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Abstract. Digital elevation models (DEMs) represent the to-
pography that drives surface flow and are arguably one of
the more important data sources for deriving variables used
by numerous hydrologic models. A considerable amount of
research has been conducted to address uncertainty associ-
ated with error in digital elevation models (DEMs) and the
propagation of error to derived terrain parameters. This re-
view brings together a discussion of research in fundamen-
tal topical areas related to DEM uncertainty that affect the
use of DEMs for hydrologic applications. These areas in-
clude: (a) DEM error; (b) topographic parameters frequently
derived from DEMs and the associated algorithms used to de-
rive these parameters; (c) the influence of DEM scale as im-
posed by grid cell resolution; (d) DEM interpolation; and (e)
terrain surface modification used to generate hydrologically-
viable DEM surfaces. Each of these topical areas contributes
to DEM uncertainty and may potentially influence results of
distributed parameter hydrologic models that rely on DEMs
for the derivation of input parameters. The current state of
research on methods developed to quantify DEM uncertainty
is reviewed. Based on this review, implications of DEM un-
certainty and suggestions for the GIS research and user com-
munities are offered.

1 Introduction

The purpose of this review is to examine the nature, relevance
and management of digital elevation model (DEM) uncer-
tainty in relation to hydrological applications. DEMs provide
a model of the continuous representation of the earth’s ele-
vation surface. This form of spatial data provides a model of
reality that contains deviations from the truth, or errors. The
nature and extent of these errors are often unknown and not
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readily available to users of spatial data. Our lack of knowl-
edge about these errors constitutes uncertainty. Nevertheless,
DEMs are one of the most important spatial data sources for
digital hydrologic analyses as they describe the topography
that drives surface flow. Use of DEMs in hydrologic stud-
ies is ubiquitous, however uncertainty in the DEM represen-
tation of terrain through elevation and derived topographic
parameters is rarely accounted for by DEM users (Wechsler,
2003). DEM uncertainty is therefore of great importance to
the hydrologic community.

This paper reports on representative literature on DEM un-
certainty as applied to hydrologic analyses1. To understand
how to address and manage DEM uncertainty, specifically in
relation to hydrologic applications, it is necessary to recog-
nize the components and characteristics of DEMs that con-
tribute to that uncertainty. This paper provides a review of
research in each of thesefundamental areas whichincludes:
(a) DEM error; (b) topographic parameters frequently de-
rived from DEMs and the associated algorithms used to de-
rive these parameters; (c) the influence of DEM scale as im-
posed by grid cell resolution; (d) DEM interpolation; and (e)
terrain surface modification used to generate hydrologically-
viable DEM surfaces. Each of these topical areas contributes
to DEM uncertainty and potentially influences results of dis-
tributed parameter hydrologic models that rely on DEMs for
the derivation of input parameters. The current state of re-
search on methods developed to quantify DEM uncertainty
is reviewed. Based on this review, implications of DEM un-
certainty and suggestions for the research and GIS user com-
munities are suggested.

In the past decade DEM data has become increasingly
available to spatial data users due to the decrease in data
and computer costs and the increase in computing power.

1Given the burgeoning nature of this literature, it regrettably has
not been possible to cite every publication on this topic. An attempt
has been made to give examples of studies related to focal variables.
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DEMs produced from technologies such as Light Detec-
tion and Ranging (LiDAR) and Interferometric Synthetic
Aperture Radar (IFSAR) sensors are more readily available.
These remotely-sensed DEM production methods provide
users with high resolution DEM data that have stated vertical
and horizontal accuracies in centimeters, making them more
desirable, yet costly in both dollars and processing require-
ments. DEM users with limited budgets can obtain DEMs
from government sources or can conduct field surveys using
global positioning systems (GPS) and interpolate DEMs for
smaller study areas. No matter the source, DEM products
provide clear and detailed renditions of topography and ter-
rain surfaces. These depictions can lure users into a false
sense of security regarding the accuracy and precision of the
data. Potential errors, and their effect on derived data and
applications based on that data, are often far from users’ con-
sideration (Wechsler, 2003).

In colloquial terms, the worderror has a negative conno-
tation, indicating a mistake that could have been avoided if
enough caution had been taken (Taylor, 1997). However, er-
rors are a fact of spatial data and often cannot be avoided.
In the context of spatial data, errors are often unavoidable
and therefore must be understood and accounted for. There
has been much discussion in the literature regarding philoso-
phies (Fisher, 2000), ontologies (Worboys, 2001) and defi-
nitions (Heuvelink, 1998; Refsgaard et al., 2004) of spatial
data uncertainty. For the purposes of this discussion of DEM
uncertainty, the termerror refers to the departure of a mea-
surement from its true value.Uncertainty is a measure of
what we do not know about this error and its impact on sub-
sequent processing of the data. In the spatial realm, errors
and resulting uncertainty can never be eliminated.

Our responsibilities as DEM data users and researchers are
to accept, search for and recognize error, strive to understand
its nature, minimize errors to the best of our technical capa-
bilities, and obtain a reliable estimate of their nature and ex-
tent. Based on these understandings, the tasks are to develop
and implement methods to quantify and communicate the un-
certainty associated with the propagation of errors in spatial
data analyses. The research reported in this paper brings to-
gether knowledge about the components and characteristics
of DEM uncertainty specifically related to hydrologic appli-
cations

2 DEM error and accuracy

2.1 DEM error

DEM errors (the departure of a given elevation fromtruth)
have been well documented in the literature (Pike, 2002).
DEM errors are generally categorized as either systematic,
blunders or random (USGS, 1997).Systematicerrors result
from the procedures used in the DEM generation process and
follow fixed patterns that can cause bias or artifacts in the fi-

nal DEM product. When the cause is known, systematic bias
can be eliminated or reduced.Blundersare vertical errors
associated with the data collection process and are generally
identified and removed prior to release of the data.Random
errors remain in the data after known blunders and systematic
errors are removed.

Sources of DEM errors have been described in detail, see
for example (Burrough, 1986; Heuvelink, 1998; Pike, 2002;
Wise, 1998). Error sources have been summarized as (a)data
errors due to the age of data, incomplete density of observa-
tions or spatial sampling; (b)processing errorssuch as nu-
merical errors in the computer, interpolation errors or clas-
sification and generalization problems; and (c)measurement
errors such as positional inaccuracy (in the x and y direc-
tions), data entry faults, or observer bias.

2.2 DEM production methods and sources of error

Sources of DEM errors are inextricably linked to DEM
production methods. These include field surveying (using
tacheometers or global positioning systems), photogramme-
try, surface sensing technologies such as Light Detection and
Ranging (LiDAR), Interferometric Synthetic Aperture Radar
(IFSAR) or sonar (for bathymetric data), and digitizing from
existing maps.

Errors are specific to the various production techniques.
For example, the error budget for a LiDAR DEM is related to
the contributing errors in data acquisition subsystems such as
the laser rangefinder, global positioning system and inertial
measurement unit (IMU) (Airborne1, 2006).

Once elevation data is collected, DEMs are generated us-
ing interpolation or aggregation techniques. A detailed re-
view of various interpolation approaches can be found in
(Burrough and McDonnell, 1998; Burrough, 1986; Wood,
1996). Often little is known about the error either occurring
during or generated as a result of the interpolation (Desmet,
1997) or aggregation process. Uncertainty associated with
interpolation procedures has been a focus of practitioners
and researchers in the geostatistical community (Dubois et
al., 1998). However, relatively few studies explicitly address
the impact that different interpolation methods have on a re-
sulting DEM. A detailed review of various interpolation ap-
proaches can be found in (Burrough and McDonnell, 1998;
Burrough, 1986; Wood, 1996). The following are exam-
ples of efforts to examine error that result from interpolation.
Wood and Fisher (1993) and Wood (1996) applied visualiza-
tion techniques to identify DEM interpolation errors. Desmet
(1997) investigated the effect of interpolation on precision
(accuracy of the predicted heights) and shape reliability (de-
gree of fidelity in the spatial pattern of topography) expressed
by derived topographic parameters. Wise (1998) investigated
the effect of interpolating DEMs from contours using differ-
ent algorithms. Differences in results were attributed to the
complex interactions between algorithms for both interpola-
tion and derivation of DEM-derived topographic parameters
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(Wise, 1998). Erxleben et al. (2002) evaluated the accu-
racy of snow water equivalents derived from DEMs gener-
ated using four interpolation methods. Kienzle (2004) tested
the quality of DEMs interpolated at different resolutions and
identified an optimum grid cell size that was determined to
be between 5–20 m depending on terrain complexity. These
studies reveal the variety of applications that are affected by
DEM error and the efforts of researchers to document and to
accommodate for error.

2.3 Quantifying DEM error

In the United States, national map accuracy standards pro-
vide statistical guidelines for estimating the positional accu-
racy of digital geospatial data (FGDC, 1998). DEM vendors
establish threshold accuracies for specific products based on
technological capabilities. DEM accuracy is quantified us-
ing the Root Mean Square Error (RMSE) statistic. To com-
pute the RMSE, differences between the source dataset and
co-located values from an independent source of higher ac-
curacy are computed. The RMSE is the square root of the
average of these squared differences.

The RMSE assumes that DEM errors are random (FGDC,
1998). Because the RMSE is used as a measure of spread,
it requires the assumption of normality (Monckton, 1994),
which is often violated in the case of the DEM. While a valu-
able quality control statistic, the RMSE does not provide an
accurate assessment of how welleach cellin a DEM repre-
sents a true elevation.

The following example demonstrates the limitations of the
RMSE. A LiDAR dataset that consists of roughly 120 million
points has a stated vertical accuracy (RMSE) of 0.15 m. This
value was computed from an external ground survey of 174
co-located points (representing 0.00014% of the dataset). A
normal distribution with a mean of 0 and a standard devia-
tion of 0.15 could range from−0.62 to +0.62. The vendor
assures 95% of the data could deviate from the stated eleva-
tion by 0.15 m or less. However, five percent of the values
(six million points) could deviate by±0.15 to±0.30 m and
1% (1.2 million points) by±0.30 to±0.62 m. The RMSE’s
adequacy in representation of the dataset’s accuracy is ques-
tionable.

Maune (2001) provides a detailed review of DEM pro-
duction methods and associated quality assessment. This
includes source, size and spatial structure of error associ-
ated with different DEM production techniques. Examples
of studies that have evaluated the accuracy of various DEM
products are: DEMs produced from synthetic aperture radar
(SAR) (Wang and Trinder, 1999), the Shuttle Radar Topogra-
phy Mission (SRTM) (Miliaresis and Paraschou, 2005; Suna
et al., 2003), USGS DEMs (Berry et al., 2000; Shan et al.,
2003), and comparisons of various DEM production methods
(Li, 1994). While methods to assess and reduce DEM error
have been developed (Hengl et al., 2004; Li, 1991; Lopez,
2002), errors persist. The inability to specify the relative con-

tribution of these errors and quantify their nature and extent
in a DEM product results in uncertainty.

Assessment of DEM uncertainty requires more informa-
tion on the spatial structure of DEM error – beyond that
provided by the RMSE. DEM vendors have been urged to
provide additional DEM quality information such as “maps
of local probabilities for over or underestimation of the un-
known reference elevation values from those reported in the
DEM, and joint probability values attached to different spa-
tial features” (Kyriakidis et al., 1999, p. 677). DEM data
products should not only include information on standard er-
rors associated with data values, but also provide values for
error contributed by other sources, such as components of
the production methods, so that DEM error can be correctly
assessed (Heuvelink et al., 2007).

To date, information beyond the RMSE is not readily pro-
vided to DEM users. Most DEM users will not take the time
or spend the money to obtain such data sets in order to con-
duct DEM error assessment (Wechsler, 2003). Because in-
formation on sources of error are not readily available, it is
currently often difficult, if not impossible, to recreate the spa-
tial structure of error for a particular DEM. As demonstrated
in the example above, quality control data points represent
only a small percentage of a dataset and are insufficient to
quantify the spatial structure of the DEM’s error. Knowledge
about the spatial structure of error is an important compo-
nent for gaining an understanding of where errors arise and
uncertainty is propagated. DEM vendors should be urged to
provide information that can be used to derive this and DEM
users must be able to easily apply such information for it to
be of use. Therefore the research and software communities
should develop DEM assessment methods that accommodate
detailed DEM error information when available, and provide
mechanisms for addressing uncertainty in the absence of this
information.

3 Computation of topographic parameters for hydro-
logic analyses

Topographic attributes frequently used in hydrologic analy-
ses are derived directly from DEMs. DEM errors propagate
to derived parameters. While numerous algorithms exist to
generate these hydrologic parameters, GIS software pack-
ages limit users’ ability to select specific algorithms. Addi-
tionally, the hydrologic community has not reached a consen-
sus on appropriate algorithms for certain topographic param-
eters (such as flow direction). This section discusses the cal-
culation of certain topographic parameters from DEMs and
identifies considerations related to their contribution to un-
certainty in hydrologic applications.

The raster grid structure lends itself well to neighborhood
calculations that are frequently used to derive hydrologic pa-
rameters directly from a DEM. Primary surface derivatives
such as slope, aspect and curvature provide the basis for
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characterization of landform (Evans, 1998; Wilson and Gal-
lant, 2000). The routing of water over a surface is closely
tied to surface form. Flow direction is derived from slope
and aspect. From flow direction, the upslope area that con-
tributes flow to a cell can be calculated, and from these maps,
drainage networks, ridges and watershed boundaries can be
identified. Topographic, stream power radiation and tem-
perature indices are all secondary attributes computed from
DEM data. Wilson and Gallant (2000) provide a detailed
review of the DEM-derived primary and secondary topo-
graphic attributes. Research has demonstrated that DEM-
derived topographic parameters are sensitive to both the qual-
ity of the DEMs from which they are generated (Bolstad and
Stowe, 1994; Wise, 2000) and the algorithms that are used to
produce them.

Numerous algorithms exist for calculating topographic pa-
rameters. For example, slope is calculated for the center
cell of a 3×3 matrix from values in the surrounding eight
cells. Algorithms differ in the way the surrounding values
are selected to compute change in elevation (Carter, 1990;
Dunn and Hickey, 1998; Guth, 1995; Hickey, 2001; Skid-
more, 1989). Different algorithms produce different results
for the same derived parameter and their suitability in repre-
senting slope in varied terrain types may differ. The slope
algorithm developed by Horn (1981) and currently imple-
mented in ESRI GIS products is thought to be better suited
for rough surfaces (Burrough and McDonnell, 1998; Horn,
1981). The slope algorithm presented by Zevenbergen and
Thorne (1987), currently implemented in the IDRISI GIS
package (Eastman, 1992), is thought to perform better in rep-
resenting slope on smoother surfaces (Burrough and McDon-
nell, 1998; Zevenbergen and Thorne, 1987).

The routing of flow over a surface is an integral compo-
nent for the derivation of subsequent topographic parameters
such as watershed boundaries, and channel networks. Many
different algorithms have been developed to compute flow
direction from gridded DEM data and are referred to as sin-
gle or multiple flow path algorithms. The single flow path
method computes flow direction based on the direction of
steepest descent in one of the 8 directions from a center cell
of a 3×3 window (Jenson and Domingue, 1988), a method
referred to as D8. The D8 algorithm is the flow direction
algorithm that is provided within mainstream GIS software
packages (such as ESRI GIS). However, the users in the hy-
drologic community recognize that the D8 approach over-
simplifies the flow process and is insufficient in its character-
ization of flow from grid cells. In response, researchers have
developed multiple flow path methods that distribute flow in
all possible down-slope directions, rather than just one; see
for example (Costa-Cabral and Burgess, 1994; Quinn et al.,
1991; Tarboton, 1997; Wolock and McCabe, 1995; Zhou and
Liu, 2002). Multiple flow path methods attempt to approxi-
mate flow on the sub-grid scale. Multiple flow path functions
are currently not part of standard GIS packages and are there-
fore not readily available to DEM users. Desmet and Govers

(1996) compared six flow routing algorithms and determined
that single and multiple flow path algorithms produce signif-
icantly different results. Thus any analysis of contributing
areas such as watersheds or stream networks can be greatly
affected by the algorithm implemented. Other approaches
to deriving channel networks and watershed boundaries have
been developed such as those that incorporate additional en-
vironmental characteristics (Vogt et al., 2003).

Unfortunately, GIS packages do not differentiate between
rough and smooth surfaces when applying a slope or provide
users with any options when it comes to derivation of terrain
parameters. Users cannot choose a particular method; only
one algorithm for derivation of parameters such as slope, as-
pect and flow direction is embedded in a particular GIS soft-
ware package. This lack of flexibility in software capability
introduces the likelihood of further error transferred to de-
rived topographic parameters. Additional research on the ap-
propriateness of certain algorithms for various terrain types
is needed. Future GIS software packages should accom-
modate research needs by providing flexibility in the algo-
rithms available to users. The ability to represent topographic
complexity is controlled by the DEM’s grid cell resolution.
Systematic errors are introduced into topographic parame-
ters, specifically slope, computed in flat areas and (Wechsler,
2000) and slopes computed for the same DEM but using a
higher grid cell resolution results in larger computed slope
values.

4 DEM resolution and scale for representing
topography

Theobald (1989) noted that“. . . seldom are errors described
in terms of their spatial domain, or how the resolution of
the model interacts with the relief variability.” (p. 99). This
continues to be a concern for users.

The raster GIS grid cell data structure makes it possible
to represent locations as highly defined discrete areas. The
size of a grid cell is commonly referred to as the grid cell’s
resolution, with a smaller grid cell indicating a higher resolu-
tion. DEM accuracy has been shown to decrease with coarser
resolutions which average elevation within the support (Li,
1992). Smaller grid cell sizes allow better representation of
complex topography. These high resolution DEMs are bet-
ter able to refine characteristics of complex topography that
are missed in coarser DEMs. This has led many DEM users
to seek the highest DEM resolutions possible, increasing the
costs associated with both data acquisition and processing.
However, is higher resolution necessarily better? To what
extent is the grid cell resolution a factor in the propagation
of errors from DEMs to derived terrain parameters? Studies
have addressed these questions.

DEM-derived data is generated to emulate or predict a pro-
cess. The scales of environmental processes are often un-
known because they occur at a range of scales. Topography
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is a result of many different processes operating over a range
of spatial and temporal scales. DEM resolution imposes pro-
cess and measurement scales on topography and thus hydro-
logic analyses. Scale questions must be addressed to fully
understand earth processes, and how these processes are re-
flected in the geographic pattern and form of the landscape
(Quattrochi and Goodchild, 1997).

DEM resolution has been shown to impact a wide range
of hydrologic derivatives. These include: flow direction
(Usul and Pasaogullari, 2004), topographic index (Quinn et
al., 1991; Quinn et al., 1995; Rodhe and Seibert, 1999;
Valeo and Moin, 2000), drainage properties such as chan-
nel networks and flow extracted from DEMs (Garbrecht and
Martz, 1994; Lacroix et al., 2002; Tang et al., 2001; Wang
and Yin, 1998). Other hydrologic applications have been
impacted including the spatial prediction of soil attributes
(Thompson et al., 2001), computation of geomorphic mea-
sures such as area-slope relationships, cumulative area dis-
tribution and Strahler stream orders (Hancock, 2005), mod-
eling processing of erosion and sedimentation (Schoorl et
al., 2000), computation of soil water content (Kuo et al.,
1999), slope and specific catchment area as applied to land-
slide modeling (Claessens et al., 2005) and output from the
popular rainfall-runoff model TOPMODEL (Brasington and
Richards, 1998; Saulnier et al., 1997). DEM resolution has
also been shown to directly impact hydrologic model pre-
dictions from TOPMODEL (Band and Moore, 1995; Quinn
et al., 1995; Wolock and Price, 1994; Zhang and Mont-
gomery, 1994), the SWAT model (Chaplot, 2005; Chaubey
et al., 2005), and the Agricultural Nonpoint Source Pollution
(AGNPS) (Perlitsh, 1994; Vieux and Needham, 1993). The
Water Erosion Prediction Project (WEPP) model, however,
was not sensitive to coarser resolution DEMs unless the res-
olution compromised watershed delineation (Chochrane and
Flanagan, 2005).

The impact of grid cell resolution on terrain parameters
has been shown to be related to both topographic complexity
and the nature of the algorithms used to compute terrain at-
tributes. For example, a variety of algorithms have been used
to compute slope from grid-DEMs using various grid cell res-
olutions. In each case, as the DEM resolution became finer
the calculated maximum slope became larger (Armstrong
and Martz, 2003; Bolstad and Stowe, 1994; Carter, 1990;
Chang and Tsai, 1991; Gao, 1997; Jenson, 1991; Toutin,
2002; Yin and Wang, 1999). Larger slope values in higher
resolution DEMs can specifically be attributed to the nature
of the slope algorithm, in which the grid cell resolution is
effectively the “run” in the rise-over-run formula.

Research to determine an appropriate grid cell resolution
for particular analyses has been undertaken (Albani et al.,
2004; Kienzle, 2004). The literature has established that the
grid cell size of a raster DEM significantly affects derived
terrain attributes (Kienzle, 2004). Research has also demon-
strated that higher resolution is not necessarily better when
it comes to the computation of DEM derived topographic

parameters (Wechsler, 2000; Zhou and Liu, 2004) and con-
tributes to the propagation of errors to derived parameters
under uncertain conditions (Wechsler, 2000). Selection of an
appropriate resolution ultimately depends on characteristics
of the study area such as topographic complexity, nature of
the analysis, and finances available to purchase high resolu-
tion DEM data if appropriate.

The repeated outcomes of the effects of grid cell resolution
in various hydrologic applications suggest that grid cell res-
olution will remain an important factor in our understanding,
assessment and quantification of the propagation of DEM er-
rors to hydrologic parameters and resulting uncertainty in re-
lated modeling applications.

Variability at scales larger than those captured by the grid
cell area, referred to as sub-grid variability, exists, but has for
the most part, been ignored. To date, sub-grid information is
either unavailable or lost through interpolation techniques.
However, as technologies progress and more and more data
becomes available from DEM production methods (such as
LiDAR which produces millions of data points used for DEM
interpolation), sub-grid information could be retained. Meth-
ods to differentiate data from noise will need to be developed.
This additional information could become a useful compo-
nent for future DEM uncertainty estimations. Modifications
to the raster grid cell structure should allow larger grid cells
for representation of flatter areas and smaller grid cells for
areas of topographic complexity, all within the same DEM.
This coupled with appropriate algorithms for varied topog-
raphy may lead to more appropriate representation of terrain
surfaces for hydrologic applications.

5 Surface modification for hydrologic analyses

Overland flow routing through grid cells of a DEM requires a
DEM without disruptions. DEMs often contain depressions
that result in areas described as having no drainage, referred
to assinksorpits. These depressions disrupt the drainage sur-
face, which preclude routing of flow over the surface. Sinks
arise when neighboring cells of higher elevation surround a
cell, or when two cells flow into each other resulting in a
flow loop, or the inability for flow to exit a cell and be routed
through the grid (Burrough and McDonnell, 1998; ESRI,
1998). Hydrologic parameters derived from DEMs, such as
flow accumulation, flow direction and upslope contributing
area, require that sinks be removed. This has become an ac-
cepted and common practice.

To use a DEM as a data source in hydrologic analyses,
sinks must be removed, a “necessary evil” according to Bur-
rough and McDonnell (1998) and Rieger (1998). Sinks, how-
ever, can be real components of the surface. For example in
large scale data where surface hummocks and hollows are of
importance to surface drainage flow, sinks are accurate fea-
tures. With the advent of high resolution (submeter grid cell)
DEMs it is likely that sink filling operations will be costly not
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Figure 1: Topographic locations of bias outlier points due to sink filling. Points 
contributing to positive elevation bias and negative slope bias were extracted from 
results from a Monte Carlo Simulation (elevation bias values greater than 1.61and slope 
bias values less than –3.78).  Locations tend to coincide, falling in valley areas or 
locations with relatively flat slopes. 

Fig. 1. Topographic locations of bias outlier points due to sink fill-
ing. Points contributing to positive elevation bias and negative slope
bias were extracted from results of a Monte Carlo Simulation (ele-
vation bias values greater than 1.61 and slope bias values less than
−3.78). Locations tend to coincide, falling in valley areas or loca-
tions with relatively flat slopes.

only in processing time, but in removing naturally occurring
features of the terrain surface.

Naturally occurring sinks in elevation data with a grid cell
size of 100 m2 or larger are rare, although they could occur
in glaciated or karst topography (Mark, 1988; Tarboton et
al., 1993). Rodhe and Seibert (1999) treated depressions in a
50×50 m grid as real topographic features as part of a process
to identify mires. However, generally sinks are often treated
as artifacts of the DEM creation method and eliminated.

Sinks are identified by simply identifying impediments to
a flow direction surface derived from a DEM. A number
of methods have been described for distinguishing (Lind-
say and Creed, 2006) and eliminating depressions in DEMs
(Hutchinson, 1989; Jenson, 1991; Jenson and Domingue,
1988; Lindsay and Creed, 2005a; Martz and Garbrecht,
1999; O’Callaghan and Mark, 1984; Rieger, 1998).

Methods to determine whether a sink is actual, or an arti-
fact of the DEM are time intensive. They include (a) ground
inspection through field survey, (b) examination of the source
data used to generate the DEM, (c) development of a clas-
sification model for a particular DEM that can be used to
train the computer to recognize depressions in a particular
data source, (d) knowledge-based approaches that incorpo-
rate heuristic rules specific to a data set (Lindsay and Creed,
2006).

Methods used to eliminate depressions include: (a)sink
filling which raises elevations in the DEM to match sur-
rounding cells so that flow paths can be routed, (b)breach-
ing which lower cell elevations along a breach to route flow
and (c) combinations of these approaches that both raise and
lower grid cells (Lindsay and Creed, 2005a). Although an
evaluation of four different methods (Lindsay and Creed,
2005a) suggests that the breaching method and a combi-
nation method are better alternatives (Lindsay and Creed,
2005a), the sink filling approach is the one most commonly
found integrated into mainstream GIS software.

Sink filling is based on the D8 single flow direction flow
routing method first described by Jenson and Domingue
(1988) and Jenson (1991). This approach raises the sink ele-
vation to that which enables flow linkage. The method has
the disadvantage of assuming that all depressions are due
to an underestimation of elevation in the sink, rather than
the overestimation of surrounding cells, and flow routing is
based on the D8 single-direction flow algorithm discussed
previously. Other algorithms have been developed that incor-
porate the multiple flow path approach (Martz and Garbrecht,
1999; Rieger, 1998).

While research has focused on the development of sink
filling methods, little attention has been paid to either the ap-
propriateness of a particular sink filling algorithm or to the
impact of the sink filling operation on DEMs and derived pa-
rameters. Wechsler (2000) investigated the impact of DEM
errors and the sink filling procedure on representation of el-
evation and derived parameters using a Monte Carlo simula-
tion technique. The effect of sink filling was quantified di-
rectly for elevation and slope and indirectly for the TI. While
there was no significant difference between elevation from
filled and unfilled DEMs, a significant bias was observed in
the slope parameter. The sink filling procedure raised the ele-
vation of cells where sinks were found, increasing elevations
in these areas, resulting in a larger positive bias for elevation.
Raising these elevations in turn decreased slope estimators in
these areas, leading to negative bias for slope (Fig. 1). These
findings have implications for watershed studies conducted
in lower lying, flatter areas such as agricultural watersheds.
Lindsay and Creed (2005) also evaluated the impact of de-
pression filling on DEMs and derived topographic parame-
ters and similarly concluded that depression removal signif-
icantly alters the spatial and statistical distributions of de-
rived terrain attributes. The occurrence of depressions in re-
motely sensed DEMs representing varying terrain types (flat
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to mountainous) was evaluated. As would be expected, flat
areas experienced more depressions than high-relief land-
scapes. The number of depressions found was related to grid
cell resolution; coarser grids were found to be more vulnera-
ble to depressions (Lindsay and Creed, 2005b).

In addition to the process of sink filling, hydrologists fre-
quently undertake a method of surface modification referred
to as stream burning, to generate “hydrologically enforced”
DEMs (Maune, 2001). The method integrates vector repre-
sentation of hydrography with the interpolation of the DEM.
This automatic adjustment of the DEM has been incorporated
into the ANUDEM package (Hengl et al., 2004; Hutchinson,
2006). The impact of this surface modification procedure
on derived parameters has not been addressed in the litera-
ture. An advantage of this procedure is that it avoids iterative
modification of the entire DEM, focusing on just the low ly-
ing stream areas. Errors could result from inconsistencies
between the data sources, specifically in regard to scale.

DEMs are altered to generate surfaces over which flow can
be routed to facilitate their use in further hydrologic analyses.
The impact of this modification on resulting analyses bears
further investigation.

6 Distributed parameter hydrologic models

“GIS do not ‘create’ information. However there appears
to have developed an implicit reliance on GIS to provide
information adequate to parameterize physically based dis-
tributed hydrological models, often at spatial resolution and
accuracy levels that are unrealistic given the original source
of spatial data.” (Band and Moore, 1995, p. 419)

GISs are designed to represent environmental features,
such as topography, which drive dynamic hydrologic (and
other environmental) processes. Although they are not de-
signed to serve as dynamic modeling tools (Reitsma and
Albrecht, 2005) the ability of the GIS to represent the dis-
tributed nature of data sets lends itself well as a platform for
integrating distributed hydrologic models.

Topography is the driving force behind the hydrologic re-
sponse of a watershed. Hydrologic processes are represented
by and analyzed using hydrologic models. Many hydrologic
models are distributed in nature; terrain representation is di-
vided into smaller areas or grid cells within which hydrologic
processes are simulated. The raster grid structure allows flow
to be routed through the watershed via grid cells. This struc-
ture integrates well with distributed parameter hydrologic
models that are designed to accept grid-based inputs such
as derived topographic parameters. Grid-based DEMs have
been used ubiquitously to generate input parameters such as
slope gradient, aspect, curvature, flow direction and upslope
contributing area, for distributed parameter hydrologic mod-
els (Armstrong and Martz, 2003; Johnson and Miller, 1997;
Saghafian et al., 2000).

The use of a GIS to generate input parameters for dis-
tributed parameter models enables a watershed to be ana-

lyzed at higher resolutions than would be practical using
manual methods. Thedistributing of hydrologic informa-
tion imposes an inherent scale on hydrologic analyses that
must be recognized. The effect of this scale is often not ac-
knowledged and the results of the effects of this scale are
neither quantified nor considered when presenting results
from various hydrologic models. Sensitivity analyses are
frequently performed by hydrologists on model inputs such
as hydrograph estimations, and Manning’s roughness coeffi-
cients. However, they are rarely performed on DEM-derived
attributes such as slope, aspect and flow direction. This leads
to a number of questions such as:What is the appropriate
grid cell resolution for a hydrologic analysis? How does un-
certainty propagate from the DEM to input parameters and
through the models?

As discussed above, outputs from distributed parameter
hydrologic models such as WEPP, SWAT, AGNPS and Top-
Model have been shown to be highly sensitive to grid cell
size. Lagacherie et al. (1996) evaluated the propagation of
error in topographic parameters through a hydrologic model
to simulate flood events. Variations in outputs were docu-
mented and were not linear. Differences in DEM vertical ac-
curacies were shown to impact the accuracy of runoff predic-
tions from the soil-hydrology-vegetation model (DHSVM)
(Kenward et al., 2000).

Hydrologic models are complex. Identifying sources of
error in DEMs is difficult enough. Understanding their prop-
agation to topographic parameters compounds the problem.
The Generalized Likelihood Uncertainty Estimation (GLUE)
method provides a mechanism for estimating uncertainty in
hydrologic model predictions (Beven and Binley, 1992) and
has been applied to assess uncertainty in TopModel which
requires a DEM to derive input parameters (Freer et al.,
1996). However, understanding, quantification and commu-
nication of how errors in numerous input parameters often
required of physically-based hydrologic models affect their
output continues to challenge (Beven, 2006; Beven and Bin-
ley, 1992). Practitioners often undertake hydrologic analy-
ses with a hope that error propagation to hydrologic param-
eters is minimal when combined within hydrologic models.
A clear cut answer is preferred over the concept of equifi-
nality (Beven, 2006; Beven, 2007). However, is it safe to
make this assumption without assessing or reporting the un-
certainties associated with input parameters, especially those
derived from DEMs? Research has indicated that even small
discrepancies can have a meaningful impact on the results of
hydrologic models, and could influence the way hydrologic
information, as represented by hydrologic models is evalu-
ated and interpreted. Users of hydrologic models must be
aware of the influence that both the DEM and GIS software
have on the calculation of various model parameters. The
task ahead is to develop accepted methodologies for quanti-
fying and communicating propagation of DEM errors to re-
sults of hydrologic analyses.
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7 DEM uncertainty simulation

DEM error and issues of specific consideration for their use
in hydrologic analyses have been identified in the preceding
sections. This section reviews theories associated with spa-
tial data uncertainty and their application, and reviews how
the research community has responded to quantify and rep-
resent DEM uncertainty.

7.1 Stochastic simulation

The “simulation school” (Chrisman, 1989) regards the map
as a distribution of possible realizations within which the true
values lie. Given spatial data uncertainty, a DEM can be re-
garded as only one rendering of a distribution of possible re-
alizations. The stochastic simulation approach to error mod-
eling requires a number of maps, or realizations, upon which
selected statistics are performed. Uncertainty is computed by
evaluating the statistics associated with the range of outputs.
Representation of these equiprobable distributions of maps is
referred to as stochastic modeling (Chrisman, 1989; Journel,
1996), orMonte Carlo simulationdue to the random genera-
tion of uncertain variables used to simulate uncertainty.

Monte Carlo simulation assumes that the DEM is only one
realization of a host of potential realizations. Each cell there-
fore can be represented by a probability distribution func-
tion (PDF) and each cell has a known mean and variance.
A value is drawn from the PDF for each cell. This pro-
cess repeated many times generating a set of realization maps
(Burrough and McDonnell, 1998). In Monte Carlo analyses
the outcomes represent the entire space by generating a com-
plete probability distribution of possible outcomes (Srivasta,
1996).

Stochastic simulations provide a series of random plau-
sible maps using stochastic modeling methods from mathe-
matical statistics. The technique does not ensure that a “real”
map is generated from the process (Chrisman, 1989), but the
simulation does provide a bound within which we can state
the true map lies. Simulation techniques can therefore be
used to represent uncertainty about the true elevation.

Much research has focused on the use of simulation
techniques to propagate error and quantify uncertainty in
spatial data (see for example Brunsdon and Openshaw
(1993), Deutsch and Journel (1998), Goodchild et al. (1992),
Heuvelink et al. (1989), Openshaw et al. (1991), Veregin
(1994)). Alternatives to Monte Carlo simulation include an-
alytical models of error propagation based on Taylor Series
expansion (see for example Albani et al. (2004), Bachmann
and Allgower (2002), Heuvelink (1998), and Heuvelink et
al. (1989)). However, Monte Carlo simulation is the ap-
proach commonly applied to assess DEM uncertainty regard-
ing error propagation “. . .Monte Carlo methods have almost
completely taken over. . . ”(Heuvelink et al., 2007, p. 91).
This can be attributed to their relative simplicity in concept,
advances in computing power that have facilitated the com-

putational demands of thisbrute forceapproach, and the
“simplifying approximations” required of analytical methods
in the face of complexity (Heuvelink et al., 2007). For the
purposes of this review, selected examples of methods based
on the Monte Carlo simulation approach are presented.

7.2 Representing DEM errors by random fields

The differences among Monte Carlo methods for simulating
DEM uncertainty lie in the methods used to generateran-
dom fields. A random field2 is a surface of random values
that estimates the magnitude, variance and spatial variability
of uncertainty. Each value represents the potential error at
a specific point (grid cell). These error maps represent the
PDF of the DEM’s error distribution, which accounts for the
magnitude and spatial dependence of DEM error. Realiza-
tions derived from these random fields are used to quantify
DEM uncertainty. The value of each cell in a random field
represents one possible case from a PDF that is developed to
describe what is know about a DEM’s error.

The Monte Carlo simulation approach, as applied to
DEMs, can be summarized as follows. a) A random field
(error map) is generated based on statistical representation
selected for DEM error. b) The random field is added to the
original DEM resulting in a realization. c) Steps a. and b. are
repeated N times based on the number of realizations deemed
appropriate to capture the distribution of possible elevations.
d) The distribution of these realizations is evaluated and un-
certainty is quantified. Multiple realizations of the DEM pro-
vide a Gaussian distribution that better represents the DEM
under uncertain conditions (Fisher, 1998; Hunter and Good-
child, 1997).

The underlying assumptions of the Monte Carlo simula-
tion procedure as applied to DEM uncertainty assessment
are as follows: (a) DEM error exists and constitutes uncer-
tainty that is propagated with manipulation of the elevation
data; (b) The nature and extent of these errors is unknown;
c) DEM error can be represented by a distribution of DEM
realizations; and d) The true elevation lies somewhere within
this distribution (Wechsler, 2000; Lindsay, 2006).

Approaches to random field generation are based on two
different assumptions: (a) No prior knowledge of the spa-
tial structure of DEM error is available. Higher accuracy
data can be difficult and costly to obtain. In the absence
of this information, random fields can be approximated by
the accuracy statistic (RMSE) provided with DEM metadata,
and methods to incorporate spatial autocorrelation within

2The random function model for estimating uncertainty is rooted
in the field of geostatistics and is based on an assumption of local
stationarity which assumes that spatial properties are independent of
location. Error is complex and is likely non-stationary, and spatially
autocorrelated. The assumption of stationarity, however, applies to
the search neighborhood, not the entire data set and as such is a
“viable assumption even in data sets for which global stationarity is
clearly inappropriate” (Isaaks and Srivasta, 1989, p. 532).
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these fields. (b) The second assumption is the empirical ap-
proaches which assume that the spatial structure of DEM
error is available. This information can be obtained from
higher accuracy data generated from ground truth surveys or
other DEMs and can be integrated into random field genera-
tion.

7.3 Estimating the parameters of random fields

A number of methods have been presented for representing
uncertainty through random fields. Simple uncorrelated ran-
dom fields are normally distributed with a mean of 0 and
a standard deviation often equivalent to the RMSE, which
is typically the only information DEM users have about a
DEM’s accuracy (Hunter and Goodchild, 1997; Van Niel et
al., 2004; Wechsler, 2000; Wechsler and Kroll, 2006). How-
ever, Tobler’s First Law of Geography –everything is related
to everything else, but near things are more related than dis-
tant things– cannot be ignored (Tobler, 1970). The uncorre-
lated representation of error fields as “worst case scenarios”
was refuted by Oksanen (2006). Elevation is characterized
by spatial dependence, or autocorrelation, therefore eleva-
tion errors are spatially autocorrelated. The nature of this
autocorrelation is difficult to assess due to the complexity as-
sociated with DEM errors and potential anisotropic nature of
error. However, the following methods have been developed
to account for spatial autocorrelation in random fields.

Spatial moving averagesapply a filter to the random field
to increase its spatial autocorrelation. These filters range
from 3×3 low pass filters to those that account for the dis-
tance of spatial dependence as computed by a semivariogram
of the original DEM (Liu and Herrington, 1993; Wechsler
and Kroll, 2006).

A process referred to aspixel swapping(Fisher, 1991;
Goodchild, 1980) is based on the geostatistical concept of
simulated annealing(Deutsch and Journel, 1998; Oksanen,
2006). A threshold spatial autocorrelation is identified based
on properties of the input data. The spatial autocorrelation of
the random field is computed. Two cells in the field are ran-
domly identified, values in the two cells are swapped and the
spatial autocorrelation recalculated. The steps are repeated
until the difference between the threshold and calculated au-
tocorrelation is within a certain threshold.

A spatial autoregressive modelwas presented by Hunter
and Goodchild (1997). Error fields were generated using a
spatially dependent disturbance term based on a spatially au-
toregressive process:e=We+N(0, 1), where e represents a
vector of grid values of the disturbance field, is a parameter,
andN (0,1) is a vector of normally distributed random num-
bers (mean of 0, standard deviation of 1).W is a matrix of
weights that assigns a 1 to rook’s case neighbors, and 0 other-
wise. This forces to lie in the range of 0 to 0.25 (Hunter and
Goodchild, 1997). The disturbance maps were simulated it-
eratively selecting values ofe and fitting them to the equation

until the equation worked. Distinct patterns of autocorrela-
tion emerged as reached values close to 0.25.

Sequential Gaussian simulationis a geostatistical ap-
proach that assumes errors are normally distributed and their
distribution can be approximated by using higher accuracy
data obtained from ground control points (Aerts et al., 2003).
Random fields are generated as follows: each node in the
grid is visited randomly. At each node original observations
and simulated nodes are selected for conditioning and krig-
ing is used to obtain descriptive statistics of this conditional
cumulative distribution function (CCDF). A random value is
drawn from the CCDF and placed in that node location. The
process is repeated until all locations have been populated
(Journel, 1996; Oksanen, 2006).

Additional methods that require data beyond the RMSE
to establish the spatial structure of DEM error have been in-
troduced. Elschlaeger (1998) developed a method that re-
quires higher accuracy data derived from a GPS survey or
higher resolution DEM to inform the development of the
random field (Ehlschlaeger, 1998; Ehlschlaeger and Short-
ridge, 1996; Holmes et al., 2000). Thisthree-parameter-
methodcreates random fields with a Gaussian distribution
that matches the mean and standard deviation parameters de-
rived from a “difference map”. Spatial autocorrelative char-
acteristics of spatially dependent uncertainty are accounted
for in the algorithm. This method improves upon the pixel
swapping and spatial autoregressive approaches which allow
only one parameter to define the structure of the error model
(Ehlschlaeger, 1998; Oksanen, 2006).

Kyriakidis et al. (1999) present a geostatistical method
that is based on a combination of sparsely available higher
accuracy (“hard” data) with given DEM elevations (“soft”
data). Elevation realizations are generated by cokriging and
are based on auto- and cross-covariance models that quantify
the autocorrelation and cross-correlation between the hard
and soft data (Kyriakidis et al., 1999; Oksanen, 2006) .

7.4 DEM Error Simulation: Case Studies

“...there is no inherent reason why conditional simulation
should not be used as routinely for uncertainty analysis
as kriging is used for interpolation. It is unlikely, how-
ever, that conditional simulation will become available in the
GIS environment until a substantial demand has been estab-
lished...this is likely to require the gradual accumulation of
case studies in the literature...”(Englund, 1993 p. 437).

Each of the following case studies demonstrates the ap-
plicability of the Monte Carlo simulation approach to er-
ror propagation and uncertainty assessment in DEMs and
DEM-derived data. These studies establish that progress
has been made in demonstrating the applicability and effec-
tiveness of these approaches to error propagation within a
Monte Carlo Simulation. However the varied error prop-
agation approaches indicate that an agreed approach is as
of yet unresolved. The remaining challenge is to provide
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Figure 2: Results of a Monte Carlo simulation demonstrating the probability that slopes 
will be >= 30%. Two methods for generating random fields were used: U corresponds to 
uncorrelated random fields and W represents spatially autocorrelated random fields. The 
results demonstrate the effects of uncertainty using two different random field methods 
and grid cell resolutions (10 and 30m).  
 

Fig. 2. Results of a Monte Carlo simulation demonstrating the probability that slopes will be>=30%. Two methods for generating ran-
dom fields were used: U corresponds to uncorrelated random fields and W represents spatially autocorrelated random fields. The results
demonstrate the effects of uncertainty using two different random field methods and grid cell resolutions (10 and 30 m).

these approaches as tools that DEM users can readily ac-
cess through GIS software packages. There will be occa-
sions when a DEM user has access to a higher accuracy data
source for generating information on the spatial structure of
error, and there will be occasions when that information is
unavailable.

7.4.1 Higher accuracy data unavailable

The following studies incorporate either the RMSE statistic
for a particular DEM or expert judgment regarding develop-
ment of the error fields.

The Pixel swapping algorithm presented by Goodchild
(1980) has been applied in a number of studies. Lee et
al. (1992) found that floodplain delineations were signifi-
cantly affected by DEM error. Fisher (1993) simulated the
impact of DEM error on viewshed analyses using this method
and determined that DEM-derived viewsheds may overesti-
mate representation of the “true” viewshed. Davis and Keller
(1997) modified the Goodchild (1980) approach to model un-
certainty in slope stability prediction. The modified method
was used to increase spatial autocorrelation in error field gen-
erated by variogram analyses. The authors suggested that this
method could be improved by incorporating autocorrelation

Hydrol. Earth Syst. Sci., 11, 1481–1500, 2007 www.hydrol-earth-syst-sci.net/11/1481/2007/



S. P. Wechsler: Uncertainties associated with digital elevation models 1491

at different levels of aggregation based on slope classes, user
defined windows or slopes. The Goodchild (1980) method
was also adapted by Veregin (1997) to incorporate slope in
the iterative swapping approach. In this approach, slope
served as an underlying indicator of the spatial distribution
of DEM error. Flow paths derived from DEMS using the D8
method were found to be sensitive to DEM errors, especially
in areas of low slope. Murillo and Hunter (1997) applied the
spatially autocorrelation iterative swapping method to evalu-
ate the effect of DEM error on prediction of areas susceptible
to landslides. While uncertainty associated with some model
input such as choice of slope classes and slope algorithms
were acknowledged the impact of these uncertainties was not
assessed. Uncertainty results were communicated through
visualization via map output. Lindsay (2006) applied this
approach to assess the impact of DEM error on six meth-
ods for extracting channel networks from a DEM. Methods
that required identification of patterns from surface morphol-
ogy (valley-recognition algorithms) were more sensitive than
channel-initiation techniques, perhaps because elevation er-
ror was shown to influence positioning of channel heads and
links (Lindsay, 2006).

Hunter and Goodchild (1997) applied a spatially autore-
gressive random field method that incorporates spatial auto-
correlation of DEM error. This method was compared with
completely random, uncorrelated error fields to assess the ef-
fect of these error representations on slope and aspect calcu-
lations. The authors concluded that an error model ought to
be based on an assumption of spatial dependence of error;
however, completely random fields could be applied in the
absence of a higher accuracy surface from which to obtain
this information.

Wechsler (2000) and Wechsler and Kroll (2006) compared
simulations resulting from four different methods of random
fields that included completely random (mean of 0 and stan-
dard deviation equal to the RMSE) and three different filter
methods that increased the spatial autocorrelation of the error
fields. Wechsler (2000) applied this method to evaluate the
effects of DEM uncertainty on sink filling, topographic pa-
rameters calculated at different resolutions, and topographic
parameters computed for different terrain types (Figs. 2 and
3). Although less sophisticated than the iterative swapping
method to achieving spatial autocorrelation, the methodol-
ogy was implemented directly via an extension to a com-
monly used GIS software package.

Widayati et al. (2004) implemented the error propagation
methods presented by Wechsler (2000) to evaluate the prop-
agation of elevation error on flat and varied slopes and dif-
fering grid resolutions. Slope error was found to be sensitive
to the spatial dependence of DEM error. Cowell and Zeng
(2003) assessed uncertainty in the prediction of coastal haz-
ards due to climate change. Uncertainty in the DEM was rep-
resented by random, normally distributed error fields. As er-
ror was increased, model output uncertainty decreased due to
the nature of the normal distribution of the error fields used.
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Figure 3: Spatial model of a DEM uncertainty SDSS toolbox 
 
 

Fig. 3. Spatial model of a DEM uncertainty SDSS toolbox.

Yilmaz et al. (2004) simulated DEM error using completely
random fields with a normal distribution based on the RMSE
to demonstrate the impact of DEM uncertainty on the results
of a flood inundation model.

More recently, a “process convolution” or spatial moving
averages approach to the generation of random error fields
was used to evaluate the delineation of drainage basins that
were found to be very sensitive to DEM uncertainty (Oksa-
nen and Sarjakoski, 2005a; Oksanen and Sarjakoski, 2006).
The approach was applied to both slope and aspect deriva-
tives and demonstrated that completely random uncorrelated
random error fields are not a valid mechanism for represent-
ing DEM error (Oksanen and Sarjakoski, 2005b; Oksanen
and Sarjakoski, 2006).

Methods for assessing DEM uncertainty through simula-
tion and error propagation have not been fully integrated
into assessing hydrologic model output with the exception
of Zerger (2002) who investigated the effect of DEM uncer-
tainty on a storm surge model. Random error fields were
spatially autocorrelated. DEM errors impacted low inunda-
tion scenarios. This spatial uncertainty was communicated
using visualization through risk maps.

7.4.2 Higher accuracy data available

Another school of thought on error propagation assumes that
the RMSE alone is an insufficient indicator of DEM error,
and that additional knowledge of the spatial structure of error
in a particular DEM is required for uncertainty modeling in
a Monte Carlo simulation. Approaches have been developed
that incorporate higher accuracy data, such as that garnered
from a higher accuracy DEM or GPS survey, to develop a
model of the spatial structure of error, which in turn is used
to generate DEM realizations.

Ehlschlaeger and Shortridge (1996) developed a model
that creates random fields with a Gaussian distribution that
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matches the mean and standard deviation derived from a
higher accuracy data source. Spatial autocorrelative charac-
teristics of spatially dependent uncertainty are accounted for
in the algorithm that was applied to a least-cost-path appli-
cation. Kiriakidis et al. (1999) present a geostatistical ap-
proach to DEM realizations that incorporate autocorrelation
information derived from residuals obtained from higher ac-
curacy sources. Holmes et al. (2000) applied this approach
to the prediction of slope failure. Endreny and Wood (2001)
evaluated the effect of DEM error on flow dispersal area pre-
dictions using six different algorithms. Error fields were spa-
tially autocorrelated based on an error matrix derived from an
assessment of differences between the test USGS 30 m DEM
and a higher resolution 10m SPOT DEM. Uncertainty results
were communicated using probability maps. Ehlschlaeger
(2002) introduced a method for generating error fields that
accounts for both the spatial autocorrelation of error and in-
corporates information about DEM characteristics such as
topological shapes in the error model. Canters et al. (2002)
evaluated the effects of DEM error on a landscape classifica-
tion model. Random error fields were spatially correlated us-
ing error characteristics derived from a ground truth survey.
While uncertainty caused by image classification was found
to be more significant than DEM error, transition zones were
particularly sensitive to DEM error. Van Niel et al. (2004) ap-
plied Monte Carlo simulation to assess the impact of DEM
uncertainty on slope, aspect, net solar radiation, topographic
position and topographic index. The error in these DEM-
derived parameters was propagated to results of a vegetation
model. DEM error was assessed by comparison with a higher
accuracy data source obtained from a GPS survey and used
to filter normally distributed random error fields.

8 Integrating and communicating DEM uncertainty

“. . . The absence of facilities within GIS software for han-
dling the effects of input data uncertainty and possible error
propagation by GIS operations creates a question mark over
the safe utilization of many aspects of the technology. . . ”
(Openshaw et al., 1991, p. 78)

Methods have been developed that transfer information
from a GIS into external error propagation analysis tools (see
for example Heuvelink (1998), Hwang et al. (1998)). Output
from these external systems is either returned to the GIS for
mapping and visualization or exported to graphic charts or
statistical tables (Hwang et al., 1998). Attempts have also
been made to integrate uncertainty simulation tools within a
GIS (Wechsler, 2000). However, a viableDEM uncertainty
toolboxthat incorporates various simulation approaches, and
considers the fundamental areas that contribute to DEM un-
certainty described herein has not yet been realized. What are
the essential components of a viableDEM uncertainty tool-
box and what form should it take? How should simulation
results be quantified and communicated?

8.1 User interfaces: decision support systems

Assessment of the multiple factors that contribute to DEM
uncertainty and their propagation to topographic parameters
and hydrologic models is complex. The ability of a user to
interact with and explore possible outcomes is crucial for in-
formed decision making. Spatial decision support systems
(SDSS) provide a mechanism for integrating data exploration
and assessing model outcome to facilitate informed decision
making and can serve as a mechanism for achieving this
interaction with DEM users. An SDSS is generally com-
prised of a spatial database and a user-defined interface that
accesses GIS analysis and modeling capabilities. Multiple
Criteria Decision Models (MCDM) are a type of SDSS that
allow users to make decisions with multiple alternatives (As-
cough et al., 2002; Jankowski et al., 2001).

Current GIS interfaces provide limited support for spa-
tial data exploration and uncertainty assessment. However,
many GIS user interfaces can now be modified and enhanced
through object-oriented programming that allows users to de-
velop tools to assess model results and assist in decision mak-
ing based on these results. Such direct integration of deci-
sion support tools that incorporate uncertainty theory within
a GIS has been achieved on a limited basis. Wechsler (2000)
and Wechsler and Kroll (2006) integrated a toolbox within
a GIS to allow users to simulate the effects of DEM error
on elevation, slope, upslope area and the topographic in-
dex. While results were not carried through to a particular
hydrologic modeling effort, and used simple error propaga-
tion techniques, the approach demonstrated how these tools
can be integrated as pull-down-menus into mainstream GIS.
Aerts et al. (2003) developed an SDSS external to a GIS to
assess the impact of DEM uncertainty on a cost-path anal-
ysis for ski run development. Although uncertainty associ-
ated with specific model input parameters such as slope can-
not be culled out, and the product is not specifically part of
a GIS package, the research successfully demonstrates the
efficacy of such an approach. Gunther (2003) developed a
software program called SLOPEMAP, that integrates with
two commonly used terrain analysis packages (ArcView GIS
and Surfer) to derive geologic information from a DEM for
assessment of rockslide susceptibility. Debruin and deWit
(2005) developed a method to streamline the evaluation of
grids within a stochastic simulation. This computer applica-
tion demonstrates progress in the use of Monte Carlo simu-
lations on desktop computers. Currently some GIS packages
have limitations on the number of grids that can be assessed
simultaneously. Other GIS-based decision support tools have
been developed. Wise et al. (2001) report on the results of
the successful integration of a GIS-based user interface for
statistical spatial data analysis. Durañona and Lopez (2000)
developed a toolbar to detect errors in a DEM. Crosetto
and Tarantola (2001) present general procedures for assess-
ment of uncertainty within a GIS-based flood forecasting
model. Karssenberg and DeJong (2005) describe concepts
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for integrating error propagation functionality based on ex-
isting concepts within an environmental modeling language.
They concede that a consistent framework for implementing
error propagation into environmental modeling has not been
achieved and suggest that this is because tools are not avail-
able or accessible for a wide range of users (Karssenberg and
Jong, 2005).

Each of these studies demonstrates the viability of the
SDSS as a mechanism for addressing DEM uncertainty, and
integrating that knowledge with specific distributed parame-
ter hydrologic models. There is as of yet no consensus about
how to present these tools and to communicate results of un-
certainty assessments. Visualization of the results of error
propagation could be a mechanism for increasing their ac-
cessibility.

8.2 Visualization

“A number of visualization tools need to be developed to
portray error at the same time as the original data. The in-
creasing use of computer displays and the development of
stochastic models of error present the opportunity for doing
just this.” (Fisher, 1994 p. 181).

Results of methods to assess DEM uncertainty must be
effectively communicated in order to be integrated and ap-
plied. Cartographic representations are the primary method
of communicating results from GIS-based spatial analyses,
and the main communicative output provided by GISs. DEM
uncertainty can be visualized in a number of ways includ-
ing static tables or graphs, error maps of residuals between a
DEM and a higher accuracy data source, error matrices, static
maps or map animations of realizations from Monte Carlo
Simulations (Davis and Keller, 1997; Ehlschlaeger, 1998;
Ehlschlaeger et al., 1997; Wood, 1996). Other efforts have
integrated tools within the GIS interface. This section dis-
cusses progress in these areas.

Visualization techniques have been applied to evaluate and
convey the potential inaccuracies inherent in DEM data sets
such as DEM error (Acevedo, 1991), interpolation accu-
racy (Wood, 1996; Wood and Fisher, 1993) and results of
DEM uncertainty simulations (Hunter and Goodchild, 1995).
Spear et al. (1996) conducted a survey to investigate the ef-
fectiveness of different visualization techniques in convey-
ing DEM interpolation uncertainty. Map animations have
been used to visualize uncertainty in image classification
(Zhang and Stuart, 2001) and a slope stability model Davis
and Keller (1997). Jankowski et al. (2001) investigated the
role of maps as visual tools in the data exploration and de-
cision making process. A user interface was developed that
allows users to interactively visualize the results of certain
input assumptions. While a DEM was not part of this par-
ticular analysis, the approach could be followed to develop
methods to assess DEM uncertainty.

Visualization of uncertainty alone may not be an effi-
cient method for communicating uncertainty to the deci-

sion maker. Quantitative estimates of error and their con-
sequences, if available, should be either incorporated into
the visualization or reported.What should a hydrologically-
based DEM uncertainty SDSS toolbox look like and how
should results be communicated?Research and technology
demonstrate that the integration of simulation research with
hydrologic models is possible. Cartographic research contin-
ues to focus on communication approaches. Distributed hy-
drologic models vary extensively and therefore uncertainty
results will vary based on the distributed model applied. A
modular DEM error assessment system would be capable of
breaking up the component uncertainties and assessing the
impact of error on model outputs (see for example Fig. 3).
For such a system to be successful, continued research is re-
quired to assess thehumancomponent, to determine to what
extent and in what format users are willing to accept, address
and manage error.

8.3 DEM uncertainty toolbox

DEM uncertainty simulation methodologies have been devel-
oped and some assessments of the effect of DEM uncertainty
on specific hydrologic models have been evaluated in case
studies. Although progress has been made, these approaches
are far from being implemented as a spatial decision support
system for DEM users. The paradigm of an “uncertainty but-
ton” (Goodchild et al., 1999) oruncertainty toolboxprovided
by vendors and implemented by users is not yet a reality. Yet
is such an invention even a viable option? Sentiment has been
expressed that due to the complexity of the topic, an uncer-
tainty toolbox is a fantasy. Uncertainty assessment is thought
to require too much processing time and considerable prior
knowledge is required of the DEM users (Heuvelink, 2002).
DEM users are not likely to be willing to spend time on un-
certainty assessment (Wechsler, 2003) unless it becomes a
simplified and cost-effective exercise that can be justified in
‘billable hours’.

The call for aDEM uncertainty toolboxechoes that of pre-
vious researchers and the GIS community. This has not yet
been satisfactorily achieved in the decade-or-so since it was
first suggested, probably due to a combination of technology
limitations, software limitations and DEM user limitations.
However, as a discipline, the hydrologic GIS user commu-
nity is ready to progress in this area. Technology limitations
are continuing to be overcome; computer processing power
has increased and Monte Carlo simulations on raster grids
can now be performed on most desktop computers.

Ultimately, aDEM uncertainty toolboxwould provide a
mechanism for users to simulate the effect of DEM error
(whether higher accuracy data is available, or not) derive a
series of plausible outcomes for particular distributed param-
eter hydrologic models, and communicate model results vi-
sually and quantitatively given DEM uncertainty. Perhaps
once thesebuttonsbecome part of the DEM processing tool-
box, users may become more receptive to using an SDSS that
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allows users to simulate DEM uncertainty and incorporate
uncertainty output into analytical results that inform decision
makers with greater accuracy.

9 Conclusions

While not exhaustive, this review presents key research is-
sues associated with DEMs as applied to hydrologic applica-
tions. A central focus is on DEM uncertainty that affects the
use of DEMs for hydrologic applications. The review doc-
uments that DEM error, topographic parameter generation,
grid cell resolution, and hydrologic modifications are all es-
sential considerations when undertaking an assessment and
quantification of DEM uncertainty. These variables, condi-
tions and problems should be considered for the development
of anuncertainty toolbox.

The GIS community continues to move forward in pro-
viding and using mechanisms for addressing DEM uncer-
tainty and its propagation through hydrologic analyses. Fur-
ther progress will require intellectual leadership resulting in
collaboration and commitment from the GIS stakeholders in-
cluding researchers, software developers, data vendors, edu-
cators and practitioners.

In the course of this review research questions have been
identified and recommendations have been made throughout.
Specific recommendations are reiterated here and grouped
by the entities who should lead the efforts. However, suc-
cess will require feedback loops among and between these
groups.The collaboration among stakeholders might begin
with establishing a long term study group that is charged with
designing components for a DEM uncertainty toolbox.

9.1 Recommendations for research

In mature sciences, the scientific community tends to agree
about instruments and procedures for measurement. Sci-
ence requires reliable, veridical measurements and proce-
dures. Our knowledge of the world depends on the quality of
this scientific framework and is continually being expanded
by digital data and capabilities of geographic information
systems. Geographic Information Science is on its way to
becoming a mature science. To achieve this goal we must
incorporate discipline and consistency in the use of digital
data. Standards should be developed to address the level of
error appropriate for specific applications. These standards
will guide the GIS community in addressing and reporting
the impact of DEM uncertainty. The following recommen-
dations are some steps that can be taken.

– Refine and continue to develop appropriate methods for
quantifying, simulating and communicating DEM un-
certainty.

– Develop methods to take advantage of subgrid informa-
tion that is lost when DEMs are aggregated from high

accuracy point data, and identify the sources of error
contributed by interpolation algorithms. This informa-
tion could become a useful component for DEM uncer-
tainty estimations (Section 2.0).

– Identify appropriateness of algorithms for deriving to-
pographic parameters given grid cell resolutions and to-
pographic complexity. Modifications to the raster grid
cell structure could accommodate varied topography
and provide a more appropriate representation of terrain
surfaces for hydrologic applications (Sections 3.0 and
4.0).

– Identify essential components of a viableDEM uncer-
tainty toolboxand what form the SDSS should take to
simulate, quantify and communicate results. This will
involve assessment of the “human factors” component,
to determine to what extent and in what format users are
willing to accept, address and manage error.

– Develop methods to quantify the impact of surface mod-
ification (i.e. sink filling and stream burning) and inte-
grate these into the uncertainty toolbox (Section 5.0)

9.2 Recommendations for software and data developers

Software developers and vendors are in the position to imple-
ment a paradigm shift in the way users respond to and inter-
act with spatial data. Once error-enhancements are made to
the typical GIS interface, users will become more receptive
to uncertainty in spatial data and the incorporation of mea-
sures to quantify it in analytical results. This will ultimately
inform decision makers with greater accuracy. The following
recommendations are expected to enable the user community
become more aware of and receptive to recognizing and ac-
commodating spatial data uncertainty.

– The varied error propagation approaches reviewed
demonstrate a variety of approaches for propagating
DEM uncertainty. This family of simulation approaches
should be integrated into aDEM uncertainty toolboxto
provide mechanisms for a wide range of users to sim-
ulate the effect of DEM error whether higher accuracy
data is available, or not (Sect. 7).

– DEM uncertainty assessment and quantification re-
quires information on the spatial structure of DEM er-
ror. DEM data developers should provide additional in-
formation so that methods programmed in theuncer-
tainty toolboxcan more appropriately reflect the spatial
structure of error (Sect. 2.3).

– GIS software interfaces should provide users with
choices in approaches to deriving parameters frequently
used in hydrologic analyses (Sect. 3). This will yield
“smarter” GISs that are capable of evaluating a DEM,
and then apply an appropriate algorithm to specific
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areas based on terrain characteristics and complexity
(Sect. 3).

– Develop a “smarter” GIS that can sense differentiation
in terrain complexity. Specific grid cell resolutions and
terrain attribute algorithms could be applied based on
terrain complexity, rather than taking a “one size fits all”
approach (Sect. 4).

– Develop data exploration methods to assist users in
selecting an appropriate grid cell resolution when in-
terpolating or aggregating data for DEM production.
Users could either choose a resolution or select one that
has been “suggested” by behind-the scene computations
and data exploration in the intelligent GIS (Sect. 2).

– Model-specific solutions would enable users to derive
a series of plausible outcomes for particular distributed
parameter hydrologic models, and communicate model
results visually and quantitatively given DEM uncer-
tainty (Sect. 6).

– Work with researchers and educators to develop the
DEM uncertainty toolbox. This will require determina-
tion of the components pf the pull-down menus, and the
integration of interactive cartographic representations to
enable users to visualize impacts of DEM uncertainty
(Sect. 8.2).

9.3 Recommendations for educators and students

The software, research and education communities should
not be hindered by the concern that users of spatial infor-
mation are “frightened” by mathematical equations and do
not have sufficient background in statistics to be responsi-
ble users of error propagation tools (Heuvelik, 2007, p. 94).
GIS is ubiquitous, however most of its practitioners not likely
to be trained in the underlying mathematics of topological
relationships and other sophisticated underlying GIS com-
ponents. The users of the DEM uncertainty toolbox would
likely be specialized (like users of ESRI’s Geostatistical An-
alyst or Statistical Analyst tools). These users are likely
to be interested in, and able to manage and understand the
concepts and requirements of error propagation. With edu-
cation and commitment the expressed futility regarding our
progress to date (Heuvelink 2002, Heuvelink, 2007) due to
the complexity of the issues can be overcome.

– The perception of uncertainty and error as “bad” must
be altered. Educators should assert that the concept of
error is a fact of spatial data that must and can be ac-
knowledged and addressed (Sect. 2).

– Educators can raise awareness of uncertainty by training
students to access and incorporate the enhanced options
provided by software developers, such as different algo-
rithms for computing topographic parameters.

– Once these options are integrated into mainstream GIS,
users will become more receptive to the concept of mul-
tiple plausible answers to an analysis rather than one
grid as the correct derivative from a DEM. This is an
important first step in educating a user community that
is receptive to alternative realizations. This community
will then be primed to accept and apply aDEM uncer-
tainty toolbox.

– Practitioners should be helped to understand the extent
of error that is present and offered assistance in manag-
ing that error. Consumers of derived analytical results
must understand the consequences of their measures so
that they can make informed choices.

Research is only as good as its tools. The keepers of knowl-
edge and technology have the responsibility to apply their re-
sources at the most competent level possible, while acknowl-
edging limitations. The problem of error is central in all sci-
entific endeavors. One tenet of the scientific methods is to
push the boundaries of “truth” by sharpening tools and re-
ducing error. Therefore all stakeholders in the GIS commu-
nity must be willing to take stands and act appropriately in
relation to error. The error of our measures should be scien-
tifically and ethically acceptable for the purposes that these
measures are applied. The challenge is to create mechanisms
to fulfill this responsibility.
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