2,837 research outputs found

    HydroSHEDS

    Get PDF
    HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. Derived from elevation data of the Shuttle Radar Topography Mission (SRTM), the application offers users a suite of geo-referenced data sets (vector and raster), including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. Educational levels: Middle school, High school, Undergraduate lower division, Undergraduate upper division, Graduate or professional

    Line Generalization Evaluation on Contour Map Generated From SRTM and ASTER GDEM

    Get PDF
    A contour map is one of many layers that composed Informasi Geospasial Dasar (IGD), which according to Act. No 4 2011 serves as a reference for any thematic map. The provision of contour map at a different level of scale is needed since mapping activities will always refer to map scale based on the mapping area. This research aims to analyze automated contour generation quality to produce 1:50.000 contour map, by means of using open access Digital Elevation Model (DEM) data, such as Shuttle Radar Topographic Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). The automated contour generation was done by using contour interpolation in Quantum GIS software. Furthermore, simplification and smoothing algorithm was applied to both data, in order to improve their visual appearance. In this case, there are four algorithms used in the study, namely Douglas-Peucker, Visvalingam, Chaikin, and McMaster. Quality assessment, both qualitative and quantitative assessment, was done to each derived contour map to ensure the applicability of the procedure. The result shows that contour map generated from SRTM has a better quality than contour map generated from ASTER GDEM. Nevertheless, both data has a similar pattern on each topographical classes, which tends to produce bad quality contour line in the flat area. The more mountainous the area, the better the contour line. Meanwhile, of all generalization algorithm applied in this study, Chaikin’s algorithm is the best algorithm in terms of smoothing the contour line and improving visual quality, but still doesn’t significantly improved the metric accuracy. The contour line can be either directly added to the Digital Cartographic Model of Topographic Map (Rupabumi Map), or used as compliance data in a thematic map

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    Voronoi diagram approach to defining surface hydrography using LIDAR-generated bare earth sample points.

    Get PDF
    Geographic Information Systems (GIS) typically rely on raster grid data structures to define surface hydrography and define watershed boundaries. The interpolation of grids from sample points and the algorithms used to define flow directions introduce error and compromise data quality, especially in areas of low relief. This research proposes a new approach in hydrographic geomorphometry, using Voronoi diagrams generated from airborne laser altimetry data points to determine flow direction and define watershed boundaries for the Lummi Indian Reservation in Whatcom County, Washington State. In theory, the Voronoi diagram approach will bypass the errors introduced by the raster grid by constructing a connected network expressing flow direction generated directly from sample point data. The Voronoi surface output will be compared with the raster grid output and measured for accuracy based on a field survey of selected water courses

    Deep learning methods applied to digital elevation models: state of the art

    Get PDF
    Deep Learning (DL) has a wide variety of applications in various thematic domains, including spatial information. Although with limitations, it is also starting to be considered in operations related to Digital Elevation Models (DEMs). This study aims to review the methods of DL applied in the field of altimetric spatial information in general, and DEMs in particular. Void Filling (VF), Super-Resolution (SR), landform classification and hydrography extraction are just some of the operations where traditional methods are being replaced by DL methods. Our review concludes that although these methods have great potential, there are aspects that need to be improved. More appropriate terrain information or algorithm parameterisation are some of the challenges that this methodology still needs to face.Functional Quality of Digital Elevation Models in Engineering’ of the State Agency Research of SpainPID2019-106195RB- I00/AEI/10.13039/50110001103

    IPH-Hydro Tools : uma ferramenta open source para determinação de informações topológicas em bacias hidrográficas integrada a um ambiente SIG

    Get PDF
    Watershed delineation, drainage network generation and determination of river hydraulic characteristics are important issues in hydrological sciences. In gene- ral, this information can be obtained from Digital Elevation Models (DEM) processing within GIS commercial softwares, such as ArcGIS and IDRISI. On the other hand, the use of open source GIS tools has increased significantly, and their advantages include free distribution, continuous development by user communities and full customization for specific requirements. Herein, we present the IPH-Hydro Tools, an open source tool coupled to MapWindow GIS software designed for watershed topology acquisition, including preprocessing steps in hydrological models such as MGB-IPH. In addition, several tests were carried out assessing the performance and applicability of the developed tool, given by a comparison with available GIS packages (ArcGIS, IDRISI, WhiteBox) for similar purposes. The IPH-Hydro Tools provided satisfactory results on tested applications, allowing for better drainage network and less processing time for catchment delineation. Regarding its limitations, the developed tool was incompatible with huge terrain data and showed some difficulties to represent drainage networks in extensive flat areas, which can occur in reservoirs and large riversA delimitação de bacias hidrográficas, geração da rede de drenagem e determinação de características hidráulicas de um rio de interesse são partes importantes de estudos na área de hidrologia. Atualmente muitas dessas informações são obtidas com o processamento de modelos digitais de elevação (MDEs) em sof- twares comerciais de SIG, como o ArcGIS e o IDRISI. Por outro lado, pacotes de SIG para uso livre, ou seja, gratuitos e de código aberto, têm aumentado significativamente nos últimos anos, e as vantagens desses pacotes incluem ampla distribuição e customização, desenvolvimento continuado pela comunidade de usuários e atendimento a necessidades específicas. Este trabalho apresenta o pacote livre (open-source) denominado IPH-Hydro Tools, um conjunto de ferramentas acoplado ao software livre MapWindow GIS criado para facilitar a aquisição de informações topológicas em bacias hidrográficas, bem como realização de etapas de pré-processamento em modelos hidrológicos a exemplo do MGB-IPH. Para avaliar a aplicabilidade e o desempenho da ferramenta desenvolvida foram realizados testes específicos, através da comparação dos resultados do IPH-Hydro Tools em relação a outros pacotes de SIG (ArcGIS, IDRISI, WhiteBox) disponíveis para esta finalidade. O IPH-Hydro Tools apresentou qualidade de rede de drenagem geralmente superior aos demais pacotes e menor tempo de processamento necessário para delimitação de bacias, apesar de algumas limitações como incompatibilidade em relação a matrizes muito grandes e dificuldade na representação da rede de drenagem em áreas extensas de mesma cota, a exemplo de reservatórios e rios muito largos

    Quality Assessment of Hydrogeomorphological Features Derived from Digital Terrain Models

    Get PDF
    Digital terrain models (DTM) provide a model for representing the continuous earth elevation surface that can contain errors introduced by the main phases of generation and modelling. Uncertainty of the model is rarely considered by users. Assessment of uncertainty require information on the nature, amount and spatial structure of the errors. DTMs of di®erent original resolution were compared in order to assess the quality of derived hydrological and morphological features. SRTM dataset with resolution of 100m, DEM dataset mosaic from various sources with a resolution of 60m and ASTER derived dataset with a resolution of 30m were used. The error propagation was modelled with a stochastic approach. The probabilistic distribution of extracted hydrological features was drawn considering the spatial structure of errors in the datasets. The features considered were stream network and watershed divides net. The distribution of the Strahler order of the features was studied. An analysis of the overall probability of features extracted from variously prepared datasets was carried in order to get information on where is the most probable stream network or watershed divides net.JRC.H.6-Spatial data infrastructure

    Hydrologic Terrain Processing Using Parallel Computing

    Get PDF
    Abstract: Topography in the form of Digital Elevation Models (DEMs), is widely used to derive information for the modeling of hydrologic processes. Hydrologic terrain analysis augments the information content of digital elevation data by removing spurious pits, deriving a structured flow field, and calculating surfaces of hydrologic information derived from the flow field. The increasing availability of large terrain datasets with very small ground sample distance (GSD) poses a challenge for existing algorithms that process terrain data to extract this hydrologic information. This paper will describe a parallel algorithm that has been developed to enhance hydrologic terrain pre-processing so that larger datasets can be more efficiently computed. This paper describes a Message Passing Interface (MPI) parallel implementation for Pit Removal. This key functionality is used within the Terrain Analysis Using Digital Elevation Models (TauDEM) package to remove spurious elevation depressions that are an artifact of the raster representation of the terrain. The parallel algorithm works by decomposing the domain into stripes or tiles where each tile is processed by a separate processor. This method also reduces the memory requirements of each processor so that larger size grids can be processed. The parallel pit removal algorithm is adapted from the method of Planchon and Darboux that starts from a large elevation then iteratively scans the grid, lowering each grid cell to the maximum of the original elevation or the lowest neighbor. The MPI implementation reconcile

    A NEW ALGORITHM FOR EXTRACTION OF CONTINUOUS CHANNEL NETWORKS WITHOUT PROBLEMATIC PARALLELS FROM HYDROLOGICALLY CORRECTED DEMS

    Get PDF
    One of the most popular flow-routing approaches to the extraction of channel networks from DEMs is the D8 approach. Several algorithms based on this method have been developed so far, but none provides a satisfactory solution to the problem of parallel lines. In this study, a new algorithm named DRainage Axis Way (DRAW) is developed. It has seven core routines, and three of them are similar to the Profile Recognition and Polygon Breaking Algorithm (PPA). It is a segment based computation system, but it uses flow accumulation data as well. It works on hydrologically corrected DEMs. In DRAW, the flow accumulation threshold value is determined automatically with respect to the occurrence of parallel lines depending on terrain forms. For experimental testing, two hydrologically corrected 5 m DEMs were used. Four sets of channel networks were extracted from the DEMs by using PPA, D8 with two different stream thresholds, and DRAW. For comparison, an existing channel network on a map with a scale of 1:5,000 was utilized as a ground-truth
    corecore