616 research outputs found

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies

    XML documents schema design

    Get PDF
    The eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing and interchanging data among various systems and databases on the intemet. It offers schema such as Document Type Definition (DTD) or XML Schema Definition (XSD) for defining the syntax and structure of XML documents. To enable efficient usage of XML documents in any application in large scale electronic environment, it is necessary to avoid data redundancies and update anomalies. Redundancy and anomalies in XML documents can lead not only to higher data storage cost but also to increased costs for data transfer and data manipulation.To overcome this problem, this thesis proposes to establish a formal framework of XML document schema design. To achieve this aim, we propose a method to improve and simplify XML schema design by incorporating a conceptual model of the DTD with a theory of database normalization. A conceptual diagram, Graph-Document Type Definition (G-DTD) is proposed to describe the structure of XML documents at the schema level. For G- DTD itself, we define a structure which incorporates attributes, simple elements, complex elements, and relationship types among them. Furthermore, semantic constraints are also precisely defined in order to capture semantic meanings among the defined XML objects.In addition, to provide a guideline to a well-designed schema for XML documents, we propose a set of normal forms for G-DTD on the basis of rules proposed by Arenas and Libkin and Lv. et al. The corresponding normalization rules to transform from a G- DTD into a normal form schema are also discussed. A case study is given to illustrate the applicability of the concept. As a result, we found that the new normal forms are more concise and practical, in particular as they allow the user to find an 'optimal' structure of XML elements/attributes at the schema level. To prove that our approach is applicable for the database designer, we develop a prototype of XML document schema design using a Z formal specification language. Finally, using the same case study, this formal specification is tested to check for correctness and consistency of the specification. Thus, this gives a confidence that our prototype can be implemented successfully to generate an automatic XML schema design

    Multidimensional process discovery

    Get PDF

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    A study of distributed clustering of vector time series on the grid by task farming

    Get PDF
    Traditional data mining methods were limited by availability of computing resources like network bandwidth, storage space and processing power. These algorithms were developed to work around this problem by looking at a small cross-section of the whole data available. However since a major chunk of the data is kept out, the predictions were generally inaccurate and missed out on significant features that was part of the data. Today with resources growing at almost the same pace as data, it is possible to rethink mining algorithms to work on distributed resources and essentially distributed data. Distributed data mining thus holds great promise. Using grid technologies, data mining can be extended to areas which were not previously looked at because of the volume of data being generated, like climate modeling, web usage, etc. An important characteristic of data today is that it is highly decentralized and mostly redundant. Data mining algorithms which can make efficient use of distributed data has to be thought of. Though it is possible to bring all the data together and run traditional algorithms, this has a high overhead, in terms of bandwidth usage for transmission, preprocessing steps which have to be to handle every format the received data. By processing the data locally, the preprocessing stage can be made less bulky and also the traditional data mining techniques would be able to work on the data efficiently. The focus of this project is to use an existing data mining technique, fuzzy c-means clustering to work on distributed data in a simulated grid environment and to review the performance of this approach viz., the traditional approach

    A finder and representation system for knowledge carriers based on granular computing

    Get PDF
    In one of his publications Aristotle states ”All human beings by their nature desire to know” [Kraut 1991]. This desire is initiated the day we are born and accompanies us for the rest of our life. While at a young age our parents serve as one of the principle sources for knowledge, this changes over the course of time. Technological advances and particularly the introduction of the Internet, have given us new possibilities to share and access knowledge from almost anywhere at any given time. Being able to access and share large collections of written down knowledge is only one part of the equation. Just as important is the internalization of it, which in many cases can prove to be difficult to accomplish. Hence, being able to request assistance from someone who holds the necessary knowledge is of great importance, as it can positively stimulate the internalization procedure. However, digitalization does not only provide a larger pool of knowledge sources to choose from but also more people that can be potentially activated, in a bid to receive personalized assistance with a given problem statement or question. While this is beneficial, it imposes the issue that it is hard to keep track of who knows what. For this task so-called Expert Finder Systems have been introduced, which are designed to identify and suggest the most suited candidates to provide assistance. Throughout this Ph.D. thesis a novel type of Expert Finder System will be introduced that is capable of capturing the knowledge users within a community hold, from explicit and implicit data sources. This is accomplished with the use of granular computing, natural language processing and a set of metrics that have been introduced to measure and compare the suitability of candidates. Furthermore, are the knowledge requirements of a problem statement or question being assessed, in order to ensure that only the most suited candidates are being recommended to provide assistance

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system
    • …
    corecore