186,135 research outputs found

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Learning relational dynamics of stochastic domains for planning

    Get PDF
    Probabilistic planners are very flexible tools that can provide good solutions for difficult tasks. However, they rely on a model of the domain, which may be costly to either hand code or automatically learn for complex tasks. We propose a new learning approach that (a) requires only a set of state transitions to learn the model; (b) can cope with uncertainty in the effects; (c) uses a relational representation to generalize over different objects; and (d) in addition to action effects, it can also learn exogenous effects that are not related to any action, e.g., moving objects, endogenous growth and natural development. The proposed learning approach combines a multi-valued variant of inductive logic programming for the generation of candidate models, with an optimization method to select the best set of planning operators to model a problem. Finally, experimental validation is provided that shows improvements over previous work.Peer ReviewedPostprint (author's final draft

    Learning relational dynamics of stochastic domains for planning

    Get PDF
    Probabilistic planners are very flexible tools that can provide good solutions for difficult tasks. However, they rely on a model of the domain, which may be costly to either hand code or automatically learn for complex tasks. We propose a new learning approach that (a) requires only a set of state transitions to learn the model; (b) can cope with uncertainty in the effects; (c) uses a relational representation to generalize over different objects; and (d) in addition to action effects, it can also learn exogenous effects that are not related to any action, e.g., moving objects, endogenous growth and natural development. The proposed learning approach combines a multi-valued variant of inductive logic programming for the generation of candidate models, with an optimization method to select the best set of planning operators to model a problem. Finally, experimental validation is provided that shows improvements over previous work.Peer ReviewedPostprint (author's final draft

    Representation Independent Analytics Over Structured Data

    Full text link
    Database analytics algorithms leverage quantifiable structural properties of the data to predict interesting concepts and relationships. The same information, however, can be represented using many different structures and the structural properties observed over particular representations do not necessarily hold for alternative structures. Thus, there is no guarantee that current database analytics algorithms will still provide the correct insights, no matter what structures are chosen to organize the database. Because these algorithms tend to be highly effective over some choices of structure, such as that of the databases used to validate them, but not so effective with others, database analytics has largely remained the province of experts who can find the desired forms for these algorithms. We argue that in order to make database analytics usable, we should use or develop algorithms that are effective over a wide range of choices of structural organizations. We introduce the notion of representation independence, study its fundamental properties for a wide range of data analytics algorithms, and empirically analyze the amount of representation independence of some popular database analytics algorithms. Our results indicate that most algorithms are not generally representation independent and find the characteristics of more representation independent heuristics under certain representational shifts
    • …
    corecore