied instantly to the subsequent traffic flow simulation in order to 

predict speeds.  Virtually, the estimated model could be applied to predict speeds for 

any future time beyond the end of calibration horizon.  As time advances, the horizon 
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moves forward by one roll period and a new calibration is performed.  So whenever 

the new model with the newly calibrated coefficients is obtained, speeds are to be 

updated adaptively no matter what are the previous predictions.  Figure 3-3 shows the 

data processing pattern for adaptive calibration of speed-density relationship and 

speed forecasting. 

 

 

Figure 3-3 Data Processing Pattern for Adaptive Calibration and Forecasting 
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discarded.  The amount of data being processed each time is fixed for a given horizon 

duration, which results in nearly constant computation cost each time.  Another 

benefit of implementing the rolling horizon scheme is that it can reflect the most 

recent traffic dynamics and ignore the effect of the more remote past situations on the 

current and future system.  Especially when traffic undergoes an unusual pattern, the 

rolling horizon scheme could adjust the speed-density relation in a timely manner to a 

different pattern to provide more realistic estimation. 

It should be pointed out that the adaptation is very critical to the application of 

the dynamic speed-density model.  The ability of the model to capture the inner 

dynamic evolution of traffic flow is greatly relied on the acquisition of the latest 

traffic data.  It is found in our experiments that, without the adaptation mechanism, 

the coefficients in the model are time insensitive and the model performance in speed 

prediction cannot even match the conventional static model. 

In the following chapter, a series of tests for adaptive calibration and 

forecasting are conducted to illustrate the benefit of the proposed dynamic speed-

density relation against the conventional static model for speed prediction in the 

context of real time operation. 

 

3.4 Summary 

In this chapter, the detailed formulations of speed forecasting from real-time 

traffic measurements are presented.  By extending the higher-order continuum traffic 

flow theory and exploring the time-series approaches, a dynamic speed-density 

relation is proposed.  The model explicitly includes the speed relaxation, speed 
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convection and density anticipation which are found to have impacts on dynamics of 

speeds.  Besides these factors, the model also recognizes that the associated noise 

series is auto-correlated.  By applying the approach in the transfer function model, the 

procedures for the model estimation and speed prediction using the real data are also 

presented.  For online application, the rolling horizon framework is proposed for the 

adaptive calibration and prediction. 
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Chapter 4: Standalone Evaluation Numerical Test 

To evaluate the model performance for online application, a series of 

standalone tests are intended to adaptively calibrate the dynamic speed-density model 

and predict speed using the rolling horizon framework which is already outlined in 

the Chapter 3.  In the standalone tests, we mimic online calibration and speed 

prediction by assuming densities are known values at any time interval t which are 

equivalent to the observed density series.  The standalone test aims to investigate the 

performance of the proposed model in replicating the real output given the real inputs.  

However, in a real online network traffic estimation and prediction, densities are 

usually derived by a certain traffic network modeling, e.g. the simulation-based DTA 

model.  The approaches presented in Chapter 5 and the experiments described in 

Chapter 6 are to incorporate the proposed model into the online simulation-based 

DTA model by taking the place of the static model, where densities used are 

simulated values. 

 

4.1 Test description 

The data used in this test were collected from freeway sections on US I-405 in 

Irvine, Orange County, CA.  The dataset is composed of the 5-day density and speed 

data at 30-second sampling interval from 4:00 am to 10:00 am on three continuous 

freeway sections.  Figure 4-1 shows the location of sampled sections, section A, 

section B, and section C. 
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Figure 4-1 Data Sampling Locations 

 

Among the three freeway sections, the model calibration and speed prediction 

are performed for section A.  The archived data from section A provide the 

information of speed relaxation, while the information of downstream anticipation 

and upstream convection are obtained via the archived data from the neighboring 

section B and C, respectively. 

In a real transportation network, not all traffic sections are under monitoring 

and data-sampling.  The most informative case occurs when data are collected at the 

section under study as well as the upstream and downstream sections.  If data 

collection is geometrically isolated, the speed prediction via real-time data can only 

count on the single data stream which is much less informative than the former case.  

The in-between case is when data are collected locally plus either upstream or 

downstream.  Therefore, to accommodate the realistic data availability in the real-

world, four variants of the dynamic speed-density model are to be tested.   

Model type 1 has the simplest formulation where only the relaxation term is 

included as the dynamic driving force. 
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Model type 2 contains effects of the relaxation and convection. 
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Model type 3 contains effects of the relaxation and anticipation. 
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Model type 4 incorporates all of the three most important factors. 
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As we can see in these model variants 1 through 4, we assume that data are 

definitely collected from the traffic section under study so that their speed relaxation 

information is always available.  When fewer triggering forces are considered, as in 

Model type 1, it is expected that the noise would be higher since more uncontrolled 

factors exist but the model estimation is much simpler and quicker.  Our concern is 

which model variant has a good combination of prediction accuracy and computation 

efficiency.  Hence, comparison of the four model variants is one of the spotlights in 

the tests. 

The effectiveness of the model will be evaluated by comparing MOEs 

generated in the static model and the dynamic model.  The most straightforward MOE 

is the average root mean squared error (RMSE) of the predicted speed against the 

actual value over the whole prediction period.  To be more sensible, RMSE will be 
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weighted by the number of vehicles in each observation interval.  Using ∆  denote the 

weighted RMSE, then 

( )[ ]
∑

∑ −⋅
=∆

t
t

t
ttt

k

uuk 2ˆ
  for pTt ,,1L=   [4-5] 

where t  is the time step at which speed prediction is made; there are totally 

pT  of time intervals. 

Using the archived traffic data containing density and speed in Day 1, static 

speed-density relations specified by the modified Greenshields’ model are calibrated. 

The calibrated static models serve for two purposes.  First, the calibrated static 

models are used as the equilibrium relation to calculate the equilibrium speed in the 

dynamic model at each time interval given a known density value.  Second, the 

speeds predicted by the static model are about to be compared with the dynamic 

model, so the calibrated static relation is also a benchmark.  In all the tests hereafter, 

the modified Greenshields’ model is adopted as the static model form. 

The modified Greenshields’ model has the general form 

( ) 00 1 u
k
kuuu j

f +





 −−=

α

             [4-6] 

where 

u  is the mean speed; 

fu  is the mean free speed; 

0u  is the minimum speed; 

k  is the density; 

jk  is the jam density; 
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α  is the power term used to capture the sensitivity of speed to the density. 

If a range with a constant speed (e.g. when okk ≤≤0 , where ok  is the 

optimum density) is particularly modeled, a dual-regime modified Greenshields’ 

model  emerges in  which  the constant  free-flow  speed  is specified  for  the  free-

flow  conditions  and  a  modified  Greenshields’  model  is  specified  for congested-

flow conditions (Figure 4-2 (a)).  In contrast, a single-regime model applies the 

modified Greenshields’ model for both free- and congested-flow conditions (Figure 

4-2 (a)). 

Dual-regime models are generally applicable to freeways, whereas single-

regime models apply to arterials [University of Maryland DTA Group, 2003].  The  

reason  why  a  dual-regime  model  is  applicable  for  freeways  in  particular  is  that 

freeways have typically more capacity (higher service flow rates)than arterials, and 

can accommodate dense traffic (up to 2300 pc/hour/lane) at near free-flow speeds.  

On the other hand, arterials have signalized intersections, meaning that such a 

phenomenon may be short-lived, if present at all.  Hence, a slight increase in traffic 

would elicit more deterioration in prevailing speeds than in the case of freeways.  

Therefore, arterial traffic relations are better explained using a single-regime model.  

Since the sections to be tested are freeway, the dual-regime model is more applicable.  

Figure 4-3 shows the calibrated static model against the actual data points for the 

freeway section A. 
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Figure 4-2 Two Types of the Modified Greenshields’s model 
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Figure 4-3 Illustration of Calibrated Modified Greenshields’ Models against 
Actual Data on Freeway Section A 
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Two groups of tests are devised to examine the dynamic model in the adaptive 

mode.  In the first set of tests, the rolling horizon scheme is fixed with the calibration 

horizon = 60-minute and the roll period = 2.5-minute.  Performances of the four 

variants of the dynamic model are to be evaluated combined with different static 

models (calibrated or borrowed).  In the second set of tests, the model sensitivity to 

the rolling horizon scheme is analyzed.  

All the adaptive calibrations and predictions are made using Day 2 ~ 5 data 

since Day 1 data are completely contributed for the static relation calibration.  The 

following section shows the test results and the related findings. 

 

4.2 Results and analysis 

4.2.1 Model effectiveness and robustness 

First, we use the calibrated dual-regime modified Greenshields’ model as the 

equilibrium relation and the one to be compared with the dynamic model which is 

applied adaptively.  Figure 4-4 to Figure 4-7 are the time series plots for the 

computed speed verse the actual data of Day 2 in these tests. 
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Figure 4-4 Dynamic Model Type 1 + Calibrated Dual-regime MG Model 

(RMSE: static prediction  5.47 mph, dynamic prediction  8.90 mph) 
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Figure 4-5 Dynamic Model Type 2 + Calibrated Dual-regime MG Model 

(RMSE: static prediction  5.47, dynamic prediction  9.24) 
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Figure 4-6 Dynamic Model Type 3 + Calibrated Dual-regime MG Model 

(RMSE: static prediction  5.47, dynamic prediction  6.74) 
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Figure 4-7 Dynamic Model Type 4 + Calibrated Dual-regime MG Model 

(RMSE: static prediction  5.47, dynamic prediction  6.66) 

 

Then, we use the calibrated single-regime modified Greenshields’ model as 

the equilibrium relation and the one to be compared with the dynamic model which is 
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applied adaptively.  Figure 4-8 to Figure 4-11 are the time series plots for the 

computed speed verse the actual data of Day 2 in these tests. 
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Figure 4-8 Dynamic Model Type 1 + Calibrated Single-regime MG Model 

(RMSE: static prediction  7.64, dynamic prediction  8.44) 
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Figure 4-9 Dynamic Model Type 2 + Calibrated Single-regime MG Model 

(RMSE: static prediction  7.64, dynamic prediction  8.39) 
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Figure 4-10 Dynamic Model Type 3 + Calibrated Single-regime MG Model 

(RMSE: static prediction  7.64, dynamic prediction  7.62) 
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Figure 4-11 Dynamic Model Type 4 + Calibrated Single-regime MG Model 

(RMSE: static prediction  7.64, dynamic prediction  7.24) 

 

The results show that the adaptively calibrated dynamic model performs 

comparably both with the single-regime static relation and the dual-regime static 

relation.  However the identification of the single-regime static relation would be 
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easier, which would simplify the whole procedure.  In addition, all of the four 

variants of the dynamic models are working well in predicting speed. The dynamic 

model Type 4 with three inputs has the lowest prediction error over the other three 

models, but more computation efforts are engaged.  By comparing the results form 

the Type 1 and the Type 2, or the Type 3 and the Type 4, we found that the impact of 

convection is not as apparent as the anticipation.  The model Type 3 which includes 

the effects of relaxation and anticipation shows the best trade-off between accuracy 

and computation efficiency. 

Now, instead of using the calibrated static relation with the data from the 

section A under study, the static relations are calibrated for another similar road 

facility (e.g. a different freeway section but with similar characteristic) and borrowed 

to the section A to be used as its static relations in the tests.  When applied to the 

section A, these relations either overestimate or underestimate speeds on average.  

Figures 4-12 to 4-15 are the time series plots for the computed speed with the 

overestimated equilibrium relation verse the actual data of Day 2 in these tests.  To 

restrain the length of the dissertation, only the time series plots with the single-regime 

MG model are shown.  The results of the dual-regime MG model can be found in a 

summary plot (Figure 4-20) presented later. 
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Figure 4-12 Dynamic Model Type 1 + Overestimated Single-regime MG Model 

(RMSE: static prediction  9.64, dynamic prediction  8.36) 
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Figure 4-13 Dynamic Model Type 2 + Overestimated Single-regime MG Model 

(RMSE: static prediction  9.64, dynamic prediction  8.34) 
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Figure 4-14 Dynamic Model Type 3 + Overestimated Single-regime MG Model 

(RMSE: static prediction  9.64, dynamic prediction  7.49) 
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Figure 4-15 Dynamic Model Type 4 + Overestimated Single-regime MG Model 

(RMSE: static prediction  9.64, dynamic prediction  7.11) 

 

Figure 4-16 to Figure 4-19 are the time series plots for the computed speed 

with the underestimated equilibrium relation verse the actual data of Day 2. 
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Figure 4-16 Dynamic Model Type 1 + Underestimated Single-regime MG Model 

(RMSE: static prediction  15.93, dynamic prediction  8.54) 
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Figure 4-17 Dynamic Model Type 2 + Underestimated Single-regime MG Model 

(RMSE: static prediction  15.93, dynamic prediction  8.47) 
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Figure 4-18 Dynamic Model Type 3 + Underestimated Single-regime MG Model 

(RMSE: static prediction  15.93, dynamic prediction  7.75) 
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Figure 4-19 Dynamic Model Type 4 + Underestimated Single-regime MG Model 

(RMSE: static prediction  15.93, dynamic prediction  7.36) 

 

The above tests show that all four variants of the TF-based dynamic models 

are not sensitive to the preciseness of the static relation.  The performance down-

grades are not significant with the quality of the borrowed static models.  Similar to 
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the previous finding, the complex dynamic model 4 with three-input still outperforms 

the other three and the model type 3 is more efficient and has enough accuracy. 

To summarize the above tests, Figure 4-20 and Figure 4-21 show the 

performances of the dynamic models versus the static models for Day 2 and Day 2 - 

Day 5 on average.  A similar pattern can be viewed from these two plots, indicating 

that the prediction made by the dynamic model is much more stable than the static 

model under different quality of the static relation.  
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Figure 4-20 Model Performance Comparison for Day 2 
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Figure 4-21 Average Model Performance Comparison over Day 2-Day 5 

 

In Figure 4-20, it is clear that the dynamic model is not dominantly better than 

the static model for Day 2.  In the case of using calibrated static model (dual-regime 

or single regime Modified Greenshields’ model) for each dynamic model type, the 

average errors of the static model is better than (for dual-regime) or similar to (for 

single-regime) the dynamic models.  To look into how the dynamic model does not 

pick up the speed trend as well as the static model, Figure 4-22 displays the hour-by-

hour speed RMSEs for the static model (calibrated for the section A using Day 1 

data) and the dynamic model (Type 3) for Day 2.  The plot shows that the dynamic 

model causes lower speed prediction errors than the static model during the off-peak 

hour periods (5:00am-7:00am and 9:00am-10:00am).  However, during the peak hour 

periods (7:00am-9:00am), the static model becomes more accurate than the dynamic 

model.  The reason for that is because the congestion pattern of the traffic during peak 

hour in Day 2 is highly close to what happened the same period in Day 1.  The one-

to-one relation of speed and density during congestion (high density and low speed) 
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usually exhibits a well identifiable curve with little fluctuation.  Thus, the static 

relation calibrated for the peak hours in Day 1 is quite fit for Day 2, which brings 

about the good performance during the peak hour for Day 2.  On the other hand, the 

dynamic model is relatively insensitive to the quality of the embedded static relation.  

No matter a “perfect” static relation or a coarse static relation is used, the dynamic 

model only passes smaller changes on the prediction quality than the static model. 

The point can be demonstrated further in Figure 4-23 and Figure 4-24.  In 

Figure 4-23, the same static model (calibrated from Day 1) is used for Day 4.  As we 

can see, the dynamic model outperforms the static model during the whole prediction 

horizon.  The traffic pattern in Day 4 is different from Day 1.  The underlying static 

models for these two days are different.  Higher prediction errors than Day 2 occur 

when the static model from Day 1 is used for Day 4 to estimate speeds.  However, the 

corresponding dynamic model produces a little error increase compared to Day 2.  It 

is because the equilibrium value is not the only trigger factor to determine the speed 

dynamics and a series of past as well as neighboring traffic states are taken into 

account in the dynamic model.  It would be more obvious if we revisit the time-series 

plots (Figure 4-4 through Figure 4-19).  During the time between 9:15am to 9:30am, 

the actual traffic experienced a short slow-down.  The dynamic model shows the 

ability to pick up this dynamics even though the static model can not. 

In Figure 4-24, another static model which is calibrated from another location 

instead of the section A is used for Day 2.  It is evident that the static model is not fit 

for Day 2 so that the prediction errors of the static model in all the study hours get 
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significant increases.  Similarly, the performance of the dynamic model is not 

affected greatly per se. 
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Figure 4-22 Hour-by-hour Speed RMSEs for Static Model vs. Dynamic Model 
(Day 2) 
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Figure 4-23 Hour-by-hour Speed RMSE for Static Model vs. Dynamic Model 
(Day 4) 
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Figure 4-24 Hour-by-hour Speed RMSE for Static Model (borrowed) vs. 
Dynamic Model (Day 2) 

 

In summary, the robustness of the dynamic model is revealed under different 

quality of the equilibrium relations.  Fully incorporating three factors (relaxation, 

convection, and anticipation) would bring the most accurate result.  However in terms 

of accuracy and efficiency, the model with relaxation and anticipation performs the 

best.  Using dual-regime MG relation in the dynamic model does not significantly 

outperform the single-regime MG relation.  Another implication from the test results 

is that if the static model during a particular period (i.e. peak hour) is deterministic 

and very close to the actual traffic pattern, it might be better than dynamic model.  

However, the day-to-day variations or location-to-location variations existing in the 

underlying traffic patterns would not make the static model as reliable as the dynamic 

model that can adapt to the different equilibrium relations easily without great loss of 

accuracy. 
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4.2.2 Sensitivity of the rolling horizon scheme 

First, we examine the sensitivity of model performance to the length of roll 

period.  The adaptive model calibration and the speed prediction are performed using 

the roll period of from 1-minute up to 30-minute and the calibration horizon is fixed 

at 60-minute.  Figure 4-22 and Figure 4-23 are the RMSEs of speed prediction at the 

different roll period for the model with the dual-regime and the single-regime MG 

relation, respectively.  The result shows that the longer the roll period (which means 

less frequent model updating), the lower performance the dynamic model tends to 

have.  When the model calibration is frequent, the parameters keep being updated 

frequently so as to be able to reflect the most recent dynamics in traffic flow, and at 

same time increase the computation efforts needed for the repeated calibrations.  In 

our tests, 2.5min or 5min is considered as the most appropriate roll period length for 

the sufficient quality with the reasonable computation resource. 

 

4.00

6.00

8.00

10.00

12.00

14.00

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

length of roll period  (min)

sp
ee

d 
R

M
S

E 
(m

ph
)

model type 1 + dual-reg MG model type 2 + dual-reg MG
model type 3 + dual-reg MG model type 4 + dual-reg MG

 

Figure 4-25 Speed RMSEs at Different Roll Periods for Dynamic Models with a 
Dual-regime MG Relation 
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Figure 4-26 Speed RMSEs at Different Roll Periods for Dynamic Models with a 
Single-regime MG Relation 

 

Then, we examine the sensitivity of model performance to the length of 

calibration horizon.  The adaptive model calibration and speed prediction are 

performed using the calibration horizon of from 20-minute up to 120-minute and the 

roll period which is fixed at 2.5-minute.  Figure 4-24 and Figure 4-25 are the RMSEs 

of speed prediction at the different calibration horizon for the model with the Dual-

regime and the Single-regime MG relation, respectively.  The result shows that the 

shorter the calibration horizon, the lower performance the dynamic model tends to 

have.  Shorter calibration horizon provides insufficient data points to reveal the 

underlying dynamics which might be the cause of the lower performance.  Longer 

calibration horizon requires longer computation time.  The performances are virtually 

comparable beyond 60 minutes.  However, due to the limitation of finite amount of 

data in the test, the longer calibration horizon means that fewer data are evaluated and 
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lower the reliability of the result.  Take into account the above aspects, 60-minute is 

chosen as the most appropriate length of calibration horizon in the test. 

 

4.00

6.00

8.00

10.00

12.00

14.00

20 40 60 80 100 120

length of calibration horizon  (min)

sp
ee

d 
R

M
S

E 
(m

ph
)

model type 1 + dual-reg MG model type 2 + dual-reg MG
model type 3 + dual-reg MG model type 4 + dual-reg MG

 

Figure 4-27 Speed RMSEs at Different Calibration Horizons for Dynamic 
Models with a Dual-regime MG Relation 
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Figure 4-28 Speed RMSEs at Different Calibration Horizons for Dynamic 
Models with a Single-regime MG Relation 
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4.3 Summary 

In this chapter, a set of standalone numerical experiments are designed to 

evaluate the performance of the model and the adaptive mechanism presented in 

Chapter 3 under various scenarios.  The reliability and robustness of the model as 

well as the sensitivity analysis of the rolling horizon scheme are comprehensively 

discussed.  The results indicate that the proposed model is robust under different 

quality of the equilibrium relations.  Speed dynamics are mainly affected by speed 

relaxation and density anticipation for the section A in these standalone tests.  Fine-

tuned rolling horizon scheme is another important factor to ensure the higher 

performance of the dynamic model over the static model. 
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Chapter 5: Traffic Flow Modeling in Real-Time DTA 

5.1 Introduction 

The overall success of the proposed dynamic model is ultimately dependent 

on the integration with the traffic simulation based system.  In the dissertation 

research, the dynamic model is intended to enhance the real-time modeling capability 

of the advanced TrEPS, DYNASMART-X.  As stated in Chapter 2, the traffic flow 

modeling in the core simulation module of the DYNASMART relies on the static 

speed-density relation, namely the Modified Greenshields’ model.  For the long term 

planning, the Modified Greenshields’ model has been sufficiently satisfactory by 

reflecting the main trend of traffic flows, as shown in the system evaluation of 

DYNASMART-P [University of Maryland DTA Group, 2003].  However, 

DYNASMART-X, with the same core simulation module with DYNASMART-P, is 

oriented to traffic management applications where short term and real-time traffic 

monitoring and operational controls are required.  In such cases, the static speed-

density relation would lack in response to the actual traffic occurring.  Traffic flow 

modeling capability would be improved when quasi-continuous real-time traffic data 

are available.  Under the motivation, the dynamic model proposed in the dissertation 

research aims to enhance the capability through an adaptive learning process from the 

real-time data. 

One of the problems in implementing the dynamic model in the traffic 

simulation model is how to deal with time resolution differences in the observation 

(data sampling) interval and the simulation interval.  The usual observation interval 
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ranges from 20 seconds to 5 minutes, while the mesoscopic type traffic simulation 

model uses a much finer time scale to track the vehicle trajectories, like 0.1 minute in 

DYNASMART.  Thus, the direct application of the dynamic model based on 

relatively longer time intervals to the traffic simulation based on shorter updating 

steps would be inappropriate.  Section 5.2 will provide a solution which is based on 

the connection between continuous dynamic system and discrete dynamic system. 

As mentioned in Section 2.3.3.2, the algorithmic component which is the main 

entity of DYNASMART-X includes the traffic state estimation module and the traffic 

state prediction module.  The purpose of the state estimation module is to estimate the 

prevailing traffic state in the network.  The state prediction module, on the other 

hand, periodically provides future network traffic states with the descriptive and the 

normative capabilities for a pre-defined horizon through the rolling horizon 

operational mode.  At the start of each state prediction stage, the predictor reads the 

current network conditions from the real time estimator and uses the predicted time-

varying origin-destination traffic demand values to predict network conditions over 

the next stage.  The reliability of the traffic state estimation is a critical issue for the 

real-time traffic management and control.  If the traffic network state can not be 

estimated with a reasonable accuracy, any predictions produced based on that can be 

wrong.  This can result in erroneous traffic advisory or control strategies that may 

cause the network to perform worse than the one without a real-time system in place.   

Although a great deal of dedicated endeavors is always made to remove 

causes of inconsistency, the traffic simulation may not fully replicate the real-world.  

Despite the best efforts, there remains a tendency for the simulation system to wander 
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off actual situation.  For instance, the speed, which is used to move vehicles and 

determine shortest paths, and the density, which are the outcome of vehicle 

movements and path selection in the simulation, are usually different from the 

observed speed and density measured by sensors.  The reasons could be unknown or 

uncontrolled factors in the entire traffic network models and algorithms.  In such 

circumstances, some process adjustment or regulation might be necessary to 

compensate for the deviation.  Otherwise, it could occur that if left to itself, the 

entropy or disorganization of any system can never decrease and will usually 

increase, which is implied by one of the fundamental physical laws  the second law 

of thermodynamics [Kuhn, 1978].  A procedure called short term correction is 

therefore presented to identify discrepancy between real-time simulation and real-

world and use it to direct the reduction of inconsistency.  The procedure is based on 

feedback control theory and will be described in Section 5.3. 

 

5.2 Different time scales 

5.2.1 Continuous dynamic system vs. discrete dynamic system 

In the research, the dynamic model proposed in Chapter 3 is in the discrete 

form.  The discretisation is made based on the momentum equation in the higher 

order continuum model.  The momentum equation in fact is a continuous differential 

equation consisting of the derivatives with respect to space and time.  In many cases, 

a discrete dynamic system corresponds to an underlying continuous dynamic system.  

Therefore, for a discrete transfer-function equation in a general form of 
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jt
j

jt XvY −

∞

=
∑=

0
 ,     [5-1] 

the corresponding continuous transfer-function equation can be written in the form 

( ) ( ) ( )duutXuvtY −= ∫
∞

0
.    [5-2] 

where, 

tY  is the discrete system output.  Its corresponding continuous variable is 

( )tY . 

tX  is the discrete system input.  Its corresponding continuous variable is 

( )tX . 

jv  is the discrete impulse response of tY  to one unit of tX .  Its corresponding 

continuous variable is ( )uv . 

Typically, the discrete observations are a stepwise approximation of the 

underlying continuous variable (Figure 5-1).  If the record is read at a sufficiently 

small sampling interval so that sudden changes do not occur between the sampled 

points, the approximation will be very close to the continuous one.  In this case, the 

different techniques, such as middle point approximation, mean value approximation 

and instantaneous point approximation, will result in comparable approximations. 

It is reasonable to assume that the discretised impulse responses ( jv ) 

estimated from the discretised observations ( tY  and tX ) are also the approximation 

of the actual continuous impulse responses ( )uv . 
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Figure 5-29 Replacement of Continuous Variable by Discrete Variable 

 

5.2.2 Model implementation in DTA-type traffic simulation 

In Figure 5-1, the time step length could be varied depending on the system 

under study.  In the typical traffic surveillance system, the step length ranges from 20 

seconds to 5 minutes.  In the traffic simulation system, the step length is a small value 

(e.g. 0.1 minute in DYNASMART).  To apply the dynamic traffic flow model, we 

seek to infer the stepwise impulse responses at the simulation interval from the 

stepwise impulse responses obtained at the observation interval.  Based on the 

discussion of continuous and discrete systems in Section 5.2.1, a straightforward 

solution is proposed and involves a simple procedure including: 

1. approximating the continuous function by connecting the middle points of the 

discrete function at all steps; then 

2. re-discretising the resulting function into a new stepwise function with a smaller 

step length. 

Obviously, a piecewise linear function is resulted in the first step and new 

stepwise impulse responses are obtained in the second step (Figure 5-2). 

Time 

Continuous variable 

Discrete variable 
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Therefore, the new stepwise impulse responses can be computed given the 

values of the prior stepwise impulse responses and the ratio of two time units. 

 

 

Figure 5-30 Impulse Response Conversion 

 

For example, in the Irvine network which is the sample network in the 

dissertation, the freeway observation interval is 30 seconds; while the simulation 

interval in DYNASMART is 6 seconds.  Therefore, the ratio is 5.  By using the 

procedure stated, the following converting equations are used to obtain the new 

Time (simulation scale) 

Time (observation scale) 

Stepwise impulse 
responses for observation 

Piecewise linear impulse 
responses  

Stepwise impulse 
responses for simulation 
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impulse responses, 4−sv , 3−sv , 2−sv , 1−sv , and sv , given the prior impulse responses, 

hv , 1−hv , and 1+hv , as shown in Figure 5-3. 

( ) 5/23 14 −− += hhs vvv        [5-3] 

( ) 5/4 13 −− += hhs vvv        [5-4] 

( ) 40/38 112 +−− ++= hhhs vvvv       [5-5] 

( ) 5/4 11 +− += hhs vvv        [5-6] 

( ) 5/23 1++= hhs vvv        [5-7] 

where 

H is the time scale for observations; 

S is the time scale for simulations; 

h is a specific time point on H; 

s is a specific time point on S; and 

h and s represent the exactly same time point. 
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Figure 5-31 An Example for Impulse Response Conversion 

 

5.3 Short term correction 

5.3.1 Feedback control 

The principle of feedback in control systems is to compare the signal to be 

controlled to a desired reference signal and the discrepancy is used to compute 

corrective control action [Doyle et.al. 1992].  A general system of feedback control is 

shown in Figure 5-4.  The process is affected by a disturbance which in the absence 

of corrective control action would cause the output quality characteristic to deviate 

from target by an amount t∆ .  Thus { }t∆  is a time series exemplifying what would 

happen at the output if no control were applied.  In fact, a corrective control action tC  

h+1hh+2

1−hv
 

hv  

1+hv
 

4−sv  

sv  

1−sv  

2−sv  
3−sv

 

H 

S 
s s+5s-5
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can be manipulated to cancel out this disturbance as far as is possible.  When 1−tC  is 

applied onto the system at time t-1, a compensation te  will be produced at time t.  

Hence, the final deviation is ttt e+∆=ε  (definition of tε  is the difference of output 

and target value), which is the part of errors that controller fails to cancel out.  The 

subsequent control action tC  is dependent on present and past errors ( )L,, 1−tt εε . 

 

 

Figure 5-32 Feedback Control Loop 

 

Among feedback control techniques, PID (proportional-integral-derivative) 

control has been used in the process industries for many years.  Controller of this kind 

is a three term controller, which means that, if tε  is the error at the output at time t, 

the control action could be made proportional to tε  itself, to its integral with respect 

to time, or to its derivative with respect to time.   A PID controller uses a linear 

combination of these modes of control action, say 

dtkk
dt

d
kkC tItP

t
Dt ∫+++= εε

ε
0      [5-8] 

t∆  
Process Dynamics 

1+tt eC a ; 
1+← tt  

Corrective Control Action 
( )L,, 1−= ttt fC εε  

tC  

ttt e+∆=ε  
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Its associated discrete analog is 

∑
=

++∇+=
t

i
iItPtDt kkkkC

1
0 εεε      [5-9] 

where 0k , Dk , Pk , and Ik  are constants. 

Usually only one or two of these three modes of action are used, such as 

integral control and proportion-integral (PI) control. 

The principle of PI (proportional-integral) control mechanism is used for the 

short term correction for online traffic estimation and prediction.  It is in fact one of 

the special cases of [5-9] if only Pk  and Ik  are nonzero ( 0=Dk ).  Since no 

correction is made at the very beginning stage 0=t , 00 =k .  Hence, we have the 

following correction term tC  

∑
=

+=
t

i
iItPt kkC

1
εε        [5-10] 

Here,  tC  is intended to make adjustment to the speed in the upcoming 

simulation interval right after the observation. 

Before continuing with the description of the consistency checking in online 

application, Figure 5-5 depicts the labels on the time axis in terms of observation 

interval τ  and simulation interval κ .  m is the ratio of the observation interval length 

to the simulation interval length. 
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Figure 5-33 Observation Interval vs. Simulation Interval 

 

5.3.2 Speed-deviation-triggered CCU 

For an online simulation-based traffic estimation and prediction system, the 

speed-triggered short term correction aims to compute the discrepancies between 

simulated speeds and observed speeds and direct the correction to speed by the latest 

and past discrepancies. 

Suppose, at the end of the observation time t, an actual traffic speed obs
tu  is 

observed and a speed sim
tu  can be computed as the average value of the simulated 

speeds sim
ku ’s (where mmtmtmtk +⋅−+⋅−+⋅−= )1(,,2)1(,1)1( LL ) in the 

simulation intervals included in that observation interval t.  So, the deviation for time 

t is sim
t

obs
tt uu −=ε .  The series { }tε  forms the basis for corrective action tC  as in [5-

10].  To be able to be implemented in the online operation, the integral part in [5-10] 

is reformulated to a truncated summation from t-h to t as in [5-4], where h represents 

the number of the significant past intervals. 
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∑
−=

+=
t

hti
iItPt kkC εε        [5-11] 

The corrective adjustment is applied to the simulated speed in the simulation 

interval right after the latest observation, say 1+⋅= mtk . 

t
sim
tm

sim
tm Cuu +← ++ 11        [5-12] 

The corrected speed sim
tmu 1+  is expected to serve as a better starting point after 

time t compared to the original speed without adjustment.  The speeds afterwards 

( mmtmtmtku sim
k +⋅+⋅+⋅= ,,3,2where,s' LL ) before the next adjustment will 

be the outcome of the applied traffic simulation and traffic flow models. 

 

5.3.3 Density-speed-deviation-triggered CCU 

In contrast to the speed-deviation-triggered short term correction, the 

discrepancies under study is not only for speeds but also for densities in the density-

speed-deviation-triggered short term correction.  The combined discrepancies are 

used to determine the correction to speed. 

Suppose, at the end of the observation time t, an actual traffic density obs
tk  and 

speed obs
tu  are observed.  A density sim

tk  and a speed sim
tu  can be computed as the 

average value of the simulated densities sim
kk ’s  and speeds sim

ku ’s (where 

mmtmtmtk +⋅−+⋅−+⋅−= )1(,,2)1(,1)1( LL ) in the simulation intervals 

included in that particular observation interval t.  So, the deviation of density for time 

t is sim
t

obs
ttk kk −=,ε  and the deviation of speed for time t is sim

t
obs
ttu uu −=,ε .  The 
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series { }tk ,ε  and { }tu ,ε  form the basis for corrective action tC .  Similar to the previous 

case, a truncated summation from t-h to t is used for the integral control term, where h 

represents the number of the significant past intervals [5-13]. 

∑∑
−=−=

+++=
t

hti
iuIutuPu

t

hti
ikIktkPkt kkkkC ,,,,,,,, εεεε    [5-13] 

Obviously, the corrective action tC  considers the deviations on both density 

and speed and totally four factors IupuIkpk kkkk ,,,, and,,,  are required.  The 

corrective adjustment is applied to the simulated speed in the simulation interval right 

after the latest observation, say 1+⋅= mtk . 

t
sim
tm

sim
tm Cuu +← ++ 11        [5-14] 

The corrected speed sim
tmu 1+  is expected to serve as a better start point after time 

t compared to the original speed without adjustment.  The speeds afterwards 

( mmtmtmtku sim
k +⋅+⋅+⋅= ,,3,2where,s' LL ) before the next adjustment will 

be the outcome of the applied traffic simulation and traffic flow models. 

 

5.3.4 Adaptive estimation of control factors 

To determine the best estimates of the control factors pk and Ik  in [5-11] or 

IupuIkpk kkkk ,,,, and,,,  in [5-13], adaptive calibration is a preferred approach.  The 

parameter estimation is performed using the least-squared-error criterion, which seeks 

to minimize the discrepancies between the estimated speeds from the model and the 

measured speeds.  The optimization problem can be expressed as follows: 
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( )
22

,,,
1   min

,,,,
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−+
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t
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t
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t
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t

sim
t

KKKK k
kk

w
u
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w

IuPuIkPk

  [5-15] 

s.t. 11)1(1)1( −+−+− +← t
sim

mt
sim

mt Cuu       [5-16] 

     ∑
−

−−=
−− +=

1

1
11

t

hti
iItPt KKC εε       [5-17a] 

     or ∑∑
−

−−=
−

−

−−=
−− +++=

1

1
,,1,,

1

1
,,1,,1

t

hti
iuIutupu

t

hti
ikIktkpkt KKKKC εεεε  [5-17b] 

     ( ) simulationDTA ,, )1(2)1( ←+−+−
sim

mmt
sim

mt uu LL    [5-18a] 

     or simulationDTA 
,,

,,,

)1(2)1(

)1(2)1(1)1( ←
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+−+−+−
sim

mmt
sim

mt

sim
mmt

sim
mt

sim
mt

uu
kkk

LL

LL
 [5-18b] 

      ( )sim
mmt

sim
mt

sim
mt

sim
t uuuu +−+−+−= )1(2)1(1)1( ,,,average LL   [5-19a] 

      or       

      

( )

( )sim
mmt

sim
mt

sim
mt

sim
t

sim
mmt

sim
mt

sim
mt

sim
t

kkkk
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+−+−+−

+−+−+−

=

=

)1(2)1(1)1(

)1(2)1(1)1(

,,,average
and           

,,,average

LL

LL

  [5-19b] 

where [5-17a], [5-18a] and [5-19a] are for the speed-deviation-triggered 

consistent checking, and [5-17b], [5-18b] and [5-19b] are for the density-speed-

deviation-triggered consistent checking.  w  and ( )w−1  in [5-15] are the weights 

applied to deviation of speed and density respectively, and 10 ≤≤ w . 

In the optimization problem, the parameters ( )IP KK ,  or 

( )IuPuIkPk KKKK ,,,, ,,,  are viewed as decision variables given the observation at 

time t.  [5-16] are used to adjust the speed sim
mtu 1)1( +−  in the simulation interval right 

after the observation interval t-1, whereby the adjustment 1−tC  is determined by [5-
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17a] or [5-17b].  The speeds afterwards ( )sim
mmt

sim
mt uu +−+− )1(2)1( ,, LL  before the next 

adjustment are obtained through DTA simulation [5-18a].  [5-18b] is to obtain 

( )sim
mmt

sim
mt uu +−+− )1(2)1( ,, LL  and ( )sim

mmt
sim

mt
sim

mt kkk +−+−+− )1(2)1(1)1( ,,, LL  through DTA 

simulation.  sim
mtu 1)1( +−  together with ( )sim

mmt
sim

mt uu +−+− )1(2)1( ,, LL  are used to compute an 

average speed sim
tu  for time t in [5-19a] and [5-19b].  sim

mtk 1)1( +−  together with 

( )sim
mmt

sim
mt kk +−+− )1(2)1( ,, LL  are used to compute an average speed sim

tk  for time t in [5-

19b]. 

In the context of online operational application of DTA simulation modeling, 

the above optimization is performed adaptively when new real-time traffic data 

become available.  One of the constraints in the optimization problem is to satisfy the 

network dynamic traffic assignment requirements; thereby the problem is more like a 

bi-level optimization problem which might need iterative evaluations to obtain the 

best estimates.  Figure 5-6 is the algorithmic procedure for the short term correction 

with the adaptive factor estimation. 
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Figure 5-34 Algorithmic Procedure for the Short Term Correction with the 
Adaptive Factor Estimation 
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5.4 Summary 

This chapter basically describes two problems encountered when the proposed 

dynamic traffic flow model is applied in the mesoscopic type DTA system.  The first 

problem is how to deal with the different time scales between the data sampling 

interval and the simulation updating step.  It is solved by assuming that two discrete 

dynamic systems are related to the same underlying continuous dynamic system.  The 

second problem is how to lower the inconsistency caused by unknown and 

uncontrolled reasons.  To solve the problem, the short term correction procedure is 

formulated to identify discrepancies between real-time simulated values and real-

world observations and adjust speeds periodically.  The adjustment could be triggered 

by either speed-deviation or density-speed-deviation.  The associated tuning 

parameters can be estimated adaptively using the least-square-error method which is 

constrained by DTA simulation model to reach the internal and external consistency.  

The model performance in real-time DTA operation will be evaluated through the 

comprehensive laboratorial tests based on real data in the following chapter. 
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Chapter 6: Performance Analysis of Real-Time Traffic Flow 

Model 

6.1 Introduction 

Chapter 6 discusses the numerical experiments conducted to evaluate and 

analyze the performance of the proposed real-time traffic flow model under various 

operational application scenarios.  DYNASMART-X is used as the traffic simulation 

platform within which the proposed model is implemented. 

As mentioned in Chapter 2, the current (default) traffic flow model in 

DYNASMART-X is based on a static speed-density relation, the Modified 

Greenshields’ model.  The dynamic model proposed in the dissertation is intended to 

replace the static model to produce link speed predictions for every simulation 

updating interval.  The calibration of the proposed dynamic model requires actual 

traffic sensor data to be available quasi-continuously for links.  It is unlikely that all 

the links in a network would be under surveillance; therefore the adaptive model 

calibration and speed prediction are only possible for those observed links.  

Accordingly, the first step of the performance analysis of the dynamic model is to 

evaluate system performance, particularly estimation and prediction accuracy, under 

scenarios of partial implementation of the dynamic model.  The evaluation is meant to 

study the compatibility between the two kinds of models in determining the 

estimation and prediction quality for a transportation network where the dynamic 

model is applied to those links with real-time observations, while the static model is 

still used for those links without observations in the DTA simulation. 
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Although they lack quasi-continuous surveillance data, the unobserved links 

essentially share a similar traffic pattern (under consistent traffic facility environment 

and travel behavior) as the neighboring links with observations.  Therefore, a second 

important focus is the model transferability, namely the extent to which the 

adaptively calibrated model from the observed links can be effectively borrowed to 

those unobserved links to predict speeds, instead of using the static models, in the 

DTA simulation. 

Under real-time DTA operation, traffic simulation is performed for both 

traffic static estimation and prediction which are the most essential functions of the 

DYNASMART-X prototype.  The traffic estimation function synchronizes its step 

with the real clock and estimates the concurrent traffic states.  The traffic estimation 

function uses pre-calibrated or online calibrated OD demand desires over the network 

in a one-shot simulation-assignment mode.  A robust and reliable traffic flow model 

is expected to improve the estimation capability.  Moreover, the concurrency between 

the traffic estimation function and the real world makes possible the short term 

correction function, which would boost the estimation capability to a higher level.  

Observed deviations of the simulated values from the actual values provide a basis for 

the correction to the next link speeds.  The short term correction procedure described 

in Chapter 5 is to be implemented jointly with the proposed dynamic traffic flow 

model to minimize the deviations between the estimated and the real system state 

variables.  The effect of the short term correction on the model performance will be 

tested and discussed. 



 

 113 
 

The traffic state prediction provides the network traffic states for a pre-defined 

prediction horizon.  Every time it executes, it produces the current state of the 

network at the start of the new stage and travel demand predictions for this new stage.  

It can operate in either descriptive or normative mode.  When operating in the 

descriptive mode, it presents only the traffic evolutions consistent with users’ 

behaviors for the next prediction horizon.  When operating in the normative mode, it 

utilizes the iterative Multiple User Class (MUC) algorithm and solves for optimal 

routing policies and other possible network management strategies.   

The traffic state prediction is implemented in DYNASMART-X based on a 

rolling horizon approach.  In this framework (Figure 6-1), the planning horizon is 

subdivided into several overlapping stages.  The consecutive stages overlap at fixed 

intervals, the length of each is referred to as the roll period.  The stage length (or 

horizon) is denoted by h and the roll period is denoted by l.  In the example of Figure 

6-1, h is set to 20 minutes and l is set to 5 minutes.  The roll period l is the short-term 

future duration for which the forecasts are considered to be reliable.  In the remaining 

part of the stage, (h–l), forecasts become less reliable.  In the DYNASMART-X 

prototype, the predictions for a stage are made at the beginning of the stage.  The 

traffic simulation for the predictions is intended to support the online traffic 

management decision-making by operators under various control strategies, 

information dissemination strategies or travel behaviors.  As time advances, the 

traffic state predictions will be repeated periodically.  The previous predictions for the 

overlapping part of the stage, (h–l), will be replaced by the new predictions made at 

the new active stage.  For example, in Figure 6-1, for a duration A, the traffic status is 
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predicted first at Stage m, a second time at Stage m+1, third time at Stage m+2, and 

fourth time at Stage m+3.  The prediction made for time period A in Stage m is 

expected to be less accurate than the prediction made in Stage m+3.  In the 

experiments, a comparison between the static model and the dynamic model in terms 

of prediction capability will be conducted. 

 

minutes 5=l

minutes 20=h

 

Figure 6-35 Rolling Horizon Procedure 

 

As presented in Chapter 3, the proposed dynamic model is extended from a 

discretised version of the higher order continuum model.  The discretisation scheme 

of time and space is of importance to the model performance.  The rougher the 

discretisation, the lower the approximation precision is, but the faster the numerical 

computation could be.  Hence, the impacts of the temporal scale of the measurements 

and the spatial scale of the link segments with observations on the model performance 

are to be tested and analyzed. 
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In the following sections, the network and associated data will be described 

first.  Following presentation of the experimental design, the results of the 

experiments will be discussed. 

 

6.2 Network overview and data description 

The Irvine network (Orange County, California) includes two interstate 

freeways, namely the I-5 and the I-405, as well as part of the state highway 133.  The 

rest of the network consists of arterials and ramps.  Figure 6-2 depicts the Irvine 

network with 326 nodes, 626 links and 61 traffic analysis zones, shown in the GUI of 

DYNASMART-X. 

 

 

Figure 6-36 Irvine Network Displayed in the DYNASMART-X GUI 
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Real-time traffic data from the Irvine network has been collected by loop 

detectors of the Freeway Performance Measurement System (PeMS) in California.  

The data include freeway traffic volume and occupancy at 30-second intervals.  The 

sampling dates are May 22, 24, 30, June 1 and 5 in 2003.  The specific sampling 

period each day is from 4:00 am to 10:00 am, which basically covers the typical 

morning rush hours.  After the proper data clean-up and checking, 13 freeway links 

with reliable real-time data are identified, each of which is named and highlighted in 

Figure 6-3. 

The 13 freeway links become the study links in the experiments described 

hereafter and are divided into five groups according to the freeway location and the 

traffic direction, see Table 6-1.  The table also lists the set(s) of the connected 

neighboring links for each group.  The information is provided to assist in designing 

the experiments when testing the performance of the four different model types (see 

Chapter 4 for the specification of the model types).  As seen in Table 6-1, there are 

two sets of two sequential links and one set of three sequential links. 
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Figure 6-37 Detector Coverage over the Irvine Network 

 

Table 6-1 13 Observed Freeway Links in 5 Groups 

Group # Freeway Direction Link names Connected links 

1 I-405 North bound 405N_1, 

405N_2, 

405N_3, 

405N_4, 

405N_2  405N_3; 

405N_4  405N_5  405N_6 

405N_4 

405N_5 

405N_6 

405N_3 

405N_2 

405N_1 

133N_1 

405S_1 

405S_2 

5N_2 

5N 1 

5S_1 

5S_2 
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405N_5, 

405N_6 

2 I-405 South bound 405S_1, 

405S_2 

NA 

3 I-5 North bound 5N_1, 

5N_2 

5N_1  5N_2 

4 I-5 South bound 5S_1, 

5S_2 

NA 

5 133  North bound 133N_1 NA 

 

Furthermore, the densities are converted from the occupancy data using the 

following relationship: 

(%)*8.52 occ
LL

K
sv +

=
 

where 

K : lane density (in vehicles/lane-mile); 

vL : average vehicle length (in feet); 

sL : average sensor length (in feet); and 

occ: occupancy (%). 

vL  was assumed to be 5 meters (approximately 16.4 feet), and sL  was set to 2 

meters (approximately 6.5 feet). 

To obtain the time-series data of the speeds, the flow and density 

measurements are used to compute the average speeds as KQV /= , where V  is the 
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speed (in mile/hour), Q  is the flow (vehicles/lane-hour), and K  is the density (in 

vehicles/lane-mile). 

 

6.3 Experimental settings, results and discussion 

6.3.1 Experimental settings 

Unlike the standalone experiments presented in Chapter 4, the experiments 

conducted here are intended to investigate the effectiveness of the proposed dynamic 

traffic flow model and the associated algorithms in the context of real-time DTA 

operation.  The integration of the dynamic model with the DTA system is 

accomplished within the DYNASMART-X prototype (see Chapter 2 for the overview 

of the DYNASMART-X).  The full execution of DYNASMART-X includes six 

algorithmic modules, i.e., traffic estimation, traffic prediction, OD demand 

estimation, OD demand prediction, short term consistency checking and long term 

consistency checking.  However, to rule out the effect of possible modeling 

imperfections in the modules which are not directly relevant to the traffic flow 

modeling, the experiments here are primarily conducted by only activating the traffic 

estimation and the traffic prediction modules, and the short term consistency checking 

when required by the experiment design.  In other words, the time-varying OD 

demands are not estimated and predicted online (so the OD estimation and prediction 

modules are disabled), but calibrated a priori; and no online correction on OD 

matrices is made (so the long term consistency checking module is disabled).  So, at 

the beginning of the simulation, the network is empty, with no vehicle occupying any 
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link.  As time goes on, vehicles are generated in the network based on the time-

dependent OD demand information available in the data broker.  Table 6-2 

summarizes the pertinent scheduling parameters applied in the experiment.  It defines 

the module execution frequency and duration as well as observation sampling 

frequency.  The parameter settings could be accomplished through the 

DYNASMART-X GUI, according to the instructions provided in the user’s guide 

[University of Maryland DTA Group, 2004] 

 

Table 6-2 Scheduling Parameters in DYNASMART-X 

Parameter Value 

Assignment Interval 5 min 

Observation Interval*1  0.5 min 

Traffic State Estimation Period 0.5 min 

Traffic State Prediction Roll Period 5 min 

Traffic State Prediction Horizon 20 min 

Traffic Flow Model Updating Period 2.5 min 

Traffic Flow Model Calibration Horizon 60 min 

Short Term Correction Period*2 0.5 min 

*1: the observation interval will be changed to be longer than 0.5 min when the 
impact of temporal scale is tested. 

*2: the short term correction module is activated upon request.  The period should be 
same as the length of the observation interval. 

 

As in Chapter 4, the MOE selected is the average root mean squared error 

(RMSE) of the estimation against the actual observations over the specified 
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estimation period.  The RMSE will be weighted by the number of vehicles in each 

observation interval.  In Chapter 4, given the known and correct values of link 

densities, we only consider the RMSE of link speeds which are the product of the 

real-time prediction.  However, in the DTA system, the speed is predicted through the 

traffic flow model which requires the information such as the prevailing density.  The 

predicted speed becomes the factor to determine how fast and along which path to the 

destination the vehicles should move in the current simulation interval.  As a result, 

the new prevailing density is the outcome of these vehicle movements.  Then the 

speed prediction starts again.  The simulated link density will exhibit some 

discrepancy relative to the observed link density to some extent.  This would 

introduce additional errors in the subsequent prediction of link speeds.  Such errors 

can be kept to a minimum level by a reliable and robust traffic flow model, and the 

error propagation could be limited by introducing the short term correction process.  

Therefore, in the experiments conducted here, RMSE is computed for both speeds 

and densities of the study links. 

Again similarly to Chapter 4, the static relation serves two purposes.  One is to 

provide the equilibrium value for the relaxation term in the dynamic model; the other 

is to provide a standard of comparison in judging the experimental effects of the 

dynamic model.  The static speed-density relations used for links in the Irvine 

network were previously calibrated for use in an operational planning application of 

the DYNASMART system. 

In the following sections, 6.3.2 through 6.3.7, the experiments, based on the 

available data, focus on the model compatibility, the model transferability, the traffic 
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estimation capability with short term correction, the traffic prediction capability, and 

the impacts of the temporal scale and the spatial scale.  The experiment descriptions 

and results will be presented together with the pertinent discussion and concluding 

remarks. 

 

6.3.2 Model compatibility 

The objectives of the evaluation performed here are 1) to assess whether the 

partial application of the dynamic traffic flow model over the network provides 

benefits to the overall traffic state estimation capability of the real-time DTA system; 

and 2) to assess the relative effect of the different model specifications, with regard to 

including one or more of the higher-order dynamic effects (i.e., relaxation, 

convection, and anticipation) based on the partial observations. 

The 13 links with the archived traffic data are treated as the study links in the 

experiments.  Either the static model or the dynamic model could be applied to any 

one of them, depending on the particular experiment design.  After completion of the 

DTA simulation, the RMSEs are calculated for all 13 links, using their actual data.  

Results from the study links with the static models (called “SM links” hereafter) are 

generalized to the links without observations in the network; in contrast, the study 

links that use the dynamic models calibrated from their own real-time data (called 

“DM links” hereafter) represent the links with observations in the network. 

First, the number of DM links in the network is a factor of interest, and Table 

6-3 lists the pertinent experiments.  Experiment 1 uses the static model for each link 

in the network, and provides a benchmark against which the subsequent experiments 
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are compared.  Experiments 2 ~ 5 vary the number of DM links from 1 to 13; these 

links are distributed across the freeways.  Experiments 6 ~ 9 vary the number of DM 

links from 1 to 6, all located on the I-405 freeway northbound.  Hence, Experiments 2 

~ 5 and Experiments 6 ~ 9 allow investigating the effect of number of DM links from 

two perspectives.  The former is increasing the number of DM links “latitudinally” 

(i.e., across the network), while the latter increases them “longitudinally” (i.e., along 

a particular corridor).  In Experiments 2 ~ 9, the Type I dynamic model, which 

contains the local speed relaxation as the driving force, is used.  The selection of the 

DM links in Experiments 10 ~ 12 is the same as in Experiment 5, where all the study 

links are DM links.  Experiments 10 ~ 12 mainly differ from Experiment 5 in the 

model specification.  Experiment 10 includes the convection effects in the dynamic 

models for the DM links (i.e., link 405N_3, 405N_5, 405N_6, and 5N_2) whose 

upstream links are also DM links.  Experiment 11 includes the anticipation effects in 

the dynamic models for the DM links (i.e., link 405N_2, 405N_4, 405N_5, and 

5N_1) whose downstream links are also DM links.  Finally, Experiment 12 includes 

the convection or/and the anticipation effects in the dynamic models for the DM links 

(i.e., link 405N_2, 405N_3, 405N_4, 405N_5, 405N_6, 5N_1, and 5N_2) whose 

upstream or/and downstream links are also DM links. 
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Table 6-3 Details of Experiments 1 ~ 12 

Experiment 

# 

Feature No. of DM 

links 

Location(s) of DM links No. of tests 

performed 

1 SM across the 

board 

0 NA 1 

2 DM for 1 link 1 on one of the freeway 

(I-405N, I-405S, I-5N, 

I-5S, or 133). 

13 

3 DM for 5 links 

distributed in the 

network 

5 one link on each 

freeway (I-405N, I-

405S, I-5N, I-5S, and 

133). 

48 

4 DM for 9 links 

distributed in the 

network 

9 two links on the 

freeways I-405N, I-

405S, I-5N, I-5S; and 

one link on 133. 

15 

5 DM for 13 links 

distributed in the 

network 

13 (all the 

study links) 

six links on the 

freeways I-405N; two 

links on the freeways I-

405S, I-5N, I-5S; and 

one link on 133. 

1 

6 DM for 1 link on a 

freeway 

1 on the freeway I-405N 6 

7 DM for 3 link on a 

freeway 

3 on the freeway I-405N 20 
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8 DM for 5 link on a 

freeway 

5 on the freeway I-405N 6 

9 DM for 6 link on a 

freeway 

6 (all the study 

links on the 

freeway) 

on the freeway I-405N 1 

10 Same as Exp.5, but 

including the 

convection effect 

Same as 

Experiment 5 

Same as Experiment 5 Same as 

Exp.5 

11 Same as Exp.5, but 

including the 

anticipation effect 

Same as Exp.5 Same as Exp.5 Same as 

Exp.5 

12 Same as Exp.5, but 

including the 

convection and 

anticipation effect 

Same as Exp.5 Same as Exp.5 Same as 

Exp.5 

Note: SM stands for the Static Model; DM stands for the Dynamic Model. 

 

First, the test results correspond to the static model performance.  Figure 6-4 

depicts the hour-by-hour and overall RMSEs of speeds and densities averaged for the 

13 study links (all of which use the static models) in Experiment 1.  Figure 6-5 shows 

the frequency histograms of the overall RMSEs of speeds and densities for the 13 

study links. 

In the remaining experiments involving the dynamic models, comparison with 

the static models (Experiment 1) is of interest.  It is done by calculating the 

percentage error reduction for speed and density.  If the error reduction is positive, the 
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estimation quality is improved compared to Experiment 1; otherwise, if the error 

reduction is negative, the estimation quality is worse than Experiment 1. 
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Figure 6-38 Static Models: Average Hour-by-Hour and Overall Errors (Speed 
and Density) in Experiment 1 
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Figure 6-39 Static Models: Frequency Histograms of Overall Errors (Speed and 
Density) for Study Links in Experiment 1 

 

Figure 6-6 and Figure 6-7 plot the error reductions of speed and density vs. 

the number of DM links over the network.  The study links are divided into DM links 

and SM links.  Introducing a few DM links could affect not only those DM links 
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themselves but also the other SM links.  Therefore, in the figures, besides the average 

error reduction over all the study links, the error reduction on the SM links and DM 

links are also shown respectively.  Note that in the figures, there is no value for the 

error reduction for the SM links for Experiment 5, in which all 13 links used the 

dynamic model specification.   

The results reveal error reductions for the estimated speeds and densities of 

the DM links; these reductions are more apparent as the number of DM links 

increases.  However, when the dynamic model is applied to one link only, the errors 

on the remaining SM links appear to be worse than under Experiment 1.  When the 

number of DM links increases, such deterioration shows a decreasing trend in the 

figure.  Assuming the trend maintains, there would exist a threshold for the number of 

DM links in the network, beyond which a positive error reduction for SM links would 

occur.  Due to the data limitation (2% data coverage) in the current study, these 

experiments did not offer the opportunity to determine the exact number.  

Considering the average errors for all the study links (SM links and DM links), the 

network-wide modeling capability is improved with the increasing number of DM 

links in the network.  It should further be noted that the O-D demand was calibrated 

off-line using a version of the DTA simulator that relies on the static model 

specification only. 

Figure 6-8 depicts frequency histograms of the overall RMSEs of speeds and 

densities for the 13 study links in Experiment 5.  By comparing the results in Figure 

6-4 against Figure 6-8 and Figure 6-5 against Figure 6-9, we learn that replacing the 
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static models with the dynamic models lowers the estimation errors of link speeds and 

densities.  The errors during the rush-hour period are significantly reduced. 
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Figure 6-40 Reduction of Speed Error vs. No. of DM Links over Network in 
Experiments 2 ~ 5 
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Figure 6-41 Reduction of Density Error vs. No. of DM Links over Network in 
Experiments 2 ~ 5 
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Figure 6-42 Dynamic Models: Average Hour-by-Hour and Overall Errors 
(Speed and Density) in Experiment 5 
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Figure 6-43 Dynamic Models: Frequency Histograms of Overall Errors (Speed 
and Density) for Study Links in Experiment 5 

 

The plots in Figure 6-10 and Figure 6-11 show the error reduction of speed 

and density vs. the number of DM links on the I-405 freeway northbound.  Error 

reductions for SM links on I-405N, SM links on other freeways and DM links on I-

405N are shown in the figures, together with the average error reduction.  Note that in 

the figures, there is no value of error reduction for SM links on I-405N for 

Experiment 9 (with 6 DM links), because all the study links on I-405N have been 

used as DM links.  These results confirm that using the dynamic model improves the 

estimation precision for DM links.  The improvement is reinforced with the number 

of DM links along the freeway.  SM links both on I-405N and the other freeways 

experience increased errors, but the inclusion of more DM links along the same 

corridor lessens the negative impact.  The trends of the error reduction for SM links 

and all the links with the increasing number of DM links on I-405N are evident in the 

figures.  Existence of a threshold for the number of DM links along a certain corridor, 

beyond which SM links have reduced errors, is highly possible. 
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Figure 6-44 Error Reduction of Speed vs. No. of DM Links on I-405N in 
Experiments 6 ~ 9 

 

-80%

-60%

-40%

-20%

0%

20%

40%

1 2 3 4 5 6

Number of DM links on I-405N 

Er
ro

r R
ed

uc
tio

n 
of

 
De

ns
ity

SM links on I-405N SM links on other freeways
DM links on I-405N Average

 

Figure 6-45 Error Reduction of Density vs. No. of DM Links on I-405N in 
Experiments 6 ~ 9 
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The above experiment results indicate that the detector coverage in the 

network is an important factor for the effective application of the dynamic models.  

An inadequate number of detectors, and more generally inadequate detector coverage, 

may be of no benefit to, and may even impair, the traffic estimation capability.  The 

impairment is primarily due to the incompatibility of the modeled traffic states 

between neighboring SM links and DM links, which can extend to the remaining 

links in the network.  Increasing the number of detectors either “latitudinally” or 

“longitudinally” can reduce the errors gradually.  Therefore, an ideal distribution of 

detectors is the one under which all the major corridors have relatively dense and 

balanced detector coverage. 

Experiments 2 ~ 9 evaluate the model compatibility in terms of the number 

and distribution of the DM links, while Experiments 10 ~ 12 are meant to assess the 

compatibility of the different dynamic model specification types, including the 

different combinations of the higher-order dynamic effects (as defined in Chapter 4). 

The plots in Figure 6-12 and Figure 6-13 show the average errors of speeds 

and densities for different density ranges with the static model and the dynamic 

models, respectively.  “DM I” ~ “DM IV” refer to Experiments 9 through 12 

respectively.  The results reveal that the application of any of the dynamic model 

types is beneficial to the traffic estimation capability, because the errors of the speeds 

and densities are less than under the static model.  Experiment 5, in which the 

relaxation-only model specification is used, exhibits the best error reduction at 

different congestion levels.  When the additional terms (convection or/and 
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anticipation) are added to the dynamic model of the eligible links in Experiments 10 ~ 

12, the estimation quality is not as good as the relaxation-only dynamic model.  A 

likely reason is that there are not many connected links (as indicated in Table 6-1) for 

which the more complex model specification can be applied extensively, due to the 

sensor distribution in the Irvine test bed (Figure 6-3).  The mixed utilization of the 

model types does not appear to be especially beneficial to the traffic estimation 

capability, though the results in this regard are relatively limited.  Among model 

types II, III and IV, the model type III specification, with relaxation and anticipation 

effects is most effective for speed estimation (Figure 6-12), which is a consistent 

finding with the standalone tests in Chapter 4.  If the majority of the observed links in 

a network are sequential, it is likely that introducing the anticipation factor would be 

more effective in improving the estimation quality than the relaxation only scenario.  
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Figure 6-46 Average Speed Error vs. Actual Density Range for Various Models 
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Figure 6-47 Average Density Error vs. Actual Density Range for Various Models 

 

According to the above findings, it is recommended to review the amount, 

spatial distribution, and the interconnectedness of sensors when deciding on an 

appropriate traffic flow model strategy for a specific network.   

 

6.3.3 Model transferability 

The objective of the evaluation performed in this section is to assess the 

quality of the traffic estimation when the adaptively calibrated dynamic models are 

applied to links for which there are no real-time sensor measurements. 

Table 6-4 lists the details of the relevant experiments.  For each of the 

experiments, the DM links are either the own-DM links or the borrowed-DM links.  
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The own-DM links use the dynamic models adaptively calibrated with their own 

observed data; while the borrowed-DM links use the dynamic models “borrowed” 

from some other own-DM links.  In Experiment 13, the dynamic model is borrowed 

from one own-DM link on I-405N to another two study links along the same corridor.  

Experiment 14 transfers the dynamic model of one own-DM link on I-405N to the 

remaining five study links along the same corridor.  In Experiment 15, three study 

links are chosen to be own-DM links and three neighboring (upstream or 

downstream) links to them are chosen to be borrowed-DM links.  In Experiment 16, 

the five own-DM links are distributed over I-405N, I-405S and I-5N and the five 

borrowed-DM links are located next to the own-DM links.  Experiment 17 uses all 13 

study links as their own-DM links, so the borrowed-DM links are selected from those 

non-study links which do not have any archived data but are geographically close to 

the own-DM links (Figure 6-14).   

 

Table 6-4 Details of Experiments 13 ~ 17 

Own-DM link(s) Borrowed-DM links Experiment 

# number Location number Location 

No. of tests 

performed 

13 1 I-405N 2 I-405N 6 

14 1 I-405N 5 I-405N 6 

15 3 I-405N 3 I-405N 6 

16 5 I-405N, I-405S, I-

5N 

5 I-405N, I-405S, I-

5N 

24 

17 13 I-405N, I-405S, I- 17 I-405N, I-405S, I- 1 
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5N, I-5S, 133N 5N, I-5S, 133N 

 

 
Figure 6-48 Distribution of Own-DM Links (in Red) and Borrowed-DM (in 

Blue) Links in Experiment 17 

 

The plots in Figure 6-15 and Figure 6-16 show the error reductions of the 

speed and density estimates in Experiments13 ~ 17, with respect to the average on all 

the links, the own-DM links, the borrowed-DM links and the SM links, respectively.  

It is found that when 1) the number of own-DM links and borrowed-DM links are 

limited (in Experiment 13) or 2) the borrowed-DM links are not dominantly adjacent 

to where the dynamic models are originated (as in Experiment 14), the overall errors 

could be worse than those obtained with the static models.  With more own-DM links 
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and nearby borrowed-DM links in the network, the entire traffic estimation capability 

is improved significantly (in Experiments 15 ~ 17).  For instance, in Experiment 17, 

the traffic estimation exhibits slightly better error reduction when compared to 

Experiment 5, in which the dynamic models are only applied to the study links.  

These results suggest that the value of even a small number of sensors can be 

increased by judiciously transferring the dynamic model properties to adjacent links. 
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Figure 6-49 Error Reduction of Speed under Various DM Configurations in 
Experiments 13 ~ 17 
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Figure 6-50 Error Reduction of Density under Various DM Configurations in 
Experiments 13 ~ 17 

 

6.3.4 Traffic estimation capability with short term correction 

The objective of the evaluation performed here is to evaluate the functionality 

of the short term correction proposed in Chapter 5.  The main purpose of the short 

term correction is to adjust the simulated values to be more consistent with the 

observations.  In DYNASMART-X, the variable to be corrected periodically is the 

speed predicted for the simulation interval whose start point is coincident with the 

receipt of the latest field observation.  The discrepancies observed will be used for the 

correction of the next prediction of the speed.  The experiment (Experiment 18) 

performed in this section is extended from Experiment 5, defined in Table 6-3.  The 

DM links selected are the 13 study links, each of which has a dynamic model from its 
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own time series observations. The short term correction is applied for those links in 

Experiment 18; to provide a basis for comparison,   Experiment 19 is conducted, in 

which the short term correction is applied to the static model (hence extended from 

Experiment 1). 

Figure 6-17 shows the frequency histograms of the overall RMSEs of speed 

and density for the study links in Experiment 18.  Comparing Figure 6-17 with Figure 

6-9, the short term correction is found to provide an improvement in the quality of the 

predictions, as more links shift from the high-error regions to the low-error ones. 

Figure 6-18 compares the hour-by-hour and overall errors for the study links 

using different modeling approaches, i.e. the static model without or with the short 

term correction (STC) in Experiments 1 and 19, and the dynamic model without or 

with the STC in Experiments 5 and 18.  It is seen that the short term correction is 

useful to reduce the simulation errors for both the static model and the dynamic 

model.  The static model produces larger improvement when the short term correction 

is employed, whereas the improvement for the dynamic model is not as pronounced 

as for the static model.  Therefore, the value of the short term correction is in inverse 

proportion to the modeling quality of the original traffic flow model without 

correction algorithms. 

Figure 6-19 and Figure 6-20 show an example of the time series of speeds and 

densities for one of the study links, 405N_5.  In the plots, the actual observed data are 

compared with four different modeling approaches, in terms of which traffic flow 

model is used and whether the short term correction is activated.  The speeds and 

densities generated by the static model have the lowest precision and tend to be less 
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responsive.  The static model in conjunction with the short term correction becomes 

more responsive but still not as good as the dynamic model.  The latter captures the 

underlying interrelation between speeds and densities and produces simulation results 

that are more in line with the observations.  The short term correction can help 

improve the performance of the dynamic model, but not as much as in the case of the 

static model application. 
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Figure 6-51 Dynamic Models with Short Term Correction: Frequency 
Histograms of Overall Errors (Speed and Density) for Study Links in 

Experiment 18 
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Figure 6-52 Comparison of Hour-by-Hour and Overall Errors (Speed and 

Density) Averaged for Study Links with Various Modeling Approaches 
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Figure 6-53 Comparison of Time Series of Speeds on Link 405N_5 
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Figure 6-54 Comparison of Time Series of Densities on Link 405N_5 

 

6.3.5 Traffic prediction capability 

The objective of the evaluation performed in this section is to assess the 

dynamic model performance for traffic prediction over a pre-defined projection 
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horizon; naturally, it is not possible in this case to use sensor data beyond the 

projection horizon start time. 

To examine the accuracy of prediction, link performance (density or speed) is 

considered through four groups that correspond to predictions obtained at four 

different times (corresponding to the consecutive stages m to m+3 in Figure 6-1).  In 

other words, the first prediction for period A is obtained from prediction stage m; the 

second prediction is from stage m+1; the third prediction is from stage m+2; and the 

fourth prediction is from the nearest prediction stage m+3.  The following experiment 

results are extracted from Experiments 1 and 5 (described in section 6.3.2) since each 

execution of the DYNASMART-X system includes both the traffic estimation and the 

traffic prediction results. 

Figures 6-21 and 6-22 depict the prediction errors of speed and density 

generated at the different prediction stages for the static model and the dynamic 

model, respectively.  The results conform to the expectation that the discrepancy in 

the first time prediction is in general larger than the second, third and fourth times.  

The fourth and latest prediction is closest to the actual observed value.  Therefore, 

predictions in the near future are more reliable than predictions in the farther future, 

which is one of the motivating observations underlying use of the rolling horizon 

approach in stochastic dynamic systems.  Overall, the dynamic model exhibits better 

modeling performance than the static model at each prediction stage.  Figure 6-23 and 

Figure 6-24 provide an illustrative result of one of the study links, 5S_2.  The time 

series of predicted speeds and densities at the different prediction times against the 

observed data are plotted.  It is evident that the prediction of traffic 20 minutes ahead 
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is not as accurate as the one 5 minutes ahead.  In sum, the dynamic traffic flow model 

improves the traffic state prediction capability progressively, and is more accurate 

than the static model. 
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Figure 6-55 Average Speed Errors at Different Prediction Horizons for Static 

Model and Dynamic Model 
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Figure 6-56 Average Density Errors at Different Prediction Horizons for Static 

Model and Dynamic Model 
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Figure 6-57 Comparison of Time Series of Speeds at Different Prediction 

Horizons on Link 133N_1 
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Figure 6-58 Comparison of Time Series of Densities at Different Prediction 

Horizons on Link 133N_1 
 

6.3.6 Impact of temporal scale 

The objective of the evaluation performed in this session is to analyze the 

impact of the temporal scale of the field observations on the performance of the 

dynamic model. 
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The experiments conducted here include all the 13 study links as the DM 

links.  Experiment 5 (performed in session 6.3.2) provides the results for the case of 

the 30-second observation interval.  By aggregating the original archived real-time 

data at 30-second interval, we perform additional three experiments (Experiment 20, 

21, and 22) to have the results for the 1-minute, 3-minute, and 5-minute observation 

intervals respectively.  The Type I dynamic model is used throughout the 

experiments. 

Figure 6-25 and 6-26 are the plots of the error reduction of speeds and 

densities under different observation intervals.  At the first glance, the experiment 

results show that, the 30-second observation interval leads to the most accurate 

estimation, 1-minute interval is the second best one;  3-minute or 5-minute interval 

cause a lower level of accuracy on speed and/or density than the static model.  

However, it should be noted that the comparison is made by using the original data 

interval (30-sec) in the post-processing computation, which means, even if the 

adaptive model calibration is based a long observation interval (i.e. greater than 30-

sec), the resulted simulated values are aggregated into 30-sec intervals and compared 

with the original data series.  The way is to retain a maximum credibility in the actual 

data.  But it may also bring in a lot of fluctuations in the data series and swamp the 

underlying trend.  The situation is especially worse when the calibrated model is 

based on a long observation interval.  It is because the long interval is too aggregate 

to allow the calibrated model to predict the inner dynamic evolution of traffic flows 

from a perspective of a much shorter time interval.  So, it is reasonable to 

simultaneously inspect the estimation quality over a longer time period.  The 
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simulated values of the experiments together with the original data series are to be 

aggregated into 1-min through 5-min.  Figure 6-27 and Figure 6-28 display the 

RMSEs of speeds and densities vs. data aggregation length for both static model and 

dynamic model with different observation intervals.  The results tell us that, when 

aggregated for a longer interval, the simulated values from the dynamic model exhibit 

lower errors.  The dynamic model with 3-min or 5-min observation interval turns out 

to be more desirable than the static model if the comparison is made at the 

aggregation interval greater than 3-min.  The finding could sort of ease up the 

concerns towards the efficient usage of the real-time data at a longer observation 

interval. 

Therefore, it is desirable to have a small time scale for observations to keep up 

a satisfying precision when the dynamic modeling with observations is employed in 

the traffic estimation and prediction system.  However, it should be kept in mind that 

a long observation interval could be also valuable in the real-time modeling, not only 

due to the less demanding computation efforts, but also due to the ability to 

characterize the traffic pattern on a longer term. 
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Figure 6-59 Reduction of Speed Errors with Length of Observation Interval 
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Figure 6-60 Reduction of Density Errors with Length of Observation Interval 
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Figure 6-61 Speed RMSEs vs. Data Aggregation Length for Static Model and 

Dynamic Model with Different Observation Intervals  
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Figure 6-62 Density RMSEs vs. Data Aggregation Length for Static Model and 

Dynamic Model with Different Observation Intervals  
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6.3.7 Impact of spatial scale 

The objective of the evaluation performed in this section is to analyze the 

impact of the spatial scale on the performance of the dynamic model. 

Usually, a minimum link length is required for tracking the individual vehicles 

effectively in the traffic simulation.  For instance, the minimum link length for the 

link i , )(iLm , in DYNASMART is dependent on the average free-flow speed for the 

that link.  If the free-flow speed of i  is low, mL  is short; and vice versa.  In the 

original Irvine network, the study links are in different sizes with respect to the 

minimum link length (see Table 6-5).  A link is split into two or more short links if it 

is longer than the designated link length range in the experiments performed here.  

Traffic on a shorter link segment is conceptually more uniform.  The new network 

with split links is modeled with either the static model or the dynamic model 

specification.  For the dynamic model, the archived data are maintained for one of the 

split links depending on the sensor location and the Type I dynamic model 

(relaxation-only term) is used.  Table 6-5 lists the details of the conducted 

experiments. 
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Table 6-5 Details of Experiments 20 ~ 25 

Original link length 

l  

1~2 mL   2~3 mL  3~4 mL  5~6 mL  7~8 mL  

No. of study links 4 2 4 2 1 

Experiment 

# Model Link 

length 

Split scheme 

20 SM 

21 DM 

3~4 mL  Not use Not use Original 

length 

Split: 

l
3
2

+ l
3
1

 

Split: 

l
2
1

+ l
2
1

 

22 SM 

23 DM 

2~3 mL  Not use Original 

lengths 

Split: 

l
3
2

+ l
3
1

 

Split: 

l
2
1

+ l
2
1

 

Split: 

l
3
1

+ l
3
1

+ l
3
1

 

24 SM 

25 DM 

1~2 mL  Original 

lengths 

Split: 

l
2
1

+ l
2
1

 

Split: 

l
2
1

+ l
2
1

 

Split: 

l
3
1

+ l
3
1

+ l
3
1

 

Split: 

l
4
1

+ l
4
1

+ l
4
1

+ l
4
1

 

Figure 6-29 and 6-30 show the average hour-by-hour error reduction for 

speeds and densities for two models with various link lengths for the study links.  It is 

seen in the results that the shorter link length leads to slightly better estimation quality 

when using the dynamic model, especially for density estimation.  The performance 

of the static model is not quite sensitive to the link length ranges in the experiments 

conducted here, though it is worse than the dynamic model especially during the peak 

hours. 
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Figure 6-63 Average Hour-by-Hour Error Reduction of Speeds for Dynamic 

Model and Static Model with Various Link Lengths in Experiments 20 ~ 25 
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Figure 6-64 Average Hour-by-Hour Error Reduction of Densities for Dynamic 

Model and Static Model with Various Link Lengths in Experiments 20 ~ 25 
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6.4 Summary 

The performance of the dynamic traffic flow model integrated with the real-

time network traffic estimation and prediction system has been evaluated and 

illustrated in this chapter.  The results, albeit limited to a single network with limited 

detector coverage (which is nonetheless still representative of the state of deployment 

in most regions in the US), are relevant to the practical usefulness of the proposed 

approach, and overall quite encouraging, although many challenges and difficulties 

remain for future exploration. 

First, the dynamic model compatibility with the conventional static model in 

the practical case of partial sensor deployment observations is evaluated.  The initial 

results reveal that the extent of the compatibility and effectiveness of the dynamic 

model is highly related to the number and spatial distribution of the sensors.  The 

different specifications (“types”) considered for the dynamic model (with different 

driving forces) are all effective in the traffic flow modeling, but the ultimate selection 

of the particular type is again dependent on the number of sensors and their 

distribution, especially in terms of allowing calculation of the anticipation and 

convection terms, which require downstream and upstream section detectors, 

respectively.   

Model transferability is evaluated by transferring the adaptively calibrated 

model from one link to the other links.  The results indicate that transferring to the 

neighboring links with similar facility type is an effective way to improve the 

modeling capability under limited availability of real-time information. 
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The third focus of the evaluation is the traffic estimation capability in 

conjunction with the short term correction function integral to the DYNASMART-X 

prototype.  The short term correction has the ability to improve the estimation 

accuracy.  The extent of the improvement is related to the performance of the original 

model without correction.  The experimental results show that the impact of the short 

term correction is more apparent for the static model than the dynamic model.  

However, because of its incorporating the real time data into capturing underlying 

traffic flow pattern, the dynamic model without any correction still outperforms the 

static model. 

Next, the performance of the dynamic model in terms of prediction capability 

is evaluated, confirming improved performance relative to the exclusive use of the 

static model.  The results also confirm that, as expected, the near-term prediction is 

constantly better than prediction for farther intervals. 

Finally, the impact of the temporal scale and the spatial scale in the dynamic 

model are analyzed by aggregating the original archived data and splitting the long 

links to shorter links.  It is desirable to have a small time scale for observations to 

keep up a satisfying precision when the dynamic modeling with observations is 

employed in the traffic estimation and prediction system.  However, a long 

observation interval could be also valuable in the real-time modeling, not only due to 

the less demanding computation efforts, but also due to the ability to result in a fairly 

good prediction defined for a longer interval.  The impact of spatial scale is not as 

obvious as other factors according to the conducted experiments and needs to be 

further tested with more data coverage over the network. 
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The next chapter provides an overall summary and conclusion to this research.  

The research contribution and future possible extensions are highlighted. 
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Chapter 7: Conclusions and Future Research 

7.1 Overall conclusions 

Dynamic traffic flow modeling is a challenging research topic and critical task 

for online network traffic estimation and prediction in the context of ITS.  In this 

research, the fundamental objectives are to formulate and develop a dynamic traffic 

flow model driven by real-world observations, which is suitable for mesoscopic type 

dynamic traffic assignment simulation.  

In this research, a dynamic speed-density relation is proposed by 

incorporating the physical and fundamental concept in continuum and kinetic models, 

coupled with the structural formulation of the transfer function model.  The model 

explicitly includes phenomena such as speed relaxation, speed convection and density 

anticipation, which are found to affect the dynamics of the speed.  The proposed 

model recognizes the time-lagged response of speed to the influential factors as well 

as the potential autocorrelated system noise.  The transfer function method is 

typically used to describe the dynamic relationship between a responsive (output) 

variable and one or more influential (input) variables.  It is useful in forecasting, and 

is a widely used linear time series model in engineering and other areas.  By applying 

techniques adapted from the transfer function theory, the procedures for the model 

estimation and speed prediction using the real-time data are presented.  The model 

estimation method is oriented to identifying a multiple-input transfer function which 

characterizes the dynamic traffic flow model proposed in this research.  The speed is 

predicted by means of minimum mean square error.  A rolling-horizon framework is 
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proposed for the adaptive calibration of the dynamic models upon receipt of the latest 

series of real-time observations.  Such an adaptive mechanism provides a systematic 

way to maintain an updated traffic flow model that is adapted to the most recent 

traffic states. 

Following the detailed description of the model formulation and the related 

algorithms, the dynamic model is demonstrated to be valid in its own right.  It is 

evaluated in a series of standalone numerical experiments where link densities are 

assumed to be known values all the way along the entire study period and link speeds 

are to be predicted adaptively. 

The robustness of the dynamic model with respect to the underlying 

equilibrium relation is established by examining the quality of resulting precisions 

using equilibrium relations of varying quality (in terms of goodness of fit to historical 

local data).  Using dual-regime Modified Greenshields (MG) relation in the dynamic 

model does not significantly outperform the single-regime MG relation, although the 

former generally provides better representation of freeway traffic than the latter in the 

static representation.  Moreover, the dynamic model is considered robust and reliable 

in the sense that the embedded equilibrium relation could be based on previous days 

or other traffic sections.  This advantageous property allows the dynamic model to 

readily adapt to the equilibrium relations, which might be different from prevailing 

traffic patterns due to day-to-day variation or location-to-location variation, without 

substantial loss of accuracy.  Among the three factors disclosed in the full model 

form, the relaxation and the anticipation are the most evident contributors to speed 
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dynamics.  In other words, drivers’ speeds change primarily with their current speeds 

relative to average speeds and traffic densities ahead. 

The sensitivity analysis of the rolling horizon scheme with regard to the 

underlying speed density model is also performed in the standalone experiments.  The 

trends of model performance with the different roll periods or calibration horizon are 

shown.  Generally speaking, the prediction errors increase with the length of the roll 

period and decrease with the length of the calibration horizon.  However, such 

improvement in prediction is usually accompanied by additional computational effort.  

Based on the numerical results, a rolling horizon scheme with a 2.5 minute roll period 

and 60 minute calibration horizon is recommended as providing a good compromise 

between accuracy and computational efficiency. 

The principal issues concerning the application of the dynamic traffic flow 

model into the real-time DTA-based traffic estimation and prediction system are then 

discussed.  In the context of real time DTA simulation operation, the dynamic model 

faces a problem related to the different time scales in the data observation and the 

traffic simulation, respectively.  To accommodate the shorter simulation interval, at 

which link performance is updated in the DTA simulation, the impulse response 

calibrated using the observation interval is post-processed to approximate the impulse 

response at the simulation interval.  The approximation approach is based on the 

connection between the discrete dynamic systems with different discrete scales due to 

the common underlying continuous dynamic system.  The approach provides a 

straightforward, practical and efficient way to the real-world application of the 

dynamic traffic flow model based on the current surveillance characteristics. 
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To reduce the potential inconsistency due to unknown and uncontrolled 

factors when the model is integrated with network dynamic traffic assignment, the 

short term correction procedures are formulated to identify discrepancies between the 

simulation and the real-world observations, and adjust speed periodically.  By 

applying the PI (proportional-integral) control mechanism adapted from feedback 

control theory, the speed adjustment is triggered by either speed-deviations or 

density-speed-deviations.  The associated tuning factors can be either pre-specified or 

estimated adaptively using the least-squared-error method, constrained by the DTA 

models to reach internal and external consistency.  The short term correction aims to 

minimize the discrepancy of the simulation from the reality and improve the entire 

estimation and prediction capability of the traffic flow model. 

The performance of the dynamic model integrated in the DTA system is 

evaluated numerically.  The Irvine network, with partial observations on a subset of 

links, provides the test bed for the experiments.  With the limited real-time data, it is 

first investigated whether there is a benefit to apply the static model (for unobserved 

links) and the dynamic model (for observed links) in parallel.  The experiments 

demonstrate that the overall estimation performance is dependent on the number and 

geographical distribution of the sensors that provide the real-time data.  The dynamic 

model application with few and sparse sensor coverage could not improve the 

estimation on average (although it generally led to better results for the impacted 

links) and could even lead to worse results than the static model applied across the 

board.  Therefore, when a network has sufficient amount of sensors installed, the 

dynamic model implementation would be able to enhance the entire traffic estimation 
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capability.  It is also found that using the homogeneous model forms is preferable to 

the mixed forms.  For instance, if most of the observed links are separated from each 

other, applying the Type I dynamic model (with the relaxation term as the influential 

factor) for all the observed links is more effective.  Model transferability is assessed 

by transferring the adaptively calibrated dynamic model to other links for the purpose 

of speed predictions.  The numerical results show that transferring among 

neighboring links is most effective.  Hence, notwithstanding the limited number of 

sensors, it would still be useful to model the adjacent traffic characteristics in similar 

traffic environment. 

Following evaluation of the model compatibility and transferability, the traffic 

estimation capability with short term correction and the traffic prediction capability of 

the dynamic model are studied.  The effective short term correction is a supporting 

and effective approach to improve the performance of modeling traffic flow 

characteristics because it takes advantage of the real-time data to make comparison 

and correction.  The numerical results reveal that the approach is effective for both 

the static model and the dynamic model, though the impact on the static model is 

larger.  From the test results, the performance of the static model with the short term 

correction did not even beat the dynamic model without the short term correction, 

which gives a strong confirmation of the superiority of the dynamic model.  For 

traffic state prediction, the dynamic model again outperforms the static model in 

progressively improving the traffic state prediction quality.   

Finally, the impact of the temporal scale of the real-time data and the spatial 

scale of the observed links are examined.  The experiments use 30 second, 1 minute, 
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3 minutes and 5 minutes as the observation intervals and the results show that the 

dynamic model based on an observation interval of 30 second or 1 minute is good at 

short term predictions.  However, data at 3 or 5-min intervals could be useful as well 

in providing predictions which have sufficient accuracy for the long term. 

 

7.2 Research contributions 

One of the most crucial requirements for advanced real-time traffic simulation 

tools is to be able to provide a quasi-continuous view of the state of the traffic system 

over time and space.  Such tools as simulation-based Dynamic Traffic Assignment 

(DTA)-type models are intended to perform real-time system-wide traffic estimation 

and prediction, based on the existing surveillance system, and meet the information 

requirements for decision making for operators and users of the traffic network, in the 

complex ITS environment.  Reliable and robust traffic flow models which are capable 

of representing the dynamic evolution of traffic over space and time ensure that the 

information provided by DTA systems, generally including descriptive traffic 

conditions and normative route guidance, is credible and close to reality.  This 

dissertation introduces a new perspective to the specification, calibration and 

application of ITS-oriented traffic flow models. 

The most popular and widely-used models applied to mesoscopic type traffic 

simulation are in the category of the macroscopic simple order continuum traffic flow 

theory.  The simple order model captures the equilibrium relations among the 

essential traffic characteristics and provides a static representation which is more 

suitable for long term operational planning.  In the context of real-time DTA 
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operations, a more responsive and dynamic type of models is desirable to adapt the 

traffic state estimation/prediction to the real world. 

In this dissertation, the underlying physical phenomenon embedded in the 

proposed dynamic traffic flow model is well grounded due to its strong connection 

with the higher-order continuum traffic flow theories, which are intended to 

overcome the ”shortcomings” of the simple order ones.  However, instead of 

struggling to explore the exact formulation and estimation of the higher-order models, 

which is still an inconclusive topic in traffic flow research, the mathematical 

formulation proposed in the dissertation is adapted from the classical time series 

theory.  Introducing the time-series theory into the traffic flow modeling is totally 

driven by the availability of the real-time traffic data.  To analyze and capture the 

interrelation of two or more variables of interest, the transfer function method, which 

is a widely-used modeling approach for dynamic systems, is an appropriate technique 

to explore. 

Applying transfer function methods results in a functional structure of the 

model formulation to describe the time-dependent interrelation between speed and its 

influential factors, such as speed relaxation, speed convection and density 

anticipation.  Speed relaxation describes that drivers tend to accelerate or decelerate 

toward the desired equilibrium speed if the actual speed is lower or higher.  Speed 

convection illustrates that speeds could increase or decrease due to the faster and 

slower vehicles behind.  Density anticipation expresses that drivers determine to 

accelerate or decelerate according to the lower or higher traffic density ahead.  Each 

influential factor can be quantitated if the collected real-time data are densities and 
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speeds at each observation interval.  The transfer function modeling framework 

declaims that a dynamic system is identified for the speed dynamics over time under 

the time-lagged influences of these factors as well as the potential autocorrelated 

noise pattern. 

The model estimation is extended from the approach suitable for the multi-

input transfer function.  The minimum mean square error forecast is given by the 

expectation conditional on the knowledge of the series from the past up to the present, 

which has very practical meaning.  The theoretical basis and the algorithmic 

procedures for estimation and prediction are well described in the dissertation. 

The application of the dynamic traffic flow model is designed to be taken as 

part of an online operational capability for dynamic traffic assignment (DTA) 

simulation modeling to predict network traffic conditions in real-time, in order to 

support traffic operations management and information distribution.  Therefore, to 

accommodate the requirement in the real-time DTA operation, three important 

application details are pointed out and discussed in the dissertation. 

First, the model is proposed to be implemented through rolling horizon 

framework which is very flexible and effective in terms of the calibration of the 

parameters.  The parameters are derived with the most recent traffic data and 

changing along changes of traffic.  Unlike the conventional static traffic flow model, 

the dynamic model itself is more adaptive to real-world traffic situation.   

Second, to deal with different observation intervals and simulation intervals 

when applying the dynamic model in the simulation system, a simple but effective 

approach is proposed.  The solution is a result of recognizing that a common 
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underlying continuous dynamic system can be approximated by different discrete 

dynamic systems with different time scales.  Although approximation errors could 

exist in the procedure suggested, the entire modeling framework and approaches are 

practical and effective as indicated by the experimental results. 

Third, the concept and framework of short term correction is introduced.  Its 

operation conjunct with the traffic flow model plays an essential role for real-time 

DTA operation.  Short term correction intends to capture the critical deviations 

between the DTA-simulator and the actual transportation system and prescribes the 

treatment to compensate the discrepancies.  In other words, more reliable and 

consistent traffic state estimation is highly possible with the support of the short term 

correction.  The effect is attributed to the thorough utilization of the real-time data, so 

the real-time data are used not only for model estimation and speed prediction but 

also for consistency checking. 

In sum, the dissertation proposes a dynamic traffic flow model with real-time 

traffic sensor data for the purpose of online traffic estimation and prediction to 

support ATMS/ATIS in an urban transportation network.  The model is meaningful 

due to the powerful theoretical background, practical due to the well-designed 

approaches, and worthy of further application and exploration due to the encouraging 

and interesting numerical results. 
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7.3 Future research 

As an initial effort in the challenging area of real-time traffic flow modeling, 

several aspects of the theory and methods proposed in the dissertation remain to be 

improved and explored.  Several examples are given as follows. 

The first example would be to extend the existing model to include seasonal 

patterns.  The seasonal pattern here refers to the periodic behavior of traffic data 

series with period s.  Similarities in the series occur after s basic time intervals.  At 

first, we can focus on day-by-day similarities; then we can further move onto week-

by-week similarities.  So, a seasonal time series can be decomposed into trend, 

seasonal, and noise components.  The trend and noise components have been 

represented in the dissertation and the seasonal component is left for further 

investigation.  The intrinsic implication from models with seasonal patterns is to 

include the historical information (e.g., one day before or one week before) in the 

current forecasting.  The resulting forecasts would take into account both ordinary 

behaviors which are summarized from the previous similar periods, and possible 

behaviors which are exclusive for that day.   

The second example of further research is to explore other forms of the higher 

order continuum models.  The research in the dissertation is primarily based on the 

original higher order continuum model form proposed by Payne [1971] and Whitham 

[1974].  As stated in Chapter 2, some efforts have been made to extend and improve 

the original model.  Some new or adjusted terms, such as an adjusted anticipation 

term, a viscosity term, a friction term, and so on, are introduced in these efforts.  By 

using a similar modeling framework as in the dissertation, the performances of these 
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new model specifications can be evaluated and compared with each other in the 

context of real-time traffic flow modeling. 

The third example is inspired by the test results in section 6.3.4, where the 

traffic estimation capability with short term correction is assessed.  It is found that the 

performance of the dynamic model outperforms the static model with short term 

correction function.  Short term correction does not have significant influence on the 

dynamic model because the adaptive traffic information has been absorbed into the 

dynamic model, which is updated quasi-continuously.  Therefore, other than its use to 

model the traffic flow directly in the DTA system, the dynamic model proposed in 

this research could also be used for the purpose of short term correction to support the 

static traffic flow model.  This approach could provide a more reliable mechanism 

that originates from physical background for short term correction. 

The fourth example of further investigation is to evaluate the proposed 

dynamic model with a larger amount and more diverse types of data.  The 

conclusions reached in the previous chapters are based on tests with data from a 

limited number of locations.  If more link sections in the network are covered by 

sensors, the evaluation of the dynamic model would be more comprehensive and 

conclusive.  In addition to using data from loop detectors, other real-time data sources 

could be considered to improve the entire traffic flow modeling performance.  For 

example, travel time extracted from AVI (automated vehicle identification) 

equipments, or traffic densities obtained from processed video imaging data, could be 

used to conduct consistency checking on estimation of link performance. 
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