THE UNIVERSITY OF HULL

XML Documents Schema Design

Being a thesis submitted for the degree of
Doctor of Philosophy
in The University of Hull
By

ZURINAHNI ZAINOL

B.Sc (Hons), Universiti Kebangsaan Malaysia, 1989
Master of Computer Science, Universiti Sains Malaysia, 1995

Department of Computer Science

~

January 2012



ABSTRACT

The eXtensible Markup Language (XML) is fast emerging as the dominant standard for
storing, describing and interchanging data among various systems and databases on the
internet. It offers schema such as Document Type Definition (DTD) or XML Schema
Definition (XSD) for defining the syntax and structure of XML documents. To enable
efficient usage of XML documents in any application in large scale electronic
environment, it is necessary to avoid data redundancies and update anomalies.
Redundancy and anomalies in XML documents can lead not only to higher data storage

cost but also to increased costs for data transfer and data manipulation.

To overcome this problem, this thesis proposes to establish a formal framework of
XML document schema design. To achieve this aim, we propose a method to improve
and simplify XML schema design by incorporating a conceptual model of the DTD with
a theory of database normalization. A conceptual diagram, Graph-Document Type
Definition (G-DTD) is proposed to describe the structure of XML documents at the
schema level. For G-DTD itself, we define a structure which incorporates attributes,
simple elements, complex elements, and relationship types among them. Furthermore,
semantic constraints are also precisely defined in order to capture semantic meanings
among the defined XML objects.

In addition, to provide a guideline to a well-designed schema for XML documents, we
propose a set of normal forms for G-DTD on the basis of rules proposed by Arenas and
Libkin and Lv. et al. The corresponding normalization rules to transform from a G-
DTD into a normal form schema are also discussed. A case study is given to illustrate
the applicability of the concept. As a result, we found that the new normal forms are
more concise and practical, in particular as they allow the user to find an ‘optimal’
structure of XML elements/attributes at the schemé level. To prove that our approach is
applicable for the database designer, we develop a prototype of XML document schema
design using a Z formal specification language. Finally, using the same case study, this
formal specification is tested to check for correctness and consistency of the
specification. Thus, this gives a confidence that our prototype can be implemented

successfully to generate an automatic XML schema design.



To my beloved husband: Meor Azli Ayub

To my wonderful children: Arief, Nabilah, Nabihah, Najihah, Amer, Ahmad and
Nadhirah

To my parents: Bashah and Zainol

ii



ACKNOWLEDGEMENTS

“IN THE NAME OF ALLAH, THE BENEFICENT AND THE MERCIFUL”

I would like to acknowledge the help and support of many people, who made the

completion of this thesis possible.

First and foremost, I would like to express my deep and sincere gratitude to my
supervisor, Dr Bing Wang, for everything he taught me. His enthusiasm, insightful

ideas, moral support and encouragement have made working with him a great pleasure.

I would like to thank the members of my PhD advisory committee, Dr Leonardo Bottaci

and Dr David Grey for their helpful comments and advice over the years.

I would like to acknowledge Universiti Sains Malaysia, Ministry of Higher Education
Malaysia and Department of Computer Science, University of Hull for giving me this
opportunity and for financial support during my study.

My deepest thanks go to my dearest husband, Meor Azli, for his prayers, support,
patience and understanding during hard times in my work over the years, and more
importantly, for being my best friend and companion. Infinite thanks to my lovely
children and wonderful parents for their endless love, sacrifices and encouragement in
all aspects of my life. Indeed, they meant the whole world to me and I am nothing

without their love.

Last but not least, massive thanks to all my friends especially Waokil, Joshua, Mayur,
Julius, Nongnuch, Nabil, Rahman, Amer, Shawulu and Sebta for being so supportive. I
feel very lucky to have had the opportunity of working and learning among a great
group of people like you all.

iii



DECLARATION

Parts of this thesis were published as research papers with Dr Bing Wang in the

following sources:

1. Zainol, Z. and Wang, B. (2010), G-DTD: Graphical Notation for Describing
XML Documents, In Proceeding of 2 International Conference on Advances in
Databases, Knowledge, and Data Applications, DBKDA, IEEE, pp. 214-221.

2. Zainol, Z. and Wang, B. (2010), XML Document Normalization using G-DTD,
In Proceeding 8" International Conference of Internet Computing, ICOMP
2010,12- 15 July Las Vegas, USA, pp. 232-239.

3. Zainol, Z. and Wang, B. (2010), XML Document Design via G-DTD, European
Journal of Scientific Research, Vol. 44 (2), pp. 314-336.

4. Zainol, Z. and Wang, B. (2011), XML Documents Normalization using G-DTD,
International Journal of Information Retrieval Research, Vol. 1(1), pp. 53-76.

5. Zainol, Z. and Wang, B. (2011), A Formal Specification of G-DTD: A
conceptual Model to Describe XML Documents, In Proceeding of 6"
International Conference on Software Engineering Advances, ICSEA, IEEE, 23-
28 October, Barcelona, Spain. 338-347.

6. Zainol, Z. and Wang, B. (2012), A Formal Framework of XML Documents
Schema Design, Journal of Computing, Vol 4 (2). In Print

iv



INF
1XNF
2NF
2XNF
3NF
3XNF
4XNF
ATT
BCNF
CE
DTD
FD
G-DTD
GFP
LHS
MVD
NF-NR

O-NF
ORA-SS
PFD

R-NF

SE

TFD
X3NF
XFD
XML_DM

XSD

ABBREVIATIONS

First Normal Form

First XML Normal Form

Second Normal Form

Second XML Normal Form

Third Normal Form

Third XML Normal Form

Fourth XML Normal Form
Attribute Node

Boyce Codd Normal Form
Complex Element Node
Document Type Definition
Functional Dependency

Graph Notation - Document Type Definition
Global Functional Dependency
Left Hand Side

Multivalued Dependency

Normal Form for Nested Relation
Nested Normal Form

Object Normal Form

Object Relational Attribute —Semi Structured
Partial Functional Dependency
Relational Dependency

Right Hand Side

Relational Normal Form

Simple Element Node

Transitive Functional Dependency
Third XML Normal Form

XML Functional Dependency
XML _Design Model

XML Normal Form

XML Schema



TABLE OF CONTENTS

ABSTRARCT ...cveirerirenrercresseissessssssssssssssssessessssssssssassnssssans stssasasssssssssssssstsssssnssssssansasssnssss i
ACKNOWLEDGEMENTS ......coovtesiiennrnersnessesssssesseessessssasssesssssssssosssssssstosassasssssssessasens i.ii
DECLARATION.......cevcieesnnerseisessatsssessaessanssssssnssssessesssssssassssssassassssssssassssssasssassasssssssons iv
ABBREVIATIONS .....coveetereereinnrscssesssssssasssssesssssessensssessesssssssesasassssssssssssssssssssssssasesssssasses v
TABLE OF CONTENTS ...covteteunnersrissesserersssessessessasnssssesssssessnsssessisasssessrsssessssssessassassase vi
LIST OF FIGURES. .....oootecirveeteesmenssssessissesstesessessesassssssssssssssssassssssssssssssssessssssssssssnssansaes ix
CRAPLEL L.......ooeeeeeeeeerreecereseennsessosessisssstaiassssasasassasssnsasssstnsssssssstsssssstsssasssstsnsassasasssssans 1
INETOQUCTION v.cevrvereenerisseresensessanesssessseresssessessorsessssssrasesstsssssssssessrassssnsssrasessasssstesssssssssssssseses 1
1.1  Motivation of the ReSearch.......ccucceerecmrcressncssiscssssnssssssiesssssanssasssansssssssssnssses 1
1.2 Outline of Research Problems and Hypothesis .....ccoeicscnrceccseiesssssunninicnnnennnans 3
1.3 Thesis Aim and ObJECHIVES ...ccuveruerersaresnsmsssssmssssisssensassissnssssesissssssssssasassnsecses 5
1.4 ThesiS CONIiDULIONS....cccrreererrermesrarsesssesssasssnssaessssassassrsssssssssassstsssesasssnssensansonssas 6
1.5 THRESIS SHUCLUTE ..eeerrrerrerenessresanssasasaassasssssssssssssssassrsssssssasssassassssssnstsstssssassassansasss 7
CRAPLET 2.......ooeerecnrecrenneieesesesnesessssssisssssssssssasssassassesassssssssssssssasanssssenssssetssssassssstsssness 10
Background and Literature ReVIEW.......ccovcreeecnesmnnsaninssnseensesscscsionassasssssasssssssssssssassssnas 10
2.1 IDIFOQUCHION. .....cieeteeeereneisseesreesresssnsasnssansssesstssasssssssnasansanssonssssssasssusssassssasestesses 10
2.2  Relational Database .........cceverereeeerercnniessesssssccssresssnsssasssssssssssssssssassasasssnassssass 11
2.2.1  INTOUCLION ..eccvieerrnieseesressessnersssassassasssssrssrassrsssassasanesnssassssssassassnsassasassnsnsns 11
222 Data Dependencies in Relational Databases ......ocousisessersissnesmmassssssesssesenss 12
2.2.3  Normal Forms for Relational Database.........cceresseseessensnsssssssssnssnessssnsennns 16
2.2.4  NOIMAlIZAtION PIOCESS ...cverrerrererersnensasasasasssssssssssssssssesssasesssssassrsassassasss 20

2.3 XML DOCUMENLS ....ccveererreereereerssnessesssasssssaesassnsansassssssssessssnssassasssssisnssasssssasonsans 23
23,1 INTOAUCLION .ccueeeveeerrrecrrenrnesercsresresstssatessssssnesstosssssssssssssatsnssssassaasssesssasssnsse 23
23.2  Schema Languages for Markup Languages Based Documents ................. 24
2.3.3  BaSIC NOALIONS ..cvveveieeeseeserssnisnesnnesseseesassasessesassssssssssssssssessassassnssnsssasssssases 28
234 Functional Dependencies for XML (XFD).....ccoocerereiunsansssnrassnsassasassasesanas 34
2.3.5 Inference Rules for XML Functional Dependencies ..........ccceeeecerveresnenncss 47
2.3.6  Data Redundancies and Anomalies for XML Documents........ccceeureiernes 48
2.3.7 Normal Forms for XML DOCUMENLS......cccccerrerersrcancsrssssssecssesanesassasssasanses 50
2.3.8  Other Definitions of NOrmal FOMS.......c.ceveeurecesmnesnsasnsssssssscsssesesssasasnsasses 63
2.3.9 Discussion of Current XML Normal FOImS .......ccceerstenssnsnssssnsacssssasnssesnss 65

2.4 SUMMATY ...c.ccveirrrerreernerrsnessesssssssessrsssssssnssesssessssssssssssssrsssessssssssssnssasansasssasansansss 67
CRAPLEL J....oooreorieiicininisnsenienesessessssssassssssssssstsstsssssssssssssssssssesassasssssnssssssssssssssassnosssss 68
A G-DTD: A Graph Model for Describing XML Documents........ceoeeveessessssassssanssnsasss 68
3.1 INTOAUCLION...ciieiiiirieereisneesessnsssesssssassansaessacsasssassnssssssssrssstsssssasssassnsssassanessassess 68
3.2 XML MOl REVIEW....cuteiiruicisierssnneserresonessnnesssnmesssessnsssssesssassssssessassossassessnssasas 70
3.2.1  Models for Schema IeVel......covvrernienneniiieeeinnecrenesinessemsssiesssesesseessssessssssses 71
3.2.2  Models for INStance Level......uuveirersnnienserrnessssnsinssssssmssssessassacssnssansssases 73
3.2.3 Models for Mix of Instance and Schema Levels........cocunninincsicensecsnncnen 74
3.2.4  Other data MOEIS .....cceerrirereennerensnrnenisessssesaessssssssssssssssnsassassssesssssssassassases 75



3.3 Document Type Definition (DTD) - Its Basic and Rationale ........cccccovcuvunee. 76

3.3.1  INtrOQUCHION ..ccveucrisecrsresisnsnssssenmssssnssssssssssssasassssesssnsasnessenssssssssassssssasaensanss 76
3.3.2  Overview of DTD SYNtaX.....ccocevnnsieneiesnsisenissnssnsnssesansnssssssssscsacsesscsssssns 77
3.4  G-DTD Data Model.......ociieinrinnincnnninninienismssississsmssissmsssissesnes 83
3.4.1  Objectives of the MOdel........coeiririerenireinssesnssssscnsanisesnsssssssssesassinsssassense 83
3.42  Overall view 0f G-DTD ..c.ccccciviininninnsnirinnnnsaiensisesisesmsissssssanenesses 83
3.43  G-DTD COMPONENLS ....ovruressesessisesaisassassssssnsnsasasssessssssossssssssssssssssassasassase 84
3.4.3.1 Simple Element NOdes .......cccvuverinensmseniisisisisisnsnensnnensensnsniasssnsn 85
3.4.3.2 Complex Element NOEs .....c.ouceruvirnrniesessnecsssssescssssesnnasisisisesissssssanans 86
3.4.3.3  AUTIDULES NOAES c.uceverererrereerencsnessmssisnesssssssersesassnssissnsssanssssssorassssstsssonse 87
3.4.3.4 ROOt NOGE....ccuiveereererreereranereseessesnesesrsssessssasassssssessssnsssssesasssasasssosssssssss 88
3.4.3.5 RelationshiPs...cccesmeecsseecseessesssassossssssrsnsssrsmsssssssssssssisssesesesasssssasasassesaons 88
3.4.3.6 Semantic Constraint Between set Relationship ....oeeeveriieeesenncesssnsanns 92

3.5 Example of G-DTD .....cccocvnnimrnienenmnnscsisnsisiniesimiisasiss, 95
3.6 G-DTD OPEIations ......cccesrsuserssinsssnssssensassssssssesesssmmsssassassssssnsmsnsssssssssscrsasnssasass 99
3.6.1  QUETY OPEIatiONS ...cocviriresrsrsesssasnrsissssasssssrsnssssasmmsnsmssssassssssssmcscasasasasases 99
3.6.2  INSEIt OPEIALIONS c.vevrecserersesissssisenmsasnsssssssssssssssssasmastssassssesssssnsnssssssaneses 100
3.6.3  Delete Operations.....cocouvesisseemrsusesssssssessasesssssssansassssussssmssssessasissasesasassase 101
3.6.4  Replicate OPerations ......ewescrssessrssssssrcsssnassnssasrssssscssasassasianessiasasmcss 102
3.6.5 Determine the root node and last NOdE.....cvvercesesisnsesessniinissennnssssssecannes 102
3.7 Rules for converting G-DTD to DTD....ccccceniiicsecsetnsestsaminsisnsnissssssnssnsnscea 103
3.7.1  General RUlC.....cucorereererievmseesasenesissnsacssasnssssssasssssstssssnssnssassssssssssasantssssssss 103
3.7.2  Semantic RUIE .....ccecevrerrernenresnssesiiesesecssssnssnrsesnssssstsassnssnssssssssssissnsssssnsseses 105
3.8 SUMMMAIY ...uoeirecereenenerenesnsrsnessnssssesssessstsessssnasssssessenstsissssstsassansssssssssasissssaseses 109
Chapter d..........cvveievenennrenennencssenssessiessssnisssssssstsassssssassssosssssassssasisssssssssatsasassasssas 110
Normal Forms for XML DOCUMEDLS.........ccvivirisinisnsuemsunsessssnsssssssnsssassessssasnsassssssssasnns 110
4.1 INIOQUCHION...ccctererererreererrensarnsasrasssnesssssasssssssessssssssssssessnsssssssssnessasassansassasaseses 110
42 Data Dependency of G-DTD .....c.counmmnnnesmesssissssssnsssssssssasissssssssasassassossasses 111
42.1 Key Dependency (KD).....cccoreeiisessmsesseseessssnsnsssssssssnsssssssssessssssasnsasnassans 115
4.2.2  Functional Dependency (FD)......cocovuvessuseinsannersasssssnsssonsesesesssasasnsasacrsncs 115
4.3 Normal Forms for G-DTD.......ccccovirsnnninnrinsismsrssnnssssessssssssssassesssssnsassassssans 119
4.3.1  First XML Normal Form (1XNF) ...ccecuvereniinmenrerisnsssssssstnseiissssssncsnineas 119
43.2 Second XML Normal Form (2XNF).....cccceenuenuninernnsssnnenssansnssssssesnssnssnenes 120
4.3.3  Third XML Normal Form (BXNF) .....cccecervrcrcrenrensessmsanssssansaesassnssssssssseses 121
4.3.4  Fourth XML Normal FOrm (4XNF)......cceeerennsnsustisssesnsssesnassssssssssnseans 121
4.4  The Process of NOrmalization ..........ccoeeserssssssiscsesssesssssnsssssasmsssssassssssnsassossass 122
4.4.1  Normalization RUIES........cccerrsirssisscsssessessassesesesssnsssesssssasnissassssssssssssasacisaes 122
442 Normalization AlIGOrithms .......ccceevemmsssnssnsiresesisnssssssniesssssssisisesssieee 125
4.5 €aSE StUAY ..ceerverrerrerersisreressenseresensesessesissssssssessassssssssssesssssssaasrantasssssassnsasssssasss 132
4.5.1  IXNF G-DTD .....oiirrrinniinneniiniisssiiisessamissisaiemssosiissisoaisisssssssin 134
4.5.2  2XNF G-DTD .......covverrrnresesnnenssssssssisssisssessssssisseninssssssssssssssssssssssssses 134
4,53  3XNF G-DTD ...ccrrererrnrescsassisesisssssaessssssisssssasassassssssssssssasssassassssssssassenss 138
4.54  AXNF G-DTD ....oucceerrierensisnnisissenisssnmnenissiosmansnsssssssssisssssassisssssssassenss 142
4.6  Comparisons of Proposed Approach with Existing Approaches........c...c.c..... 146
4.7 DiSCUSSION..cieerecrrrriteraieerrenrsesassessssmssssisessssessssssesesassnssmaesnsnsssssssssnssssasssssssasans 154
4.8  SUMMATY ..c.ovviriciiirnnreaiesinenessesssessossssesesssstsssansasssessssssnstsssssssssssssssssassastssesseses 155



CRAPLEE 5.t essesessessesessesssssssnssaressssssssessasssssseasessasseensassans 156

Formal Specification of XML Document Design MOdel..........veunreeceenensenennssenensenas 156
5.1 INOQUCLION......cuirecrisierneessensmssessnneressersssassssesnsssessessssserssssssssessssssensssssasasees 156
5.2  The Formal Specification and Its IMPOItance ............eeeseecmecmemesrreersenseosens 157
5.3 Z NOLALIONS «.eucvcesrrcreecsssnsecssusesssssssenssssssssssssssssessssesssssssesssssssessassssssssssssssaseasas 158
5.4  The overview of XML Document Design Model (XML_DM).........ceoveeunr.. 159
5.5  Formal Specification of a Conceptual G-DTD Model..........coeeereeeememerreurrernne 161

5.5.1  Basic Type DefINitions.......ccccereerrrererrererrencsressinessessessssasasesessasessasssesassnens 161
5.52  The Data Structure 0f G-DTD..........cceevvucerersernerecsisserssesssmssensescassssassens 161
5.5.3  Abstract state of Environment XML DM .......cocccvvevireeneerernenceenecssnsens 166
5.5.4  Initial state of Environment XML_DM ......cccecververruverrernererserersensesescnes 168
5.5.8  Manipulating the G-DTD in an Environment ..........c.eeeveeerenreessnecsnerennes 168
5.5.9  Operations of G-DTD in an ENVIrONMENL.........cccvrrererrecerrerersasensnsesesesenes 177
5.6  Formal Specification 0f G-DTD NOIMAHZET.........ceeuserrerersesssssensarsassarassssens 188
5.6.1  Determine Type Functional Dependency Operation.............cevusseeresseeseens 189
5.6.2  Normalization OPerations ........cceeeseessecssrermssssscssesssssssssssssssssssssessscssnes 190
5.6.3  Basic Functions of G-DTD NOIMASET .......eveererersenseessesseasensersassesessassens 191
5.64  Restructure IXNF Schema Operations...........covcuvmsessssssscsssesssesssssarassessans 197
5.6.5  Restructure 2XNF Schema OpPerations .........ccc.ccerseessesesscssssssessassessasess 200
5.6.6  Restructure 3XNF Schema Operations ..........ceerseeesssssssssssssessosssnsassereens 202
5.7  Formal Specification of G-DTD Translator ...........c.eevesesesersessssssssasensssssonsens 204
5.8 SUIMMAIY.....cooveueerrercrrrerneresirsisesssssessssessessssssssissssssasssssssssssssssssssssssessssssssssass 206

CRAPLET 6.........occoeoecreeerrnsessesisasnssssssessssesssssssssssssssassssssssssssessasssssssssessassssassasssssses 208

Specification Testing — A Case StUAY vevereererenrensereseneenrrsasssenssesssssssssssssssansrassssssassenass 208
6.1 INTOQUCHION......eerrerrreesrnssnseensssesssssssssssssnssssssssssssssnsassisssssssssssssssssssssssseses 208
6.2  Representing G-DTD Diagram ina Z Specification .......cceserrmeseransersesansnsaees 209
6.3  Consistency of the Operations in G-DTD NOIMAlZET ........cvveereerersesarsseessens 211

6.3.1  IXINF .uccoucercrrnrmsssnnsssesssssssssssssssssssssssssessssssssssssssssssssssmassisssssessassssasseses 212
6.3.2  Normalize IXNF 0 2XNF .........coevrureersinsssrmssssnssssssssssssssssssmssssasssssenssss 213
6.3.3  Normalize 2XNF t0 3XNF.......c.ceverernesienenesnscssmnssssnnerssnssssossmmssssssssseseess 222
6.3.4  Normalize 3XNF t0 4XNF ......c.oouverrrvneserneesmssssssnsssesssssssssssnssssssssssess 230
6.4 SUMMATY ...t eiseseeeceeeessesssssssensssssssesssssssessesssesssensessesssssases 239

CRAPLET Tooooceoeetrrtrestssttnssessnss et sssssssssenssssssssssssessssassssssmasssssssssssssmsssensssssnss 240

Conclusion and FUBITE WOIK .......u.cvvvveecennssssssssssssnnnsssssssssssmnnessssssssssssssssssssssssasssnes 240
7.1 Contributions of the RESEArch ............uevermmrerscensesssesessssmsssessossesssessessenns 240
7.2 Limitations and FUtUre RESEAICH ...........uuuuurvveneecemsssennsscrsessssssnsssesssssesessesnens 246

BIDHOGIAPRY ......u.cvecuininenncrisris et ssesssssessssessssseserssnsesssessenssssssessessssssssssssssessssssans 248

APPENAIX A ottt s ssssss s sasssmsssssssssssass s sassssesssnssasssesnessnns 263

viii



LIST OF FIGURES

Figure 2.1: Relation StUEnt .........cuvuveeerneiresessernsnnssssmsnsnsisssesssisststssmsnsesssssssstsmsssssssssrssasssses 11
Figure 2.2: Relation BranchStaffOWner .......viinsesssssnssssisissinsssississnssssaimssnssns 14
Figure 2.3: Level of Normalization (Date, 2000)......ccccevumsirsirimmnnsininssnssissssssssnsesissssssces 16
Figure 2.4: Relation Patient........cccvvirmsnescninnsersenessesssssnsinsimsissississussmssisssssssnensstssscssenses 18
Figure 2.5: An Algorithm to Check the Correctness of 3NF (Abiteboul et al., 1995)....... 19
Figure 2.6: Relation APPOINIMERL ......ccveeerrsenssnsssssessenissssnssensnnmssnsinssnssnsssssissmsesssssssasins 21
Figure 2.7: Relation DIr_T0OM .....cccovmeerimmsrsrecsssscssnsssinnissessanusmsmmssinssssmessstssssnsssiosssssssssasins 21
Figure 2.8: A BCNF Algorithm (Abiteboul €l al., 1995) ccocuveuemnvereunninsnsnmnnnscsesinsensinsenes 22
Figure 2.9: An XML DOCUMENL .......uccrvverrsrersmosssmacustassserssssnssssissasmsssssssseasasssssssssasissassenaes 24
Figure 2.10: A DTD Describing the XML Document (Arenas and Libkin, 2004).....c.cec... 25
Figure 2.11: A Fragment of an XSD for XML DoCUMENLS «..ccovuremnsusensensessssnseisnsssinscsenens 26
Figure 2.12: Tree Representation of XML DocuUment .......coueiervensissiscssnssimnnnmseisianisnanees 30
Figure 2.13: Tree representation of an XML DoCUMENt......coveinmisssssusisssmatensmsssssssscanes 41
Figure 2.14: XSD MOdEL......cueervrrcenmsesesccnsisssasssisssamnsasasssssssasssssasasasssssssssssssssssasnonsssssssss 43
Figure 2.15: Scheme Graph........ccccecumereincnnnnnisssssnsssiessisssmsnsnssssssssssssssssasassnssssssnsssssacses 45
Figure 2.16: Four Pre-Images of the v ecurer: X Y coveerirsesiisnncnininsnsinennssninesisisesssiascsnees 47
Figure 2.17: DTD for DBLP Database.......c.ccococevsersernsuisnasusnsesssssssscssssssssssnsssscsssssasinsaces 49
Figure 2.18: XNF Decomposition Algorithm (Afenas and Libkin, 2004)......ccoeereverenees 52
Figure 2.19: Moving AUIIDULE .......coocvreesiiinnimesisnmssssisnsinsnsasssssssssssssmsessusssessnsassssssssasess 53
Figure 2.20: Create New Element ........ccccvieesiseniincrssncsessnssisnesisessssssssssssssesssssasasssssassissscss 54
Figure 2.21: Algorithm of Schema Normalization (Yu and Jagadish, 2008)...........cccceeevs 59
Figure 2.22; Normalized XSD.......cccveinnsnnenisacsissnssnsnisesssssammssnississsessssssassrsssasness 60
Figure 2.23: An XML Document in X3NF .....cccvniiniinininninnnnnnsnieiasisms 62
Figure 2.24: ORA-SS Schema Diagram.........coceveeeeenninisinnsessnesssssesnsnsnssssssssssisessssasasases 64
Figure 2.25: Normalized ORA-SS Schema Diagram.........cccceceivseccssnsisucnsnsnsnnennnminsnsanees 65
Figure 3.1: XML Document Design PrOCESS .....ccuuurereruirnnsrsanarnsnsssassesssssasnsnssesassenasnsaness 69
Figure 3.2: DTD ....ccvcircennrersnnsssessesmssssnssimsssisssssesssssssssssssssansrstssssssessasssasasisaassaossasnses 81
Figure 3.3: Types of Simple Element NOdes .....ccccvrerenienrescinsnnsninsisnnnnescessesineens 86
Figure 3.4: Complex Element Node Student......ccvverenmnnisnccsssessinsissnnnsesensninsesaineninsis 87
Figure 3.5: Many-to-Many Binary Relationship ..........cosunvesmmsssisnsensnssieninsnscsininsiannn 91
Figure 3.6: Part_of Link and Has A LinK....cuvenennininiiiiiniisnisiinnsniinn 91



Figure 3.7: Relationship Between Complex Element, Attribute And Simple Element Nodes

............................................................................................................................................. 92
Figure 3.8: Sequence of Simple Elements.........cccocecveevenerencnensersrerseessessessssesissssssssssssass 93
Figure 3.9: Sequence of Attribute and Simple Elements ........c...ccovveerereeeesnsrrnennsnsnssssssssens 93
Figure 3.10: Binary Disjunction of Simple EIEments .........ccceerrueresesnrancssssncnsassncsssssnssasaes 94
Figure 3.11: Disjunction of Several Simple Elements.........ccecernsenrsresnsesnsrisesscasssasssnsasnsss 95
Figure 3.12: G-DTD'S NOtAtions ......ccccceteeemrsnsesantrecsistescsssesisssssicssssssassssssasasassssasassesssases 97
Figure 3.13: G-DTD ...ciicrninnnninninsineisiimimsommsssomsss 98
Figure 3.14: Transformation RUles..........ccccveinisieninsnnersnnnisnnnniniesininnniesniinsises 109
Figure 4.1: XML Document Conforming to G-DTD in Figure 4.2 .........ccccouvurivuvrinrenens 113
Figure 4.2: G-DTD ....cccocverrerrerecrmesnensnsssssssssssssasssssssssssesssssssssssssssessssssasssssssssnsasssssssssesass 114
Figure 4.3: Algorithm 2XINF .......ccecenesiiscsinnimsinnsnsssssssmssmassssesssesasassssisssssssssssssasesssasss 126
Figure 4.4: Create a New Complex Element NOde ........cceunrreseirarssssnsnecsasnsssssnnsasasesenens 127
Figure 4.5: AlZOrIthm 3XINF ......ccceeenisecsssmsnusmsesmsesssnsssissssssnsmasssssssssssssasesesassesassssacses 128
Figure 4.6: Moving Up a Complex Element NOdE .........ocvverreernersassessssisensusssssesssencases 129
Figure 4.7: Alorithm 4XINF ........ccovereriereeriessssssssssssssasesissssssssnsssassnssssssssssssssasssssasssssassans 130
Figure 4.8: Moving a Complex Element Node under a Root Node.....coevuneuciesuiarisnnnns 131
Figure 4.9: G-DTD in 8 2XNF ......cccevuenirrentisieressssenmsssssssasssssssssssssasssssssssnsnsassssssssasssassnes 136
Figure 4.10: An XML Document That Conforms to 2XNF........ccueseessssmmssessssssnssssssssarss 137
Figure 4.11: G-DTD in @ 3XNF ...c.ccerverremrrrrssserssssssessasessssnsssssssessssessssssssssssssssssssssssessnsess 140
Figure 4.12: An XML Documents Conform t0 3XNF ........c.cveereserssssssessmsesensssssssassssssanns 141
Figure 4.13: G-DTD in @ 4XNF ......ccceurerurrrrenssesmnsnsssenssssssssssssnssssssssssssesssssssssssssessssssenss 143
Figure 4.14: An XML Document That Conforms to 4XNF.........c.ceeerensresesessssssssssssssssens 145
Figure 5.1: Layers of XML Document Design MOdel.........ccoeenremisensmsssscssssessasasesessasersans 160
Figure 6.1: Schema GDTD........ccocceeivennennnnrnereessensensssssessesssssssssssssssssssessassssssssseassasssess 210
Figure 6.2: Set 0f KD and FDS........cocccuuineennnnnrsernessssssesessisssssesssssssssessssssssssssssssssressssss 211
Figure 6.3: Schema GDTD in 2XNF.......ccvvuvereneensssssssssessessssssssrsssssssssssssssssssssssossasssssss 221
Figure 6.4: Set Of KDS and FDS .......ccceuivenennanernsersassssssesssssssenssssssssessssssssssssssssssssssesassses 222
Figure 6.5: SchemaGDTD in 3XNF.........cccovvervenerserereeninsensssasssessisssssasassssassesssssasasssssesss 229
FigUIe 6.6: SEt OF FDS ...ccccveiiererieiinnniesninessinssisssssisesssisesssssesssasssssssssssssssssassasssnsssasssssss 230
Figure 6.7: SchemaGDTD in 4XNF........ccccecereiennsmnimnesssenesssensnsensesssissssssssssasssssasasssssrosss 238
Figure 6.8: Set 0f KIS aNd FDS ......c.c.oveeeuneerniesrenessesesssssessrssssssssssasssssssssssssessasssssssasssens 239



Chapter 1

Introduction

1.1 Motivation of the Research

With the wide utilization of the web and the availability of a huge amount of electronic
data, XML (eXtensible Markup Language) has been used as a standard means of
information representation and exchange over the Web. Its usage has increased
extensively in many commercial applications with complex data structures such as
Manufacturing, Bioinformatics, B2B (Business to Business), Medicine and
Geographical data (Powell, 2007; Ma and Yan, 2007; Pankowski, 2009). Thus,
effective means of the management of XML documents as databases are needed for
query, consistent and efficient storage. Various databases, including relational, object-
oriented, and object-relational databases have been used for mapping to and from XML
documents (Florecsu and Kossmann, 1999; Runapongsa and Patel, 2002). Among this
kind of database, most researchers use a relational database as a persistent storage since

it is a more promising alternative, because of its maturity.

However, this approach has disadvantages, since it does not support well complex data
structures such as scientific data because it cannot retain the original of XML documents
(Bourret, 2007). With such problem, has led to the development of native XML
database system for a number of applications and its use is increasingly rapidly because
its ability to hold and manage highly complex data structures (Bourret, 2007; Philippi
and Kohler, 2004; Lee et al., 2010). Such applications may use native XML database
facilities (Kanne and Moerkotte, 2000) to store and update XML data (Tatarinov et al.,
2001). The native XML database stores XML documents directly without performing
any conversion or shredding the XML documents into another format thus reduce
processing time and provide better performance. However, native XML database is still
in its infancy and not as mature as traditional databases (e.g. relational database), hence
many important problems and questions remain unanswered, especially on the principles
of XML database design (Arenas, 2006; Schewe, 2005; Libkin, 2007).

1



Essentially, an XML document can be regarded as a native XML database because
every XML document contains both metadata and data (Powell, 2007). It is important
to design non-redundant XML document for the sake of readability and manageability.
The non-redundant design means there are no duplicate information, store correct and
complete information. This is because duplicate information will waste space and

increases the likelihood of errors and inconsistencies.

Like managing traditional database, the management of XML documents requires
capabilities to handle with integrity, consistency, data dependency, redundancy, views,
access rights, integration, and normal forms (Yu and Jagadish, 2008; Libkin, 2007;
Arenas and Libkin, 2004; Dobbie, 2001; Feng et al., 2002). Amongst the important
problem related to XML database design are data redundancies and update anomalies.
Similar to relational database, reducing data redundancy is an important step in XML

design because it cause update anomalies, which lead to an efficient use of the database.

In XML documents, redundancies and update anomalies occur when the schema such as
Document Type Definition (DTD) allows addition of redundant values (Arenas and
Libkin 2004). The redundancy of data in XML documents highly depends on how the
schema is designed. Thus, we can say that efficient use of XML documents depends on

the quality of schema design.

However, to formulate the criteria for non-redundant of XML document schema design

is very challenging for the following reasons (Arenas, 2006; Libkin, 2007):

o The structure of XML documents is different from that of relational databases
which contain a complicated path structure, so it is difficult to see whether it

contains redundancies.

e Expression of semantic constraints of XML documents imposed by schema such
as DTD and XML Schema Definition (XSD) is limited.



e There are problems of ensuring that data and semantic constraint of designed
schema are not lost and preserved after the process of normalization of the

schema.

® No acceptable notion of an XML updates as yet exists, comparable to the notion
of the relational updates, which makes it hard to say what makes an update

anomaly.

e There is no standard query language for XML document compared to relational

algebra for relational databases.

Thus, the above challenges and issues motivate us to investigate further the needs and
requirements to achieve a non-redundant XML document design, particularly one that is

free from data redundancy.

1.2 Outline of Research Problems and Hypothesis

XML can be classified into two main types (Bourret, 2007; Wang and Topor, 2005;
Vincet et al., 2007). The first type of application is called document centric XML and the
second type is called data centric XML. Document centric XML is used as a mark up
language for semi-structured text documents with mixed-content elements, where the
content and order of sibling elements is significant, for instance a user’s manual,
webpage, etc. Data centric XML consist of more regular structured data for automated
processing and there are few or no elements with mixed content, comment and
processing instruction, such as geographic and scientific databases which contain
complex semi-structured data, e.g molecular biology, protein data being the most
prevalent example. In this thesis, we will focus on data centric applications and we will
refer to data centric XML as XML documents.

To date, several normal forms and normalization algorithms for XML documents have
been proposed. The reason for this is to give a guideline to the user to eliminate data

redundancy in XML documents. For example, different notions of normal forms for

3



XML documents have been proposed by Arenas and Libkin (2004), Lv et al., (2004),
Wang and Topor (2005), Kolahi (2006), and Yu and Jagadish (2008). Generally these
normal forms are based on functional dependency (Yu and Jagadish, 2008; Arenas and
Libkin, 2004; Vincent et al., 2004; Wong and Topor, 2005; Emberly and Mok, 2001;
Ling, 2001, Lee et al., 1999; Mani et al.,, 2001; Wu et al., 2001) or multivalued
dependencies (Vincent, 2003; Emberly and Mok, 2001). Many notions of XML
functional dependencies (XFD) have been defined by them to represent the semantic
constraints in XML as well. However, the best approach so far to defining XML
functional dependencies is that based on tree tuples, proposed by Arenas and Libkin
(2004), since they used a well-developed concept from the relational model (Codd,
1970). Arenas and Libkin proposed a notion of tree tuple based on the idea from
relational schema (Codd, 1972) and nested relational schema (Mok et al., 1996).

However there are problems with Arenas and Libkin’s definition of normal forms and

normalization algorithms, as follows:

e The current definitions of XML normal forms are presented in term that are
difficult to be understood by non technical users or practitioners. Thus, the
approach did not show the tremendous benefit to practitioners because proposed
XML normalization concepts have been very complicated for designers to apply
effectively in real world applications (Bourret, 2007). In particular, the
information system academics or practitioners might be interested in finding out
some means of normalization without formulas, interpretation, theorems etc.
XML normal form needs to be defined in a simple way that is easy to be

implemented.

e The normalization algorithms only work for the existing normal forms, which
have limited semantic expressiveness (Yu and Jagadish, 2008; Pankowski,
2009).



e Even though the proposed normalization algorithms can eliminate data
redundancy, the semantics of the original data (dependency preserving) for
initial schema could not be preserved during the construction of the new schema
and the original information might be lost (Kolahi, 2007). XML normalization

needs to be improved to be more precise and understandable.

e The cost of restructuring the original XML documents schema will be very
expensive if it involves a huge XML document, since decomposition is an

expensive operation (Arenas and Libkin, 2006).

Therefore, in this work, we are looking into the first two issues. For these issues, such
XML normal forms need to be redefined in an easy and more practical way. We believe
that defining a simple definition of XML normal form will make XML document
schema design easier. Under this assumption, we argue that to produce a non-redundant
schema of an XML document for application 4, we should first produce a conceptual
model, S at schema level and then apply a normalization rule to transform S into a

normal form S’ and finally convert the conceptual model S’ back to the XML schema.

1.3  Thesis Aim and Objectives

The research aim is to establish a formal framework of XML document schema
design by incorporating a conceptual model of XML schema, specifically DTD,

with a theory of database normalization.
To achieve this aim the following research objectives were defined:

(1) To investigate how design guidelines for relational schema are applied to XML
database schema design using normalization theory. This involves examining of
XML functional dependency (XFD) concepts and discussing various definitions of
XML normal forms based on these XFDs and highlights their strengths and

limitations.



@

€)

Q)

&)

1.4

To propose a systematic approach to simplify XML document schema design by
first proposing a graphical XML schema based on DTD called Graph Document
Type Definition (G-DTD) at the schema level. We believe having the G-GTD
model as a tool could describe the structure of XML documents at the schema

level clearly and precisely.

To redefine a set of normal form for G-DTD on the basis of Arenas and Libkin’s
rule (2004) and Lv et al.’s rules (2004) which is easy to understand and implement
programmatically. To achieve this, a basic property of XML normal form, which
is functional dependency, is proposed, such as relationship dependency, partial
functional dependency, transitive functional dependency and global functional
dependency. In the context of XML document normalization, it is important to
develop normalization rules to transform an XML document schema into a
normalised one.

To develop a prototype of an XML document schema design using a formal
approach. More specifically, to propose a formal framework of XML document
normalization using Z formal specification language in order to give a precise and

a clearer understanding of the whole system requirement.

The final research objective is to test the specification constructed to show the

consistency of the specification using a simple case study.

Thesis Contributions

The thesis contributes to the research literature, by proposing a specific solution to the

problem mentioned previously, using conceptual model and database normalization

theory. More specifically, these significant contributions can be measured along four

dimensions:

)

This thesis has proposed G-DTD, as a conceptual model to describe XML
documents at the schema level in a precise and simple way by adopting some of
ER diagram (Chen, 1976) and ORA-SS diagram (Dobbie et al., 2000) notations.

The structure, semantic and conceptual operations of G-DTD model were

6



@)

3)

Q)

1.5

introduced and developed to describe the XML document at the schema level and
the dynamic properties of D-DTD model. This ultimately helps contribute to
understanding the DTD and DTD design.

The thesis has refined a set of normal forms for G-DTD: First Normal Form
(1XNF), Second Normal Form (2XNF), Third Normal Form (3XNF) and Fourth
Normal Form (4XNF). The set of normal forms for G-DTD have been generalised
from Arenas and Libkin (2004) and Lv et al.’s (2004) normal forms. This set of
normal form can be used as a guideline to the user to design non-redundant XML

document schema on the basis of their application.

The thesis proposed a novel prototype of an XML Document Schema Design.
This is to support the claim that users (designers) can profitably bring formal
specification to bear in development of a real XML Document Schema Design
tool. The complete framework and formal specification of the XML Document
Design model was presented in Chapter 5. The full specification of the model
using Z notation was constructed, which gives the precise and clear meaning of

the model.

The thesis developed a case study to test the XML document design specification
to enable us to demonstrate that the specification constructed in Chapter 5 is
satisfied and consistent with certain fundamental criteria of XML document
design. This will increase the confidence in the implemention of an automatic

XML document design.

Thesis Structure

The thesis is organised as follows.

Chapter 2 presents an overview of relational database design. We discuss how the

concept of relational database design is applied to XML database design by the XML
database researchers. The current work of related to XML document design, which

includes definition of functional dependencies and normal forms, is thoroughly

reviewed.



Chapter 3 proposes a conceptual model to describe an XML document. The current
conceptual model for XML document is reviewed with particularly focus on the model
of schema level. The informal definition of a G-DTD is presented. We precisely define
what a G-DTD looks like.

Chapter 4 defines a set of normal forms for G-DTD such as First Normal Form (1XNF),
Second Normal Form (2XNF), Third Normal Form (3XNF) and Fourth Normal Form
(4XNF). In order to implement XML document normalization, we propose
normalization rules and algorithm to obtain a normalised G-DTD up to fourth normal
form. Then a case study is provided to illustrate the application of these normal forms
and normalization algorithms. This chapter also evaluates the proposed work with the
existing approach. A comparison between our work and existing approaches is based on

a number of criteria, specifically on expression of DTD structure, XML normal forms

and normalization algorithms.

Chapter 5 presents a formal specification of the XML document design system called
XML design model (XML_DM) which comprises the conceptual model G-DTD and
normalization procedure, discussed in chapters 3 and 4. This formal specification is used
to describe a fundamental framework of what the XML_DM can do and also as an
abstraction of a full complete system which can serve as a reliable reference blueprint
for those who want implement the prototype later. In this chapter, we describe the
specification into three layers: a formal specification of a G-DTD model, G-DTD
normalizer and G-DTD mapping tool. All these specifications are described using Z
notation style, which gives precise, mathematical meaning and provide a deeper
understanding of the modelled syntax, structure, and semantics of model properties.
The use of formal specification techniques contributes to the clarity and conciseness of

the model, and enables formal derivation of model properties to be performed easily.

Chapter 6 demonstrates precisely how we test the XML document design in order to
illustrate the consistency of the specification, using the same case study as in Chapter 4.
G-DTD normaliser is chosen as an example because it contains the important properties
of XML document design, such as 1XNF, 2XNF, 3XNF and 4XNF designs.



Chapter 7 concludes the thesis with a summary of the main contributions of the thesis

and gives some suggestions for future work.



Chapter 2

Background and Literature Review

2.1 Introduction

There are two approaches to the design process to achieve a non-redundant relational
schema. The first is the logical (or conceptual) level which interprets the relational
schema and the meaning of attributes. The second is the implementation (or storage
level) which describes how the tuples in a relation are stored and updated. In this thesis
we focus on the conceptual level of database design and how this theory is applied to

XML database design.

We start in section 2.2 by presenting a review of conceptual modelling of database
design and discuss theory that has been developed to design non-redundant schema
related to relational databases in general. This includes basic concepts like data
dependency such as functional dependency, key dependency and multi valued
dependency. These data dependencies are formal constraints among attributes that are
used as the main tool for formally measuring the semantic relation among attributes. We
also describe how functional dependencies, key dependencies and multi valued
dependencies can be used to group attributes into relational schema that are in a normal
form. To address the normalization process, we present an algorithm for 3NF and BCNF
design based on functional dependency and measure the correctness using two

properties: information lossless and data dependency preservation.

In section 2.3, we describe how design guidelines for relational schemas are applied to
XML database design using normalization theory. Schema for XML such as DTD and
XSD are discussed. Different definitions of XML functional dependencies based on a
path-based approach and subtree approach are presented and compared thoroughly.

Lastly, we discuss various definitions of XML normal forms based on both

10



normalization theory and a conceptual approach and finally highlight the problems of

existing XML normalization algorithms.

2.2 Relational Database
2.2.1 Introduction

Designing a relational database means selection of an appropriate relational schema for
the particular data. The relational schema, which describes an overall description of the
relational database, consists of a set of relations, or tables and a set of constraints over
these relations. For instance, a relational database storing information about students in
a library branch is shown in Figure 2.1. Each row of this table contains the student

number (SNO), its title, author and branch.

SNO Title Author | Branch

0201385902 | Database System Date, CJ| BIL
0301456101 | Data Structure Berztiess | BIL
0501652111 | Conceptual Database | Batini KDL
0201385902 | Database System Date, C.J| KDL

Figure 2.1: Relation Student

The relation shown in Figure 2.1 consists of the data about the student and the schema
of the relation. These two parts are the main component of the relational model.
Formally, the relational schema is an expression of the form R[U], where R is the name
of the relation and U = { 4,,.., 4,} is a set of attributes. For example, the schema of the
relation in Figure 2.1 is Studenf{U], where U= {SNO, Title, Author, Branch} and
domain(SNO) is the set of numbers. A tuple ¢ is a mapping to associate value to each
attribute of U. An instance I of a relational schema R[U] is a set of U-tuples. For
example, the instance shown in Figure 2.1 contains four tuples; the first is defined as
1(SNO) = 0201385902, 1, (Title) = Database System, | (Author) = Date, C.J and #,

11



(Branch) = BIL. Thus, tuple f, is represented as (0201385902 Database System, Date,
C.J, BIL). A database schema is a set of relational schemas S = {R;[U}],..,Ru[Un]}.

Constraints or semantic constraints must be satisfied in the database. For example, in the
relation shown in Figure 2.1, each SNO is associated to each Title. This semantic
constraint is called data dependency. Thus, given a relational schema R[U] and a set of

data dependencies I over R, (R[U], L) is also called a relational schema.

2.2.2 Data Dependencies in Relational Databases

The usefulness of data dependency theory for designing a well-formed relational
database has been successfully proven over the past 30 years (Abiteboul et al., 1995)
The theory concerns the question of non-redundant database design in terms of syntax
and semantic properties (integrity constraints). Integrity constraints are the constraints
that are imposed in order to protect the database from becoming inconsistent.
Furthermore, integrity constraints are important for schema specification and query
optimization because if the schema can satisfy these constraints, the problems of data
redundancy and update anomalies in the database can be eliminated. Data dependency
in a relational database can be classified into functional dependency, inclusion
dependency, join dependency, key dependency, domain dependency and multi valued
dependency. However, functional dependency (FD) and key dependency are the most
useful.

Functional Dependency

A functional dependency (FD) over a relational schema R[U] is written as FD.X - ¥,
where X, Y is a subset or equal set of attributes in R . The set of attributes X is called the
left hand side (LHS) of FD, and Y is called the right-hand side (RHS). Thus this
means that X is a set of attributes that determine sets of attributes Y in a relation if and
only if, in every possible value of R, whenever two tuples #;, ; in I agree on their X
value, they also agree on their ¥ value. This can be denoted as #;[X] = £2[X] implies #[¥]
= b[Y]. For example, the relation shown in Figure 2.1 satisfies the functional

12



dependency SNO - Title, since each SNO number determines the Title because the two
tuples of this relation have the same value of attribute SNO and attribute Title. However
the functional dependency SNO - Branch is not satisfied because the values on the

attribute Branch are different.

The number of functional dependencies will depend on the size of the set of relational
schema. One obvious way to reduce the size of the set of FDs is to eliminate trivial
dependencies. A dependency is trivial if it cannot be satisfied. This happens if and only
if the right-hand side(RHS) is a subset of the left- hand side(LHS) (Date, 2000). For
instance, the following FD for relational schema Figure 2.1 was trivial: {SNO, Title} —
SNO. We are more interested in practice in nontrivial dependencies because they show

the real integrity constraint.

Key Dependency

Key dependency (KD) over relational schema R[U] is written as KD: X — U where X is
a primary key as all attributes (U) of the relation R are functionally dependent on X.
However X is a key or candidate key if there are many attributes that can determine
attributes in relation R. For instance, there is no primary key but {SNO, Title, Branch}

is a key for the relation shown in Figure 2.1.

Multivalued Dependency

Multivalued dependency (MVD) is a generalization of functional dependency, such that
every FD is an MVD, but the converse is not true (i.e. there exist MVDs that are not
FDs). For example let R[U] = {X, Y, Z}. A multivalued dependency over relational
schema R[U] is written as X——Y, where X and Y are subsets of attribute U. It reads as
X multi-determines Y. An instance I of R[U] satisfies a multivalued dependency, written
as I = X——Y, if every possible value set of ¥ values matching a given value (X value,
Z value) pair depends only on the X value and is independent of the Z value (Fagin,
1977).

13



branchno | staffname | ownername

B003 Ann Beech | Carol Farrel
B003 David Ford | Carol Farrel
B003 Ann Beech | Tina Murphy
B003 David Ford | Tina Murphy

Figure 2.2: Relation BranchStaffOwner

For example, consider a relational schema BranchStaffOwner (branchno, staffname,
onwername) (Connolly and Begg, 2002) of Figure 2.2, which multivalued dependency
branchno——staffname holds for BranchStaffOwner because there is no direct relation
between member of staffname and ownername at a given branchno. Hence a tuple for
every combination of member of staffname and ownername must be created to ensure
the relation is consistent. For example, if a new ownername for B003 needs to be added
to the relation, two new tuples for staffname have to be created as well to ensure the

relation remains consistent.

Inference Rules for Functional and Multi-Valued Dependencies

The set of functional dependencies X over R[U] that are implied by a given set
functional dependencies X is called the closure of X written X*. A set of inference rules
called Armstrong’s axiom specifies how the closure of set of functional dependencies X
can be inferred from given a set of functional dependencies Z (Abiteboul et al., 1995).
These inference rules or dependency implications have been studied for a relational
database as it is an issue in a normalization theory. The following is a sound and

complete set of inference rules for functional dependency:

Reflexibility :IfY is a subset of A, then X — Y, where A is a set of Attributes.
Augmentation: If X —Y, then X, Z =Y, Z.

14



Transitivity :IfX—YandY—Z, thenX—>Z

The following is a sound and complete set of inference rules for multi-valued

dependencies (Beeri et al., 1977) :

Complementation : If X——Y, then X——(U-Y).

Reflexivity : If Y subset or equal X, then X——Y,
Augmentation : If X——Y, then XZ—»—YZ.
Transitivity : If X——Y and Y>—Z, then X——( Z-Y).

Two rules have to be added to this set of inference rules in order to have a sound and

complete set of rules for functional and multi-valued dependencies (Beeri et al., 1977):
Conversion :IfX — Y, then X——Y.

Interaction  :If X——Y and XY—Z, then X—(Z-Y).

By sound is meant that any dependency that can be inferred from Z holds in every
relational schema on R that satisfies the dependencies in £. Complete means functional
dependencies can be inferred repeatedly until no more dependencies can be inferred
from I (Abiteboul et al, 1995). These inference rules are very important in
normalization theory since they can be used to check and verify the correctness of a
normalization algorithm, i.e. whether the generated relational schema is semantically

equivalent to the original relational schema.

15



2.2.3 Normal Forms for Relational Database

A normal form in a relational database consists of INF, 2NF, 3NF, BCNF, 4NF and
SNF. The first three (INF, 2NF, 3NF) were defined by Codd (1972). Figure 2.3 shows
a level of normalization which defines that all normalised relational schema are in INF;
some INF are also in 2NF; and some 2NF are also in 3NF. Generally, a non-redundant
database design should have 3NF relation since it is more desirable than 2NF and INF.
A revised normal form called the Boyce-Codd normal form (BCNF) was defined in
Codd(1974) to replace from 3NF. Subsequently, Fagin (1977) defined new fourth
normal form (4NF) and projection—join normal form (PJ/NF) also known as the fifth

normal form or SNF.

1 NF relation

2 NF relation

3 NF relation -- BCNF

4 NF relation

5 NF relation

Figure 2.3: Level of Normalization (Date, 2000)

However in this work, we are more interested in 3NF and BCNF since they are most
used in practice as they are well designed. BCNF decomposition guarantees to produce
relations that do not cause any redundant data while 3NF decomposition may not
produce non-redundant relations, but guarantees to preserve all the FDs (Abiteboul et
al,, 1995).

16



First Normal Form (INF)

A relational schema is in first normal form (INF) if and only if all attributes contain only
atomic value; that is, there is no repeated group or attribute within a row. A relation in
INF often suffers from data duplication, update performance and update integrity
problems. These issues are related to concepts of key such as superkey, candidate key
and primary key. A superkey is a set of one or more attributes which can uniquely
identify an entity. Any subset of superkey is called a candidate key. A primary key is

selected from the set of candidate keys to be used as index for the relation.

Second Normal Form (2NF)

A relational schema (R[U], Z) is in 2NF if and only if it is in INF and every nonkey
attribute is fully dependent on the primary key. An attribute is fully dependent on the
primary key if it is on the RHS of an FD for which the LHS is either the primary key
itself or something that can be derived from the primary key using transitivity of FD.

Third Normal Form (3NF)

A relational schema (R[U], X) is in 3NF if and only if for every nontrivial FD X = A €
X', where X is superkey or A is a prime attribute. A database schema S is in 3NF if
every relation schema in S is in 3NF. For example consider a relation Patient (Patient

No, Appointment Date, Appointment time, Dr_ID, Room_No) with the following FDs:

FD1 {Room_No, Appointment_Date, Appointment Time} — Dr_ID, Patient No and
FD2 {Dr_ID, Appointment_Date} — Room_No, Appointment_Time. The instance of a
relational schema shown in Figure 2.4 is in 3NF since for both of RHS FD1: {DriD,
PatientNo} and FD2: {Room_No, Appointment_Time} are prime attributes.

17



Patient Appointment Appointment Dr ID Room
No Date Time - No
P34 1 Sept 08 10.30 JP_2 112
P14 1 Sept 08 12.00 JP_2 112
P35 1 Sept 08 12.00 Ale 3 102
P15 10 Sept 08 10.30 JP_2 102

Figure 2.4: Relation Patient

Maniila and Raiha (1989) has developed an algorithm to check whether the relation
schema is in 3NF by testing if an attribute is a prime attribute. Given relational schema
R [U], and X a set of FDs over U (R[U], I), for every A€ U, max (4) ={ Y S U, where
Y is a maximal set such that Y- A € '} where max refers to a prime attribute. X€ max
(A) if and only if X-» A & £* and XB - A € X', for every BEU-XA such that X4 is a
superkey.

When transforming a database schema into a new one which is normalised it must be
tested whether the transformation is correct or not. Two basic properties have been used
to test their correctness: information lossless and dependency preservation (Abiteboul et
al., 1995). To check this property, Berstein (1976) developed an algorithm for
producing dependency preserving 3NF which was extended later on by Biskup et al.
(1979) to produce 3NF with information lossless. Figure 2.5 shows the algorithm to
check the correctness of 3NF.

As presented in Figure 2.5, minimal cover I is a set of functional dependencies X that

satisfies the following:

1. Every functional dependency in T has a single attribute for its right hand side
(RHS).

18



2. Any functional dependency FD X —= A € X cannot be replaced with FD Y = A,

where Y is a proper subset of X, and there is a set of FD that is equivalent to Z.
3. Any FD from Z can be removed and still have a set of FD that is equivalent to X.

Generally we can simplify the above condition as a set of FD in a standard or canonical
form with no redundancies. A partition X ,.., Z, of X is a LHS partition of Z if no two set
of Z have the same LHS.

SetS:=0

Find a minimal cover I from the set of FD

Find a LHS partition I'y,... I'y of each FD in set FD
8= {(R[U], T;) | Ui is the set of all attributes in I';}
If there is (Ri[Ui], T';) such that U is a superkey
Then output S

Else

Determine a key X of U

Output S°U {R ,+1[X], 0}
Figure 2.5: An Algorithm to Check the Correctness of 3NF (Abiteboul et al., 1995)

Boyce-Codd Normal Forms (BCNF)

A relational schema (R[U], Z) is in BCNF if and only if for every nontrivial FD X » Y
€ X, where X is superkey attribute, X - U € T *. A database schema § is in BCNF if
every relational schema in S is in BCNF. Using the same relational schema and FDs as
in Figure 2.4, however it is not in BCNF due to presence of LHS of FD2 with {DR_ID,
Appointment_Date} attribute, which is not a superkey for the relation. BCNF requires
that every LHS attributes in FD is a superkey for the relation. For example, if instance of
DR_ID which is JP_2 is assigned a new room number on 1 Sept 08, two tuples have to
be updated. As a consequence, the Patient Relation may suffer from update anomalies.

19



2.2.4 Normalization Process

The process of normalization was first developed by Codd (1972). Normalization is
often performed by a decomposition of a relational schema so that it satisfies the
requirement of a given normal form such as BCNF. The process of normalization is a
formal method that identifies relations based on functional dependency among their
attributes. This process is applied to each relation so that a relational schema can be
normalised to a specific schema that prevents data redundancy and update anomalies in

the database, and hence, reduces file storage space required.

An example of redundancy in a relational schema is shown Figure 2.4, where JP_2
appears redundantly on 1 Sept 08. On the other hand, update anomalies can be
classified as insertion, deletion, or modification anomalies. In Figure 2.4, for example,
to change the room number for JP_2 on 1 Sept 08, we must update two tuples. If only
one tuple is updated with a new room number, this results in inconsistency of the
database. As a consequence, the Patient Relation may suffer from update anomalies or
more specifically modification anomalies. To overcome this problem, Codd (1972)
informally showed how to transform a relation to generate a schema that satisfies
BCNF. For instance, the relation patient schema shown in Figure 2.4 should be split
into two new relation schemas called Appointment and Dr_room to avoid the anomalies
presented above. Figures 2.6 and 2.7 show the Appointment and Dr_room relations

respectively.

20



Patient | Appointment | Appointment | Dr_ID
No Date Time
P34 1 Sept 08 10.30 JP 2
P14 1 Sept 08 12.00 JP_2
P35 1 Sept 08 12.00 Alex 3
P15 10 Sept 08 10.30 JP_2

Figure 2.6: Relation Appointment

Dr_ID | Appointment | Room
Date No
P2 | yseptog | 112
Alex 3| 1 gept08 | 102
P2 1 joseptos | 102

Figure 2.7: Relation Dr_room

To test whether a given database schema satisfies a BCNF, a normalization algorithm
has been developed by Beeri and Berbstein (1979) as shown in Figure 2.8. This

algorithm shows how to transform a given database schema into a BCNF form.

Like 3NF, the transformation of a database schema in BCNF is semantically correct if it
satisfies information lossless and dependency preservation properties ( Abiteboul et al.,
1995). To check these properties consider the following examples. Let Si, S be two
database schemas. Two instances I; of S} and I, of S; contain the same information if it

is possible to retrieve the same information from them; for every query Q; over I, there

exists query Q, over J; such that Q,(/;) = Q(k), and vice versa.

21




Set S’:= {(R[U]}, )}

Repeat until S’ is in BCNF
Choose a relation schema (R’ [U’], £°)) € S’ that in not in BCNF
Choose nonempty disjoint set of attributes X, Y, Z such that
XYZ =1, ¥’ satisfies X — Y and X’ not satisfies X — 4, for every A€ Z
Replace (R’[U], £?)) by (Ri[XY], t(Z")) and ( Ro[XZ], 1)),

Where R; and R; are new relation names and 7 is a projection of set of FD over the

related attributes

Figure 2.8: A BCNF Algorithm (Abiteboul el al., 1995)

Normalization algorithm tries to achieve the goal of information losslessness; if any of
them transform a database schema S into a database S, then S” should semantically
equivalent with S ( Abiteboul et al., 1995). The normalization algorithm presented in
Figure 2.8 takes a relational schema S = (R[U] , Z) as input and uses a projection
operator to transform it into a new database schema S’ =(R[U], Z) in BCNF. Then, §’ is
a lossless decomposition of S if every instance of 7 of S can be transformed into an
instance I* of S* by using a projection operator, and I can be constructed from I by
using a join operator. It is proved that S is a lossless decomposition of S if and only if
satisfies all the joining attributes, X = »a[Uy,..,Uy).

Projection operator and join operator are among the core operators for query language
operator used in a relational database. Normally in relational algebra, they are presented
in the form = and o< respectively ( Abiteboul et al., 1995).

22




2.3 XML Documents

In this section, we review basic notions of XML documents, such as XML trees, DTDs,
XML Schema and present some proposals for XML integrity constraints as well as the

existing design principles for XML documents.

2.3.1 Introduction

XML is a simple and flexible text format. It allows us to model information systems in
a natural and intuitive way. It was originally designed for publishing electronic data.
However, today it is has emerged as the standard language for storing and interchanging
data on the web. XML has a number of powerful capabilities to model information

(Chaudhri et al., 2003):

e Heterogeneity: Since in the real world, data is not actually organised into tables,
rows and columns, there is an advantage for XML to express information, as it

exists without restrictions, where each “record” can contain different data fields.

e Extensibility: New data types of data can be added when it is necessary, with no

need for them to be determined in advance.

® Flexibility: data fields can vary in size and can be configured from time to time

without any restriction on the data.

Information is modelled and designed into an XML document using for basic
components: fags, data elements, attributes, and hierarchy. For example, as shown in
Figure 2.9, this document contains two different types of tag: start-tags, such as
<course> and <student>, and end-tags, such as </course> and </student>. These tags
must be balanced and they are used to delimit elements. Every element can contain raw
text, other elements, or a mixture of them. For instance, the element <firstname> David

</firstname> contains raw text while the element <student> contains three sub elements:

23



<firstname>, <lastname> and <lecturer>. Elements can also contain attributes, such as
element <student sno = “112344”>. Student element contains one attribute: sno with the
value “112344”, XML documents have a nested structure. This gives a lot of flexibility
when storing information. The document shown in Figure 2.9 is part of a database

storing information about students.

<!DOCTYPE department [
<course>
<course cno = “cscl01”>
< title > XML database </title>
< student >
<student sno = “112344”>
<firstname> David</firstname>
<lastname> Grey</lastname>
<lecturer>
<lecturer tho = “123">
<name>Bing </name>
</lecturer>
</student>
< student >
<student sno = “112345”>
<firstname>Helen </firstname>
<lecturer>
<lecturer tho = “123">
<name> Bing </name>
</lecturer>
</student>
</course>
</Department>]

Figure 2.9: An XML Document

2.3.2 Schema Languages for Markup Languages Based Documents

Like relational database, XML also has a schema to specify the structure of XML
documents such Document Type Definition (DTD) (W3C, 1998), RELAX (Murata et
al., 2003), TREX (Clack, 2001), and XML Schema (XSD) (W3C, 2001). However

24



compared to the number of schemas we can find on the web, DTD and XSD seem the
most accepted ones and they are standard schema being used currently to validate the
structure of XML documents (Arenas et al., 2002; Schwentick, 2007). Hence in this
section, we provide briefly the background on the DTD and XSD.

DTD

DTD was the first form of schema for XML documents that the W3C recommended in
1998 when XML was first released. DTD is a means for defining constraints on the
syntax and structure of valid XML documents. An example of DTD for the XML

document in Figure 2.9 is shown in Figure 2.10.

<!DOCTYPE department[
<!ELEMENT department(course*)>
<!ELEMENT course(title, student*)>
<IATTLIST course cno ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT student (firstname|lastname?, lecturer)>
<IATTLIST student Sno ID #REQUIRED
<!/ELEMENT firstname(#PCDATA) >
<!ELEMENT lastname(#PCDATA) >
</ELEMENT lecturer (name)>
<!ATTLIST lecturer tno ID #REQUIRED>

</ELEMENT name (#PCDATA) >
J>
Figure 2.10: A DTD Describing the XML Document (Arenas and Libkin, 2004)
This DTD specifies the elements allowed in XML documents by means of ELEMENT
declaration. For example, <course> is an element since <!IELEMENT course (title,
student*)> appears in the DTD. An ELEMENT declaration also specifies the sub-
elements of an element by means of a regular expression over the alphabet of elements.

One element name is designated as the start symbol course. The keyword ¥#PCDATA is

25



indicated as text data; it derives its name from “Parsed Character Data” for instance
<! ELEMENT first name (#PCDATA)>. The keyword CDATA #REQUIRED
indicates that the attribute of an element contains character data and the value must be
specified for that attribute. For instance attribute <! ATTLIST Sno ID #REQUIRED>,
The details of DTD specification will be presented in Chapter 3, Section 3.4.

XSD

XSD defines both a type system and class of integrity constraints. Its type system
subsumes DTDs. It supports a variety of simple data types (e.g., string, integer, float,
double, byte), complex data types (e.g., sequence, choice) and path mechanisms (e.g.,
extension, restriction). For example Figure 2.11 represents the XML Schema for the

XML document in Figure 2.9.

< xsd: element name = “course”>
<xsd: Complex Type>
<xsd: sequence>
<xsd: element name= “Student” type = “StudentType” minoccurs ="1"
maxOccurs = “unbounded”/>
</xsd: sequence >
<xsd: attribute name = “sno” type “xsd:integer”/>
</xsd: Complex Type >
</xsd: element>
< xsd: Simple Type name = “studentType”>
<xsd: sequence>
<xsd:element name = “ first_name” type “xsd:string”/>
<xsd:element name = “ last_name” type “xsd.string”/>
</xsd: sequence>
</xsd: Simple Type name>
</xsd:schema>

Figure 2.11: A Fragment of an XSD for XML Documents

The above XSD consists of two kinds of types elements: simple and complex types.
Simple type, indicated by <xsd: Simple Type > describes an element that can contain

data type as string, integer, or float for instance element first_name and last_name. A

26



complex type element indicated as <xsd: Complex Type> describes that the element can
have multiple data elements sharing the same parent in a given element. XSD permits
the occurrence of the elements through cardinality, which a DTD is unable to provide.
For example, in the XML document shown in Figure 2.9, the element student contains
two elements indicated by attributes minoccurs =”1” maxOccurs = “unbounded”. A
sequence of child elements that appeare within the content of a parent attribute, for
instance element student which consist of child elements (first_name and last_name) is

indicated by <xsd: sequence>.

DTD verses XSD

As presented in the above section, DTD and XSD are different in syntax expressive
power on attribute class, element class and data-value class. For example DTD has
many drawbacks such as no modularity, no XML syntax, limited basic data types,
restricted referencing mechanism and limited expressiveness. Most of these concerns
have been addressed by XSD, which it can provide a rich set of data types that can be
used to define the values of elements, provide much richer means for defining nested
tags for instance tag with sub-tag and provide the namespace mechanism to combine
XML documents with heterogeneous vocabulary (Arenas et al., 2002; Wyke and Watt,
2002).

XSD also supports namespaces and richer and more complex structures than DTDs. In
addition, stronger typing constraint on the data enclosed by a tag can be described
because a range of primitive data types such as string, decimals and integer are
supported. This makes XSD highly suitable for defining data-centric documents.
Another significant advantage is that XSD definitions can be exploited the same data
management mechanism, as XSD is an XML document itself. This is in direct contrast
with DTDs, which require specific support to build into an XML data management
system. The descriptive power of XSD makes it suitable for XML database schema. For

27



instance Tamino XML server uses this concept and supports the schema description of

documents via XSD.

However, XSD do have problem in consistency (Arenas et al., 2002). This problem has
been studied in their research work and they proved that the semantics of XSD
constraint makes the consistency analysis of a schema rather intricate. They proved that
checking consistency for XSD is very hard and expensive (NP-hard and PSPACE-hard)
(Arenas et al., 2002). This indicates that the current semantic of XSD is inconsistent
and fail to validate documents. Even though XSD has been improved from DTD, some
researchers found that it is still too complicated and not well defined (Wyke and Watt,
2002; Moller and Schwartzback, 2006). In terms of structure, DTD and XSD, are very
similar. The structure of both DTD and XSD can be represented as tree models as
described in the literature (Lv and Yan, 2006;Arenas and Libkin, 2004). Functional
Dependencies(FDs) over XSD can also be presented as relationships between paths, the
same as in DTDs (Yu and Jagadish, 2008). However, DTDs have been of more interest
to the database research community, and thus we consider only DTDs since they have
been used by other reserchers to address integrity constraints and design issues for XML
data.

2.3.3 Basic notations

We present a formal model for XML documents and DTDs adapted from Arenas and
Libkin (2004) and review some basic concept such as conformity, path in DTDs and
XML documents. These notations are very important since they will be used in this

thesis.

Assume that we have the following disjoint sets: El represent element names, A
represents attribute name, st represents attribute values and text, and Vert represents
node identifiers. All attribute names start with the symbol @, S and L (null) are
reserved symbols,

28



XML documents

Arenas and Libkin (2004) represented XML documents as trees. An XML tree is

defined to be a rooted tree T= (V, lab, ele, att, root), where
(1) Vis a finite set of nodes
(2) lab :V — El assigns a label to each node of the tree

(3) ele: V — str U V* assign to each node a string or an ordered set of nodes as its

children

(4) att is a partial function of type V x Att — Str. For eachv €V, the set {@] € Att |
att (v, @) is defined} is finite.

(3) root €V is the root node tree T.

The parent-child edge relation on V, {v;, v2) € VxV| v, occurs in ele (v1)}, is
required to form a rooted tree. For each v € V, the set of all v’ € V that occur in ele
(v) are called subelements or children of v, and the set {@] € Att | att (V@) is
defined} is called attributes of node v.

29



department vo

T~

A /wumv&
Cno  titlev,  studentvs  studentvs Cno titlevy studentvy, Studentvy
¢sc102 Z formal method
XMI database /N /‘\\
SN0 Vis Vi Vi Vo Vi
fname Iname lecturer fname Iname lecturer fname Iname lecturer fname Iname lecturer
112344 David Grev/\ 112345 Helen /\ 112344 David Grey /\ 112345 Helen /\
name v, name vy, name vig name vy
123 Bing 123 Bing 124 Bottacl 124 Bottacl

Figure 2.12: Tree Representation of XML Document

The XML tree in Figure 2.12 shows the tree representation of the XML documents
shown in Figure 2.9. Note that, for simplicity we abbreviate both first_name and

last_name as fname and Iname respectively.

This tree contains a set of nodes V = {v; | i€[0, n]} and v ¢ is the root. Part of the

functions lab, ele, and att is shown below:

lab (v o) = department ele (vo) = [ vi,vi2]
lab (vy) = course ele (v;) = [va,v3,vs)
lab (v3) =title ele (v;) = XML database

30



lab (v3) = studeﬁt
lab(vy) = fname
lab (vs) = Iname
lab (v¢) = lecturer

lab (v;) = name

ele (v3) =[v4Vsve)
ele (v,) = David
ele (vs) = Grey

ele (ve) = [v7]

For function att are defined as follows:

att (v, @cno ) = cscl101
att (v3, @sno ) = 112344

att (vs, @tno ) =123

DTD

Arenas and Libkin (2004) defined a DTD to be D = (E, 4, P, R, r), where:

(1) ES El is a finite set of element types.

(2) AS Att is a finite set of attributes.

(3) P is a mapping from E to element type definition defined in a regular expression

] N ) »
a=¢|r’| @ | aUa| a* where £is the empty sequence, T’ €E, and “,” , “U

and “*” denote concatenation, union , and Kleene star, respectively.

(4) R is a mapping from E to the power set of value of R : P(A)

(5) r € E and is called the element type of the root.

The symbols £ and S represent element type declaration EMPTY and #PCDATA,

respectively.

31



For example, the DTD shown in Figure 2.10 is represented as follows:
E = {department, course, student, lecturer, title, fname, Iname, name}
A = {@cno, @sno, @tno}

r = Department

Furthermore, P and R are defined as follows:

P(department) = course* P(lecturer) = name
P(course) = title, student* P (Iname) =S
P(student) = fname, Iname, lecturer P(fname) =S
P(name) =S R (department) = @

R (course) = {@cno} R(student) = {@Sno}
R(lecturer) = {@tno} R(fname) =@ R(lname) = @
Conformity

The notion of conformity of a DTD with XML tree is defined as follows (Arenas and
Libkin, 2004):

Givena DTD D = (E, 4, P, R, r) and XML tree T = (V, lab, ele, att, root), T is said to
conform to D, denoted T ED, if

(1) lab maps every node in V to E.

(2) for every element node ve V, if ele (v) = (V1,..,vn) then the sequence
lab(vy),..,lab(vy) is regarded as string S which is defined by P(lab(v)) = S

(3) att is a partial function from V x Att to Str. For eachv €V, and @ € 4, att (¥,
@) is defined iff @I € R(lab(v)).
(4) lab(root) =r

For example, the XML tree in Figure 2.12 conforms to the DTD shown in Figure 2.10.

32



Paths in XML Documents and DTDs

The notion of path is used to navigate and query XML trees and is also used to define
constraints for XML. Given an XML tree T = (¥, lab, ele, att, roof), a pathin T is a
string w = wj....w,,, with w;....w,, € El and w,, € El U Att U {s}, such that there are nodes

" Vh ey Vpr in 'V with labels w;....w,, respectively, such that ( Arenas and Libkin, 2004):
(1) v i+1is a child of v, i € [1, n-2],

(2) If w, € El, then there is a child v, with label w,_If w, = @] is an attribute in A1,
then att(v,.;, @l) is defined. If wy = S, then vy.; has a child in Str.

The set of all paths in a tree T that start from the root is denoted by path (T). For
example, course.student, course.student.@sno, course.student.Iname,
course.student.Iname.S all path in XML T is shown in Figure 2.12 and D7D in Figure
2.10.

Paths can also be defined for DTDs. Givena DTD D = (E, A, P, R,r),apathinD is a
string w = wj....w, such that w; is in the alphabet of P(w;.) for i € [2, n-1], and wy is

either an attribute @/ € R(w,..;) or is in the alphabet of P(wy.,).

Paths are an important component of XML, as they have been used as one of the basic
languages for navigating and querying XML documents (Arenas and Libkin, 2004).
The available query languages that use path and are used currently are Xpath (Clark and
Derose, 1999) and XQuery (W3C, 2007). Generally, the semantic to retrieve a
particular data in a tree using a path is as follows. Given an XML tree T, a node v of 7,
and a path w in T, retrieve (v, w) is defined to be the set of all nodes and values in T
reached by following w from v in this tree. Thus, for example the result of retrieving a

particular node in a XML tree in Figure 2.12, is as follows.
retrieve (vn, department,course,student,Iname) = {vs,vio V15,21 }
retrieve (vy, department,course,student,Iname.S) = {Grey, @, Grey, @}

retrieve (v, department,course,student) = { v3,vg vi4 Vi9}

33


mailto:course.student.@sno,

2.3.4 Functional Dependencies for XML (XFD)

As in the case of a relational database, the design of an XML database is also guided by
integrity constraints or data dependencies. Several classes of integrity constraints have
been extended and defined for XML including key dependencies, inclusion
dependencies, equality-generating dependencies, path constraints, join dependencies,
functional dependencies and multi-valued dependencies. To the best of our knowledge,
however, the most prominent form of data dependency in XML is functional
dependency since it has been most widely studied in the literature on the XML database
design. This is because of its ubiquity, simplicity and application to database design as
well as to maintaining data integrity (Wang and Topor, 2005; Arenas and Libkin, 2004).

Although functional dependency (FD) has matured and proved to be a useful class of
integrity constraint for relational database, however the principles and systematic theory
for XML data are still in the infancy stage. This is because XML is new compared to
relational database, and there are many differences between relational schemas and
XML schemas in their structure: relational models are flat and structured while XML
data are nested and unstructured. Due to this, several different definitions of XML
functional dependency (XFD) have been put forward by Lee et al., (2002), Arenas and
Libkin (2004), Vincent et al., (2004), Hartmann and Link (2003), Wang and Topor
(2005), and Yu and Jagadish (2008). Generally, these definitions differ from each other
in term of the method of choosing sub-trees, path identifier or value equality to describe
the relationship between elements and attributes in XML database. Most of them define
a functional dependency as an expression of the form p; ...,p2 — g, where p;...,p, q are

path expressions.

Here, to demonstrate the XFDs definition, reconsider Figure 2.12 which illustrates an
example of XML document. The example shows a university department which offers
different courses. Each course consists of course number (cno), its title and the list of
students taking the course. The XML tree of Figure 2.12 satisfies the following

constraints.

34



Constraint 1: Any two lecturers, with the same tno values will have the same name

2.1)
Constraint 2: For any specific course, no two students can have the same value of
attribute @sno (2.2)

Constraint 1 involves a single element such as a lecturer with the same tno value (e.g.
value tno = ‘123’) will have the same name (e.g node element v; and v;;). Meanwhile
constraint 2 involves a multiple hierarchies which involve a node course element (v))
that is an ancestor for a node student element (v3). For instance, for course with ‘title =
XML database’ it cannot have a student with same sno (e.g sno = 112344 and sno =
112345).

Two main approaches have been followed in order to define these XML functional
dependencies (XFDs). In the first approach, XFDs are defined based on path identifiers
based on schema (DTD or XSD) (Lee et al., 2002; Arenas and Libkin, 2002; Vincent et
al., 2004; Schewe, 2005; Yu and Jagadish, 2008), while in the second one XFDs are
defined based on sub-trees (Hartmann and Link, 2003).

In this section, we compare XFDs definition using both approaches and discover their
strengths and limitations. In the following section, for brevity, we abbreviate the XFDs
defined by Lee et al., (2002), Arenas and Libkin (2004), Vincent et al. (2004), Hartmann
and Link (2003), Wang and Topor (2005), and Yu and Jagadish (2008) as XFD 02, XFD
04(a), XFD 03, XFD 04(b), XFD 05, and XFD 08 respectively. We present both

approaches next.

35



Path Based Approach

XFD 02

Lee et al. (2002) informally proposed XFD notation and DTD for XML by considering
* the path nature of an XML database. They used the notation of Xpath to define XFD.

We present their definition next.

Definition XFD 02: is an expression of the form (Q, [P),...,Pn = P n+1]), where Q is a
path starting from the XML document root which defines the scope in which the
constraint holds, and Py, for i €(1,..., n+1) is either an element or an element followed

by dot and a set of key attributes of the element.

An XML tree is to satisfies the XFD 02 if for any two sub trees rooted at a node in
root(Q), if they agree on the value of Py,...,P,, they also agree on the value P 4,
provided these values exist (Lee et al., 2002).

Based on the above definition, constraint 1 in (2.1) can be expressed by XFD-02 as

follows:
XFDV: (department.course.student. [lecturer.tno—name]) (2.3)

Constraint 2 in (2.2) cannot be expressed and satisfied by XFD 02 because relative
constraints (that only hold in a part of the document) are not considered. Thus the
semantics only work properly if some syntactic restrictions are imposed on the XFD
(Lee et al., 2002). Furthermore, no exact definitions for the value of an element, set

elements and null values are provided.

XFD 04(a)

To overcome the above limitation, Arenas and Libkin(2004) formally defined XFD
04(a) by considering a relational representation of XML documents. They proposed two
types of constraint: relative constraint and absolute constraint, that hold in the entire

document. They extend the notion of tuple for relational databases and use the concept

36



of path particularly tree-tuples to the definition. The tree-tuples map between a set of
paths on a D7D to a set of node (values) in an XML tree. They assumed a D7D as a
single relation schema, a set of all paths in DTD Paths(D) as an attribute, and a tree
tuple is all tuples in that relation. This concept is adopted from the concept of total
unnesting of a nested relation (Atzeni and DeAntonellis, 1993). To present this
definition, we need to introduce an example of a tree-tuple. Consider the DTD in Figure
2.10 and XML tree in Figure 2.12. This tree contains four tree tuples. One of tree tuple
can also be represented as a function as follows.

t(department) = v,

t(department.course) = v,

t(department.course.@cno) = csc101

t(department.course.title) = v,

H(department.course.title.S) = XML database

t(department.course.student) = v3

K(department.course.student.@sno) = 112344

t(department.course.student.fname) = v,

Hdepartment.course.student.fname.S) = David

t(department.course.student.lname) = vs

H(department.course.student.Iname.S) = Grey

H(department.course.student.lecturer) = v

t(department.course.student.lecturer.@tno) = 123

t(department.course.student.lecturer.name) = v,

H(department.course.student.lecturer.tname.S) = Bing

37



In a tree tuple, each path which ends with an element name is mapped to a distinct node
or the null value (1), and every other path ending with an attribute name or S is mapped
to either a string (PCDATA) or L.

Definition XFD 04(a): XFD over D is an expression in the form P; —P; where P), P,
are finite non-empty of path in Paths(D). An XML documents conforming to the DTD is
said to be satisfy the XFD 04(a) if for every two tree-tuples t; and t5, 1,.P; = t2.P;, and
1,.Py is not null and imply t,.P; = t,.P; (Arenas and Libkin 2004).

Generally, the semantic of this XFD is defined as the following: for any two tree tuples,
which consist of a set of paths on LHS of the XFD and a single path on the RHS, they
are defined to be satisfied if whenever two tree tuples agree on the LHS path, they must
also agree on the path of the RHS.

Using the above definition, the constraints 1 and constraint 2 can be expressed as
follows:
XFDI : department.course.student.lecturer.@mo—

department.course.student.lecturer.name.S (2.4)

XFD2: department.course.deparment.course.student. @sno—department.course. student

(2.5)

XFD 04(b)

Alternatively, Vincent et al. (2004) defines an XFD 04(b) close to XFD 04(a) definition
with a few significant differences. Firstly, they did not use either DTD or XSD but
consider a scheme file. Secondly, they used the concept of “closest path” to link values
in both sides of XFD. Path is of the same as path in XFD 04(a) and closed means that if
a path is in the set, then all prefixes of the path are also in the set. Lastly, they labelled
every node in ¥ (not just element nodes) and allow for mixed context in XML
document. Mixed context is an element node that can contain both text and element

nodes as children.

38


mailto:department.course.student.lecturer.@tno-+
mailto:@Sno-+department.course.student

Definition XFD 04(b): An XFD 04 is an expression of the form pj,.....pn —q, where
Pi,..., q are paths in P and n> 1. (Vincent et al., 2004)

XFDI.:department.course.student.lecturer.@tno—

department.course.student.lecturer.name.S
(2.6)

XFD2: department.course, deparment.course.student.@sno—department.course.student

(2.7)

The notion of strong satisfaction of an XFD by an XML tree is defined using the
agreement path instances in the tree on the paths in the XFD. The major difference
between XFD 04(a) and XFD 04(b) lies in the treatment of null values or missing nodes.
When null values exist, the satisfaction of XFD 04(b) over XML tree is stronger than
XFD 04(a). However, when there is no missing information in the XML document, the
definition of Vincent et al. (2004) coincides with the definition of Arenas and Libkin
(2004).

XFD 05

On the other hand, Wang and Topor (2005) defined XML tree differently from Lee et.
al. (2002), Arenas and Libkin (2004) and Vincent et al. (2004) since they explicitly
distinguished complex and simple element so that special text (S) node under simple
element is not required such that E = E;UE,. Simple element (£)) is an element that
only has a single value that is the same as an attribute and complex element (£3) is an
element that has sub elements and/or attributes. Furthermore they also made the
ordering of child elements insignificant by treating them as a set rather than a sequence.
For example, in Figure 2.12, title and name are simple elements while department,

course and student are complex elements.

39


mailto:deparment.course.student.@Sno-+department.course.student

Wang and Topor also defined a path in an XML tree more precisely by distinguishing
paths into four types: simple path, downward path, upward path and composite path.
These four types of path are subclasses of Xpath as well.

A simple path is of the form /,...l,, where [; is a simple element and /,, can be a simple
element, complex element or attribute. The number of labels (element names and
attribute names) in a simple path is called the length of the path. A simple path with
length 0 is called an empty path, denoted €.

A downward path is a simple path which can be expressed as /;...J, where (/; € E;UEV
AU{_, -*} fori €[1, n-1], 1, € E;UE;U A). The symbol _ represents wildcard (which can

be matched with any label) and _* represent Kleene closure of the wildcard.

An upward path is of the form 11...1 and composite path is of the form & p, where & is an
upward path, and p is a simple path.

In order to provide XFD 05 definition, we presented path equality based on agreement

of two nodes. This agreement can be defined as (Wang and Topor, 2005):

* n and n; node agree ( N- agree) on path p if p is a simple path or p is upward
path

 m and n, is set agree (S-agree)on path p if for every node v; in m[p], there is a

node v in my[p] such that v)= v, (value equality) and vice versa.

* n and n, is intersect agree (-agree) on path p if there exist nodes ;€ m[p]and v,

€ nz[p] such that v;=v,
For example, in Figure 2.12, v; and v; are N-agree on upward path.

Definition XFD 05: 4 XFD is an expression of the form Q: pj(c}),...Pa(cr) = Pn+1(Cn+1)
where Q is a downward path, p,,p,,..p, are simple paths, pn+; is a simple path of length
lor0,andc (i= 1,..., n+l) is one of N, S and I. (Wang and Topor, 2005).

40



XFD 05 satisfies an XML tree if for any two nodes nl, n2 € root(Q), if every path
agrees with of I-agree, N-agree and S-agree for all other paths.

For example, constraint 1 and constraint 2 are satisfied and expressed as follows:

department.course.student.lecturer : @tno — name (N) (2.8)

department.course, deparment.course.student.@sno—department.course.student (N, I)
(2.9)

XFD 05 overcomes the limitation of XFD 02(a), XFD 02(b) and XFD 04 by unifying
and generalising them by defining more semantic constraints such as set elements. For
example reconsider again the same example but a set of address is added for a lecturer

as in Figure 2.13.

department v,
course vy course vy
Cno  titlev,  studentvy  student vi Cno titlevys studentvys  Student vy
csc101 XML database ¢sc102 Z formal method
SN0 /4 Vs SN0 Vy vy Vg SN0 Vi v SN0 Vao Vi Va2
fname Iname lecturer fname Iname lecturer fname Iname lecturer frname Iname lecturer
112344 David G 112345 Helen 112344 David Gr 112345 Hele!
tho  namev, tno Namev, tho MaMeVa tho  name vy
123 Bing 123 Bing 124 Bottaci 124 Bottaci
address address address address address address address address
HU52L8 HUG 7RX HUS 218 KU6 7RX HU3 4LB  HUG 7RX HU3 418  HUB 7RX

Figure 2.13: Tree representation of an XML Document


mailto:deparment.course.student.@Sno-+department.course.student

For constraint XFD3:

Lecturer number (tno) determines the lecturer’s set of addresses satisfied by the XML

tree in Figure 2.13 and it can be represented using XFD 05 as below.
department.course.student.lecturer : @tno— address(S) (2.10)

This is because XFD 05 determines and defines the path of the element node
specifically. This is an advantage of XFD 0S5 since it can be used to capture more
semantic constraints, hence it can detect more data redundancies in XML documents.
However in defining the XFD 05, Wang and Topor did not use any specific XML
schema to associate with XML documents. We believe it is very important to use DTD
or XSD in defining XFD since it can determine whether the XFD is significant or

consistent with an XML document.

XFD 08

Recently, Yu and Jagadish (2008) have taken the same approach with Wang and Topor
(2005) by incorporating set of elements to define XFD 08. They named the notion as
Generalized Tree tuple (GTT FD). GTT FD is similar to the original tree tuple (Arenas
and Libkin 2004); however it has an extra parameter called pivot node. The pivot node
can be used to prevent separation between sibling nodes in the same path and preserve
the ancestor node and descendent nodes of that pivot node. For instance, in Figure 2.13,
node student (v3, v8, v14, v19) are pivot nodes, node course (v1, v13) are an ancestor

and sno, fname, Iname and lecturer are descendant nodes for the node student.

Yu and Jagadish used XSD instead of DTD as a schema for XML documents and used
Xpath notation to express the path in XML Schema. Figure 2.14 illustrates the schema
of the XML Document in Figure 2.13.

42



department :Red
course : setOfRcd
cno: Str
title : str
student: SetOfRcd
sno:str

Jname:str

Iname : str
lecturer: setOfRcd
tno:str

name: str
address: setOfRcd

Figure 2.14: XSD Model

Apart from that, the author also associated the notion of XML key with XFD. The
notion of XML key has common similarities with the notion proposed by Buneman et
al. (2003) which contains a target path (which identifies a set of nodes) and a set of key
paths. We present the notion of GTT and key adopted from Yu and Jagadish (2008)
before we present the definition of XFD 08.

A GTT of XML Tree T = (N, P, V, n,), with regard to a particular data element n,
(called pivot node), is a tree t"y, = (N, P,, V,, n;), where:

1. M SN is the set of nodes

2. Pt S P isthe set of parent-child edges;

3. Vi &V is the set of value assignment

4. N, is the same root node in both tTnp and T:

5. neN if and only if i) n is a descendant or ancestor of n, in T or n is a non —

repeatable direct descendant of an ancestor of n, in T

43



Definition XFD 08: An XFD 08 is a triple (C,, LHS, RHS), is an expression of the form:
LHS — RHS w.r.t Cp, where C, denotes a pivot tuple class, LHS is a set of paths for left
hand side relative to p and RHS is a single path of RHS relative to p (Yu and Jagadish,
2008).

For an XML tree, T satisfies an XFD-08 if and only if for any two generalised tree
tuples 711, 2 € G, if :
1. exist#;.P;= Lort.P;= L wherei€[1, n]

2. all path values are equal between #,.P;; =Py, then #.P,+Llor.Py s L, 1,.P,=
tz.P T

Based on the above definition, constraint 1 and constraint 2 are satisfied and can be

expressed as follows:
XFD1: department.course.student.lecturer.tno —
department.course.student.lecturer.name w.r.t Ciecurer (2.11)
XFD2: department.course,department.course.studnet.sno
—» department.course w.r.t Cenent (2.13)
XFD3: department.course.student.lecturer.tno —

department.course.student.lecturer.name.address w.r.t Ciecrurer (2.14)

Generally the advantage of XFD 08 compared to XFD 02 XFD 04(a), XFD 04(b) is, it
allows more flexible notions to express the multiple set of tree tuples within each set
instead of a single element. This is because the elements are only separated if they are

not descendants of the pivot nodes.

44



Sub Tree Based Approach

XFD 03

Hartmann and Link (2003) took a different approach to define XFD. They defined XFD
03 based on sub trees of the XML data tree. For the schema for XML documents, they
used a schema graph instead of DTD or XSD. The schema graph is an XML tree T
together with an edge assigned a frequency of ether 1 or *. In a schema graph, no two
descendants of a node can have the same type and label while in a data tree, every leaf

node is assigned a value. Figure 2.15 shows the schema graph corresponding to the
XSD in Figure 2.14.

department

\ 4

course

/,‘

cno student

.%\

sno fname Iname lecturer

— T

name address

Figure 2.15: Scheme Graph

XFD 03 is defined using homomorphism, v-subtrees and isomorphism of XML trees

(Hartmann and Link, 2003). A homomorphism between two trees T and G is a mapping
@ from nodes of T to the nodes of G such that

(1) the root of T'is mapped to the root of G, @(roott) =root g

45



(2) image node v in T is the same kind as the node itself, kind(v) = kind(@(v) for all

nodesin T

(3) image of node carries the same name as the node itself, name(v) = name(@(v))

fornodesin T

(4) every edge of T is mapped to edge of G, (v, w)E€ Vg implies(@(v), 8(w )

A v-subgraph is a sub graph which roots at node v and it is determined by the paths from
v to a given subset of leaves of the original tree. The isomorphism between the two
subtrees is a one to one mapping between the two sets of nodes which is homomorphism
in both directions. Two XML trees are equivalent if there is an isomorphism between

them and the value(v) = value(@(v) for the leaf nodes.

Definition XFD 03: An XFD 03 is defined to be in the form of an expression v: X— Y,
where v is a node of T, and X and Y are v-subtrees of T. An XML tree conforms to the
schema graph if it satisfies the following (Hartmann and Link, 2003):

(1) Every two pre- images W, and W; of subtree T(v) rooted at v, are

equivalent for each image of the leaves of X and Y

(2) A maximal subcopy of U (v) is a sub tree of T which is isomorphic to a
subtree of U (v)

For example constraint 1 and constraint 3 are expressed as follows:

XFDI1: XFD ¥ jecturers X=» Y, where X is the Vjecure subgraph with the single leaf vy,
while Y is the Viecrure~subgraph with the single leaf Voame (2.14)

XFD3: XFD ¥ jecturer: X— Y, where X is the Vienre~ subgraph with the single leaf vin,

while Y is the viecnrer-subgraph with the set of leaves Vagress

46



lecturer lecturer lecturer lecturer

tno  name o name o name tno  name

123 Bing 123 Bing 124 Bottacl 124  Bottacl
address address address address address address address address
HUS2LB  HUG 7RX HUS 2LB HUS 7RX HU3 4LB HU6 7RX HU3 418 HUG 7RX

Figure 2.16: Four Pre-Images of the v jecnrers X— Y

As shown in Figure 2.16, the first and second, third and fourth sub graphs satisfy the

XFD 03 since their pre-images are equivalent respectively.

Generally, the approaches taken by Yu and Jagadish (2008) and Hartmann and Link
(2003) are almost similar, as they preserve all the element nodes under descendant
nodes. However, the limitation of XFD 03 is that, it cannot define constraint 3 which
involves multiple hierarchies’ constraint. Since the previous definitions of XML FDs
(Arenas and Libkin 2004; Vincent et al., 2004) use path expression, they are not able to

express functional dependencies of this kind.

2.3.5 Inference Rules for XML Functional Dependencies

Inference Rules or Implication problems have been studied thoroughly in regards to
relational databases. In section 2.2.1.4, we have presented inference rules for FDs and
MVD for relational database (Beeri et al., 1977). In XML database context, to best of
our knowledge, only Arena and Libkin, Vincent et al. and Yu and Jagadish studied this
problem for XFD. This problem is very important in the normalization process because
it will determine a non-redundant database schema (Arenas and Libkin, 2004; Vincent et
al., 2004; Schewe, 2005; Hartmann and Link, 2004). Recently, Yu and Jagadish have

47



derived the following inference rules to compute the closure of XFD which is similar to
the Armstrong Rules in the relational case (Yu and Jagadish, 2008). The only difference
is the way it was presented. Yu and Jagadish(2008) used a path notation. We present

them next.

Rule 1 (Reflexivity) LHS — P, w.r.t. G, is satisfied if P; © LHS.
Rule 2 (Augmentation) LHS — P, w.r.t. C, then {LHS, P,} — P;wrt.C,

Rule 3 (Transitivity) LHS — P; w.rt. Cp A...A LHS— P, wr.t. Cy A {Py,...,Pa} =P C,
=LHS— Pw.r.t. C,

Yu and Jagadish (2008) have argued that deriving XFD inference rules formally from
existing set of XFDs is very difficult and thus they have proposed an algorithm called
DiscoveryXFD to detect all XFDs automatically.

Arenas and Libkin also investigated implication problems for XFD; in fact the XNF
decomposition algorithm in Figure 2.18 envolves XFD implication to test the
membership in (D, Y)+. These XFDs implication have been tested on two classes of
DTD: Simple Regular Expression DTD and Disjunctions DTD. Thus, they proved that
the implication problem for a simple DTD can be solved in quadratime time and the
implication problem for disjunctive DTDs can be solved in polynomial time (Arenas and
Libkin, 2004). However they did not state clearly the inference rules for XFD in their

work. In this work, we will not consider this problem.

2.3.6 Data Redundancies and Anomalies for XML Documents

Given a schema and a set of data dependencies, the goal is to refine the schema into a
better schema so that update, insertion, or deletion anomalies are eliminated. We have
examined many DTDs and XSDs on the Web and found many data redundancies
appeared in the schema. As a first example, consider Figure 2.12 which illustrates the
example DTD for an XML document (Arenan and Libkin, 2004). The example of

constraint 1 in section 2.3.4 caused the information in the XML document to become

48



redundant. For instance, for tno = *123’, the lecturer named Bing who teaches the
course number (cno) csc101 is stored twice, causing redundancy in XML document. As
with a relational database, if we would like to update the name of the lecturer to full
name “Bing Wang” in the XML document, this name needs to be updated twice. This

type of update is called update anomalies.

Consider another real example for the DTD below. This is a part of a DBLP database for
storing data about conferences (Ley, 2002)

<!DOCTYPE db [

<!ELEMENT db (conf*)>

<!ELEMENT conf (author, issue+)>
<!ELEMENT author(#PCDATA)
<!ELEMENT issue (inproceedings+)>
<IELEMENT inproceedings (pages+, year)>

<IATTLIST inproceedings
Key ID #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED >
o

Figure 2.17: DTD for DBLP Database

The DTD shown in Figure 2.17 describes that each conference has an author, and one or
more issue. Papers are stored in the in proceedings element which consists of key,
pages and year as its attributes. The document contains the following constraint: Any
two in proceedings children of the same issue must have the same value of year. This
constraint is considered relative to the issue element only. The constraint leads to

redundancy since the value of year is stored redundantly for a conference.

As with a relational database, such data redundancies and anomalies presented above
can be avoided by designing a non-redundant XML database schema. Those

redundancies could be eliminated if we could refine the original schema to a new

49



schema by eliminating some XFDs from XML documents. Thus the concept of
normalization theory is applied to improve the XML schema design for an XML
database in order to use it efficiently. In this section, we present the XML normal form

that has been defined currently.

2.3.7 Normal Forms for XML Documents

In section 2.2, 3NF and BCNF were presented for designing a relational database. If a
relational schema satisfies these normal forms, then the relations on the schema are well
designed. It is well known that BCNF is able to remove data redundancy caused by
FDs; however, it is not dependency preserving. On the other hand, 3NF is dependency
preserving but it not able to remove redundancy caused by FDs in all cases. This
information is very important for the database designer to design a non-redundant
database. In the context of an XML database, the same knowledge is needed to guide
the designer for producing well designed XML schema (DTD or XSD). Due to this,
several normal forms for XML documents have been defined in order to provide a well
designed schema (Arenas and Libkin, 2004; Vincent et. al., 2004; Wang and Topor,
2005; Kolahi and Libkin, 2006; Yu and Jagadish, 2008). These normal form definitions
differed in terms of schema used and constraints description, but most of them are based

on Arenas and Libkin’s proposal, because it is the most fundamental.

Hence, the main purpose of this section is to compare these XML normal forms with
respect to their definitions and normalization algorithm to reduce data redundancy. To
distinguish between them we will use the following notation: XNF 04(a), XNF 04(b),
X3NF and XNF 08 introduced by Arenas and Libkin (2004), Vincent et al., (2004),
Kolahi (2007) and Yu and Jagadish (2008) respectively. In the following discussion, we
will the use constraints 1, constraint 2 and constraint 3 presented in section 2.3.4 and

expresse them using XFD1, XFD2 and XFD3 respectively. We present them next.

50



XNF 04(a)

Arenas and Libkin (2004) followed the standard BCNF and a nested form NNF-96
(Mok et al., 1996) to define XNF 04. A nested form NNF-96 is normal form defined for

a nested relational database.
We now present XNF 04(a)

Definition XNF 04(a): Given a DTD D and a set of Y. of FDs over D, (D, 3)%is in XML
normal form (XNF) if and only if for every nontrivial XFD S —p.@l or S —p.s or, the
XFD S—p is also in (D, Y)*. Where S is a subset of path (D), p is a set of path (D)
(Arenas and Libkin, 2004).

This normal form generalises BCNF for XML documents and disallows any redundancy
caused by XFD. For example, the DTD shown in Figure 2.10 is not in XNF since the
following XFD1 is not XNF.

department.course.student.lecturer.@tno— department.course.student.lecturer.name.S
This XFD1 is not in XNF because it does not imply the functional dependency
department.course.student.lecturer.@tno — department.course.student.lecturer.name

and is not in the set of closure (D, J))*. The functional dependency XFD1 here leads to
redundancy where name occurs multiple times for a lecturer. This kind of functional
dependency is called anomalous XFD over (D, ¥). Arenas and Libkin (2004) proposed
an XNF decomposition algorithm to eliminate the above anomalous XFD and transform
a DTD D and set of XFDs Y into a new specification (D’, ¥ ") that is XNF. We present

this algorithm using the illustrated examples.

51



(1) IF (D, Y) is in XNF then return (D, ¥), otherwise go to step (2).
(2) / * moving attribute*/
If there is an anomalous XFD g—p.@! and g € paths(D) such that g— X€ (D, Y)" then:
2.1 Choose an attribute @m
2.2 D:= D[p.@l:=q.@m]
2.3% :=3[p.@l:=q.@m]
2.4 Go to step (1)
(3)/ * create new element types*/
Choose a (D, Y) — minimal anomalous XFD {q, p1.@l1, ....pn @ln}—p.@I
(3.1) Create fresh element types z, ti,.., Tn
(3.2) D:=D[p.@! :=q.7[r1. @1, .... = @l @]]
(3.3) X:=Y[p.@l :=q.7{rl.@ ...t @l @I]]
(3.4) Go to step (1)

Figure 2.18: XNF Decomposition Algorithm (Arenas and Libkin, 2004)

Figure 2.18 shows the XNF Decomposition Algorithm. The input of this algorithm is a
set schema D contains an anomalous XFD corresponds to relative constraint or minimal
anomalous XFD corresponds to absolute constraint. The definition of minimal
anomalous XFD is similar to relational database context (see section 2.1.2.1) but is more
complex because of the used path in XFD. The output of this algorithm is a new XML

schema specification (D’, ¥ ’) that is in XNF which contains the same information.

Moving Attribute

Consider the following anomalous XFD satisfied for the DTD in Figure 2.18 that causes
data redundancy.

52



db.conf.issue — db.conf issue.inproceding.@year (2.11)

db

7N\

inproceedings issues

M‘_ year

Figure 2.19: Moving Attribute

As illustrated in Figure 2.19, to eliminate the anomalous XFD, the attribute @year from
the set of attributes of inproceedings is moved to the new attribute issue. After
transforming DTD (D) into a new DTD(D’), a new set of XFD (Y ’) is generated and the
set of XFDs does not include this anomalous XFD (2.11) and thus, contains only
reduced anomalous path (Arenas and Libkin, 2004). However, this algorithm only
restructures the DTD but it does not decompose the original DTD.

Create New Element Type

Consider the university database shown in Figure 2.13, which contains the following

minimal anomalous XFD]1.

department.course.student.lecturer.@ino —department.course.student.lecturer.name.S

(2.12)

To remove the above XFD1 in (2.12), the following steps are needed:

()  anew clement type lecturer_info as a child of Department is created.

53


mailto:db.con/issue.inproceding.@Jlear

(i)  Then name.S from lecturer element is made an attribute for lecturer_info

(iii) Make tno as a child of lecturer_info as its attribute where the original @tno

attribute of lecturer remains the same.

department

/\

course course lecturer_info lecturer_info

cno title student student  cno title student student tno name address addres t%;ﬂfess
ﬂ\ N ng Hu5 2LB HU6 7RX 124 Bottacl HU3 5LB Hu6 7RX
urer

fname Iname Iecturer fname Iname lect urer ...lecturer

tno tno tno tno
123 123 124 124

Figure 2.20: Create New Element

This rule will be repeatedly applied until all anomalous XFDs are removed from the
DTD. The restructured version of the XML document that reflects this decomposition is
illustrated in Figure 2.20. Arenas and Libkin (2004) tested the complexity of XNF for
simple DTD and relational DTDs which are in cubic time and are coNP-complete
respectively. This XNF decomposition algorithm can transform any DTD to the XNF
normal form without loss of any information from the original XML documents. This is
achieved if there is a mapping f from paths in DTD D’ to paths in the DTD D such that
every tree T conforms to schema specification (D, Y)), there is a tree T" that conforms to
schema specification (D’, 3*) such that T and T* agree on all paths with respect to this
mapping f (Arenas and Libkin, 2004). They used a classical information theory
approach (Cover and Thomas, 1991) namely entropy to measure the effectiveness of a
XML database design and proved that their XNF is equivalent to BCNF in the relational

environment and XML documents at the instance level. In this approach the authors

54



measured the amount of redundancy for a schema regardless of any query/update
language (Arenas and Libkin, 2005).

XNF 04(b)

XNF 04(b) is an extension from XNF 04(a) where the condition of last (q) € S has been

added to the definition to guarantee that the redundancy can be eliminated.

Definition XNF 04(b) : Let P be a closed set of paths and let Y, be a set of XFDs such
that PY S P. Y of XFDs is in XML normal form (XNF) if for every nontrivial XFD
PhewsDm—q €Y, Last(g) S and if Last(q) €A then py,.....pm —Prefix(q) €Y where
Y." denotes the set of XFDs logically implied by ¥, .(Vincent et al., 2004).

For example, consider the DTD in Figure 2.10 and the set of XFDs

XFDI:department.course.student.lecturer.tno
— department.course.student.lecturer.name.S
This is not in XNF because the last label in the path

department.course.student.lecturer.name.S is a text node.

Vincent et al., (2004) have formally proved that XNF 04(b) can eliminate data
redundancy using formal justification adopted from (Vincent and Levene, 2000). They
showed that the implication problem is decidable for simple XFDs and provide an
algorithm to compute the closure for a unary XFD (only one path in LHS) with linear
run time. To the best of our knowledge, they did not provide any normalization

algorithm to convert un-normalized XML documents to normalized ones.

55



XNF 05
Like BCNF, Wang and Topor (2005) defined normal form for XML by using key

dependencies where LHS of nontrivial functional dependency is a super key. To present

normal form XNF 05, we define a terminology for key. We present them next.

If there is a XFD, Q: pi(c)),...pn(cn) — £0ver the DTD D, then we call pi(cy), ...pa(cy) a
key of Q.(Wang and Topor, 2005)

p1(€1),...pn(cn) is a key of Q( of T) means that, for every XML tree T conforming to D,
and for any two nodes n; and n, in XML tree, if n; and n; c.agree on p; , then n; and n;
must be the same node. This definition is different from (Buneman et al., 2003) since
they define several different interpretations of path agreements (see XFD 05 definition

in section 2.3.4.).

Definition XNF 05: 4 DTD D is said to be in XNF with respect to a set of XFD, if for
every non-trivial XFD the following conditions hold.

1. The LHS is a key

or

1. Q:picy)....on(cr) = P ns1(c n+1) in (D, 3)*
2. Q:pi(cy),...pn(cn) = p n+1(N) is also in (D, 3)*

Q is a downward path, p;,p,,..pa are simple paths, pp+) is a simple path of length 1 or 0,
andc; €{N, Sand 1} for (i€ 1, n+1). (Wang and Topor, 2005)

For example, the DTD in Figure 2.10 is not in normal form with respect to the following
XFD1 (2.8) Department.course.student.lecturer : tho —name because the XFD1 is non
trivial and : Department.course.student.lecturer :tno — & cannot be derived from the
DTD. This means that Department.course.student.lecturer :tno is not a key since there
are two different nodes o label with *123’ in XML tree shown in F igure 2.12.

56



However, to date there is no justification of this XNF 05 and no algorithm has been

developed to transform an XML document to a normal form.

XNF 08

Similar to Wang and Topor’s definition, Yu and Jagadish (2008) also used key to define
XML normal form. An XSD is in XNF08, if each XML FD (Cp, LHS, RHS), (Cp, LHS)
is an XML key, where LHS is a set of paths and RHS is a single path.

An XML key is a pair (Cp, LHS), where T satisfies the XML FD (Cp, LHS, .@key) (Yu
and Jagadish, 2008). This notion of XML key has similarities with the key notion
proposed by Buneman et al. (2003).

For example XSD in Figure 2.14 that satisfies the XFD1 (2.11), is not in a normal form
since (Crecrurer, {Department.course.student.lecturer.@tno} is not a key; hence it cannot

be used to uniquely identify an individual lecturer in the set of lecturers.

Yu and Jagadish (2008) proposed a normalization algorithm to eliminate such XFD and
refine XSD into a XNF. This algorithm is actually an extension of the normalization
algorithm proposed Arenas and Libkin but their algorithm is more comprehensive since
it can be used to eliminate XFD caused by a set of elements. As shown in Figure 2.20
generally, the input of this algorithm will be a schema with a set non trivial of XFD and
XML keys while the output is XSD with no redundancy.

Particularly, in this algorithm, the authors classified XFD into two categories: Local
XFD and global XFD: local XFD means the XFD satisfies within a relative subtree
while global XFD means the XFD satisfies the absolute XML tree. For example XFD1
and XFD3 are global XFD while XFD2 is a local XFD. Similar to Arenas and Libkin
(2004), Yu and Jagadish (2008) also include two rules in the algorithm: creating new
element and moving an element. For example to eliminate global XFD such as XFD1
and XFD3, procedure 1 is applied where a new element containing both its LHS element
(e.g. tno) and RHS element (e.g. name) is created and put under the root. The RHS
element is then removed from its original position. Meanwhile, procedure 2 is applied
57



to eliminate a local XFD such as XFD2, where a new element containing the subset of
its LHS elements is created (e.g. sno) that are not part of the key for the ancestor tuple
class (e.g. course) and RHS element (e.g. Iname), and this new element is put under the
schema element corresponding to the pivot path of the ancestor tuple class. Figure 2.21
illustrate the XSD after eliminating all XFDs.

Furthermore, to eliminate redundancy, the structure of the XML tree needs to restructure
by moving the attribute/element or creating a new element. For instance, procedures 1
and 2 have similarities with the procedure create element and moving element in the
XNF decomposition algorithm (Arenas and Libkin, 2004) but the differences are where
the location of element will be created and the type of this new element. We simplified

the process of this normalization algorithm as follows:

1. XFDs are grouped into local XFD and global XFD according to LHS (for
example XFD1 and XFD3 are grouped together since both have the same
LHS {..tno}.

2. XFDs are processed according to number of paths in their LHS as a strategy

to reduce storage cost.

3. XFDs are processed according to the hierarchy depth of their tuple class by

using a bottom-up approach

4. The algorithm is terminated after procedure 1 or procedure 2 removes at least

one redundancy indicated by XFD.

We note that this algorithm has been analysed and been tested on a real data set
namely PIR schema by normalizing the existing schema to GTT-XNF normal form
(Yu and Jagadish, 2008). However, to the best of our knowledge, no justification has
been given to verify the correctness of this algorithm and this algorithm can only be
applied if XML data is stored in a relational database. Hence, there is a need for
further enhancement if the XML data needs to be stored in an XML database.

58



1.

2.1
2.2
2.3
2.4
2.5

Input: Schema S, a set Y’ of redundancy - indicating FDs, a set y of XML keys

Group FDs in Y based on tuples class Cp and LHS, order them according to
decreasing depth of Cp (lowest first) and increasing number of paths in LHS second
(fewest first);

2. While } is not empty

let F be the first set of FDs in Y, with the same LHS and Cp;

Let F be the first FD in F;

If F is local; Modify S by applying procedure 2;

Else (if F is global) Modify S by applying procedure 1

For each additional F’€ F:
2.5.1 Modify S in the same way by applying procedure 1 or 2, but using
the new schema element already created in dealing with F°

2.6 remove all Fds in F from };

2.7  Foreach Fey;
2.7.1 if F no longer valid: remove F from } ;
2.7.2 if F in now structurally — redundant;
Convert F into its equivalent F~ that is not structurally redundant and add
Fto}y

Output: schema S, the modified redundancy-free schema

Figure 2.21: Algorithm of Schema Normalization (Yu and Jagadish, 2008)

59




department :Rcd
course : setOfRcd
cno : str
title: str
student :setOfRcd
sno:str
Jfname:str
Iname:str
lecturer
mo: str
lecturer_info :SetOfRcd
no:str
name : str
address: setOfStr

Figure 2.22: Normalized XSD

A Third Normal Form for XML (X3NF)

Kolahi and Libkin (2006) have proposed a third normal form for XML by extending
3NF to XML. Kolahi adopted the notions of XML tree and DTD from Arenas and
Libkin (2004) but extended the notion of prime attribute from relational database to the
case of paths to XML tree. We present here the definition of a prime attribute path in
order to present X3NF:

A path attribute p.@! is a prime path if there exist a nontrivial FD: S— q €(D, »*
such that

1. qis an element path,
2. p@les

3. Sis minimal ( not implied by other XFDs)



Definition X3NF: XML specification (D, Y) is in X3NF if and only if for every
nontrivial XFD S— p.@! €(D,Y)*, we have that S—p €(D,Y)" or p.@l is a prime path
(Kolahi and Libkin, 2006).

As a relational counterpart, a prime path is a path that uniquely determines path
elements of a tree tuple from the root. Like the 3NF, X3NF tries to achieve a schema
that can preserve functional dependency and at the same time reduce data redundancy in
XML documents. For example reconsider the XML document in Figure 2.12 which
illustrates a university database. This document satisfies the following constraints.
XFD4: department.course.student.lecturer.@tno
— department.course.student.lecturer.@name

means any two lecturers with the same tno value must have the same name.

XFD5: department.course.title,department.course.student.lecturer.@name

— department.course

means if two lecturers with the same name and teaching based on course title, they are

teaching the same course.

61



department v,

course vy course vy,
Cno titlev, studentv; studentv, Cno titlevy; studentv,, studentvy,
csc101  Xm! database /N ¢sc102 Z formal method /N
fh Vs Vg Vo Vg SN0 Vis Vi Vqy SN0 Vo Vi V22
fname Iname lecturer fname Iname lecturer fhame Iname lecturer fname Iname lecturer
112344 David GreA 112345 Helen /\ 112344 David Grey/\ 112345 Helen /\
namev, name vy name vyg tno name vy,
123 Bing 123 Bing 124 Bottacl 124 Bottacl

Figure 2.23: An XML Document in X3NF

According to this example, XFD4 and XFDS5 satisfy the X3NF because
department.course.student.lecturer.name is a prime path since it can uniquely determine

the path element department.course.

Like 3NF, Kolahi claimed that this X3NF can preserve functional dependency and
reduce data redundancy to a certain extent. However, to date no normalization
algorithm has been developed and it remains to be proved that the decomposition
algorithm based on X3NF definition is dependency preserving for any XML document.

62



2.3.8 Other Definitions of Normal Forms

Another common way to design a relational database is to model the requirements using
ER diagrams (Chen, 1976). In order to combine requirement modelling and
normalization, Ling (1985) proposed normal form for ER diagrams, which ensured that
all relations mapped form ER diagram are in a normal form such as in 3NF or 5NF. The
concept of normalization has been extended to the nested relational data model, where
normal forms such as NNF (Nested Normal Form) (Ozsoyoglu and Yuan, 1987) and
NF-NR (Normal Form for Nested Relation) (Ling and Yan, 1994) have been proposed
to guarantee non-redundant properties for underlying nested relational databases. Many
XML database researchers have applied this approach, i.e. conceptual data modelling
approach to design non- redundant XML documents (Embley and Mok, 2001; Lee et al.,
1999; Ling et al., 2005; Mani et al., 2001; Yuliana and Chittayasothorn, 2005). The one
most related to our work is proposed by Ling et al. (2005) which defined a semi-
structured data model, Object Relational Attribute-Semi-Structured (ORA-SS) (Dobbie
et al., 2000) to represent data conceptually. The details of the ORA-SS schema diagram
will be explained in Chapter 3.

The concept of normal form ORA-SS depends on the twin concepts of an object class
normal form (O-NF) and a relationship type normal form (R-NF) which is an extension
to the NF-NR for nested relation (Ling and Yan, 1994). Object and relationship of the
ORA-SS schema diagram are similar to entity and relation in an ER diagram. This
approach differs from Arenas and Libkin's approach, because they take constraints from
the conceptual model rather than from a specified XML functional dependency (XFD).
The nature of the definition for the normal form ORA-SS depends on a number of
conditions. First, none of the attributes of the object class have multi-value or transitive
dependency on the key of object class and relationship type. Second, every nested object

class and relationship within the parent object class must be non-redundant.

63



Definition (NF): An ORA-SS schema diagram D is said to be in normal form (NF), if
and only if it satisfies the following four conditions (Ling et al., 2005):

1. Every object class O in D is in O-NF.
2. Every relationship type R is in R-NF

3. No attributes or relationship types can be derived from other attributes or
relationship types in D

4. The following two cases are satisfied:

(@) The attributes of object class and relationship types are connected to correct

object class

(b) The relationship type is connected to the correct object class.

student
\%:n)
lecturer
mo ‘/
O O e
fname Iname tno tname

Figure 2.24: ORA-SS Schema Diagram

Ling et al. (2005) have proposed an algorithm to convert the ORA-SS schema diagram to
a normal form ORA-SS schema diagram. Using their normalization algorithm (Ling et
al., 2005) a normal form ORA-SS as shown in Figure 2.25 is derived.



course
l @.14,1:1)
/
]

| JO/ I
7

Iname /

'd
® -

-

Sno (3.1:1,1:n)

Iname

Figure 2.25: Normalized ORA-SS Schema Diagram

2.3.9 Discussion of Current XML Normal Forms

We have presented definitions of XML normal forms proposed by Arenas and Libkin
(2004), Vincent et al. (2004), Wang and Topor(2005), Kolahi(2007) and Yu and
Jagadish(2008). Most of them proposed the XNF, except Kolahi proposed XML third
normal form (X3NF). However, XML normal form XNF, proposed by Arenas and
Libkin (2004) achieves the best possible design from the point of view of eliminating
redundancies in XML documents (Kolahi, 2007). Arenas and Libkin (2004) have
defined XFDs and XML normal forms (XNF) entirely within the context of the XML
document. XFD is formally defined based on the concept of ‘tree tuple’. Arenas and
Libkin (2004) proved that their XNF can avoid redundancies and update anomalies
using information theory measure (Arenas and Libkin, 2005) at the schema and instance
levels. They also showed that XNF is generalised from BCNF if the XML schema is
converted into a relational presentation. However, the problem with this approach is
that the way they express the semantic constraint (functional dependency) is very
complicated due to the textual presentation of a schema. As we know, functional

65



dependency is already the area where designers have the most problem specifying in
relational models, so making them more complicated and unfamiliar to designers makes
XML document design more difficult. Moreover, a common problem with this
approach is that the whole schema has to be redesigned when requirements change and
information is added or withdrawn. In addition, the functional dependencies defined by
Arenas and Libkin (2004) are dependent on the XML labelled tree (a model for XML
documents) where paths are defined through the tree. Therefore when paths change, the
functional dependency is adjusted as well. For this reason XNF can never be
dependency preserving (Kolahi, 2007). Another shortcoming is that both DTD and
XML tree are represented in textual representation, and so as a result it is difficult to
visualise the data and their relationship. Furthermore, as discussed in section 2.3.7, the
XML normal form proposed by Arenas and Libkin (2004) is limited in its ability to
capture certain semantic constraints. The notion of XML normal forms is presented in a
term difficult to understand because of the lack of graphical interpretations for the
proposed theories. As a consequence, the current approach to XML normal form does
not have the tremendous benefit for practitioners (Bourret, 2007). As shown in section
2.3.4, the definition of XFD and normal forms are very difficult for the normal users to
understand if they do not have a theoretical background. Thus, these limitations will
directly affect the application of XML normal form in practice by the end user. We
believe that by simplifying the current definitions of XML normal form with a simple
presentation will help end users to apply it and design XML documents in an easily and

simple way.

In contrast, an ORA-SS data model is proposed to assist in XML document design
(Dobbie et al., 2004) at the conceptual level. The tree structure of the object class is
clearly shown in the ORA-SS model. In Dobbie et al.’s work, it assumes that the
starting point for the design of an XML document is at a conceptual model ORA-SS.
Using the algorithm, then an XML document is derived from a normal form ORA-SS.
This approach follows from the ER normal form (Ling and Yan, 1994). Ling and Yan
(1994) have shown that this approach is guaranteed to produce a redundancy-free and
compact relational database. In traditional database design, practitioners routinely use an
ER model and convert the ER diagram to a relational model. Another advantage of this

66



approach is that it is easier and simpler for designers compared to normalization theory
(Ling et al., 2005; Halpin, 2010). However, the normal form ORA-SS relies upon
definition of NF-NR (Ling and Yan, 1994). In order to use and understand the normal
ORA-SS the user must understand normal form for nested relations first. Another
disadvantage, in Ling et al.’s approach, is that they assume the XML document is not
associated with DTD; hence extraction of the schema from the XML document is
required.

24  Summary

In this chapter, we gave a brief background of relational database design and discussed
thoroughly an XML database design through the normalization approach. We described
some criteria for non-redundant and bad relational schemas. Based on such approaches,
functional dependency was considered to represent the semantic constraint of XML
data. This is because functional dependency forms the important basis for the
normalization process in the database design. However, we noticed that the definitions
of functional dependencies, the notion of XML data tree, definition of element and path
in XML database are very difficult in terms of their presentation and use a lot of
theoretical or mathematical notions. From the discussion of existing XFDs and XML
normal forms, we are aware of their advantages and limitations, the latter of which will
influence XML document design in real world practice. To overcome these limitations
is one main task of this thesis. Furthermore through our investigation of some XML
normal forms, we have found that this XML normal forms notion could be defined in a
simpler way. We noticed also that, a non-redundant graphical data model for XML
needs to be developed to support XML design. These issues are very important for
XML database design. Therefore, we will propose such a model to support the XML

design process. This will be examined in more detail in the next chapter.

67



Chapter 3

A G-DTD: A Graph Model for Describing XML Documents

3.1 Introduction

In database design theory, conceptual data modelling is an important part of database
designs which deals with structure, organization and effective use of the information.
Moreover, the purpose of any data model is to allow us to describe constraints,
manipulate objects and relationships among objects in the real world that we intend to
reflect in the database (Beeri and Bernstein, 1979). As pointed out by Biskup (1995),
ﬁnding‘ a unifying data model and extending achievement of database design theory to
advanced databases consisting of complex object types such as XML is a very
challenging task. This is because, first, XML is hierarchically structured and requires to
be conformed to its schema such as DTD (Mani et al., 2001). Second, the expression of
dependency constraints such as functional dependency will be different from the
conventional model due to XML structure (Arenas and Libkin, 2004). Third, mapping
an XML document into well-defined and highly-structured schemas, such as those in
relational and object oriented models, often requires a lot of effort and frequent schema
modification. These difficulties have prevented the use of relational and object oriented
approaches to XML data modelling. Therefore an appropriate conceptual model for

XML documents has become important.

In this chapter, we propose a conceptual model of DTD called Graph-DTD (G-DTD).
The G-DTD helps to give a better understanding of DTD structures, to improve XML
design and also the normalization process as well. G-DTD has a richer syntax and
structure which incorporate attribute identity, simple data types, complex data types and
relationship types between the elements. Furthermore, the semantic constraints that are
important in XML documents are defined clearly and precisely to express the semantic
expressiveness. We believe G-DTD can be used to represent and support XML structure

68



explicitly and capture more semantics of XML documents in order to solve some difficult

issues, for example, query processing, information losslessness and normalization.

A G-DTD model is proposed to assist in XML document design at the conceptual level.
In this work, it is assumed that the starting point for the design of an XML document is at
a conceptual model G-DTD. Using the algorithm, then an XML document is derived
from a normal form G-DTD. As shown in Figure 3.1, the process of designing an XML
document has several steps. First, we take DTD as input and represent it into G-DTD.
Second, we transform G-DTD to normal form G-DTD. During this step, normalization is
carried out automatically based on the number of data dependencies provided by the user
in the conceptual model. Third, we map the normal form G-DTD to DTD and finally,
the XML document is generated on the basis of the normalized DTD.

step 1 step 3 step 5
Unnormalized | D | Normalized
XML T ‘ Normalization of ‘ o T XML
r 3
Document D G-DTD D Document
step 2 FD step 4
Transformation DTD Transformation normalized
to G-DTD G-DTD to DTD

Figure 3.1: XML Document Design Process

69



Our contributions in this chapter are as follows:

e We will present a graphical representation of G-DTD using a directed and
labelled tree. The important features of G-DTD such as element and sub-
element relationships and attributes are presented clearly. This G-DTD has
richer syntax and structure which incorporate element/attribute identity, simple
and complex data types and relationship types between the elements.

e We proposed a transformation rule to transform from G-DTD to DTD structure.

This chapter is organized as follows. In section 3.2 we review other related XML data
models. In section 3.3 the basic notation, structure of DTD and rationale for G-DTD are
described. We propose the G-DTD’s notations, component, structure and semantics in
section 3.4 and in section 3.5 discuss the operations of G-DTD. Lastly section 3.6
proposes the transformation rule to show that G-DTD can also be transformed back to
DTD structure.

3.2 XML Model Review

Major current data models that are commonly used to represent instances of XML
documents and their schemas are based on a directed graph model. This model consists
of nodes and directed edges which, respectively, represent XML elements in the
document and relationships among the elements, e.g. element-sub-element and
relationships between elements. The current XML models can be categorized into three
types. There are XML models to represent instances of XML documents, XML models
to represent XML schema and XML models to represent both XML documents and
XML schema. Some common data models used to represent an instance of XML
documents are the Document Object Model (DOM) (Apparoa and Byrne, 1998) and
Object Exchange Model (OEM)( McHugh et al., 1997). On the other hand, the
Semistructure-graph (S3-graph) (Lee et al., 1999), Semantic network (Feng et al., 2002),
Concept Model Hypergraph (CM-Hypergraph)( Mok and Embley, 2006), Dataguide
(Goldman and Widom, 1997) and Extended Entity Relational(EER) models (Mani et al.,
2001) are models to represent only the XML schema while the XML Tree (Arenas and

70



Libkin, 2004) and Object Relational Attribute-SemiStructured (ORA-SS)(Dobbie et al.,
2000) models can be used to model both instances and XML schema. We also noticed
that there are other methods found in the literature used to represent XML documents
and their schema, such as Hedge automaton theory, Declarative Description (XDD)
theory and the Functional programming approach. In the following section, we will
present the above data models by classifying these models into three types: models for
instance level, models for schema level and models for a mix of schema and instance

levels. We describe each of these models as follows.
3.2.1 Models for Schema level

The following models can only be used represent the schema level but cannot represent

an instance of an XML document.
Semi- Structured Schema Graph

A Semi-structured schema graph (S3-graph)(Lee et al., 1999) is a directed graph model
for schema where each node in a graph can be classified as an entity node or a reference
node. An entity node represents an entity which can be a basic atomic data type such as
string, or complex object type. A reference node is a node which references to another
entity node. Each directed edge in the graph is associated with a tag. The tag represents
the relationship between the source node and destination node. The tag may be suffixed
with a “*” to indicate that it can have one or many children. S3-Graph can represent the
hierarchical structure of the element sets and represent one to many relationships
However, it does not distinguish between elements and attributes. Semantic constraints
such as cardinality of the element, relationship between elements and attributes are not

presented precisely.
Semantic Network

The semantic network model for XML was introduced by Feng et al. (2002) to model a
schema level. This model is based on hierarchical graph model and adopts entity type
and attribute notation from the Entity-Relationship (E-R) model. Nodes in semantic

71



networks are used for modelling objects from the real world and their attributes, and
edges are used for modelling relationships between the objects. Only binary
relationship between nodes can be represented in this model. Many constraints can be
specified in the semantic network model, such as constraints on edge and constraints on
nodes. The details of this model can be found in Feng et al. (2002).

Concept Model Hypergraph

A data model Concept Model Hypergraph (CM Hypergraph) was proposed by Mok and
Embley (2006). The model is used to represent object sets, relationship sets and some
semantic constraints conceptually. Object sets that refer to element sets represented as
labelled rectangles, relationship sets are represented by edges and constraints are
depicted using arrows. The graphical type of arrow is used to distinguish between the
types of relationship between the object set. For example, an edge with no arrow heads
represents a many-to-many relationship set, an edge with one arrow head represents a
many-to-one relationship, and an edge with an arrow head at both ends represents a one-
to- one relationship. The symbol “0” on the arrow indicates that the object is optional.
CM hypergraph can model both binary and n-ary relationships but it cannot represent
the hierarchical structure of the schema. The sequence and the disjunction of objects set

cannot be represented in this model either.

Extended Entity Relational diagram

An Extended Entity Relational (EER) diagram for modelling XML schemas was defined
in Mani et al. (2001). This model is extended from the Entity Relational (ER) diagram
and can be used to capture the hierarchical link and ordering of entity sets. The
hierarchical link or element-subelement relationship is represented using a ‘has’
relationship. The ordering of the entity sets is presented as a solid line between the
relationship set and entity sets. Similar to ER notation, entity sets are represented as
rectangles and relationship sets are represented by diamonds on the edge. The concept

of attributes here is the same as in an ER diagram; however it not possible to show
72



whether the attributes are optional or required. Furthermore, in an EER diagram, it is
not indicated which entity set is the root of the tree and the relationship between the

entity sets is not presented clearly.

DataGuide

A DataGuide (Goldman and Widom, 1997) models the schema of an OEM instance
graph. In the DataGuide, the complex objects are depicted by a triangle. Recently, Yu
and Jagadish (2008) used the DataGuide to represent a schema called Schema Tree
based on XSD. However, DataGuide is less expressive than DTD since it is not possible
to represent relationships and semantics constraint among elements. DataGuide depicts
only the hierarchical structure of the element sets using textual representation and as

with the OEM there is no distinction between element set and attributes.

3.2.2 Models for Instance Level

Document Object Model

The Document Object Model (DOM) proposed by Apparoa and Byrne (1998) represents
the instance of a semi-structured data as a tree. Each node represents an object that
contains one of the components from an XML structure. The three most common types
of node are element nodes, attribute nodes and text nodes. A DOM represents the
instance of a document, showing the hierarchical structure of the elements and the
relationship between the elements. DOM can distinguish between elements and
attributes. However DOM only represents the instance of a semi-structured data, it is

does not represent the schema information directly or the constraints of the elements.

73



Object Exchange Model

The Object Exchange Model (OEM) which was proposed by McHugh et al.(1997) also
represents an instance of semi-structured data. An OEM model is a labelled directed
graph where the vertices are object, and the edge is relationship. Each object has a
unique object identifier (OID), a label and a value. There are two types of objects,
atomic and complex. Both atomic and complex object are depicted as 3-tuples (OID,
label, value). An atomic object contains a value with types e.g., integer, string, etc. A
complex object consists of Sub-objects. An OEM indicates the hierarchical structure of
the objects. Similarly to DOM, OEM does not represent the schema and semantic

constraints clearly in the model.

3.2.3 Models for Mix of Instance and Schema Levels
Object Relational Attribute- Semi Structured (ORA-SS)

ORA-SS is a rich hierarchical model of a semi-structured database proposed by Dobbie
et al. (2000). An ORA-SS model can represent an instance of XML document and
ORA-SS schema as well. ORA-SS has three basic components: object types,
relationship types and attributes. The Object type’s notation is similar to entity type
from a conventional ER model. The ORA-SS schema diagram is like a CM hypergraph
diagram and an ORA-SS instance diagram is similar to a DOM tree. Relationship type
between object types represents hierarchical relationships. ORA-SS has the features of
cardinality constraint, ordering concepts and disjunction between two or more attributes.
The advantage of this model is that it can represent n-ary hierarchical relationships and
it can distinguish between elements and attributes clearly. However the attributes
described here are different from attributes defined in XML documents since it uses the
same concept of attribute as an ER model. Even though the relationship between
element set is defined precisely, but the presentation simple element type and complex
element type is not well distinguished in terms of graphical notation. More details of
this model can be found in Dobbie et al. (2000).

74



XML tree

As described in Chapter 2, XML tree proposed by Arenas and Libkin (2004) is used to
represent the XML document graphically and define languages for describing DTD.
Their approach is able to represent both instances and schemas of XML documents
precisely. However, it has the disadvantage that it is not possible to represent semantic
relationships between nodes and distinguish relationship between attributes and element
sets. Furthermore, the DTD is described in this model using textual presentation, so it is
very difficult to interpret the data and relationships between elements. Moreover, the
notion of DTD defined by Arenas and Libkin (2004) is quite different from normal DTD

since they incorporate the value of elements and attributes together in the notation.

3.2.4 Other data models

Hedge automaton theory was developed by Murata (1999) using the basic ideas of string
automaton theory to formalize XML documents and their DTDs. A hedge is a sequence
of trees or a sequence of XML elements. An XML document is represented by a hedge
and a set of documents conforming to a DTD by a regular hedge language, which can be
described by a regular hedge grammar. By using hedge automaton, one can validate
whether a document conforms to a given regular hedge grammar. XGrammar (Mani et

al., 2001) is an example of an XML model based on hedge automaton theory.

Wuwongse et al. (2003) have proposed data model for an XML database using XML
Declarative Description (XDD) theory (Anutariya et al., 2000). In this model, XML
elements are associated with variables called XML expression and the constraint and
relationship is represented in terms of XML clauses. There is other related work using
multimodal logic (Bidiot et al., 2004) and spatial tree logic (Conforti and Ghelli, 2003)
to present and reason about semi structure data.

A functional programming approach to modelling XML documents and formalizing
operation has been developed by Fernandez (1999) by incorporating the notion of node:

75



Algebra for XML queries, expressed in terms of list comprehensions in the functional
programming paradigm. On the other hand, Conrad et al. (2000) proposed to
conceptually model DTD using Unified Modeling Language (UML). They used
important features of UML to model DTD. We are also aware that Bird et al. (2000),
used Object Role Modeling (Halpin, 1999) as their conceptual model to describe XML

schema.

In conclusion, data model such as OEM, DOM and DataGuide have been designed for
the purpose of information or schema integration. The focus of these data models is on
modelling the nested structure of semi-structured data but not modelling the constraints
that hold in the data. In contrast, data models such as S3-Graph, CM Hyper graph, EER,
XML Trees and ORA-SS have been defined specifically for data management. On the
other hand, we noticed that a graph based model provides an effective and
straightforward way to handle XML documents. Based on the above review, we
proposed to adopt ORA-SS’s (Dobbie et al., 2000) because of its capability and because
the model uses established notations from traditional ER model (Chen, 1976) which is
already well known to database designers. However some modification needs to be
made. The rationale is, these models can only be used to represent semi-structured data.
The semi-structured data model described above assumes that the collected of data or
elements are unordered, whereas with XML documents, elements are ordered (Connolly
and Begg, 2002) and the XML document must be associated with its schema, i.e. DTD.

3.3  Document Type Definition (DTD) - Its Basic and Rationale

3.3.1 Introduction

As presented in Chapter 2, Section 2.3.2, to define the structures for XML documents,
we need to use a schema. We use a DTD in our work as it has been well accepted.
Even though DTDs are less expressive than XML Schema, in general they are
expressive enough for a large variety of applications (Arenas and Libkin, 2004).

Moreover, from a theoretical point of view, DTD can be characterized in terms of

76



unranked tree automata (Nevan, 2002), which have been widely studied in automata
theory and more recently in database theory (Arenas and Libkin 2004). Furthermore
DTD is an early standard for XML, and many legacies XML document structures are
defined by DTDs. Therefore in this thesis, we aim to represent the details of DTD
syntax and structure for the purpose of XML data modelling and normalization.

3.3.2 Overview of DTD syntax

The DTD consists of the set of rules that each XML document must conform to.
Normally, such rules are represented using context free grammar and instances of a
DTD are seen as a syntax tree. DTD defined here is much like tree structure (Arenas
and Libkin, 2004; Murata et al., 2003). The DTD can be used to map between metadata
and instance and validate whether the structure of XML document is correct or not. The
main criteria of DTD consist of root, element, attribute and element type definition,

which is represented as regular expression.

A DTD document begins with a document type declaration in its simplest form as

shown below:
<! DOCTYPE root < [all the elements in the document>] >

the DOCTYPE declaration will followed by all element and attribute declaration.
Similar to DOCTYPE declarations, the basic common syntax of each line in the DTD
must start with the symbol start tag ‘<!’ followed by element declaration and end with
end-tags *>’. These tags must be balanced and they are used to delimit elements. To
differentiate between elements and attributes, the keyword ELEMENT or ATTLIST is
written after the start symbol ‘<’. For example the general syntax is wrriten as follows.

<! ELEMENT Element declaration> and

<! ATTLIST attribute declaration >

77



DTD Elements
The more specific syntax for declaring DTD elements is as follows;
<! ELEMENT elementname { [content]) } >

Elementname represents name of object and content of DTD can be categoried as

follows:

EMPTY Keyword is applicable to element that does not require data content. For
example </ELEMENT year EMPTY>

ANY keyword indicates a combination of elements that can contain data of type
#PCDATA or any other element defined in DTD.

<!ELEMENT year ANY>
<! ELEMENT Iname (#PCDATA)>
<! ELEMENT conf (Iname, issue) >

where conf is the name of the element and Iname and issue are two sub elements of

element Conf. The symbol “,” depicts that Iname and issue must be in sequence.
e  Choice of subelements

Content of sublement can also be a set of choice, represented by a | “symbol
(sometimes called OR operator). For example, consider in the following DTD syntax,
where the student element can contain a sequence of sub-elements sno, name and

optionally contain sub-element hostel or home element.

<! ELEMENT student (sno, name, (hostel| home) >
<! ELEMENT sno (#PCDATA) >

</ELEMENT name (#PCDATA) >

<!ELEMENT hostel (address)>

<!ELEMENT address(#PCDATA) >

<IELEMENT home (address)>

78



<!/ELEMENT address(#PCDATA) >

DTD element cardinality

In a DTD, the cardinality determines how many times an element can occur within a

spesific content layer. There are four DTD cardinality constraint syntax specifiers:

In the following example, there can be zero or more course elements contained within

each department element.

<!ELEMENT department (course*)>

DTD attributes

For XML documents, attributes are defined in DTDs using the ATTLIST declaration.
An attribute can be tagged as an identifier, indicating that it is expected to have a unique
value within an instance XML document. An attribute can have a string value or be a
reference to the identifying attributes of an element sets. Attributes are defined using

the following syntax:

<IATTLIST [element ][att name][ attribute type ] [default] >

element represents element name, att name represents attribute name, while attribute

types can be defined using various different types as follows:

Types Description

CDATA characters

® ql,-..D originates from list of values

ID unique identifier

IDREF(S) identifier of a different element(s)

NMTOKEN(s) XML name(s)

79



and atribute defaults categories as follows:

Default Descriptions

Value the initial seting for an attribute

#REQUIRED An attribute must have a default value
#IMPLIED An attribute does not have to have a default value
#FIXED value An attribute value is predetermined

For example the following syntax;
<!ATTLIST course cno ID #REQUIRED>

represents that the element course has attribute name cno with type ID and an attribute

default is required.

80



Consider again following example of DTD to summarise the above definition:

1 <!DOCTYPE department[

2 </ELEMENT department(course*)>

3 <!ELEMENT course(title, student*)>

4 <IATTLIST course cno ID #REQUIRED>

5 <!ELEMENT title ({PCDATA)>

7 <!ELEMENT student (firstname|lastname?, lecturer)>
8 <IATTLIST student Sno ID #REQUIRED

9 <!ELEMENT firstname(#PCDATA) >

10 <!ELEMENT lastname(#PCDATA) >
11 <!ELEMENT lecturer (name)>
12 <IATTLIST lecturer tno ID #REQUIRED>
13 <!ELEMENT name (#PCDATA)>]
Figure 3.2: DTD

The detailed specification of DTD is described as follows: The first line of DTD in
Figure 3.2 depicts that department is the root of the DTD. The second line shows that
department consists of the sub-element course. The semantic relationship between
department and course is indicated by the symbol *, representing that department can
consist of zero or many course for each department. The third line of the DTD shows
that each element course has sub-clement title and element student. The symbol *,”
between them indicates that they must occur in sequence. The fourth line indicates that
element course has an attribute cno. The keyword ‘4REQUIRED’ represents that the
attribute cno must appear in every course while “ID” indicates that the value of cno is
unique within the XML document. The fifth line of the DTD shows that the keyword
“PCDATA” depicts that element Iname has no sub-elements and it is a leaf element and

has a string value. The same semantics are applied to DTD from line 6 to line 13.

More specifically, this DTD has the following information:
81



o Each department offers many courses indicated by the notation *.

e Every course is described by the attribute course no (cno), title and numbers of
students taking the course.

e Each student has a student number (sno), first name or last name as optional and an

assigned lecturer.

o Each lecturer has his/her number (tno), and name (tname).

As shown in Figure 3.2, DTD is commonly represented as textual representation in a
hierarchical structure which is difficult to be analysed and understood by end users or
practitioners. Normally even the design of a simple DTD may cause difficulties, partly
due to the textual form of the grammar itself. Moreover, DTD lacks of clarity and
readability, which may cause errors during the design process. DTD description using
graphic interpretation is very important for the purpose of better understanding of the
XML design because graphical notations are commonly regarded as more accessible
than formal notation. Furthermore, the absence in current approaches of graphic
notations of the DTD could cause difficulties in the normalization process. For
example, the normalization process proposed by Arenas and Libkin (2004), Kolahi
(2007), Wang and Topor (2005), Yu and Jagadish (2008) is very difficult to understand
and hard to be implemented programmatically due to the many theoretical or

mathematical terms defined.

Hence, a summary of the existing XML models in section 3.3 is necessary and important
in particular to survey which approaches and notations are the best to be adopted and
applied in our model. Our focus is to propose a graphical data model at a schema level.
In our model we propose to differentiate between elements that contain sub-clements
and elements with no sub-elements more explicitly. This is important for the
normalization process because elements with sub-elements will normally cause data
redundancy in XML documents. We called the former complex elements and the latter
simple elements. Specifically, a simple element is an element associated with the
keyword #PCDATA in DTD syntax. Most previous models do not distinguish precisely
between complex elements and simple elements. Instead they define simple elements

82



similarly to attributes. As shown in Figure 3.2, the attributes DTD is used to define the
property or an identifier for a complex element; hence it must be distinguished from a
simple element. In the G-DTD model, various different notations are proposed to
represent all the most important features of DTD in a very simple and practical way,
thus providing a more flexible modelling approach. Furthermore, in the G-DTD model,
the representation of semantic constraints between the complex elements, simple

elements and attributes is emphasized.

3.4  G-DTD Data Model
3.4.1 Objectives of the Model

The conceptual data model represented here is called G-DTD. It has enhanced the
current XML data models by including different structural node types and relationship
types. The aim of this extended XML data model is to capture the syntax and semantics
of XML documents in a simple but precise way. G-DTD has richer syntax and structure
which incorporates attribute entity, simple data types, complex element data types,
relationships types, tree structure, cardinality, sequence and disjunctions between
elements or attributes. It is important that all these structures and semantic constraints
in XML documents are defined clearly and precisely to express semantic expressiveness
at the schema level. Having G-DTD as a tool, helps the user to arrange the content of
XML documents in order to give a better understanding of DTD structures, to improve
XML design and the normalization process.

3.4.2 Overall view of G-DTD

Generally, a G-DTD is a labelled and ordered tree consisting of a hierarchy of nodes that
are connected to each other through directed unlabelled or labelled arrows. In addition,
particularly, each node in a tree corresponds to a complex element, simple element or
attribute, while the link or edge between each node denotes the type of relationship
between nodes. Nodes that represent elements that have basic property types of

83



#PCDATA are considered as the leaves of the tree. The G-DTD represents the structure
and the semantic constraints of the XML document at schema level. The G-DTD adopts
graphic notation with some modification from conventional entity relational data model
(Chen, 1976) and semi-structured data model (Dobbie et al., 2000) because of its clarity

and simplicity.
The main features supported by this G-DTD are as follows:

e Supports structure of individual nodes by defining the type, level and cardinality

of each node.

o Enhances the abilities of the current XML model by its complex element nodes

and simple element nodes and attributes.

e Provides semantic relationship definition to allow users to define semantic
relationship between node types. A semantic relationship between two node
types such as path link and part-of link can be defined by the user. The path link
can be a binary relationship or n-ary relationship. Each path link is assigned a

unique name, type of relationship, parent constraint and child constraint.

o Allows the user to define the structure of nodes in an ordered and in a

hierarchical way

3.4.3 G-DTD Components

G-DTD has six basic components:

* A set of complex element nodes representing the elements that have

subelements.

® A set of simple element nodes representing the elements that have no
subelements.

o A set of attribute nodes representing the attributes defined in ATTLIST.

e A set of relationships representing the semantic relationships between the

complex elements, simple elements and attribute nodes.

84



e A root node representing the first element in the DTD and every node has a

level, i.e. the distance from the root.

e A last node.

3.4.3.1 Simple Element Nodes

A simple element node is used to represent an element associated with #’CDATA or
#CDATA. It is illustrated as a labelled rounded rectangular box with the form <name,
Hpe> where name is the name of simple element and #ype represents PCDATA or

CDATA or string ‘S’. A simple element node can be:

¢ Single -valued which has only one value

e Multi - valued which can have a set of values

¢ Required/mandatory, which must have a value for every instance

¢ Optional which may not have a value in some instances
All simple element nodes are assumed to be mandatory and single valued, unless the
node contains an ?, which signifies it is single valued and optional, or + which signifies
that it is optional and multi-valued. This notation is similar to ORA-SS (Dobbie et al.,

2000). The symbol is written in front of the tuple <name, type> to differentiate among

them accordingly.

Notation Meanin
[ < firstname, S>
/ Mandatory, single value, PCDATA
S
[ T J Required, multi value, PCDATA

85



[ ] Optional, single value, PCDATA
7 <lastname, S>

[ o <address, 5> } Optional, multi value, PCDATA

Figure 3.3: Types of Simple Element Nodes

Figure 3.3 shows the notation and semantics of each simple element, for example simple
element firstname is mandatory, simple element lastname is optional, tutor is multi-
valued and required while address is multi-valued and optional. All of them have type
#PCDATA.

3.4.3.2 Complex Element Nodes

Complex element node is used to represent a set of elements which has other sub
elements and attributes. The sub element node of complex element node can be

classified as follows:

PCDATA, EMPTY, ANY, mixed context, complex element and simple element. Each
complex element node has one or more labelled directed arrow going from it to another
node. The complex element node is illustrated as a labelled rectangular box. This
notation is adopted from the ER model (Chen, 1976) and is similar to entity. The label
is written in a rectangular box as the tuple <name> where name represents the name of
the node in the G-DTD. The name is mandatory. Figure 3.4 gives an example of a
complex element node labelled as <srudenr> which represents that complex element

node student is located at level one of the G-DTD.

86



Level 1 <student>

Figure 3.4: Complex Element Node Student

3.4.3.3 Attributes nodes

Attribute nodes are used to represent attributes defined in ATTLIST, which describe the
property of a complex element node. For an attribute node, the attribute name, attribute
type and attribute default must be presented clearly in the diagram. These criteria will
be written as tuple <name, type>. However the attribute default is presented using
different notations to differentiate among them. The attribute node is represented by

various notations of labelled oval diagrams corresponding to attribute default as

follows:

Notations Attribute default
#REQUIRED(mandotary)
#IMPLIED(optional)

O #FIXED(optinal)
O #IDREF(reference)

Normally an attribute is an identifier for a complex element, presented as ID
#REQUIRED. This means that it is unique among the instances of complex element
and mandatory, while an optional attribute is defined by the keyword #IMPLIED in the
DTD. Attributes can be classified as single attribute or multi attributes. A single
attribute has only an atomic value but a multi attribute for a complex element such as
IDREF(s) has special meaning value(s). In addition, some attributes such as IDREFS
contain one more data values. For example the following notation represents that
attribute name SNO and it is required (unique) in DTD:

87



<sno, ID>
The above notation is represented in DTD as follows:

<! ATTLIST Student sno ID # REQUIRED>

3.4.3.4 Root Node

A root node is a member of a complex element node but the level of the root node
always started at level 0. Root node notation similar to complex element notation where
it is a special case of complex element node. The root node can be identified from DTD

using the key keyword DOCTYPE. For example

<!DOCTYPE courses [ content..]>

In G-DTD, the root node for the above example will be presented as follows:

Level 0 <courses>

3.4.3.5 Relationships

Links between nodes represent relationships which contains type of cardinality

constraint. Three types of link exist in this model:

¢ Path link
e Part of link

e Has A link

88



Path Link

The path link is a relationship between a complex element node and another complex
element node. This link shows the relation between parent nodes to child nodes or
ancestor node to descendant node, where child node should not be in the same set as

parent node.

Because the structure of G-DTD is a directed graph, a parent for each type of related
node, i.e. complex element node, simple element node and attribute node is determined
by the level position of the node; a parent node is always at the level position less than a

child node by one level difference only.

In a hierachical link, the order between complex element nodes is important since it will
determine the immediate parent and child of the complex element node. Another
important feature of hiearachical links is that they can be composed among themselves
and can be repeated as many times as desired. The constraint relationship on the
hierachical link must be a positive number and the link is cycle free, meaning that no

complex element node is mapped to itself.

In the path link, a semantic meaning, which is indicated by the connectivity between
complex element occurrences, is important. The connectivity of a relationship specifies
the mapping of the associated complex element occurrence in a relationship. Basic
constructs for connectivity are: one-to-one (unary or binary relationship), one-to-many
(unary or binary relationship), and many-to-one, many-to-many (unary or binary
relationship). All these types of relationship are indicated by directional arrows. To
differentiate among them, both cardinality constraint and degree are attached to the
arrow. The notation is presented as (name, d, cp, cc) where name represents the name of
the relationship, d is the degree of relationship, ¢p and cc are cardinality constraints for
parent and child respectively. This notation is similar to ORA-SS (Dobbie et al., 2000).

89



(a) Degree of relationship

Degree of relationship is the number of complex elements associated with the
relationship. An n-ary relationship is of degree n. Unary, binary and ternary

relationships are special cases in which the degree is 1, 2, and 3, respectively.

(b) Cardinality constraint for complex element

To reveal more semantics in their relationship, the cardinality constraint is associated
with the path link. As described in section 3.4, in a DTD declaration, there are four
possible cardinality relationships between parents and children: This is illustrated as

follows
<! ELEMENTE (El, E2+, E3* E4?)>

The above segment of DTD shows that complex element E has four children E1, E2, E3

and E4. The cardinality of the constraint is described as follows:

¢ Only (default): An element E must have one and only one child E1.
e Any (*): An element E can have zero or more child E3.
e Optional(?): An element E can have either zero or one child £4

e Atleast (+) : An element E can have one or more child E2.

The same rule applies for cardinality constraints for both parent node (cp) and child
node (cc). Here cardinality of complex elements in a relationship is represented as a 2
tuple (min: max). The constraint (0: N) (0:1) and (1: N) is represented as the operators *
?and + respectively except cardinality constraint (1:1) is presented as 1. This
relationship cardinality constraint is indicated using a directional arrow. For instance,
the diagram in Figure 3.5 illustrates a binary path link between complex element courses
and complex element student, where a student can take zero or many courses while

many courses can be taken by zero or many students.

90



Level 1 <courses™>

(8C.2,%,*)

Level 2 <student>

Figure 3.5: Many-to-Many Binary Relationship

Figure 3.5 also illustrates that two complex elements must be conceptually located at
different levels between parent node and child node. In this example complex element
course is a parent node and complex element student is a child node, which is located at
level 1 and level 2 respectively. The label SC is a name relationship which refers to

student and course complex elements node.
Part_of Link and Has_A Link

Part_of link is a relationship between complex element node and attribute node. Each
complex element node has a unique attribute node which is mandatory or a set of
attributes (optional). It is illustrated as bold double arrow. Has_A link is a relationship
between a complex element node and a simple element node. It is illustrated as a double

arrow. These types of relationship are illustrated using the following notation.

<name> <name >

Part_of [ lﬂas.A
==

Figure 3.6: Part_of Link and Has_A Link

For example, Figure 3.7 illustrates that attributes cno and sno are identifiers and
required for complex element courses and student respectively. The relationship
between complex element student and attribute sno is defined as a Part-of link while the

91



relationship between complex element student and simple element fhame and Iname is
shown as Has-A link. All simple element nodes have type #PCDATA. The depth of
each node in this diagram is denoted by the level number.

Level 1

Level 2

Level 3 <sno, ID>
P<fname,S> <Iname,S>

Figure 3.7: Relationship between Complex Element, Attribute and Simple Element
Nodes

3.4.3.6 Semantic Constraint Between set Relationship

Sequence between set of child elements nodes

The complex element node may consist of child element nodes in a particular sequence.
For example the complex element student consists of child elements first name, last
name and grade. We say that all child elements of complex element student are in
sequence: fname first, then Iname and grade in the end. To illustrate this, we draw

children of a complex element node in a sequence starting from the left position to right
end of position in G-DTD.

</ELEMENT student (fname,Iname,grade)>
<!ELEMENT fname(#PCDATA) >
<I|ELEMENT Iname(#PCDATA) >
<!ELEMENT grade(#PCDATA) >

92



<student>

A

[Me, > ]( ctoame, & J [ <onde.s> J

Figure 3.8: Sequence of Simple Elements

However, normally each complex element node consists of a single attribute node or
multi attribute nodes. We emphasise in our notation that these attribute nodes must be
located first in the sequence before including other simple or complex element nodes.
Consider the following segment of DTD and its G-DTD where attribute sno is located in

first position in the sequence of child elements.

<!ELEMENT student (fname, Iname, grade )>
<IATTLIST student
Sno ID #REQUIRED>
<!ELEMENT fname(#PCDATA)>
<!ELEMENT Iname(#PCDATA)>
<!ELEMENT grade(#PCDATA)>

<student>

SEI=IED

Figure 3.9: Sequence of Attribute and Simple Elements

93



Disjunction between the set of subelements

We have a set of sub-elements that are in an exclusive “OR” {XOR} relationship to
represent notation ““in DTD. For example, for the complex element node student only
one of its sub-elements either fname or Iname, appears as its sub-element in the XML

document, which is represented in DTD as follows:
<!ELEMENT student (fname|lname, grade)

As shown in Figure 3.10, in G-DTD, we illustrate this as a line labelled with {XOR}

across all the set of relationships involved.

<student,>

=) =) =

Figure 3.10: Binary Disjunction of Simple Elements

Following is another real example of an application taken from ETDML DTD (Powell,
2007).

<!ELEMENT chapter (page| citation| table)* > which is equivalent with
<!/ELEMENT chapter (page*| citation*| table*) >

can be represented in G-DTD as follows:

94



<chapter>

AN
"y

~.
(e ) (e ) [oes

Figure 3.11: Disjunction of Several Simple Elements

Figure 3.11 shows that the line with label {XOR} indicates that more than two
disjunction relationships are involved. Generally, this notation is flexible and
corresponds to a number of disjunction sub-elements defined in the DTD. Sub-elements

page, citation and table are simple multi-valued elements.

3.5 Example of G-DTD

Finally to illustrate the use of G-DTD’s notation (summarised in Figure 3.12) let us
consider a DTD in Figure 3.2 which describes a university database. Figure 3.13 shows
the G-DTD describing the structure of an XML document corresponding to the DTD in
Figure 3.2. Root node Department has a binary path link with the complex element

node course.

The simple element node title is part-of the complex element courses. One course can
be taken by many students while the complex element student consists of a sequence of
attribute node smo, simple elements firame, Iname and complex element lecturer.
Attribute node sno is required for the complex element student. Complex element node
student requires only one of its sub-elements, either fname or Iname, to appear in the

XML document while the simple element /name is optional.

The semantic relationship between course, student and lecturer is indicated as a ternary

relationship since each student is assigned to a lecturer who is teaching the course. The

95



semantic relationship between them reveals that the Department can have one-to-many

courses at one time.

The complex element course has a sequence of attribute cno, simple element node title
and complex element node student. The part-of link attribute is a mandatory
relationship where the attribute node cno is required and unique for every course in the
XML document.

Attribute fno is required while simple element fname is mandatory and string S denotes
that a node is a type PCDTA. Attribute key o and simple element tmame is the last
node in G-DTD. The level of each node is indicated explicitly in the model.

96



Notations

+<name, S >

)

J
—

?<name, S>

J

*<name, >

)

name, 2, *, 1

—_——

name, 3.*%, *
—_—

XOR

Meaning

Complex element

Mandatory simple element, single value,
CDATA

Required simple element, multj value, CDATA

Optional simple element, single value,
CDATA

Optional simple element, multi value, CDATA

Composite Attribute
Reference Attribute
Required Attribute

Has_A link simple element (complex element and simple
element)

Part_of link attribute (Complex element and attribute)

2-ary many-to-one Path link

3-ary many-to-many Path link

Disjunction between set of relationships

Figure 3.12: G-DTD's Notations
97




|\~

86

aLa-o :€r-¢amdig

al ‘ow

S ‘owreuj w
ﬁ S ‘oweuy;,

(« 1 ‘€ 1SD)

A

9s8Inod

(1 % ‘T

jusuredaq

1A



3.6  G-DTD Operations

The operations of the G-DTD model describe the dynamic properties of the model. G-
DTD model operations are classified into five main parts: Query Operations, Insert
operations, Delete Operation, Searching Operations and Update Operation. An operation
to determine the root and leaves of the G-DTD is also required. Later, these operations
will be used in normalizing the G-DTD into normal forms. In the following description
we will conceptually discuss the semantic meaning of these operations according to this

classification.

3.6.1 Query Operations

Query operations allow the user to query the node types and information, related nodes
and links information defined in G-DTD.

(1)  Query a Node Type and Information

The operations of querying node types allow the user to query different types of node
stored in G-DTD such as complex element, simple element or attribute nodes. The user
can also query the information of a particular node, such as name, level and node type.

If the queried node does not exist, an error message is given.
(2) Query a Related Node

Since the structure of G-DTD is like a tree structure, the query operation allows the user
to query the related node that links to a particular node using a path through existing link
such as a Path, Part_of or Has_A link. For instance, the user can detect the parent of a
complex element node by using the path link between two complex element nodes. As
another example, the simple element for a particular complex element node can be
determined through the Has A link.

99



3) Query a Path Link

Path links are the most important links in G-DTD. This operation allows the user to
query the instance of a path link, such as name of link, degree of relations and parent
and child constraint.

3.6.2 Insert Operations

Insert operations allow the user to insert a new complex element node to the G-DTD.
When a new node is being inserted in the G-DTD model, the following situations are
possible:

e A new complex element node, simple element node or attribute node is created

e A new path link is built between the complex element node and created complex
element node

e A new Has_A link is built between the created complex element node and a
simple element node

e A Part_of link is built between the created complex element node and an
attribute node

To ensure the new node is not redundant with any node in the given G-DTD, it must be
tested whether the node already exists. Then the proper location of the new node needs
to be determined before it can be inserted into the G-DTD. More importantly, it must
satisfy the data integrity constraint of the given G-DTD.

) Inserting a Node

In this case a new node is inserted into the G-DTD. Before the user can insert a new
node, it must be created first. Whether the new node is a complex element, simple
element or attribute node, the properties of the inserted node such as ID, level and types
are inserted and stored together in the G-DTD. The operation of inserting a new node
implies that when the node is inserted, related nodes such as parent node or child node

should be reported to the user since the structure of the G-DTD is changed.
100



If the newly inserted node is a complex element node, the position of the new complex
element node is based on the rules provided in the normalization procedure (see Chapter
4). In such a situation, a path link is created with its parent node. In this case, the parent
node may be a root node or another complex element node based on the normalization
rules provided. However if the created node is a simple element or an attribute node, a
Part_of link or Has_A link is built between it and the parent node, which is a complex

element node.
(2)  Inserting an Instance of a path link

Inserting an instance of a path link means that the semantic relation between two
complex element nodes has to be created. The user needs to know the semantic
relationships before he/she can insert them to the G-DTD. The user can make links and
insert the corresponding link information such as name, degree, parent constraint and
child constraint. In contrast, for a part-of link and has-a link, the user is not required to
put any instance for the links.

3.6.3 Delete Operations

Delete operations results in the corresponding data being removed from the G-DTD.
Since the structure defined in the G-DTD is a tree structure, delete will affect the
location of the existing nodes in the G-DTD, especially the parent node and child node.
The delete operation in G-DTD must satisfy the conditions and constraints given in the
normalization rules defined in Chapter 4. In the following, we will discuss the different
situations of delete operations in the G-DTD

(1) Deleting a Complex Element Node

Deleting a complex element node is a complex deleting process in G-DTD. This is

because every complex element node is related to its parent node and child node.

101



Before the process of deleting a complex element node is started, it is important for the

user to find its related nodes such as parent node and child nodes.

Eventually, by deleting a complex element node, its attribute and simple element nodes
with the relevant Part_of and Has_A links are automatically deleted as well. A new link

is built up with its new parent node and child node.

(2) Deleting a Path Link type and its Instance

According to the path link type definition, each instance of a path link type represents a
semantic relationship between two complex element nodes. When such an instance is
deleted, the specific relationship between the two nodes has no further semantic link
between them.

3.6.4 Replicate Operations

Replicate operations copy the name of the current node such as simple element node and
attribute node and create a replicated node. However the new level and new ID of a
copied node are depending on the current complex element node. The replicated node
can be moved around from one location to another. In the process of replicating a node,
all the related nodes including complex element nodes should be notified if the
replicating node has a relationship with them. It may be necessary to move an attribute
node and simple element node up to another level when there exists dependency
between an attribute node and a simple element node. In this situation, it is not
necessary to create a new complex element node but rather to restructure the G-DTD by

moving up the node at level n (n,) to level n-1 (#,.;).

3.6.5 Determine the root node and last node

This operation will determine the root node and last node (last level) in the G-DTD. The

last node may be a simple element node or attribute node. These operations are very

102



important because in order to avoid duplication, we need to move the corresponding

node as near as possible to the root node.

3.7  Rules for converting G-DTD to DTD

Another feature of our approach is that instead of generating XML DTD directly, we first
generate a conceptual schema, G-DTD. After obtaining a set of normal forms G-DTD,
we can apply the transformation rules to generate a DTD of an XML document. This
approach is adopted from Mok and Embley (2006) with some modification to suit the
tree structure of G-DTD. In this section, we describe the mapping from the G-DTD
consisting of nodes, links and constraints to the DTD, which is mainly concerned with
elements/attributes declarations and simple/complex element type definitions. I n
principle, each basic node in the G-DTD can be mapped to either an element or an
attribute. Each complex element node in the G-DTD can be transformed to an element,
whose content may include embedded sub-eclements. The transformation rules include
both generic and semantic rules. This mapping simply represents G-DTD syntactically in
this XML document schema in one-to-one correspondence, depth by depth starting from
the lowest node depth. For this transformation, we must take into account the
hierarchical characteristic of XML document structure. In the following, we describe our
transformation rules which incorporate general rules and semantic rules. General rules
consist of the following four categories: Root node; Complex Element node/ Simple
element node and Attribute node. Semantic Rules are applied for element and sub-
element relationship, cardinality constraint, sequence and disjoint.

3.7.1 General Rule

In the following, we illustrate the G-DTD construct while explaining the transformation
of this construct into the DTD fragments.

103



Root node

A special type of complex element node is a root node which has the same properties,
consisting of node label and level. Thus, we transform the G-DTD root node into a
DTD element type declaration. As indicated in step 1 of Figure 3.14, the root node
name A will be mapped to the name of the element type starting with <IDOCTYPE A[
subelement] >

The following graphical notation for root node will be transformed to the following
syntax

<A> <IDOCTYPEA[]>
=

G-DTD (transform) DTD

Complex Element node and Simple element node

The complex element node label becomes the name of the ELEMENT types. The
simple elements are transformed into ELEMENT content description. This is motivated
by considering a simple element node to be part of a complex element node. The name
of simple element node provides the name for the simple element type in content
specification. In G-DTD simple element names are mandatory. If there is no more sub
element node representing a suitable declaration for the simple element node, the simple
element node type is assumed to be a simple element type whose content type is
#PCDATA. The following diagram depicts a complex element node and its simple
element node with the transformation result.

104



<A> —> <!ELEMENT A (B,C,D)

/ (transform) <!ELEMENT B # PCDATA>
y <IELEMENT C #PCDATA>

( <B.S> [ <¢.® ] [ <D.§> <IELEMENT D #PCDATA>

G-DTD DTD

Attribute node

Similarly, each attribute node consists of label, level and type node. After the
transformation, such attribute that has an additional ID attribute will be declared as it
label followed by ID #REQUIRED

<A>
<!ELEMENT A (C,D)
———
(transform) <!ATTLIST A B ID #REQUIRED
. <!ELEMENT C #PCDATA>
) (== )[==)

<!ELEMENT D #PCDATA>

G-DTD DTD

3.7.2 Semantic Rule

The sequence among nodes, especially the sequence among sibling simple elements
within complex element, is significant. The sequence of sibling elements within parent
element is represented left to right in the graph. The order in the sequence is explicitly
given by the notation, an up-curved arrow. As show in the following diagram, after
mapping, DTD element types appear exactly in a sequence. The Has_A link specifies a
relationship between complex element node and simple element node. -

105



<A> <!ELEMENT A (B,C,D)

e=> <IELEMENT B #PCDATA>
<!ELEMENT C #PCDATA>

( J [ ] [ ] (transform) <!ELEMENT D #PCDATA>
<B, §> <C.S> <D .,S>

G-DTD DTD

Disjunctive Relationship

<A,1> <!ELEMENT A (B|C,D)
<IELEMENT B #PCATA>
<IELEMENT C #PCDATA>
{XOR} | (transform) <!ELEMENT D #PCDATA>
r<B,S> ] [ <C, s> ] [ <D, S> ]
G-DTD DTD

Sub-elements of complex element A; simple element B and C are linked using has a link
relationship and illustrated using {XOR}. This portion of the diagram is transformed as
fragment DTD using notation “” to represent a disjunctive relationship between

complex element A and sub-elements B and C.

106



Cardinality Semantic

<A>
r <!ELEMENT A (B, C, D*)
(2** <!ELEMENT B #PCDATA>
<!ELEMENTC #PCDATA>
[ <B, $> } { <C, $> ] <D> <!ELEMENT D (EMPTY)
G-DTD DTD

The cardinality specifications spesified in a path link between complex element A and
complex element D will be mapped into cardinality specification with operator ?, *, +.
For example a many to many path link between complex elements A and D is mapped

using operator *,

In Figure 3.14 we present a straightforward transformation rule which combines together
the general and semantic rules to map from G-DTD back to DTD. This mapping rule
requires the input to be a G-DTD and the output is DTD. This algorithm consists of 4
steps. Generally, step 1 is to select a root element node N of G-DTD and generate <!
DOCTYPE N [<complex element type definition> <simple element type definition>]>.
In step 2, the initial structure of G-DTD is determined to identity the number of node,
types of nodes and relationship type. In Step 3, for each complex element name at the
first level that appears in sequence in the G-DTD, replace < complex element type
definition > by <!ELEMENT N (<sub-element of N;>) where N; is the list of sub-element
nodes. The relationship type and cardinality semantic (semantic constraint) will be
verified to map using the right symbols. In step 4, stating from level 2 of G-DTD, the
nodes need to be traversed using depth first traversal, where the complex element from
the left side will be first identified in the sequence. The process of step 3 is recursively
applied until the last level of G-DTD. All attribute nodes with part-of link will be

107



replaced with <! ATTLIST A, attribute name ID # REQUIRED> and a simple element
node with has-a link will be replaced with <!ELEMENT simple element name
#PCDATA>. The process in step 4 is continued for all nodes in sub tree G-DTD.

Stepl Level 0, a root node is represented by <!DOCTYPE root node name
[<Complex element type definition> <simple element type definition>] >

Step2 Level 1, identify the subtree of G-DTD, check the number of nodes, type of
nodes and relationship type

Step 3 i there is more than one node at level 1 and the relationship type between root
and child node(s) is a binary one-to-many/many-to-one hierarchical link then
generate

<!ELEMENT root node name ( Ni) )>
Where Ni is the list of subelements/child nodes
3.1 Certify the relationship set between parent nodes and child nodes,

3.1.1 If {XOR} means the relationship between node is a disjunction and
will be represented using symbol |’

Else

3.1.2 If {sequence} means the relationship is sequence and will be
represented using symbol ¢,’

3.2 Verify the semantic constraint between complex element nodes (parent) and
complex element nodes (child) in each relationship set and map to the
following operator:

321 if(m, 1, *)or (m, *, *) or (m, *, 1) map to operator *
322 if(m, 0, *) map to operator +

323 if(m, 0, 1) map to operator?

Where m is n-ary relationship and n > 1

Step 4 If the list of subelements (Ni) is not empty, using depth first traversal, for each
node in list subelement Ni

4.1 generate <! ELEMENT Ni (subelement Nj)>
4.2 repeat step 3.1 and 3.2

4.3 for each complex element (Vi), if the relationship between them is part-of
link attribute (one-to-one) then generate

108



<! ATTLIST Ni attribute name ID # REQUIRED>
4.4 For subelement Nj

44.1 If Nj is a simple element has part of link simple element (many-to-
one or one-to-many relationship) with Ni then generate

<! ELEMENT simple element name #PCDATA>
(Repeat for all simple element nodes)

442 If Nj is a complex element node has path link with complex
element Ni

Repeat step 4
443 If Njis a complex element node has part of link then generate
<! ELEMENT Nj (EMPTY) >
Step S Go to next subtree G-DTD and repeat step 4

Figure 3.14: Transformation Rules

3.8 Summary

In this chapter, we have presented several new features provided by G-DTD for
describing XML documents. The most important feature of this model is that the
complex elements; simple elements and attribute nodes are clearly distinguished and
presented. In particular, we illustrate how binary or n-ary relationships through parent-
child relationship can be represented using G-DTD. The sequence and disjunction
between the nodes are presented as well and the path structures of the node are shown
by level indicators. The relationships between complex element node, simple element
node and attribute nodes are illustrated using Path link, Part_of link and Has_A link.

We also developed transformation rules to generate new DTD.

We will propose a notion of normal forms for G-DTD on the basis of Arenas and
Libkin’s (2004) normalization theory. The normal forms of G-DTD will be used later as
a guideline for the user to improve the quality of XML documents by reducing
undesirable redundancies caused by functional, transitive, partial and local dependencies
from the schema level. A normalization algorithm will be developed to convert from G-
DTD to a normal form one. This will be presented in the next chapter.

109



Chapter 4

Normal Forms for XML Documents

4.1 Introduction

The concept of database design and normal forms are key components to achieve a high
performance database design. Normal forms which have been introduced in
normalization theory have been studied extensively for the relational model (Codd,
1970; Fagin, 1977). Three normal forms were initially proposed called first (INF),
second (2NF), and third (3NF) normal forms. Subsequently, Boyce and Codd introduced
a stronger definition of the third normal form called the Boyce Codd Normal Form
(BCNF) (Codd, 1974).

The purpose of normalization is primarily to remove redundancy that is, storing the
same information several times in the database. If this happens, it will have impact
whenever information is updated (i.e. update anomalies), and may use more space than
needed. In the normalization process, the initial poorly designed relational schema is
decomposed into an equivalent set of well-designed schemas, i.e. into schemas in
desired normal forms (usually is 3NF and often also in BCNF). As presented in Chapter
2 (see Section 2.1), normalization involves the identification of the required attributes
and their subsequent aggregation into normalized relation based on functional

dependencies between attributes.

In this chapter, we will describe a systematic approach to designing a quality XML
schema design in order to achieve a redundancy-free XML document. Similar to
relational database theory, we propose a set of normal forms for XML documents. The
set of normal forms is defined on the basis of G-DTD which has been presented in
Chapter 3. Since G-DTD also utilizes association between complex elements, simple
elements and attributes as a basis to indentify the DTD, it is possible to apply data
dependency principles in the conceptual data model. We believe the capability of G-
DTD to capture more semantics will make the approach of normalising XML documents

110



more practical and speed its implementation. Normal forms of G-DTD are generalised
and simplified from the normal form proposed by Arenas and Libkin (2004) and Lv et
al., (2004).

Our contribution in this chapter is as follows:
e We apply the data dependencies concept to represent G-DTD semantic.

e We present a set of a normal forms for XML documents called first normal form,
second normal form, third normal form and fourth normal form on the basis of
the G-DTD model

e We propose algorithms to transforms G-DTD into the respective normal form G-
DTD.

e We provide a case study to demonstrate the process of normalization of XML
documents based on G-DTD.

The rest of the chapter is organized as follows. In section 4.2 we present various
definition types of data dependencies for G-DTD. Section 4.3 defines multiple levels of
normal forms for G-DTD. The normalization procedure of XML document based on G-
DTD is presented in section 4.4. A case study is given in section 4.5 to illustrate the

application of normal forms and normalization rules in designing a university database.

42  Data Dependency of G-DTD

In Chapter two (see Section 2.3.3) we have presented various definitions of data
dependency, especially XML functional dependency in defining XML normal forms. In
this chapter, we adopt the definition presented by Arenas and Libkin (2004) and Lv et
al. (2004). We simplify this XML normal form and present them in a more practical

way and provide a simple definition which can be easily understood by database
designers.

111



It is well known that data dependencies are part of the real world semantics (Ling, 1985;
Arenas and Libkin, 2004; Vincent et al., 2007; Lv et al., 2004; Wang and Topor, 2005).
They represent the semantic information in the form of relationships between different
attributes in the XML documents (Maier, 1983). In Ling (1985), it is stated that “dara
dependencies should be modelled precisely early in the design stage for a correct and

complete database representation of semantic.” .

In line with the above statement, we provide various types of structural properties in the
G-DTD model, which can be applied in the normalization process later. In our
approach, first we consider two types of data dependency concept: functional
dependency and key dependency and later we propose normal forms for G-DTD on the
basis of these data dependencies.

To demonstrate the idea of data dependencies and normal forms for G-DTD, we
represent again the same example of XML document with its G-DTD as presented

previously in Chapter 3 section 3.5.

<!DOCTYPE department [
<course>
<course cno = “cscl01”>
< title > XML database </title>
< student >
<student sno = “112344">
<fname> David</fname>
<Iname> Grey</Iname>
<lecturer>
<lecturer tno = “]23">
<tname>Bing </tname>
</lecturer>
</student>
< student >
<student sno = “112345”>
<fname>Helen </fname>
<lecturer>
<lecturer tno = “123">
<tname> Bing </tname>

112



</lecturer>
</student>
</course>
<course>
<course cno = “cscl02”>
< title > Z formal Method </title>
< student >
<student sno = “112344">
<fname> David</fname>
<Iname>Grey </Iname>
<lecturer>
<lecturer tno = “124”>
<tname> Bottaci </tname>
</lecturer>
</student>
< student >
<student sno = “112345">
<fname>Helen </fname>
<lecturer>
<lecturer tno = “124">
<tname> Bottaci </tname>
</lecturer>
</student>
</course>
</courses>
</Department>]

Figure 4.1: XML Document Conforming to G-DTD in Figure 4.2

113



Level 0

Level 1

Level 2

Level 3

Level 4

Department

(DC2,%1)

course

/\\fg 2,%,%)

tltle,

student

/ \ (CST,3,1,%)

L fname, S

a
e

Figure 4.2: G-DTD

114



4.2.1 Key Dependency (KD)

We define a key dependency as a unique attribute that can determine uniquely other
simple elements in the G-DTD. Referring to G-DTD in Figure 4.2, for instance, course
number (cno), student number (sno) and lecturer number (tno) are unique and
mandatory, because they are represented as one-to-one relationships between complex
elements and attribute nodes. We define this in G-DTD as a key attribute similar to
Buneman et al., (2001). For instance, each course contains a unique course number or

each lecturer has a unique number is written as follows:

<cno,2> — <course, 1> -—-- (4.1)

<tno, 4> — <lecturer, 3> ----- (4.2)

4.2.2 Functional Dependency (FD)

Functional dependency models real world constraints, showing the dependencies among
complex elements and simple elements/attributes. Based on the G-DTD model, we
define three types of functional dependencies: global functional dependency, transitive

functional dependency and partial functional dependency.

Global Functional Dependency (GFD)

GFD occurs based on a few constraints (dependencies) that a database designer may
specify for his/her application. GFD holds in G-DTD if a dependency occurs between
an attribute and simple element node of a particular complex element under n-ary many-
to-many path link are leaves node of G-DTD. Both attribute and simple element are the
children for a particular complex element node. We adopted this definition from

(Connolly and Begg, 2002; Arenas and Libkin, 2004) with some modification to suit the
tree structure of G-DTD.

115



Definition 1:

Let CE be a complex element node under binary or n-ary one-to-many/many-to-

one/many-to-many path link. Let ATT be set identifier attribute node of CE and SE

is set simple element node of CE. The GFD of G-DTD is defined as follows:

(1) For each attribute node <ATT, l,.;> of <CE, l, ;> and simple element node

<SE, l,.;> of <CE, l, >, where <SE, l,.;> and <ATT, l,.;> are leaves nodes in G-

DTD.

<ATT, l,.;>—<SE, l,.;> is a GFD in G-DTD iff

(a) <SE, l,.;> is fully functionally dependent on <ATT, I, ;> but not on any proper
subset of <ATT, 1,.;>. <SE, l,.;> can be a set of simple elements, list of simple
elements or single value of a simple element.

(b) Both <ATT, l.;> and <SE, l,.;> must be located at the same level in G-DTD

and share the same parent node.

For instance, in Figure 4.2, the possible GFD of the complex element lecturer is as

follows:
<tno, 4>— <tname, 4> --—----(4.3)

This above GFD (4.3) represents the constraint, whenever two elements agree on the
value of all attributes fno, they also agree on the value of all attributes in tmame. This
GFD can be viewed as a function from one set of attributes/simple elements to another
set of attributes/simple elements. Similar to the relational model, the left hand side
(LHS) of the arrow of GFD is called a determinant. For example, tno is the determinant

of thame.

Transitive Functional Dependency (TFD)

We adopted the definition of transitive dependence from the relational model (Codd,
1972) and nested relation (Lv et al., 2004). TFD between complex elements occur if

their attribute or simple element node has dependency with another simple element node
from a different level.

116



Definition 2.

Case 1: Let ATT be a key identifier for complex element (CE) and {SE,, SE:} are
simple elements for CE

If there exist two constraints <ATT, I>—<SE, I> and <SE, 1>—<SE;, 1>,
then we say that attribute <SEy, I> is transitively dependent on <ATT, I>.

Case 2: Let ATT, be a key identifier for CE,, ATT, is a key identifier to CE, and
SE is a simple element for CE, and they are located in different levels.

If there exist two constraints:

FDI1: <ATT,, I>—><ATT;, 1.,>

FD2:<ATT, l4;>— <SE, 1,,>,

then we say that

<ATT, I> —<S8E, l,;> is a TFD because <SE, l.;> is transitively dependent on

<ATT, I> and they are located at different levels.

Partial Functional dependency (PFD)

We adopted the definition of PFD from Lv et al. (2004).
Definition 3:

Let ATT, ATTy, ATT,, be a key identifier for CE,, CEy and CE,, respectively. These

CE have a binary or tenary relationship with each other and are located in different
levels.

If there exist two constraints

FDI: {<ATT,, 1>, <ATT4, l,;>,<ATTy, 1,;>} = <ATT, L3>
FD2: <ATT, I>— <ATT, s>

Constraint FD2 is called PFD because it is a subset of FDJ] where attribute <ATT, 1>
alone can be used to determine <477, I, ;>

117



PFD involves composite attribute keys. The composite key attribute could be from the
same level or from a different level. The subset of composite key attribute can

functionally determine the simple element node.

Relationship Dependency (RD)

The relationship dependencies are presented clearly in the G-DTD diagram using a
directional arrow. Our XML relationship dependency is defined in terms of structural
constraints of path link in the relationship between complex element nodes in G-DTD.
These types of relationships can cause data redundancy and must be eliminated from G-
DTD. The categories are: one-to-many n-ary path link, many-to-many n-ary path link,
and many-to-one n-ary path link dependency where n> 2

For instance, G-DTD in Figure 4.2 indicates the presence of a binary many-to-one path
link between complex elements department and course represented as <department,
0>—"<course, 1> ) where R is (DC, 2, * 1) DC is an abbreviation for both name of

complex element department and course.

As summary, we defined data constraints into semantic constraints and structural
constraints. Both KD and FD are categorized under semantic constraints while RD is
categorized under structural constraints. KD is defined based on attribute node key for
each of complex element node. FD such as a GFD, PFD and TFD is defined on the
basis of attribute nodes and simple element nodes of a complex element node and
presented as LHS and RHS of FDs. Every attribute node and simple element node is
associated with its level and this indicates the depth of the nodes in the G-DTD model.

As shown in the definitions, for the purpose of simplicity, we make an assumption that:

(1) Every complex element node in G-DTD has an attribute node.

(2) Every node, whether attribute node, simple element node or complex element node,
has a unique name. FDs such as GFD, TFD and PFD are in ‘<X, level> — <Y,
level>’ form where X and Y represent the LHS and RHS of the FDs respectively.

118



(3) A set of FD of a G-DTD is presented as two element sets, one for LHS and the other
Jor RHS set. Obviously, the order of attributes and element nodes in such a set is

important.

Compare with definitions defined by Arenas and Libkin(2004) and Lv et al.(2004), they
use path expression based on “tree-tuples” to define the KD and FD ( see definition in
Chapter 2 (Section 2.3.4.) but we simplified their definition using unique node name and
level as indicated in G-DTD model.

4.3 Normal Forms for G-DTD

A normal form specifies a set of syntactic conditions that a well-designed schema
should satisfy (Codd, 1972). As mentioned in earlier section, normal form usually deals
with removing redundancies from a database to avoid possible anomalies during update
or insertion of data. Like the relational model (Codd, 1972), we next define a set of
normal forms for G-DTD. These normal forms are on the basis of data dependencies

and semantic relationship of G-DTD.

4.3.1 First XML Normal Form (1XNF)

The first normal form for G-DTD is about finding unique identifier attributes for the
complex elements set, and checking that no node (complex element, simple element or
attribute) actually represents multiple values. To be in first normal form, each attribute,
complex element or simple element is not NULL and has a single label. Only one value
for each simple element node or attribute node of G-DTD can be stored. If there is more
than one value, we must add some new element nodes or attribute nodes to store them.
For instance, consider G-DTD in Figure 4.2, If the complex element course has two
titles, we need two title simple element nodes for each course to store the two fitle
names. This is equivalent to having 'no repeating group' in relational schema (Codd,
1972). More importantly, the primary key (unique identifier) for the complex element

must be defined. To be precise, we propose the following rules.

119



G-DTD is in first normal form if and only if:

(a) For all attribute, complex element and simple element node in G-DTD must have
exactly one unique label.

(b) Each complex element node in the G-DTD has at least one key attribute node.

(c) For all Path link relationship, the parent and child of the relationship must be a
complex element node.

(d) For all Part_of link relationship, the parent must be a complex element node and the
child must be a simple element node.

(e) For all HasA link relationship, the parent of the relationship must be a complex

element node and the child must be is an attribute node.

43.2 Second XML Normal Form (2XNF)

If a relationship between a parent node (complex element node) and child node
(complex element node) is many-to-one (such as department and course, as shown in
Figure 4.2) the potential for data duplication might exist. Some nodes need to be
restructured. However they can then still be in a single G-DTD. This is possible in
XML because XML supports hierarchies in a single document, while relational
databases do not support hierarchies in a single row. This is different from the relational

second normal form (2NF), which requires many-to-one relationships to be in separate
tables.

The G-DTD is in second normal form if and only if:

(a) G-DTD is in 1XNF.

(b) There is no nested binary path link or ternary path link under many-to-many/many-
to-one or one-to-many path links with the following condition:
For each nested complex elements <CE, /+]> of <CE, />, and any key attribute
(ATT) of <CE, P>, the key attribute and simple element node of <CE, /+I> is not
partially functionally dependent on ATT of complex element node <CE, >.

120



4.3.3 Third XML Normal Form (3XNF)

In the third normal form of G-DTD, making a change to one unique complex element
node set would not affect the integrity of another complex element node set. If needed,
a complex element node set would be divided into two separate complex element node

sets.

G-DTD is in third normal form if and only if:
(a) G-DTD is in 2XNF.
(b) There exists no nested path link type of n-ary one-to-many or many-to-many under a

many-to-one path link set in G-DTD and the following conditions are satisfied:

(i) For each nested set of complex elements <CE,, ;> of set of complex elements
<CE,, I>, any key attribute and simple element of <CEj, /+,> is not transitively

functionally dependent on ATT of complex element <CE,, I>.

(ii) Any key attribute node of any complex element node located in a different level
is disjoint (ATT<CE, I> N ATT<CE, l,.;> N ATT<CE, n>=0).

4.3.4 Fourth XML Normal Form (4XNF)

GN- DTD is in fourth normal form if and only if:

(a) G-DTD is in 3XNF.

(b) For nested one-to-many/many-to-one or many-to-many path links in G-DTD, the

following condition is satisfied:

(i) There are no GFD between attributes and simple elements of complex element

nodes under nested many-to-one or many-to-many path links.

As summary, the set of normal forms proposed above are based on FD and RD among
attributes, simple element and complex elements of G-DTD. The higher normal form
such as 4XNF is better than others because it can avoid redundant data in XML
document which can causes update anomalies in implementation. In following section,

we discuss the process of normalization, which is important for the XML document

121



schema design. In section 4.5 we present a case study to demonstrate the use of this set

of normal forms in the normalization process in detail.

44 The Process of Normalization

The common feature of normalization procedure is to convert an initial schema into one
in a normal form to reduce anomalies and redundancies in the XML document. In this
section, we propose transformation rules to convert the un-normal form G-DTD into a
normal form one. Two approaches to normalize G-DTD are given: First, the approach
of restructuring the G-DTD which affects the relationship and location of the nodes in
G-DTD. Second, we focus on normalization rules for G-DTD with data dependencies
on the basis relationship dependency, GFD, PFD and TFD. Generally, in these rules, we
first restructure the G-DTD by creating a new complex element node, moving up node
and moving sub-tree node. We subsequently adjust the semantic relationship between
simple element nodes or attribute nodes in G-DTD. We next define the normalization

rules.

4.4.1 Normalization Rules

The following notations will be used in the following rules:-
r  represents root element
ATT represents attribute
SE  represents simple element
CE represents set of complex element
R

—" represents relationship

I represents level of node where (0 <1< n-1), nis a finite positive number

122



Rule 1: Restructure n-ary many-to-many or one-to-many/many-to-one path link

with partial functional dependency

To restructure n-ary many-to-many or one-to-many/many-to-one relationship we must
avoid multi-nested path link. For each, n-ary relationship R (n>2), many-to-many or

one-to-many/many-to-one relationship type

Let (<CE,, 1> —R"<CE;, 1,1>) be a path link and let 8;: <art, 1.2> — <se, l+,> is a PFD,
where <ATT, l,,> and <SE, l,,> are children for <CEy, 1,)>

1.1 Create a new complex element name <CEj_new, I>.

1.2 Insert node <CE, new, I> at the same level of level <CE,, I> at the rightmost
position of G-DTD.

1.3 Create a new relationship type of binary one-to-many binary path link between

parent of <CE,, I> and new complex element name <CE;,_new, I>.

1.4 Replicate all children of <CEp, I.;> to be children of the complex element

<CE;_new, 1>,
1.5 Delete all children of <CE;, I.+/> except the key attribute node.

1.6 PFD 6, is transformed to 6,’: <ATT, new_I>—<SE, new_I> where new_l is a level

equivalence to CEj level.

Rule 2: Restructure binary many-to-many/many-to-one/one-to-many path link

with transitive functional dependency
For each binary many-to-one relationship type
(<CEE’ > —’R<CEb’ I+l >)

If exist, <CE,, I> with attribute ATT, and <CEjy, l,;> with attribute ATT;, and simple
element SE,

Where 0;:<ATT, l.,> — <ATT 1,3>

02_- <Anb, I+2> b d <SEb' I+2>

123



03 <ATT, l,;>— <SEj, l.2> is a TFD

2.1 Move up the set complex element <CEj, I+1> along with its children to the same
level <CE,, I>

2.2 If parent of <CE,, > is a root node

(a) Then create a new relationship type of many-to-one path link between parent of
<CE,, P> with set complex element node < CE;, I+1 >

else

(b) Create new relationship type of many-to-many path link between parent of
<CE,, I>

2.3 TFD 83.<ATT, l,)>— <SE, l,,> is transformed to 03 .<ATT, 1, >—<SE, new P>

where new_l is equivalence to level of <417, l,;>

Rule 3: Restructure binary many-to-many/many-to-one/one-to-many path link

with global functional dependencies
Let 01.<ATT, ly;>—{<SE, It.;>} is GFD corresponding for complex element
<CE, Iy.»>

3.1 Create a new complex element name <CE _new, I>
3.2 Insert node <CE_new, I> at level one (I=1) at the rightmost position of G-DTD

3.3 Create a new relationship type of binary many-to-one binary path link between root
and new set complex element name <CE_new, I>

3.4 Replicate attribute node <477, I;.;> and simple node <SE, I;.,>
3.4.1 Rename them as <ATT, l,.,,> and simple node <SE, l,.,> respectively where

Inew = level of (<CE_new, I>) +1

3.4.1 Make them as children to node <CE_new, I>
3.4.2 Let new attribute node <477, ,..,,> of <CE_new, I> be akey node

3.5 Create a new relationship type of part-of link between attribute node <ATT, lnew>
and simple element node<SE, l,,,> with <CE_new, I>

124



3.6 Delete simple element node <SE, /,.,> from its original location and relationship

3.7. GFD 0;.<ATT, ly.;>—{<SE, ly.;>} is transformed t0 8;’; <ATT, l,ey>—{<SE, lne>}

4.4.2 Normalization Algorithms

Normalization is a process that analyses and restructures the schema of an XML
document to minimize redundancies with the help of data dependencies in the data. In
our approach, the normalization algorithm takes G-DTD and set of data dependencies
specified by the user as an input, and returns the normal form G-DTD as output. These
algorithms apply the normalization rules i.e. Rule 1, Rule 2 and Rule 3 which have been
presented in section 4.4.1. We propose three algorithms to transform a G-DTD into

second normal form, third normal form and fourth normal form, respectively.

Algorithm Restructure 1XNF to 2XNF G-DTD

In Figure 4.3 we present an algorithm for 2XNF converting a G-DTD into a second
normal form. This algorithm applies rule 1 (presented in section 4.4.1) which is used to
eliminate redundancy through restructure n-ary many-to-many or one-to-many/many-to-
one path links with PFD. To do this, firstly all path links between complex element
nodes in G-DTD are identified from the root until last node. Then, the data
dependencies given by the user will be identified and grouped into key dependency,
GFD, TFD and PFD accordingly based on the definitions given in section 4.4.1. If there
exist both PFD and multiple path links with many-to-many or one-or-many in the same
path, it indicates that the G-DTD is not in a second normal form. To transform the G-
DTD into a second normal, the PFD between attribute and simple element will be
removed by placing them under a new complex element node. The basic idea of rule 1
requires creating a new complex element node then locating this new node at a different
path and level so that the multi nested path link is restructured. As a consequence, a
new relationship type of path link and part-of link is created associated to the new

complex element node.

125



Input: The G-DTD schema diagram D and given set 8 of specified data
dependencies.
Do:

(1) 1.1 Let CE, is a root element, where CE is complex element node in D
1.2 Let Cnodes = {CE,,CEw,..CE,} is a set complex element node in D

1.3 Let Snodes = {SE,, SEx,..SEy} is a set simple element node in D
1.4 Let Attnodes = {ATT,, ATTs,..ATT,} is a set of attribute nods in D

1.5 Let Hierarchical Link = {Hlink,, Hlink,,..Hlink,} is set of
hierarchical link inD

1.6 Let (D, 6) is a 1XNF
(2) If (D, 6) is a 2XNF, then return (D, 6)
(3) For each Hlink; € {Path_Link} in D {
(3.1) For level = 0 to k-1 where k = Maximum level in D

(3.2) Let Hlink;, (CE,, level) — (CEq, level+1) € Path_Link such that
CE, is a parent for CE,

//Where Hlink; is describes by a relation name denoted as (name, n, pc, cc)
where name is a name of relation, » is a type of relation, pc is a parent constraint

and cc is a child constraint/

(3.3) If (pc= [N;..N] and cc = [N;..N2]) // N, represent zero or one

N represent one or many//
Then Nested_Hierarchical_link = True;

(3.4) level =level +1 ;}
(4) If Nested_Hierarchical Link
4.1let 6;: <ATT, level>,<ATT;, level,;> — <SE,level >
01: <ATT, level,;>— <SE,level, >
where <ATTy,levels> and <SE,level.;> are children for <CEy, level>
4.2 {6, c 6,} then 6, is PFD where {0, 6,} € 0
4.3 Restructure (D, 6;) by applying rule 1
Output: (D, )’ in 2XNF

Figure 4.3: Algorithm 2XNF

126




Finally the data dependencies are updated on the basis of the new structure G-DTD.
This process is repeated until all PFD(s) are eliminated. This process is illustrated in

Figure 4.4.

Root Root

/N

cel ced )ccl ced

ce3new

ce2

S

Figure 4.4: Create a New Complex Element Node

Algorithm restructure 2XNF to 3XNF G-DTD

Figure 4.5 shows an algorithm 3XNF to transform a G-DTD into a third normal form by
applying rule 2 which have been presented in section 4.4.1. Like the 2XNF algorithm,
all path links between complex elements nodes in G-DTD are identified from the root
until to the last node. If there exist multiple nested one-to-many/many-to-many/many-
to-one path links with TFD then the G-DTD will be restructured. To transform the G-
DTD into a third normal form, the TFD between attribute and simple element will be

removed. Generally, in rule 2 requires moving up a complex element node along with

127



its attribute and simple element node to be under a root node and creating a new
relationship type of path link and part-of link. Finally data dependencies are updated on
the basis of the new structure G-DTD. This process is repeated until all TFD(s) are

eliminated. This process is illustrated in Figure 4.6.

Input: The G-DTD schema diagram D and given set 6 of specified data dependecies.
Do:
(1) 1.1 Let CEj, is a root element, where ce is complex element node in D
1.2 Let Cnodes = {CE,, CE,,..CE,} is a set complex element node in D
1.3 Let Snodes = {SE,, SE,,..SE,} is a set simple element node in D
1.4 Let Attnodes = {ATT),, ATT,,..ATT;} is a set of attribute nods in D
1.5 Let Path_Link = {Hlink;, Hlink,,.., Hlink,} is set of path link in D
1.6 Let (D, 6) is a 2XNF
(2) If (D, 6) is a 3XNF, then return (D, 6)
(3) For each Hlink; € {Path_Link} in D {
(3.1) For level = 0 to k-1 where k = Maximum level in D

(3.2) Let Hlink; (CE,, level— CE,, level+1) € Path_Link such that ce, is a
parent for ce,

//'Where Hlink; describe by relation name denoted as (name, n, pc, cc) where name
is name of relation, » is type of relation, pc is a parent constraint and cc is a child
constraint//

(3.3) If (pc= [N1..N;] and cc = [N..N3]) // N, represent zero or one

N represent one or many//

Then Nested_Path_link = True;
(3.4) level = level +1;}
(4) If Nested_Path_Link
4.1 Let 0; : <ATT, level,;> — <ATT, level >
0;: <ATT,, level,;> — <SE,, level.;> where {6,,0,} € 0
4.2 Then 05, <ATT, level.;>— <SE;, level,,>is a TFD
4.3 Restructure (D, 63) by applying rule 2
Output: (D, ) in 3XNF

Figure 4.5: Algorithm 3XNF

128




Root Root

/ ™\ /!

cel ced ce2new

cel ced

/] :>/}2

/] N
ouE OuE

Figure 4.6: Moving Up a Complex Element Node

Algorithm restructure 3XNF to 4XNF G-DTD

Figure 4.7 presents an algorithm 4XNF to convert a G-DTD into a fourth normal form.
The difference between 3XNF and 4XNF is the identification of GFD within the G-
DTD’s attributes/simple element node. This algorithm uses rule 3 to eliminate
redundancy though global functional dependencies given in section 4.2.2. Three basic
ideas used in the rule 3 are creating a new complex element node, creating a new
relationship type of path link and part_of link/has_A link and replicating an attribute or
simple element node. Unlike rule 1, rule 3 requires a new complex element node to be

linked directly under the root node. This process is illustrated in Figure 4.8.

129



Input: The G-DTD schema diagram D and given set 8 of specified data dependencies.
Do:
(1) 1.1 Let CE, is a root element, where CE is complex element node in D
1.2 Let Cnodes = {CE,, CE,,..CE,} is a set complex element node in D
1.3 Let Snodes = {SE,, SEy,..SEy} is a set simple element node in D
1.4 Let Attnodes = {Att,, Atty,..Att,} is a set of attribute nods in D
1.5 Let Path_Link = {Hlink;, Hlinks,., Hlink,} is set of path link in D
1.6 Let (D, 6) is a 3XNF
(2) If (D, 6) is a 4XNF, then return (D, 6)
(3) For each Hlink; € {Path_Link} in D {
(3.1) For level = 0 to k-1 where k = Maximum level in D

(3.2) Let Hlink;, (CE,, level) — (CEu, level+1) € Path_Link such that CE,
is a parent for CE,

//Where Hlink; describe by relation name denoted as (name, n, pc, cc) where name
is name of relation, » is type of relation, pc is a parent constraint and cc is a child
constraint//

(3.3) If (pc= [N;..Nz] and cc = [N..N2]) // N, represent zero or one

N; represent one or many//
Then Nested_Path_link = True;
(3.4) level =level +1; }
(4) If Nested_Path_Link
4.1 let 8,.<ATT, levely>—<SE, levely> is GFD where 06,€ 0
4.3 Restructure (D, 8y) by applying rule 3
Output: (D, )’ in 4XNF

Figure 4.7: Algorithm 4XNF

130




Root Root

cel » ﬁ

ce2 —> ce2

/\ (= cei

Figure 4.8: Moving a Complex Element Node under a Root Node

|

d

The algorithm presented in Figure 4.7 is an extension from the normalization algorithm
proposed Arenas and Libkin (2004). For instance, rule 3(see section 4.4.1) that included
the algorithm has the similarities with the procedure create element and moving attribute
in the XNF decomposition algorithm (Arenas and Libkin, 2004). This rule is used to
eliminate redundancies caused by semantic constraint GFD only. However, in our
algorithm, we also check for the structural constraint in the G-DTD model. Both of the
algorithms presented in Figure 4.3 and Figure 4.5 are used another rules i.e. rule 1 and
rule 2 (see section 4.4.1) which are used to eliminate redundancy caused by semantic
constraints such as TFD and PFD and also the structural constraint relationship
dependency. In our algorithm, we make a distinction between type of node to be created

and where the node to be located and check the structure of G-DTD by using the

131



relationship dependency i.e. path link types. We simplify the process of this

normalization algorithm as follows:

1. Semantic constraints are presented as FD and grouped into GFD, TFD and PFD

according to our definition given in section 4.4
2. FD are processed according to number of level/ type of path links in G-DTD
3. FD are processed according to the hierarchy depth by using top-down approach

4. Structural constraints are presented as RD and identified as one-to-many/many-

to-one or many-to-many path relationship.

4.5  Case study

In this section, again, we use a G-DTD (in Figure 4.2) and its instance of an XML
university database (in Figure 4.1) as a case study. As shown in Figure 4.1, this XML
document is prone to update anomaly. For instance, if the staff number (tno) of lecturer
named “Bottaci” is changed to ‘125°, then two distinct places need to be updated. If any
of them is not updated, then the information in the document becomes inconsistent. This
anomaly was called an update anomaly by Codd(1972) and it arises because the instance
is storing redundant information. To avoid this problem, the G-DTD needs to be in a
normal form. To demonstrate the process of normalizing G-DTD from 1XNF to 4XNF,
we present here step by step transformation of G-DTD according to 1XNF, 2XNF,
3XNF and 4XNF design with respect to the following constraints or data dependencies.

The following constraints are given based on the database designer's requirements:

Constraint 1: Each set course, student and lecturer has a unique identifier.

Constraint 2: In the department, a student number (sno) determines fname and Iname

132



Constraint 3: In the department, course number (cno) and student number (sno)

determine lecturer number (tno)
Constraint 4: In the department, course number (cno) determines lecturer number(tno)

Constraint 5: In the department, course number (cno) and lecturer number (tno)

determine lecturer name (tname).

Constraint 6: In the department, lecturer number (tno) determines lecturer name

(tname)

Using the definition of data dependency G-DTD given in section 4.2, the above

constraints are categorized and represented as follows respectively.
o Key dependency

Constraint 1 is considered as key dependency since key attributes can determine

their complex elements:

<cno, 2>-+<course, 1>,

<sno, 3>—<student, 2>,

<tno, 4>— <lecturer, 3>

o Global functional dependency

Constraint 2 and constraint 6 are classified as GFD because they involve attributes and

simple elements at leaves.

<sno, 3> — {<fname, 3>, <Iname, 3>}
<tno, 4>— <tname, 4>

e Transitive functional dependency
Constraint 4: < cno, 2> — <tno, 4>
Constraint 6: <tno, 4> —<tname, 4>

Simple element <tname, 4> is transitively dependent on attribute node key <cno, 2>

which derives he following TFD.

Constraint 7:< cno, 2> —»<tname, 4>

133



o Partial functional dependency
Constraint 5: <cno, 2>, <tno, 4>—<tname, 4>
Constraint 6: < tno, 4> — <tname, 4>

Constraint 6 is called PFD because the attribute node key, course number <tno, 4>

alone can be used to determine lecturer name <tname, 4>.
® Relationship dependency

Based on G-DTD given, there exist a binary many-to-many path link between course
and student which represented as <course, 1>—"<student, 2> and a ternary one-to-
many path link between course, student and lecturer node which is represented as

(<course, 1>, <student, 2>—"<lecturer, 3>) where R = (CST, 3, 1, %

4.5.1 IXNF G-DTD

The G-DTD illustrated in Figure 4.2 shows that it is in first normal form (1XNF)
because each set of complex element nodes course, student and lecturer has cno, sno
and o as a unique key identifier respectively, while all simple element nodes and
attribute nodes have one unique label. The department node is a root element since it is
located at level 0. Moreover, the XML documents shown in Figure 4.1 satisfy and
conform to 1XNF G-DTD in Figure 4.2.

4.5.2 2XNF G-DTD

G-DTD of Figure 4.2 is not in 2XNF because

o There exists a nested ternary path link type under many-to-one/many-to-many path
link type, <course, 1>, <student, 2>—©*3!%<ectyrer, 3>. This dependency
relationship involves complex element course, student and lecturer nodes. As a
consequence information about lecturer is stored redundantly in the XML document
and can cause update anomaly. If the information about the Jecturer is changed, then

it must be updated in all subtree students who are taking the same course.

134



o There exist constraints 5 and 6 which may give rise to PFD <tno, 4> — <tname, 4>.
The attribute node <tno, 4> and simple element node <tname, 4> are children of

complex element lecturer.

To be in 2XNF, the structure of G-DTD needs to be restructured using algorithm 2XNF
(as presented in section 4.4.2.). Based on this algorithm, the new complex element
lecturernew along with its children is created and located at the same level as complex
element student node. A one-to-many path link between course and lecturernew node is
created. All children from the original complex element lecturer are deleted except key
attribute node fno. In this way, the original semantic relationship is preserved in G-
DTD. As a consequence, PFD under a ternary one-to-many path link is eliminated in
complex element lecturer, but still preserved in complex element lecturernew, which is
denoted as <tno, 3>—<tname, 3>. At the same time, all constraints in the set of data
dependencies that involve the constraint <tmo, 3>—<tname, 3> are updated
accordingly. Figure 4.9 and Figure 4.10 illustrate the structure of the G-DTD in 2XNF
and the XML document conforms to 2XNF. Finally, the new version of the set of data
dependencies will look as follows:

o Key dependency

Constraint 1:

<cno, 2>—<course, 1>, <sno, 3>—<student, 2>,

<tno, 4>— <lecturer, 3>, <tno, 3>— <lecturernew, 2>

e Global functional dependency
Constraint 2:< sno, 3> — {<fname, 3>,<Iname, 3>}

Constraint 6: <tno, 3>-—<tname, 3>

e Transitive functional dependency
Constraint 4: <cno, 2> — <tno, 3>
Constraint 6: <tno, 3> —<tname, 3>
Constraint 7: <cno, 2> —<tname, 3> is TFD

e Partial functional dependency

135



Constraint 5: < ¢cno, 2>, <tno, 3>—<tname, 3>

Constraint 6: < no, 3> —<tname, 3> is a PFD

o Relationship dependency

As shown in Figure 4.9, there exists a binary one-to-many relationship between
complex element node course and complex element node lecturernew, represented as
<course, 1>—"<lecturernew, 2>, binary many-to-many path link between complex
element course and complex element student, <course, 1>—"<student, 2> and a
ternary one-to-many path link between course, student and lecturer node which is

represented as (<course, 1>, <student, 2>—"<lecturer, 3>).

Level 0 l ent
l @
Level 1 course
2,1.%
\2,‘..
Level 2 y

student lecturemew

AN
- G

lecturer

Level 4

Figure 4.9: G-DTD in a 2XNF

136



<!DOCTYPE Department [
<course>
<course cno = “cscl01”>
< title > XML database </title>
<student >
<student sno = “112344”>
<fname> David</fname>
<Iname> Grey </Iname>
</student >
<lecturer>
<lecturer tho = “123">
</lecturer>
< student >
<student sno = “112345">
<fname>Helen</fname>
</student >
<lecturer>
<lecturer tno = “123">
</lecturer>
<lecturernew>
<lecturernew tno = “123">
<tname> Bing </tname>
</lecturernew>
</course>
<course>
<course cno = “csc201 ">

< title > Database technique </title>

< student >
<student sno = “112344">
<fname> David</fname>
<Iname> Grey </Iname>
</student >
<lecturer>
<lecturer tno = “123">
</lecturer
< student >
<student sno = “112346">

<fname> Sally</fname>
<Iname> Teoh </Iname>
</student >
<lecturer>
<lecturer tho = “123">
<Aecturer>
<Jecturernew>
<lecturernew tno = “123">
<tname> Bing </tname>
</lecturernew>
</course>
<course>
<course cno = “csc102">
< title > Z formal methods </title>

<student >
<student sno = “112344">
<fname> David</fname>

<Iname> Grey </Iname>
</student >
<lecturer>
<lecturer tno = “124">
</lecturer>
</student>
< student >
<student sno = “112345">
<fname> Helen</fname>
</student >
<lecturer>
<lecturer tno = “124">
</lecturer>
<lecturernew>
<lecturernew tno = “124">
<tname> Bottaci</tname>
</lecturernew>
</course>
</Department>]

Figure 4.10: An XML Document That Conforms to 2XNF




453 3XNFG-DTD

Given the new set of data dependencies, the G-DTD of Figure 4.9 is not in 3XNF

because

o There exist one-to-many path links between element lecturernew and course node
under many-to-one path link.

o There exists TFP represented by constraint 7: <cno, 2>—<tname, 3> caused by
constraint 4 and constraint 6 which involve complex element node course and

complex element node lecturernew

To be in 3XNF G-DTD, the path link between complex element node course and
complex element node lecturernew needs to be restructured and TFD is eliminated
within course node and complex element lecturernew. The complex element node
lecturernew along with its children is moved up and linked with department node.
Because department is a root, a binary many-to-one path link is created. Figure 4.11 and -
Figure 4.12 present a new structure of a 3XNF G-DTD after eliminating the above

constraints and the instance XML document conforms to 3XNF.

Having this structure, TFD under a ternary one-to-many path link is eliminated between
complex element course and complex element lecturernew, but the semantic constraint
is still preserved between them, which is indicated as <cno, 2>—<tname, 2>. Finally,
all constraints in the set of data dependencies that involve the constraint
<cno,2>—<tname, 2> need to be updated. As a consequence, the new version of set

data dependencies in 3XNF will be as follows:

e Key dependency
Constraintl:
<cno, 2>—<course, 1>, <sno, 3>—<student, 2>, and <tno, 4>—<lecturer, 3>,

<tno, 2>—<lecturernew, 1>

138



o Global functional dependency(GFD)

Constraint 2:<sno, 3> — {<fname, 3>,<Iname, 3>}
Constraint 6. <tno, 2>—<tname, 2>

o Transitive functional dependency(TFP)
Constraint 4: <cno, 2>-—<tno, 2>
Constraint 6: <tno, 2>—<tname, 2>

Constraint 7: <cno, 2>—<tname, 2> is TFD

e Partial functional dependency(PFD)
Constraint 5: <cno, 2>, <tno, 2>—<tname, 2>

Constraint 6. <tno, 2>—<tname, 2> is a PFD

¢ Relationship dependency

In 3XNF G-DTD, there exists a binary many-to-one path link between complex element
node department and complex element node lecturernew student, represented as
<department, 0>—"<lecturernew, 1>, a binary many-to-many path link between
complex element course and complex element student, <course,1>—"<student,2>and a
ternary one-to-many path link between course, student and lecturer node, which is

represented as (<course, 1>, <student,2>—"<lecturer, 3>).

139



Level 0 Department

@*hn

Level 1 course lecturernew

Level 2 [
@ student

- SEIEN

lecturer

Level 4 o

Figure 4.11: G-DTD in a 3XNF

140



<IDOCTYPE Department [
<course>
<course cno = “cscl01 ">
< title > XML database </title>
<student >
<student sno = “112344">
<fhame> David</fhame>
<lname> Grey </Iname>
</ student >
<lecturer>
<lecturer tho = “123">
</lecturer>
<student >
<student sno = “112345">
<fname>Helen</fname>
</ student >
<lecturer>
<lecturer tno = “123">
</lecturer>
</course>
<course>
<course cno = “csc201 ">
< title > Database technique </title>
< student >
<student sno = “112344>

<fname> David</fname>
<lname> Grey </Iname>
</ student >
<lecturer>
<lecturer tno = “123">
</lecturer
< student >
<student sno = “112346">
<fname> Sally</fname>

<Iname> Teoh </Iname>
</ student >
<lecturer>
<lecturer tno = “123”>
</lecturer
</course>
<course>
<course cno = “cscl102 ">
< title > Z formal methods </title>
< student >
<student sno = “112344">
<fname> David</fname>
<lname> Grey </Iname>
</ student >
<lecturer>
<lecturer tno = “124”>
</lecturer>
< Student >
<student sno = "112345">
<fname> Helen</fmame>
</ student >
<lecturer>
<Jecturer tno = “124">
<Aecturer>
</course>
<lecturernew>
<lecturernew tno = “123">
<tname> Bing </tname>
</lecturernew>
<lecturernew>
<lecturernew tno = “124”°>
<tname> Bottaci</thame>
</lecturernew>
</Department>]

Figure 4.12: An XML Documents Conform to 3XNF




454 4XNF G-DTD

Given updated data dependencies, 3XNF G-DTD of Figure 4.11 is not in 4XNF because
(i) There exists GFD indicated in constraint 2: sno —{fhame, Iname} for set of
complex elements student node and course node under a many-to-many path link.
This GFD may cause update anomalies if the information about the fhame and

Iname is changed.

To this GFD, a new of complex element node studentnew is created. The attribute
node sno and simple element nodes fhame and Iname are replicated and they become
children of the complex element studentnew. A part_of link is created between them
accordingly. Both simple element node fhame and Iname are deleted from student node

but key attribute node sno remains as a child for complex element student node.

Figure 4.13 illustrates the new structure of the 4XNF G-DTD. More importantly, as
shown, all data dependencies are still preserved in the 4XNF G-DTD. Figure 4.14 is an
XML document conforming to 4XNF G-DTD with no redundancy. Eventually, the G-
DTD has the following dependencies.

e Key dependency

Constraint1:

<cno, 2>—<course, 1>, <sno, 3>—<student, 2>, <sno, 2>—<studentnew, 1>,
<tno, 4>—<lecturer, 3>,

<tno, 2>—<lecturernew 1>

» Global functional dependency

Constraint 2:<sno, 2> — {<fname, 2>,<Iname, 2>}
Constraint 6: <tno, 2>—<tname, 2>

o Transitive functional dependency

Constraint 4: < cno, 2> — <tno, 2>

Constraint 6: <tno, 2> —<tname, 2>

Constraint 7: < cno, 2> —<tname, 2> is TFD

o Partial functional dependency
142



Constraint 5: <cno, 2>,<tno, 2>—<tname, 2>

Constraint 6: <tno, 2> —<tname, 2> is a PFD

o Relationship dependency

In Figure 4.13, finally 4XNF G-DTD consists of a binary many-to-one path link
between department and course, many-to-one path link between department and
lecturernew, and binary many-to-one path link between department and studentnew
which represented as <department, 0>—F<course, 1> , <department,
0>—"<lecturernew, 1>, and <department, 0>—"<studentnew, 1>. Meanwhile the
semantic relationships between complex element course and complex element student,

and lecturer remain the same.

Level 0

Department

@01 / l (2.0,1)\‘(2'.'1)
lecturernew studentnew

Level 3
lecturer
Level 4 @

Figure 4.13: G-DTD in a 4XNF

143



Finally, based on the transformation rules given in Chapter 3 (Section 3.7), we map the
4XNF G-DTD to the new DTD. The final DTD can be shown as follows.

<!DOCTYPE Department [
<!ELEMENT Department(course®, lecturernew®, studentnew™*)>
<!ELEMENT course(title, student*)>

<IATTLIST course cno ID #REQUIRED>
<!ELEMENT title # PCDATA)>
<!ELEMENT student (lecturer*)>

</ATTLIST student sno ID #REQUIRED>
<!ELEMENT lecturer (EMTPY)>
<IATTLIST lecturer tno ID #REQUIRED>
<!ELEMENT lecturernew* (tname)>

<!ATTLIST lecturernew tno ID #REQUIRED>

<!ELEMENT studentnew* (fname|?Iname)>

<IATTLIST studentnew sno ID #REQUIRED>
<!ELEMENT fname (# PCDATA)>
<!ELEMENT Iname # PCDATA)>

>

Form the above DTD the following XML document with no redundancy is generated:

144



<!DOCTYPE Department [
<course>
<course cno = ‘“‘cscl01">
< title > XML database </title>
< student >
<student sno = “112344">
<lecturer>
<lecturer tno = “123">
</lecturer>
</ student >
< student >
<student sno = “112345>
</student >
</course>
<course>
<course cno = “csc201 ">
< title > Database technique </title>
< student >
<student sno = “112344">
<lecturer>
<lecturer tno = “124”>
</lecturer
</ student >
< student >
<student sno = “112346">
</student >
</course>
<course>
<course cno = “cscl02”>
< title > Z formal methods </title>

< student >
<student sno = “112344">

<lecturer>
<lecturer tno = “124">
</lecturer>
</student>
< student >
<student sno = “112345">
<lecturer>
<lecturer tho = “124”">
</lecturer>
</student>
</course>
<lecturernew>
<lecturernew tno = “1237>
<tname> Bing </tname>
</lecturernew>
<lecturernew>
<lecturernew tnho = “124">
<tname> Bottaci</tname>

</lecturernew>
<studentnew>
<studentnew sno = “112344>
<fname> David</fname>
<Iname> Grey </Iname>
</studentnew>
<studentnew>
<studentnew sno = “112345">
<fname> Helen</fname>
</studentnew>
<studentnew>
<studentnew sno = “112346">
<fname> Sally</fname>
<lname> Teoh </Iname>
</studentnew>
</Department>]

Figure 4.14: An XML Document That Conforms to 4XNF




4.6  Comparisons of Proposed Approach with Existing Approaches

To evaluate this work, a comparison of our approach with existing approaches is

discussed. The comparison is based on a number of criteria, specifically:

(1)  Expression of DTD structure

In Arenas and Libkin’s work, they used mathematical notations to represent the DTD
structure, which is hard to understand for a normal designer. For instance, we present

again here their formal definition of DTD as follows:
A DTD is defined to be D= (E, 4, P, R, r), where (Arenas and Libkin, 2004):
1. E& Elis a finite set of element types.
2. AS Attis a finite set of attributes.
3. P is amapping form E to element type definition defined in a regular expression

» “ »

a=¢|r| & | @V a| a* where £is the empty sequence, T’ €E, and “U",

and “*" denote union, concatenation, and Kleene star, respectively.
4. R is a mapping from E to the power set of value of R: P (4)
5. r €Eand is called the root element type

The symbols & and S represent element type declaration EMPTY and #PCDATA,

respectively.

For example, reconsider the DTD in Figure 2.10 which is presented by Arenas and
Libkin (2004) as follows:

E = {Department, Course, Student, Lecturer},
A = {cno, sno, tno}
r = Department

Furthermore, P and R are defined as follows:

146



P (Department) = {course*}, P(course) = {title, Student*}, P(student) ={fname, Iname,
lecturer*}, P(title) =S,

P (fname) =S, P(Iname) = S,

R( Department) = @ R(course) = cno, R (student) = sno, R(lecturer) =tno .

The above definition clearly shows that textual grammar representation makes it
difficult to be analysed and understood. In practise, it often causes difficulties when
designing even a simple DTD. More importantly, the semantic constraint and
relationship between the elements in the XML document cannot be represented
precisely and clearly. For instance the relation between course and student is not
defined explicitly. The semantic relation between the elements presents only one-to-
many relationships by notation *, while other relationships such as many-to-many or
many-to-one relationships are not defined. The semantic relation presents only the
relationship between the parent and child while the relation between the child and parent
is not defined. The level of each element is not defined explicitly to show the hierarchy

of the elements

However, in our work, a graphical interpretation of G-DTD is used to visually represent
a DTD structure which is used to describe an XML document. In this way, we believe
the user can have better understanding of the DTD structure. Indeed, the Mok and
Embley (2006) make the argument that: “The graphical conceptual modelling languages

offer one of the best human—oriented ways of describing an application”

Representation of the G-DTD is slightly different from the Arenas and Libkin’s DTD.
Firstly, we distinguish explicitly the difference between complex elements, simple
elements and attributes. We emphasise that a simple element is an element with no
child elements while an attribute is a key or candidate key of a complex element. The
reason for this is to avoid using S as a text representation, which will make it easier to
visualise during normalization process. Secondly, we present the G-DTD structure as a
tree structure of elements using level notation which is similar to XML document

structure, to provide an accurate picture of the XML document. The advantage of G-

147



DTD over DTD are: it allows users to define explicitly the structure of attribute nodes,
simple element nodes and complex element nodes in a hierarchical way and also allows
the user to determine the relationship dependency between the nodes. For G-DTD’s
notation itself, we adopt some notations from Chen (1976) and Dobbie et al.(2000) but
we add a few semantics such as sequence, disjunction, path link, part_of link, has A

link between the nodes to reveal more semantics between the element nodes.

2) XML Normal Forms

We have presented definitions of XML normal forms proposed by Arenas and Libkin,
(2004), Vincent et al. (2004), Wang and Topor (2005), Kolahi (2007) and Yu and
Jagadish (2008). Most of them generalised XNF from BCNF except Kolahi proposed an
XML third normal form. The proposed work from Arenas and Libkin (2004) is most
fundamental and achieves the best possible design (Kolahi, 2007) while the others are
extensions and improvements of Arenas and Libkin’s work. However, as discussed in
Chapter 2 (Section 2.3.9.), Arenas and Libkin’s XML normal forms are limited in their
ability to capture certain semantic constraints. Most proposals represent semantic
constraints using XML functional dependencies and key dependencies to define XML
normal form. As shown in Chapter 2 (Section 2.3.7), the definition of XFD and normal
form is very difficult to understand by users without a theoretical background. Thus,
these limitations will directly affecting the application of XML normal form in real
practice by the end user. We believe that defining the current definitions of XML
normal form with simple presentation will help end users to apply and design XML

documents in a simple way.

Arenas and Libkin (2004) defined a normal form for XML documents (XNF) is based
on XML functional dependency (XFD) which is used to avoid update anomalies and
redundancies. Instead of formal definition of DTD, they define also an XML document
as a tree called ‘XML tree’ which consist of nodes, edges to represent a relation between
parent and child node, and a root node. In an XML tree, they use paths to represent

element nodes, starting form the root node until the last child node. The same path

148



definition also applies to the path in DTD denoted as path (D). The child node is
normally an attribute node or a string (denoted as symbol @ and S respectively). Every

path in XML tree will contain at least one element node type. For example,

Department.course.student.lecturer@tno and

Department.course.student.lecturer.tname.S are all paths in XML document.

In Arenas and Libkin (2004), XFD is used to represent the semantic constraint which
could cause data redundancy. They defined XFD as a path based on the idea from
relational schema (Codd, 1974) and nested relational schema (Ling, 1985). For
example, the constraint that two lecturer elements with same lecturer number (fno) must
have the same name is expressed as follows:

XFD: Department.course.student.lecturer.@tno,

— Department.course.student.lecturer.tname.S (4.1

Where Department.course.student.lecturer.@tno is a Left Hand Side (LHS) path and
Department.course.student.lecturer.tname.S is a Right Hand Side (RHS) path. Using
this XFD definition, the following XML normal form is presented.

Definition XNF: Given a DTD and a set of ¥, of XFDs over D, (D, }) is in XML
normal form (XNF) if and only if for every nontrivial XFD p —q.@l or p —q.S or , the
XFD p—q is also in (D, Y)*. Where p and q is a set of path(D).( Arenas and Libkin,
2004)

Generally, the above definition means that a DTD is in a normal form (XNF) if every
functional dependency defined over DTD is in XNF. The XFD is XNF if every LHS
path can determine a unique value of a RHS path. In other words, XNF does not allow
any redundancy in data values occurring in the leaves of the XML tree. Intuitively, this
XNF ensures the value of ¢.@/ or ¢.S will not be repeated in two different locations of
the XML tree. For instance, XFD in equation 4./ is not in XNF since the value for the

element lecturer name is not unique for the attribute given, as Jecturer name Bing

149


mailto:Department.course.student.lecturer@tno
mailto:Department.course.student.lecturer.@tno

appears twice in the XML document as shown in Figure 4.1. Because of this XFD in
equation 4.1, DTD is not in XNF.

Based on Arenas and Libkin’s definition, recently, Kolahi (2007) has proposed a third
normal form for XML by extending 3NF to XML. Kolahi adopted the notion of XML
tree and DTD from Arenas and Libkin (2004) but extended the notion of a prime
attribute from relational database to case of paths to XML tree. We present here the
definition of prime attribute path in order to present X3NF:

Definition X3NF: XML specification (D, Y) is in X3NF if and only if for every
nontrivial XFD p— q.@! D, Y)*, we have that p—q €D, )" or q.@l is a prime
path. (Kolahi, 2007)

As a relational counterpart, a prime path is a path that uniquely determine path element
of a ‘tree tuple’ from the root. Like the 3NF, X3NF tries to achieve a schema that can
preserve the functional dependency and at the same time reduce data redundancy in
XML documents. However, to date there no normalization algorithm has been
developed based on X3NF definition.

Other than that, based on Arenas and Libkin’s work, Lv et al. (2004) also proposed first,
second and third normal forms which are considered partial functional dependency and
transitive functional dependency respectively. They defined second and third normal

forms as follows:

Definition 2XNF: XML specification (D, Y) is in X2NF if and only if for every XFD

P1P2@l— p1.p2p3.@IED, Y), if there is another XFD’ p;.@lr— p1.p2p:@! €D, Y),
there is no partial dependency p;. @l —p;. p,ps@! and p; # r. Where p; is a set of
path(D).(Lv et al., 2004)

Definition 3XNF: XML specification (D, ) is in X3NF if and only if for every XFD
p1@I— p1. p»@! €D, Y),if there is another XFD’ p,.p;.@l— p,. p2 ps@l €D, ¥),
there is no transitive dependency p).@! —p,.p..ps@l. Where p,is a set of path(D). ( Lv
etal., 2004)

150



Our work is similar to Arenas and Libkin (2004) but we simplify these definitions so
that they are more practical, easy to understand and implement and give the same result.
As shown in Section 4.3, we propose normal form for G-DTD (XNF G-DTD) at the
schema level based from Arenas and Libkin’s definition. Furthermore, we present also
other normal forms such as 1XNF, 2XNF and 3XNF which are generalised from
definitions given by Kolahi, (2007) and Lv et al. (2004). Generally, the nature of
definition of the normal form G-DTD depends on a number of conditions. First, except
root node, each complex element node must have an attribute node key. Second, there
should not exist any nested path link between complex element nodes starting from root
element node until last complex element node with global, transitive and partial
functional dependency. The significant differences between our normal form and the
one presented in Arenas and Libkin (2004), Kolahi (2007) and Lv et al. (2004) are:

a)  Firstly, the G-DTD model is proposed to assist in XML document design at the
conceptual model. Our normal forms are based on a combination of different types
of functional dependencies such as relationship dependency, transitive functional
dependency, partial functional dependency, and global functional dependency
definitions. We define these functional dependencies based on G-DTD structure
without considering the path, which is simpler than in Arenas and Libkin’s
approach. However Arenas and Libkin (2004), Kolahi (2007) and Lv et al.(2004)
they totally define their normal forms based on the XFD definitions. XFD is
formally defined on the concept ‘tree-tuple’ and path (Arenas and Libkin, 2004).
As we know, functional dependency is already the area where designers have the
most problem specifying in relational models (Date, 2000), so making them more
complicated and unfamiliar to designer make XML document design more
difficult.

b)  Second, we apply our defined functional dependencies based on the structure of
G-DTD at the schema level to present explicitly the position and level of complex
elements, simple elements, attribute nodes and the semantic relationships. Based
upon the analysis of these structural properties, the G-DTD schema is iteratively

transformed into refined normal form, preserving the data dependencies. To

151



&)

preserve data dependencies, all the data dependencies are updated iteratively to
match with the current G-DTD structure. We differ fundamentally from the
previous effort because we take the functional dependencies from a G-DTD
schema rather than in various ways over path in XML document structure
(instance). We believe that it is easier for designers to specify and understand
functional dependency constraints in terms of a conceptual model than in terms of
XML document structures. We therefore also offer our approach as a way to

avoid having to specify these more complex and low-level constraints.

Normalization Algorithm

Arenas and Libkin (2004) have proposed a normalization algorithm to transform XML
design into XNF design. This algorithm performs iteratively two rules to produce XNF

design.

@

(i)

Moving attributes.

The rule is used to eliminate global dependency. Consider global XFD: p —q.@L
To eliminate this XFD, the attribute @! is moved from its original location to a

new location of the last element of p
Creating new element types

The rule is used to eliminate local dependency. Consider XFD: p,q;.@l1,...gn @I»
—q.@L To eliminate this type of XFD, a new element type e is created as a child
of last p and attribute @/, @I, are copied for 7 and @/ is moved from its

original location to become an attribute of 7.

The algorithm proposed by Arenas and Libkin (2004) only considers the case of local
and global functional dependency. To make this algorithm more flexible, we enhance
the rules from Arenas and Libkin (2004) and Lv et al. (2004) with some modification to

suit our normal forms definition. As presented in Chapter 4 Section 4.2, we next explain
it in a more general way,

152



(a)

®)

(©)

C))

Given the initial DTD, it will be analysed and carefully investigated. Using our
various notations, the recognition of complex elements, simple elements, attributes
and semantic relationships which include n-ary path links types of many-to-
many/many-to-one/one-to-many are carefully analysed. This will establish a better
G-DTD.

Based on user requirements, the G-DTD is refined, by supplementing the additional
properties and data dependencies such as GFD, TFD, PFD and relationship
dependency.

Transform the initial G-DTD into normalised G-DTD i.e. 1XNF, 2XNF, 3XNF or
XNF design. This procedure is iteratively implemented by taking the previous
refined G-DTD until it becomes normal form. In order to establish a systematic
approach to obtain a better G-DTD schema, we propose normalization rules. As
shown in section 4.4.1, we add another rule (rule 1 and rule 2) which is moving up a
complex element together with its children to another location and level. These
rules are used to eliminate TFD and PFD in the G-DTD by considering one-to-
many, many-to-many or many-to-one path links between complex element nodes in
G-DTD.

Based upon the analysis of these structural semantic relationships, the G-DTD
schema is iteratively transformed into refined normal form, preserving the data
dependencies as well. It is basically required that the data dependency should be
preserved throughout the transformation of the G-DTD model. To preserve the data
dependencies, each data dependency is updated to match the new location of
associated complex elements, simple elements and attributes in G-DTD. By the
analysis of the data dependencies, the initial G-DTD schema may be transformed

into a better schema which is normalised and simplified.

153



4.7 Discussion

Arenas and Libkin’s approach has a remarkable impact on the principles of XML
document normalization. However, we have found that XML database designers expect

a somewhat different and more practical technique in such a way that:

a) The definition has to be simple, precise, and understandable and should work with a
minimum of abstract concepts, similarly to “the classical relational model
normalization”. We believe that introduction of difficult notations distinctively

exceeding classical normal forms by having many types of concepts, is not desirable.

b) The focus should be concretely on the graphical interpretation of XML schema
model rather than textual representation. This is because graphical modelling
language is widely accepted as a more visually effective means of specifying and
communicating data requirements and suitable for users who have no technical
background (Gustas, 2010; Halpin, 2010).

¢) We need to model structures and semantics of elements and attributes of the XML
document schema (i.e. DTD) used for data storage and data manipulation. As stated
by Feng et al. (2001), “To enable efficient business application development in large-
scale electronic commerce environment, it is necessary to describe and model real

world semantics and their complex interrelationship” (pp 391).

d) It has to be flexible to enable designers to choose which normal form design is better

for their application requirements and at the same time preserve the data constraints.

We believe that our method complements to Arenas and Libkin (2004) approach but we
also consider all the four requirements that have been pointed up above when designing
an XML document. Besides that, we found that the main features of G-DTD's notation
are that it is particularly easy to improve XML structural design and more importantly,
makes the XML normalization procedure simpler and practical. Since the semantic
relationships represented in this approach are not complicated, it is thus easy to use G-

DTD to maintain XML documents as well.
154



48 Summary

A set of normal forms called first normal form (IXNF), second normal form (2XNF),
third normal form (3XNF) and fourth normal form (4XNF) for G-DTD have been
defined for XML documents. Normalization algorithms have been proposed to
transform from one normal form to another level of normal form. In this proposed
algorithm, an original G-DTD is restructured by considering the tree structure, the level
of nodes and the semantic relationship between nodes associated to different types of
data dependencies such as partial functional dependency, transitive functional

dependency and global functional dependency.

To demonstrate the concept, we provide a simple case study to illustrate the application
of our proposed G-DTD normal forms and normalization rules to achieve a redundancy-
free XML document. We show through a case study that having G-DTD as a conceptual
model simplifies the complex procedure of XML document design and normalization.
Even though the length of XML document is longer than the original document, the

structure is free from data redundancy and update anomalies.

The normal form G-DTD presented in this chapter has shown three advantages. First,
the designer can indentify complex elements, simple elements and attributes graphically
and can add the relationship types between the nodes from user specification. Hence,
this will give more control to the designer to evaluate each successive normal form G-
DTD. Second, normalizing the G-DTD can effectively remove redundancies and
anomalies at a schema level. More importantly, it is able to preserve both DTD
hierarchical structure and XML document structure and satisfy user requirement. Next,
we will define formally the prototype system of XML document design using a formal
specification method.

155



Chapter 5

Formal Specification of XML Document Design Model

5.1 Introduction

This chapter presents a formal specification of the XML document design system called
XML design model (XML_DM) which comprises a conceptual model G-DTD and
normalization procedure which we discussed in the previous chapter. This formal
specification is used to describe a fundamental framework of what the XML_DM can do
and also as an abstraction of a full complete system which can serve as a reliable
blueprint for those who want implement the prototype later. This formal specification is
important before the implementation of the real system is developed, as it allows a
designer to understand the big picture of the system; and helps to discover error early in
the lifecycle and reduce the overall cost of the project. As stated by Sommerville
(2010),

“

.. it is easier to build a system from a formal specification than by using other
methods. Coding from formal specification to be straight forward. The application of
formal methods can also make the development process of each stage clearer. More

importantly, monitoring is more reliable and thus development is less risky. ”

The rest of the chapter is organized as follows. Section 5.2 explains the importance of
formal specification and some related work. Section 5.3 presents the benefis of Z
notation. In section 5.4 we present a conceptual design framework of an XML design
model (XML-DM). All the specification will be formalised using Z specification

language. In our work, we use a Z Word tools (Hall, 2010) where fuzz is used for typing
and checking Z specification.

156



5.2  The Formal Specification and Its Importance

According to Spivey (1992), “Formal specification use mathematical notation to decribe
in a precise way the properties which an information system must have, without unduly

constraining the way in which these properties are achieved”.

This statement also supported by Sommerville (2010), which stated that “..creating a
formal specification force you to make a detail system analysis that ussually reveals

error and inconsistencies in the formal requirement specification”.

Amongt the important roles of formal specification are that it can be used to clarify the
understanding of the problem, to provide a prototype to demonstrate the idea and it can
be used as a basis for system design (Wang, 1999; Hall, 2000). Formal specification has
been widely recognized as a precise way to define the structure of a complex software
system such that its usages have increased in last two decades and now it is frequently
used in industry (Mian and Zafar, 2010). More importantly, the literature has shown
and proved that formal specification is particularly cost-effective with computerization

of small-to-medium sized information systems.

For instance, the use of formal specification has been applied in scheduling of railway
system design(Hexthausen and Peleska, 2000), air traffic control system(Paternof et
al.,1998), a radiation therapy machine(Jacky, 1997), hypertext system (Wang, 1993;
Halasz and Schwartz, 1994 ; D’Inverno and Hu, 1997), network security (Singh and
Patterh, 2010), healthcare application (Coronato and De Pietro, 2010), web service
system ( Liu, F. et al., 2011) and many more.

An attempt of using formal specification as a means of developing databases is also
found in the work of Boros (1994), which is focused on the provision of a framework of
development, to enable software engineers to develop database specification and to

solve database design problems.

On the other hand, formal specification also can be used for checking and verification.

Related to semi-structured data design, there are many attempts to formally verify a

157



semi-structured data model. The most relevant work using formal specification to verify
a data model called Object Relational Atribute for Semistructured(ORA-SS) is done by
Lee et al. (2006), Wang et al. (2006), Lee et al. (2009) and Lee et al. (2010). They used
different types of formal method language to present the syntax and semantics of the
model. For instance, Lee et al. (2006) used Z formal language to validate the syntac and
semantic of the ORA-SS model. They also validate the model to check the correctness
of ORA-SS at both schema and instance level. Similar to this work, the formalization of
ORA-SS using OWL was presented with improved verification performance. Recenlty,
Lee et al. (2009) used a different approach to define a formal specification for ORA-SS
using Prototype Verification System (PVS) language. In this work they also presented
type checking and theorem proving abilities. In other research, Wang et al. (2006)
presented a formalization of the ORA-SS notations using Alloy. However, to the best of
our knowledge no formal specification has been developed to define an automatic
system of XML document design. Thus, we can claim that our formal specification

presented here is a novel approach for an XML document design prototype.

53 Z notations

Growing awareness of the need of formal specification has led to the development of
various specification languages. The most popular specification languages are Z
(Spivey, 1988) and VDM (Jones, 1986), which have been recommended as official
standard software system specifications. Z is a formal specification language originally
developed at the Programming Research Group at Oxford University. In our work, the
Z specification language, in particular, is used as a means of formalization for a number
of reasons. First, the language is based upon primitive mathematical notation such as set
theory and first order predicate logic, making it accessible to researchers from a variety
of different backgrounds. Second, it is expressive enough to allow a consistent, formal
and unified representational of a system and its assiociated operations. Third, it is
model oriented (Bottaci and Jones, 1995). Model-oriented specification language seems
to be more appropiate to specify an XML design model and its operations. Moreover, it

has been claimed that, in general, human being tend to find model-oriented methods

158



easier to understand. Finally, in particular, we have found Z is an established language,
widely accepted and appropriate for building formal frameworks, necessary to enable a
rigorous approach for any dicipline including interactive conferencing system
(D’Inverno et al., 1991), distributed artificial intelligence (D’Inverno and Hu, 1996),
multi-agents systems (D’Inverno and Luck, 1996) and design hypertext models (Lange,
1990; Halasz and Schwartz, 1994; Wang, 1993; D’Inverno et al., 1997).

However, we found that the main disadvantage of using Z is that mapping both the XML
design model (XML DM) semantics and operations to Z can result in very verbose
specifications. Intuitively, expressing the XML design model (XML_DM) semantic
using a meta-model is much easier for non-specialists to understand and comprehend
than a Z specification. This is a critical shortcoming which will need to be addressed
where the user must have working knowledge of the formal notations. The main
difficulty is making the right connections between the real world and the mathematical
formalism. However, we believe that, even though many practitioners involved with
the development of computer systems are not mathematicians and do not make regular
use of mathematics, mathematical technique are increasingly important role in the
development of software and it is appropriate that they should be known and applied by
as many practitioners as possible. This is because the mathematics used in formal
specification is very simple; it only uses discrete mathematics which is concerned more

with sets and logic than with numbers.

5.4  The overview of XML Document Design Model (XML_DM)

The XML_DM model consists of three layers: the conceptual G-DTD layer, the
normalizer layer and G-DTD translator layer, as illustrated in Figure 5.1. The G-DTD

conceptual model layer helps the user to create, query, insert, and delete a node/link of a
G-DTD model.

159



Conceptual G-DTD  model G-DTD Normalizer Layer G-DTD Translator Layer

Basic Operations: Define new set of
Query Operati FD’s Mapping G-

e erations

P —N| save/EdivAdd/find —N | b
Create Operations —/ and group Functional —/ DTD
Dependencies
Delete Operations
P Basic normalization

Insert Operations task

Normalization
operations

Figure 5.1: Layers of XML Document Design Model

It allows database designers/users to use a G-DTD model to describe XML documents
by using simple notations provided at the interface layer. As presented in Chapter 3, G-
DTD describes an XML document using basic sets such as complex element, simple
element, attribute nodes and invariant relationships between these nodes. The details of

its conceptual operations have been presented in Chapter 3, Section (3.6).

The G-DTD normalizer layer allows the user to normalize a G-DTD using the
normalization rules and algorithms which have been presented in Chapter 4. This layer
is used to assist the user to design redundancy-free XML documents by normalizing the
G-DTD on the basis of a set of normal forms. This specification describes what
XML_DM provides to achieve 1XNF, 2XNF, 3XNF and 4XNF of G-DTD. It will serve
as a visual aid for the normalization process which is always easy to understand and

intepret rather than a theorietical approach.

The G-DTD Translater layer provides the user the functionality to map a G-DTD back
to DTD using transformation rules provided in Chapter 3 (Section 3.7), so that the
standard template of a redundancy-free XML document can be generated which
conforms and satisfies a new DTD.

160



We present the XML document design model (XML_DM) specification framework into
three sections: formal specification of a conceptual G-DTD model, formal specification
of G-DTD normalizer and formal specification of G-DTD translator. We present them

next.

5.5  Formal Specification of a Conceptual G-DTD Model

In XML-DM environment consists of a conceptual G-DTD model which represents an
abstract view of an XML document. It defines all the simple element, complex element
and attributes nodes and the links between these nodes. To define those types of node,
we define first the basic set used in a G-DTD.

5.5.1 Basic Type Definitions

[ID, Element_Name, Attribute_ Name, Relation_Name]

where ID is a set of all unique ID for each element. Element_Name is the set of all
possible XML element node names and Attribute Name is the set of all possible XML
attribute node names. Relation_Name is a set of relationship names. Terms like complex
element or simple element are used but we will reserve these for spesific concepts, and

will be seen shortly.

The structure of the G-DTD is represented as collection of all types of nodes and links
where links can only exist between a pair of nodes in the space. Nodes cannot be linked
to themselves. As we described in Chapter 3 section 3.6, the characteriestic of each type
of node such as simple element, complex element and attribute node can be described

using the following representation.

5.5.2 The Data Structure of G-DTD

Simple Element Node

SimpleElement_Node schema consists of identity, name, level and type of simple
element. Simple element type can be classified either as single value, multivalue,

161



optional single value or optional multivalue. The type definition for a simple element is

defined as follows:

SimpleElement_Type::=singlevalue| multivalue| op_singlevalue| op_multivalue

_SimpleElement_Node
identity : ID
name : Element_Name
level : N

se_type : SimpleElement_Type

Attribute Node

The Attribute_Node schema denotes the unique identifier of each complex element
node. The Attribute_Node schema consists of identity, name, level and attribute type.
The type of attribute can be either composite, required or reference and is defined by
using the following attribute type definition.

Attribute_Type::= composite | required | reference

Attribute_Node
identity : ID
name : Attribute_Name
level : N

att_type : Attribute_Type

Complex Element Node

The ComplexElement Node schema is presented as follows which consists of it
identity, complex element name and level.

ComplexElement_Node
identity : ID

name : Element_Name
level : N

162



Parent for Complex Element Node, Simple Element Node and Attribute Node

A parent for each type of related node, i.e. complex element node, simple element node
and attribute node is described precisely in relationships. The functions Parent Ce,
Parent_Se and Parent_Att are defined using the axiomatic function as a total function
because every complex element node, simple element node and attribute node must have
its own parent node and no node can have more than one parent. In the state invariant, it
is stated that complex element cel ~ ce2 € Parent_Ce means that ce2 is the parent of
cel if and only if cel is not the same as ce2 and the level position of ce2 must always be
less than the level position of cel by one level difference only. The same meaning is
applied for the second and third predicates associated to both parent of a simple element

node and parent of an attribute node.

Parent_Ce : ComplexElement_Node — ComplexElement_Node
FParent_Se : SimpleElement_Node — ComplexElement_Node
Parent_Att : Attribute_Node — ComplexElement_Node

V cel, ce2: ComplexElement _Node »
cel » ce2 € Parent_Ce &
(cel #ce2 A ce2.level —cel.level = 1)
Vv
(V se : SimpleElement_Node; ce: ComplexElement_Node |
3 parent: ComplexElement Node o
se = ce € Parent_Se &> se € Parent_Se ( parent D A
se.level —ce.level = 1))
v
(V att : Attribute_Node; ce: ComplexElement Node | »
3 parent: ComplexElement_Node o
att vwce € Parent_Att < att € Parent_Att ( parent )
att.level —ce.level = 1))

163



Relationships

On the G-DTD schema diagram, we distinguish three types of relationship; Path_Link,
Part of Link, Has_A_Link. We define the schema of each type of relationship as

follows:

(1) Path_Link

As described in Chapter 3 Section (3.4.3.5), path link has very important features. To be
more precise we capture those features in following Path_Link schema. This schema
consists of the relation between two complex element nodes. The state invariant states
an ordered pair of complex element nodes cel +~ ce2 is an element of path_link if and
only ce2 is an immediate parent of cel. The complex element ce2 is a parent of ce! if
and only if cel = ce2 € path_link *; that is to say, a transitive closure relation (Diller,
1994), and the relation is a cycle free if and only if no complex element node is mapped
to itself. We are using transitive closure because the transitive closure allows complex

element node to be directly reached in the same link (Diller, 1994).

_Path_Link
path_link : ComplexElement_Node <« ComplexElement_Node
name : Relation Name

degree : N;

parent_constraint, child_constraint : (N x N)

(V cel, ce2: ComplexElement_Node
o cel » ce2 € path_link
< Parent_Ce (cel) = ce2 A cel » ce2 € path link*
A (3 ce : ComplexElement_Node s ce v ce & path_link ™))
A (VY namel, name2 : Relation_name » name # name 2)
A (d:degree o # degree >2)
A (Y pc: parent_constraint, cc : child_constraint, card : (Nx Ny)
pc = second card > first card A
cc = second card 2 first card)

164



The additional properties of path links such as name, degree of relationship, parent and
child cardinality constraint are defined to a path link. For a relationship’s name, the
name of the relationship must be unique. The degree of relationship is represented as a
natural number and must be equal to or greater than two. Every path link type in a G-
DTD model has its associated parent and child constraints to set the lower limit and

upper limit cardinality for them respectively.

(2) Part_of Link

The schema Part_of Link presents the relation between a complex element node and
attribute node. It consists of two types of relations: Attributekey function and
Compositekey relation. Attributekey function is total and injective because each
complex element node has a unique attribute node. CompositeKey relation is a relation
between a complex element and set of attributes. In the the first predicate, ce ~ att €
AttributeKey means that att is an attributekey for ce if and only if attribute type is
required. In the second predicate, (ce + attcom) € CompositeKey means that attcom is a
composite key for ce if and only if its attribute type is composite. The last predicate
indicates that domain for function AtributeKey and relation CompositeKey is a member

of a complex element node.

_Part of Link
AttributeKey : ComplexElement_Node » Attribute_Node
CompositeKey : ComplexElement_Node « Attribute_Node

V ce : ComplexElement_Node; att : Attribute_Node e

(ce & att) € AttributeKey <> att.att_type = required A Parent_Att (atf) = ce
V ce : ComplexElement_Node; attcom : Attribute_Node

(ce v attcom) € CompositeKey < attcom.att_Type =composite

A Parent_Att (attcom) = ce

dom AttributeKey U dom CompositeKey € ComplexElement_Node

165



(3) Has_A_Link

The schema Has_A_Link presents the relation between a complex element node and
simple element node. The complex element node is declared as the parent node while

the simple element node is a child node

_Has A_Link
hasa : ComplexElement_Node <> SimpleElement_Node

V ce : ComplexElement_Node; se: SimpleElement_Node «
(ce » se) € hasa & se.se_type = singlevalue V se.se_type = multivalue
V se.se_type = op_singlevalue V se.se_type = op_multivalue
A Parent_Se se = ce
ran hasa € PSimpleElement_Node

§.5.3 Abstract state of Environment XML_DM

We next define the following structure of G-DTD which is used later in presenting a
readable specification. The G-DTD consists of seven variables whose values are
restricted by the state invariant. These are a root node type, set of
ComplexElement_Node, and set of SimpleElement_Node type, set of Attribute_Node
and set of relation Part_of, Has_A and Path_Link type. The following schema captures
the abstract state of the G-DTD.

166



_SchemaGDTD,

root : ComplexElement_Node
Cnodes : FComplexElement_Node
Snodes : FSimpleElement_Node
Attnodes : FAttribute_Node
PathLink : seq (PPath_Link)
HasA : Has A_Link

Partof . Part_of Link

3, root : ComplexElement_Node ¢ root.level = 0

V cel, ce2 : Cnodes | cel # ce2 » cel .name # ce2.name

V sel, se2 : Snodes | sel # se2 » sel.name # se2.name

V attl, att2 : Attnodes | attl # att2 » att].name # att2.name

V partlink : Partof « partlink. AttributeKey # @

V hl : PathLink ; haslink : HasA ; partlink ; Partof ¢
Cnodes = U{dom hl.path_link, ran hl.path_link}
Snodes = ran haslink.hasa
Attnodes = ran partlink. AttributeKey

The first predicate of the SchemaGDTD states that there must exist one root node. The
second, third and fourth predicates indicate that at any point in time, each complex
element node, simple element node and attribute node must have a unique name. The

last three predicates ensure that all types of nodes and relationships defined exist in

SchemaGDTD.

Finally the abstract state of XML_DM environment consists of schema SchemaGDTD

_Environment_ XML _DM

SchemaGDTD
3,S:SchemaGDTD ¢S+ @

167



5.5.4 Initial state of Environment XML_DM

Before any operation can be performed on the model, we must define the initial state of
environment XML_DM. In our case, the initial state of environment XML_DM refers
to the situation in which there are no elements of SchemaGDTD existing in it. This is

characterized by the following schema definition:

Initial_state
rAEnvironment_XML_DM
Schema.Snodes = @
Schema.Cnodes = @
Schema.Attnodes = @
Schema.Partof = @
Schema.HasA = @
Schema.PathLink =@

This schema describe the Initial_state in which set of simple element node, complex
element node and attribute node are empty: in consequence, the PathLink, HasA and

Partof relation is empty too

S.5.8 Manipulating the G-DTD in an Environment

The manipulation of G-DTD in an XML_DM environment includes four groups of
operations known as querying, inserting, deleting and moving. We will formally define
those operations on the basis of their rules description defined in Chapter 3 Section
(3.6). However, before we present these operations we must first define the following

functions and schemas, since they will be used in future operations schema definition.
(1) Get ID, Level and Node Numbers

Before querying, inserting or deleting any node, we should be aware of its properties. In
order to achieve this aim we define the three functions Get_ID, Get_Name, Get_Level
and Ger_Node_Type, which identify the ID, name, level and node type of a node.

168



Get_ID : ComplexElement_Node + ID
Get_Name : ComplexElement_Node + Element_Name
Get_Level : ComplexElement_Node + N

V ce : ComplexElement_Nodee
Get_ID ce = ce.ID

Get_Name ce = ce.Name
Get_Level ce = ce.Level

(2) Create Complex Element Node

The Create_NewComplexElement_Node function is used to create a new complex
element node. Each new node must have an instance of ID, Element_Name and level.
The new complex element is added to a set of complex element nodes if it satisfies the
pre-condition that the new node is not already be one of the members of complex

element node in schemaGDTD. This is because only one unique complex element is
allowed in G-DTD schema.

Create_NewComplexElement_Node : (ID x Element_Name x N,)
— ComplexElement_Node

V newid : ID; newname : Element_Name; I: Ny; schema, schema' ; SchemaGDTD o
(3 ce, newnode : ComplexElement_Node; |
newnode = ce o
(ce.identity = newid A ce.name = newname A ce.level=I)A
newnode & schema.Cnodes A
schema'.Cnodes = schema.Cnodes U {newnode}
= createNewComplexElement (newid, newname, ) = newnode)

(3) Create Simple Element node

The Create_SimpleElement_Node function is used to create simple element node. Given
the instance of ID, Element_ Name, level, simple element type and a simple element

node is created. The success of the operation relies on a given pre-condition. The new

169



simple element node is added if and only if it is not already one of the members of
simple element node in schema GDTD. This is because only one unique simple element

node is allowed in schema GDTD.

Create_SimpleElement_Node:( IDx Element_Name xN, x Se_Type)
— SimpleElement_Node

V newid : ID; newname : Element_Name; I Ny; type : Se_Type;
schema:SchemaGDTD
(3 se, newnode : SimpleElement_Node; schema' : SchemaGDTD |
newnode = se o
(se.identity = newid A
se.name = newname A
se.level=] A
se.seType = type ) A
newnode & schema. Snodes A
env'.Snodes = env.Snodes U {newnode}
= Create_SimpleElement_Node (newid, newname, I, type) = newnode)

(4) Create Attribute node
The description of the Create_ Attribute Node function is similar to the
Create_SimpleElement Node function.

170



Create_Attribute_Node : ( ID x Attribute_Name x Ny x Att_Type)
— Attribute_Node

V newid : ID; newname : Atiribute_Name; | : Ny; type : Att_Type;
Env : Environment XML DM o
(3 att, newnode : Attribute_Node; schema' : SchemaGDTD |
newnode = att «
(att.identity = newid A
att.name = newname A
att.level=I A
att.attType = type) A
newnode & env.Attnodes A
schema'. Attnodes = schema.Attnodes U {newnode}
= createAttribute_Node (newid, newname, I, type) = newnode)

(5) Create Path_Link

Create_ Path_Link is a function to create a new Path_Link between two complex
element nodes. The function maps both given complex element node and complex
element node and assigns between them a new Path_Link if and only if is satisfies the
pre-conditions that the relation of these complex element nodes are not a cyclic relation
and they have a parent relation. If the condition is satisfied, the new instances of relation
name, level, parent and child constraint are assigned to a new Path_Link and added to
set of Path_Link.

171



Create_Path_Link : (ComplexElement_Node x ComplexElement_Node)
— Path_Link

V cel : ComplexElement_Node; ce2 : ComplexElement_Node;
schema:SchemaGDTD
3 new_Path_Link, newlink : Path_Link;
deg : Ny; pe, cc : NxNy; newname : Relation_Name;
schema' : SchemaGDTD|
rew_Path_Link = newlink »
cel » ce2 € newlink.path_link &
(cel & ce2 & newlink. path_link*
A ce2 = Parent_Ce (cel)
A newlink.name = newname
A newlink.degree =deg
A newlink.parent_constraint = pc
A newlink.child_constraint = cc)
A schema'.Path_Link=
schema.Path_Link U { new_Path_Link }
= Create_Path_Link (cel, ce2) = new_Path_Link

(6) Create Has_A_Link
Create_Has A_Link is a function to create a new Has_A link between the complex
element node and simple element node. To build a Has_4 link, a simple element node
must have a parent which is a complex element node. When a new Has 4 link is
created, it is added to the set of Has_A links.

Create_Has A_Link : (ComplexElement Node x SimpleElement_Node)
— Has A_Link

V ce : ComplexElement_Node; se . SimpleElement_Node;
schema:SchemaGDTD e
3new_Haslink; newlink: Has_A_Link; schema':SchemaGDTD|
new_Haslink = newlink o
ce » se € newlink.hasa
A schema'.HasA = schema.HasA U { new_Haslink}
= Create_Has_A_Link (ce, se) = new_Haslink

172



(7) Create Part_of_Link

Function Create_Part_of Link is used to create part-of link between a complex element
nodes and attribute node. The new part-of link can be either Attributekey or
Compositekey and the parent of the attribute node must be a complex element node. A
new part_of link is added to the set of partof links if it satisfies the attributes type.

Create_Part_of Link : (ComplexElement_Node x Attribute_Node)
— Part_of Link

V ce: ComplexElement_Node; att : Attribute_Node;
new_part_of link, part_of link: Part_of Link,
schema: SchemaGDTD «
3 schema' : SchemaGDTD |
new_part_of link = part_of link »
ce » att € part_of link.AttributeKey <

att. Att_Type = required A Parent_Att(att) = ce V

ce v att € part_of link.CompositeKey <

att. Att_Type = composite \ Parent_Att(att) = ce A

schema'.Partof = schema.Partof U {new_part_of link }

= create_Part_of Link (ce, att) = new_part_of link

173



] Deleting a Path_Link

When deleting a complex element node, we should consider the task of deleting its
corresponding links. We further define a function, Delete_Hierarchical_Link, which
describe the general task of deleting the link. By deleting the link the instance of link

will automatically be deleted as well.

Delete_Path_Link :
ComplexElement_Node x ComplexElement_Node x Path_Link
x SchemaGDTD — SchemaGDTD

V cel, ce2 : ComplexElement_Node; link : Path_Link;
schema, schema' : SchemaGDTD
link € schema.PathLink
Delete_Path_Link (cel, ce2, link , schema) = schema' <>
celmce2 € link A Parent_ce (ce2) = cel
= schema'.PathLink.hlink =
PathLink 4 schema.PathLink.link

(9) Deleting a Has_A_Link

When deleting a simple element node, we should consider the task of deleting its
corresponding links. We further define a function, Delete_Has A _Link, which describes
the general task of deleting the link between a complex element node and simple

element node.

Delete_Has A_Link :
(ComplexElement_Node x SimpleElement_Node x Has A_Link
x SchemaGDTD — SchemaGDTD

V ce : ComplexElement_Node; se: SimpleElement Node |
Link : Has_A_Link; schema, schema' : SchemaGDTD o
link € schema.HasA
Delete_Has_A_Link (ce, se, link, schema) = schema'
¢ ce Wse € has_a_link A parent_se (se) = ce
=> schema'.HasA.link = HasA.link € schema.HasA.link

174



(10) Deleting a Part_of Link

Similar to the above schema, we further define a function, Delete_Part_of Link, which
describes the general task of deleting the link between a complex element node and
attribute node.

Delete_Part _of Link:
(ComplexElement_Node x Attribute_Node x Part_of Link x SchemaGDTD
— SchemaGDTD

V ce : ComplexElement_Node; se: SimpleElement_Node ; link: Part_of Link;
schema, schema': SchemaGDTD o

link € schema.Partof

Delete_Part_of Link (ce, se,link, schema) = schema'

& cersse € link A parent_se (se) = ce

= schema'. Partof.link = Partof.link € schema.Partof link

(11)  Checking type of Path_Link
The following four functions are used to check the Path_Link Type.

175



Is_Rel One_to_One: Path_Link x SchemaGDTD — Boolean

Is Rel One_to Many : Path_Link x SchemaGDTD — Boolean
Is_Rel Many to_One : Path_Link x SchemaGDTD — Boolean
Is_Rel Many to_Many : Path_Link x SchemaGDTD — Boolean

Vrel : Path_Link; schema: SchemaGDTD |
rel €schema.PathLink A
3 pc : rel parent_constraint; cc: rel.child_constraint

Is_Rel One_to_One (rel, schema) = True &
(first rel.pc =1 A second rel pc=1 A first rel.cc =1 A second rel.cc = 1) V
Is_Rel_One_to_Many (rel, schema) = True <>
(first rel. pc =1 A second rel pc= 1 A first rel.cc> 1 A secondrel.cc> 2)V
Is_Rel Many to One (rel, schema) = True &>
(first rel pc > 1 A second rel.pc > 2 A first rel.cc = 1 A second rel.cc =2) V
Is_Rel Many to_Many (rel, schema) = True &
(first rel pc > 1 A rel.second pc > 2 A first rel.cc > 1 A second rel.cc 2 2)

(12) Checking the root and last node

To check the root node and last node in the G-DTD, the following functions are used.
The function Is_root has a complex element node and schemaGDTD as arguments and

returns the value true if the given complex element is a root node.

The status of a result node is defined using the set of Boolean messages.

Boolean::= True| False

Is_root : ComplexElement_Node x SchemaGDTD — Boolean

J1ce: ComplexElement_Node; schema: SchemaGDTD o
Is_root (ce, schema) = True &
ce € schema.Cnodes A ce.level =0

Similar to function Is_root, Is_last function has a simple element node and schema

GDTD as arguments returns the value true if the node is a last node.

176



Is_last : SimpleElement_Node x SchemaGDTD — Boolean

V se : SimpleElement_Node; schema: SchemaGDTDe
Is_last(se, schema) = True &
se € schema.Snodes A se.level = maxlevel —1

5.5.9 Operations of G-DTD in an Environment

(1) Query Operations

As presented in Chapter 3 Section (3.6), before manipulating the structure of any
complex element node of G-DTD, we should be aware of its related nodes such as its
attribute nodes and simple element nodes. Since the structure of G-DTD is like a tree

structure, a child or descendant and parent or ancestor of given complex element node

also need to be queried in some cases.

The status of a queried node is defined using the set of messages. It is defined by

enumeration like this:

Report::= Existence| Nonexistence| Inserted| Created

Based on this set, we define the following schema Success to output a confirmatory

message that the operation being performed has been succesfully completed.

_Success,
report! : Report

report! = Existence

. Query a Node

Find_AttributeKey Node shows how to get an attribute key associated to the
given Complex Element Node

177



_Find AttributeKey Node

2 Environment XML_DM

ce? : ComplexElement_Node

Jfound_attkey! : Attribute_Node

report! : Report

V schema: SchemaGDTD; part_of. Partof «
ce? &€ dom schema.part_of = report!= Nonexistence V
dom schema.pari_of € schema.Cnodes
ce? & schema.Cnodes

ce?+ 0
found_attkey! = schema.part_of AttributeKey (ce?)

Find_SimpleElement_Node schema describes that the Simple Element Node
(se!) has been found and belongs to the complex element node of G-DTD
defined in environment XML_DM.

_Find_SimpleElement_Node

Z Environment XML DM

ce? : ComplexElement_Node
Jound_se! : SimpleElement_Node
report! : Report

Y has_link. HasA; schema: SchemaGDTD o
ce? & dom schema.has_link.hasa => report!= Nonexistence V
Jound_se! = schema.has_link.hasa ({ce?})

Find_ComplexElement_Node schema describes that the ComplexElement_Node
(found_ce!) has been found since its ID, name and level are equal to the input

ID, name and level.

178



_Find ComplexElement Node

E Environment XML DM

Ce : ComplexElement_Node
ce_name? : Element_Name
ce_level? : N

ce_id? : ID

Jound_ce! : ComplexElement_Node
report! : Report

V schema: SchemaGDTD
ce € schema.Cnodes
ce? & dom schema.PathLink.path_link =
report! = Nonexistence V
(Get_Name ce = ce_name? A Get_Level ce = ce_level? A
Get_ID ce = ce_id? = found_ce!)

Finally, based on the schema definitions above, we can finally define the
following schemas, which describes the state in which a complex element node,

simple element node or attribute node has been successfully queried.

Query_SimpleElement_Node 2 Find_SimpleElement_Node A Success
Query_AttributeKey Node £ Find_AttributeKey Node A Success
Query_ComplexElement_Node 2 Find_ComplexElement_Node A Success

. Querying a Related Nodes

Query about the ancestor of complex element node can be done using a Path
Link as described in Find_Ancestor schema. We achieve this by forming the

relational inverse transitive closure of a Path_Link.

179



_Find_Ancestor

E Environment XML DM

ce? : ComplexElement_Node

anc_ce! : P ComplexElement_Node

report! = Report

V schema : SchemaGDTD, hl: Path_Link ¢
ce? & dom schema.hl.path_link =
report!= Nonexistence
"
anc_ce! = (hl.hiearchical _link' )~({ce?}}

We define the Find Descendants schema, which shows how to browse for
descendants of the given complex element node using a transitive closure of
path_link.

_Find Descendants
E Environment XML DM
ce? : ComplexElement_Node
des_ce! : IP ComplexElement Node
report! : Report
V schema : SchemaGDTD, hl: Path_Link »
ce? & dom schema.hl.path_link =
report!= Nonexistence
v
des_ce! = (hl.path_link") ({ce?})

Query_AnchestorNode 2 Find_Ancestors A Success

Query_Descendants 2 Find_Descendants A Success

Query_Related_Nodes 2 Query_AnchestorNode A Query Descendants

As we said in Chapter 3 Section (3.6), path links are only allowed to be defined between
complex element nodes. Therefore, in the following schema definition, relating to the
finding of path links, we assume that all complex element nodes are connected to a path

link with a unique name. The user is allowed to find a Path_Link corresponding to the
input Path_Link name. We specify this schema as follows:

180



Find_Path_Link
E Environment XML DM

hl_name? : Relation_Name

hl_degree? : N,

hl_pc?; hl_cc? :Nx N

hl' : Path_Link

Jound_hl: Path_Link + Relation_Name

V schema: SchemaGDTD | 3hl: Path_Link «
dom found hl S schema.PathLink
hl.name = hl_name? A hl.degree = hl_degree? A hl.parent_constarint = hl_pc?
A hl.child_constraint = hl.child_constraint =
Jound_hl hl_name? = hi!

This schema means that the existing Path_Link whose name is equal to the input name

is found.

Query_ Path_Link 2 Find_Path_Link A Success

(2)  Insert Operations
¢ Insert Complex Element Node

Insert operation allows the user to add new complex element nodes to the G-DTD. This

operation is captured by the schema Insert_New_ComplexElement_Node

181



_Insert_ New_ComplexElement_Node
A Environment XML DM

level? : N

newname? : Element Name

newid? : ID

new_ce! : ComplexElement_Node
newlink! : Path_Link

new_ce! = Create_NewComplexElement_Node (newid?, newname?, level?)
3, root : ComplexElement_Node, schema: schemaGDTD o

Is_root (parent_ce (new_ce!, schema)) = True

= new_link! = Create_Path_Link (newnode, root)

Is_root (parent_ce (new_ce!, schema)) = False

= new_link! = Create_Path_Link (newnode, parent_ce(new_ce!))

In this schema, the declaration 4 Environment XML DM alerts the user to the fact that
the schema is describing a state change of schema Environment_XML_DM by inserting
a new node into a schemaGDTD. Before the insertion is made, the precondition of this
operation is that the new complex element to be inserted must not already be one in the
schemaGDTD. This is because only one unique complex element is allowed in
schemaGDTD. To capture the condition where the complex element node is already a

member of schemaGDTD, the following schema is used:

_ComplexElement_Node_AlreadyExisted,
E Environment XML DM

ce_name? : Element_Name

ce! : ComplexElement_Node

Jound _ce : Element_Name -+ ComplexElement_Node
report! = Report

3 schema : schemaGDTD; ce: ComplexElement_Node o
ce.name = ce_name? =

Jound_ce ce_name? = ce! A ce! € schema.Cnodes
report! = Existed

If this condition 1is satisfied, the new node is created by using a
Create_NewComplexElement function and relationship type is created between a parent
or root node using a Create_Path_Link function. When the operation is successful, the

182



schema success outputs a confirmatory message inserted meaning that the operation

being performed has been successfully completed.

_success
rep! : Report

rep! = Inserted

To  perform  Do_InsertNewComplexElementNode  operation the  schema
Insert_New_ComplexElement_Node will be conjunctive with the schema success

disjunctive with schema ComplexElement_Node_AlreadyExisted

Do_InsertNewComplexElementNode & Insert_New_ComplexElement_Node A success
v
ComplexElement_Node_AlreadyExisted

° Insert Simple Element Node

Insert operation allows the user to add new simple element nodes to the G-DTD. This

operation is captured by the schema Insert_NewSimpleElement_Node.

_Insert_New_SimpleElement_Node
A Environment XML DM
level? : N
newname? : Element Name
newid? : ID
type? : SimpleElement_Type
new_se! : SimpleElement_Node
new_has_a_link! : Has A_Link

new_se! = Create_NewSimpleElement Node (newid?, newname?, level?, Type?)
new_has_a_link! = Create_Has_A_Link (newnode, Parent_se(newnode))

Similar to Insert_New_ComplexElement Node, before the insertion is made, the
precondition must be satisfied that the new simple element to be inserted must not
already be one in the schemaGDTD. To capture the condition where the simple element
node is already a member of schemaGDTD, the following schema is used:

183



_SimpleElement_Node_AlreadyExisted,
Z Environment XML DM

se_name? : Element_Name

se! : SimpleElement_Node

SJound_se : Element_Name -+ SimpleElement_Node
report! = Report

3 schema:schemaGDTD; se: SimpleElement_Node
se.name =se_name? =
Sound_se se_name? = se! A se! € schema.Snodes
report! = Existed

Finally the following schema is defined to describe the state in which a node has been

successfully inserted:

Do_InsertNewSimple ElementNode & Insert New_SimpleElement_Node A success
v
SimpleElement Node_AlreadyExisted

° Insert Attribute Node

The operation to insert attribute node is captured by the schema Insert_Attribute_Node

_Insert_Attribute Node
A Environment XML _DM
level? : N
newname? : Attribute_Name
newid? : ID
Type? : Attribute_Type
new_att! : Attribute_Node
new_part_of link! : Part_of Link

new_att! = Create_Attribute_Node (newid?, newname?, level?, Type?)
new_part_of link! = Create_Part_of Link (new_att!, Parent_att (new_att!))

To capture the condition where the attribute node is already a member of schemaGDTD,
the following schema is used:

184



_Attribute__Ndde__AIreadyExisted
& Environment XML_DM
att_name? : Attribute_Name
att! : Attribute_Node

Sfound_att : Attribute_Name + Attribute_Node
report! = Report

3 schema:schemaGDTD, att. Attribute_Nodes
att.name = att_name? =
SJound_att att_name? = att! A att! € schema.Attnodes
report! = Existed

Finally the following schema is defined to describe the state in which an attribute node

has been successfully inserted:

Do_Insert_Attribute_Node & Insert_Attribute_Node A success
v
Attribute_Node_AlreadyExisted

(3  Delete Operations

In the following, we give schema definitions showing how to delete complex element
node, simple element node, attribute node and their related links in schemaGDTD, on

the basis of the definitions of deletion operation in Chapter 3 (section 3.6).
e Delete Complex Element Node

The user is allowed to delete a complex element node from schemaGDTD. In order to

capture what happens when a complex element node is deleted, we provide the
following definition.

185



_Delete_ComplexElement_Node
AEnvironment XML DM
Query_ComplexElement_Node
Query_SimpleELement_Node
Query Attribute_Node
Query_Related Nodes

V schema : SchemaGDTD; child_ce: P ComplexElement_Node ¢
3 ce; parent_ce : ComplexElement_Node;
se: SimpleElement_Node;,
att : Attribute_Node;
parent_link : Path_Link; has_a:Has_A_Link;
part_of : Part_of Link; schema' : SchemaGDTD |
ce = found_ce! A se = found_se! A att = found_attkey! A
parent_ce= anc_ce! A child_ce = des_ce! »
parent_ce v child _ce € ran parent_link
Create_Path_Link(parent_ce, child_ce, parent_link, schema)
= schema'
Delete_Path _Link (parent_ce, ce, parent_link, schema )
= schema'
Delete_Part_of Link(ce, se, part_of, schema) = schema’
Delete_Has A_Link(ce, att, has_a, schema) = schema’
schema.Cnodes' = schema.Cnodes \ce

schema.Snodes'= schema.Snodes\se
schema.Attnodes'= schema.Attnodes\att
A"

ce & schema.Cnodes

report! = Nonexistence

Before the node can be deleted, the particular node and related nodes must be queried
and identified with a given node. The inclusion of schema
Query_ComplexElement_Node is used to find a corresponding complex element while
schema Query_SimpleElement Node, and Query_Attribute_Node is used to find its
simple element node and attribute nodes respectively. The rationale of this process is to
make sure its attribute node and simple element node are automatically deleted as well.
While deleting a node, the link between parent node and child nodes of the deleted node
186



is created using a function Create Path Link. After the complex element node is
deleted, the original Path_Link, Part_of Link and Has_A_Link can be removed from the
SchemaGDTD state space without affecting other links and nodes. However, no nodes
can be removed unless all links to the nodes have been removed first. The complete

specification of the delete operation for complex element node is captured as follows:

Do_Delete_ComplexElement Node £ Delete_ComplexElement_Node A success

“@ Replicate Operations

¢ Replicate Attribute Node

_Replicate_Attribute_Node
A Environment XML_DM

Query_ AttributeKey Node
newnode? : Complex_Element_Node
replicate_att! : Attribute_Node

3new_level : N; replicate_name : Attribute_Name; new_ID : ID|

new_id = ID —N

replicate_name = Get_Name (found_attkey!)

new_level = Get_Level (found_attkey!) +1 o
replicate_att! = Create_Attribute_Node (new_id, replicate_name, new_level)
new_part_of link! = Create_Part_of Link (replicate_att!, newnode?)

Do_Replicate_Attribute_Node 2 Replicate_Attribute_Node A success

187



e Replicate SimpleElement Node

_Replicate_SimpleElement_Node
AEnvironment XML _DM
Query_SimpleElement_Node
newnode? : Complex_Element _Node
replicate_se! : SimpleElement_Node

3 new_level : N; found_se! : SimpleElement_Node;

replicate_name : Element Name; new_id : ID |

new_id = ID —N

replicate_name = Get_Name (found_se!)

new_level = Get_Leve l(newnode?) +1 o
replicate_se! = Create_Attribute_Node (new_id, replicate_name, new_level)
new_has_a _link! = Create_Part_of Link (replicate_se!, newnode?)

Do_Replicate_SimpleElement_Node 2 Replicate_SimpleElement_Node A success

5.6 Formal Specification of G-DTD Normalizer

The second layer of XML_DM is the G-DTD Normalizer. Normalization is a step by
step process to transform the schemaGDTD into a new structure of schemaGDTD. As
presented in Chapter 4 (Section 4.3), our defined normal forms G-DTD ( 1XNF, 2XNF,
3XNF and 4XNF) are archieved by restructuring each schemaGDTD using

normalization rules.

188



We briefly defined again these normal forms. If each simple element node and attribute
node in the schemaGDTD has an atomic label node and has no repeating labels and
every complex element node has its own attribute key, it is said to be in a first normal
form( IXNF). In this work, it is assumed that the schemaGDTD satisfes this conditions.
A schemaGDTD is in a 2XNF if there exist no n-ary one-to-many/many-to-many
path_link with PFD between attribute node and simple element nodes. The 3XNF
schemaGDTD prohibits n-ary one-to-many/many-to-many path_links with TFD among
its attribute nodes and simple element nodes. And finally, schemaGDTD is in 4XNF, if
there exists no n-ary one-to-many/many-to-many path_link with GFD among its

attribute nodes and simple element nodes.

All the above processes are embedded into the G-DTD normalizer to help the user to
derive well-defined XML documents. In this layer, the user can input schemaGDTD
with the set of FDs and then it will be normalised to another level of normal form
based on her/his requirements. Generally, normalizing schemaGDTID involves a
process of creating a new complex element node, splitting a sequence of path_link and
moving a simple element node. In this section, we present the conceptual operations of
the G-DTD normalizer model, which consist of two main operations: first to determine
types of functional dependency which to classify into different PFD, TFD and GFD

types and secondly to normalize operations.

S.6.1 Determine Type Functional Dependency Operation

In this operation, a user is allowed to input a set of FDs. As a start the user is required
to input a set of FDs and then it will be classified and grouped according to the FD’s
definition presented in Chapter 4 (Section 4.2.2). The model will classify the set of FDs
as a GFD, PFD and TFD on the basis of attribute nodes and simple element nodes in
LHS and RHS of FDs. Every attribute node and simple element node is associated with
its level and this indicates the depth of the nodes in the schemaGDTD. In this operation,
for the purpose of simplicity, we make an assumption that every complex element node
in schemaGDTD has an attribute key and every node, whether attribute node, simple

189



element node or complex element node, has a unique name. As defined in Chapter 4
(Section 4.2.2), FDs such as GFD, TFD and PFD are in ‘<X, level> — <Y, level>’ form
where X and Y represent the LHS and RHS of the FDs respectively. A set of FD of a
schemaGDTD is presented as two element sets, one for LHS and the other for RHS set.
Obviously, the order of attributes and element nodes in such a set is important and

should be maintained with care throughout the normalization process.
5.6.2 Normalization Operations

After completing the classification of FDs, the user can choose the normalization
process or directly obtain the required normal forms by selecting the normalization
operation. In this operation the user is allowed to transform the schemaGDTD into a
normal form one. Normally the procedure of normalization is very tedious since it
involves theory. By having this model the user just clicks the button provided then
he/she can choose which normal form he/she requires INXF, 2XNF, 3XNF or 4XNF.
This of course will save a lot of user time and effort. This process is iteratively repeated

until the user is satisfied with the answer given.
(1)  Normalize 1XNF to 2XNF Operation

The transformation from 1XNF to 2XNF is supported by our normalization algorithm
and rules which have been presented in Chapter 4 (Section 4.4). This normalization
algorithm is embedded as a backend process of the operations to help the user to achieve
the best results. In order to transform the schemaGDTD to 2XNF, all sets of PFD need
to be determined. For every PFD, the corresponding complex element node, simple
element node and attribute node are classified and eliminated from the schemaGDTD.
The detailed process of elimination of these PFD is based on normalization rules (rule 1)
provided in Chapter 4 (Section 4.4.1). Generally the process of normalization involved
of restructuring the structure of schemaGDTD into a new structure by (1) creating a new
complex element node, (2) creating a new path_link, part_of link and has_a_link and

(3) reallocating this new complex element node and new links to a new location.

190



2) Normalize 2XNF to 3XNF Operation

In this operation, the schemaGDTD is transformed to 3XNF by eliminating the TFD.
Before the process to eliminate the TFD starts, all the given set of FDs is browsed and
sorted by grouping them together according the LHS and RHS of the given FD. Each of
the elements from LHS and RHS of the FD is identified to determine its parent node,
related node, location and level in the schemaGDTD. The detailed process of
elimination of these TFD is based on normalization rules (rule 2) provided in Chapter 4
(Section 4.4.1). Generally, in this operation, the schemaGDTD is restructured by
moving up the corresponding complex element node and its associated attribute nodes
and simple element nodes to another level. The attribute key node will become an

attribute key for a new complex element node.

3) Normalize 3XNF to 4XNF Operation

Similar to the above operations, the schemaGDTD is transformed to 4XNF by
eliminating the GFD. The detailed process of elimination of these GFD is based on
normalization rules (rule 3) can be found in Chapter 4 (Section 4.4.1). This process of
removing GFD involves restructuring schemaGDTD into a new structure by (1) creating
a new complex element node (2) creating a path_link, part_of link and has_a link and
(3) inserting this new complex element node to be directly under a root node of
schemaGDTD.

5.6.3 Basic Functions of G-DTD Normaliser

In this section we present formally the formal model of G-DTD normalizer on the basis
of conceptual operation defined in the Section 5.4.3 and Chapter 4. In this formal
approach, Functional_Dependencies is used to represent a set of FDs with a binary
relation over sets of elements.

Functional_Dependencies == F, Element < F,Element

where we construct new type Element from Attribute_Node and SimpleElement_Node

191



Element.:= f at{(Attribute_Node))| f_se{(SimpleElement_Node))
using two constructor functions f af and f se
We define a set of [Report_status] for reporting the status of SchemaGTD.
Report_status: = First_NormalForm | Second NormalForm |
Third_NormalForm| Fourth_NormalForm| Not_NormalForm
Before we define the normalization operations, we need to define the following

functions as a prerequisite to the main operations of normalize operation. We present

them as follows:
1) Find Global Functional Dependencies (GFD)

The function Find_Global_Dependencies is defined to capture the process to classify
and group all GFD. This classification of GFD is on the basis of definition presented in
Chapter 4 (Section 4.2.2). As defined in section 4.2.2, the FD is classified as GFD if the
set of elements of the LHS and RHS of FD is located at the same level and they share

the same parent node.

Find_Global_Dependencies : F Functional_Dependencies
—> FFunctional_Dependencies

V setofFD, global_fd:Functional_Dependencies o
Find_Global_Dependencies(setofFD) = global_fd &
3 schema : SchemaGDTD,;
simple_element : SimpleElement_Node;
cel, ce2 : ComplexElement_Node
attribute : Attribute_Node ;
elements : FElement |

att = f at attribute A att € schema.Attnodes

ele = f se simple_element A ele € schema.Snodes
ce2 = parent_se (ele) N ce2€ schema.Cnodes

cel = parent_att (atf) A ce2€ schema.Cnodes

cel =ce2 A

att.level = ele level A

att = ele € global_fd « (att v ele)

192



(2) Find Transitive Functional Dependency (TFD)

The function Find_Transitive_Dependencies presented below is used to classify and
group all TFD. Before the classification, all the simple elements and attributes in FD are
queried on the basis of the definition stated in Chapter 4 (Section 4.2.2). To be more

precise, we present it formally as follows.

Find_Transitive_Dependencies : FFunctional_Dependencies
— FFunctional_Dependencies

V setofFD, transitive_fd : FFunctional_Dependencies ¢
Find_Transitive_Dependencies(setofFD) = transitive_fd &
3 schema : SchemaGDTD;

simple_element : Simple Element_Node;

attribute : Attribute_Node ;

attl, atr2, ele : PElement;

cel, ce2 : ComplexElement_Node |
attl =f at attribute A attl € schema.Attnodes
ele = f se simple_element A ele € schema.Snodes
at2 = f at attribute A atf2 € schema.Attnodes
attl level < atr2.level A
att2.level < ele.level A
parent_att attl # parent_at atf2 # parent_se ele A
{artl » a2, at12 v ele} € setofFD A
attl v ele € transitive_fd « (attl » ele)

193



(3) Find Partial Functional Dependency (PFD)

The function Find_Partial Dependencies defined below is used to find all possible PFD

that exist in a set of FDs. This process is formally defined as follows:

Find_Partial_Dependencies : FFunctional_Dependencies
— FFunctional_Dependencies

V setofFD, partial_fd: Functional_Dependencies o
Find_Partial_Dependencies(setofFD) = partial_fd <
3 schema : SchemaGDTD ;
simple_element : Simple Element_Node;
attribute : Attribute_Node;
elements, att, att2, ele : FElement;
cel, ce2 : ComplexElement_Node |
attl = f at attribute A att] € schema.Attnodes
at12 = f at attribute A att2 € schema.Attnodes
ele = f se simple_element A ele € schema.Snodes
attl level < atr2.level A att2.level = se.level
parent_att attl # parent_att atf2 A
({attl, atf2} v ele, att2w ele) € setofFD A
att2 v ele € partial_fd « (att2 » ele)

(4)  Get elements of Functional Dependencies

The function getFD_elements presented below is used to retrieve all elements in LHS
and RHS of FDs

| getFD_elements : Functional_Dependencies — F Element

Vfds : Functional_Dependencies o
getFD_elements(fds) = U{fd: fds « dom fd U ran fd}

194



(5) Checking the Status of Schema GDTD

The current status of schemaGDTD can be identified using four different functions:
Is_1XNF, Is_2XNF, Is_3XNF, Is_4XNF. These rules have been defined in Chapter 4

(Section 4.3). We formally capture each of rules as follows respectively:

e Check 1XNF

Is_IXNF : (SchemaGDTID ) — Boolean

V schema : SchemaGDTD e
Is_1XNF (schema) = true &
3yroot : ComplexElement_Node » root.level =0
V cel, ce2: Cnodes | cel#ce2 » cel .name # ce2.name
V sel, se2: Snodes | sel#se2 ¢ sel.name # se2.name
Vattl, att2: Attnodes | att1#at12 « attl .name # att2.name
V hlink:Path_Link «
dom hlink.path_link € Cnodes A
ran hlink.path_link € Cnodes A
root & ran hlink.path_link
V part_of link:Part_of Link ¢
dom part_of link € Cnodes A
ran part_of link. AttributeKey € Attnodes A
root & dom part_of link
Vhas_link:Has A_Link o
dom has_link.hasa € Cnodes A
ran has_link.hasa € Snodes A
root & dom has_link.hasa

195



e Check 2XNF

Is 2XNF : (SchemaGDTD x FFunctional_Dependencies ) — Boolean

V schema : SchemaGDTD,; givenFD, partial_fd : Functional_Dependencies »
Is_2XNF (schema, given FD ) = true &

Is_1XNF (schema) = true A

= (V hlink,, hlink, : seq Path_Link «
Is_Rel Many to_One (hlink,.1, schema) = True A
Is_Rel Many to_Many (hlink,.2, schema) = True A
3, (hlink,: seq Path_Link | lastlink = last hlink, ¢
Is_Rel One_to_Many (lastlink, schema) = True)) A

(V givenFD: Functional_Dependencies o

Find_Partial_Dependencies (givenFD) = partial_fd

e Check 3XNF

Is_3XNF : (SchemaGDTD x FFunctional_Dependencies ) — Boolean

Y schema: SchemaGDTD:;
givenFD, transitive_fd : Functional_Dependencies ¢
Is 2XNF (schema, givenFD ) = true &

Is_2XNF (schema) = true A

= (V hlink,, hlink, : seq Path_Link «
Is_Rel Many_to_One(hlink,.1, schema) = True A
Is_Rel Many_to_Many(hlink,.2, schema) = True A
31 (hlinky: seq Path_Link | lastlink = last hlink, *

Is_Rel_One_to_Many(lastlink, schema) = True)) A
(V givenFD: Functional_Dependencies »
Find_Transitive_Dependencies (givenFD) = transitive_fd

196



e Check 4XNF

Is_4XNF : (SchemaGDTD x FFunctional_Dependencies ) — Boolean

V schema : SchemaGDTD,;
givenFD, partial_fd: Functional_Dependencies »
Is 4XNF (schema, given FD ) = true &

Is 3XNF (schema) = true A

= (V hlinky, hlink,: seq Path_Link »
Is Rel Many to_One(hlink,.1, schema) = True A
Is_Rel Many to_Many(hlink,.2, schema) = True A
3, (hlink,: seq Path_Link | lastlink = last hlink,
Is_Rel One_to_Many(lastlink, schema) = True)) A
(V givenFD: Functional_Dependencies ¢

Find_Global_Dependencies(givenFD ) = global_fd

5.6.4 Restructure IXNF Schema Operations

To normalize 1XNF to 2XNF G-DTD, the Restructure_IXNF_schemaGDTD schema is
defined to represent the process. The input of the operation is the schemaGDTD and set
of FDs and the output of this operation is a new schemaGDTD in a 2XNF form. This
schema uses the Find_PathLink_with_Dependency operation as a precondition to test
whether path links of one-to-many/many-to-many or many-to-one relationship types
exist in SchemaGDTD.

_Find_PathLink_with_Dependency
E Environment XML DM
Jound_dependency! = Report
V hlink : Path_Link |
hlink € current_schema?.PathLink A
# hlink.degree > 2 A
Is_Rel_Many_to_Many (hlink, Current_schema?)= true V
Is_Rel_One_to_Many (hlink, Current_schema?) = true V
Is_Rel Many_to_One(hlink, Current_schema?) = true ¢
Jound _dependency! = Existence

197



If the precondition is satisfied, all the PFDs will be extracted from the given set of FDs
using a Find_Partial_Dependency function. In the Restructure IXNF schemaGDTD
schema, for each of PFD, the associated parent for both LHS and RHS elements of the
PFD is determined using parent_att and parent_se functions. When the parent node,
which is a complex element type, is determined, a new complex element node is created
and inserted using the operation Insert_ New_ComplexElement_Node. Both
Insert_SimpleELement _Node and Insert_Attribute_Node schemas are used to create a
new simple element node and attribute node for the new complex element node. The
function Delete_Has _A_Link is applied to delete all Has_A links between the former
simple element node and its parent node. Finally the new schemaGDTD without the
PFD is generated. The new schema in 2XNF form contains only the updated nodes and
links.

198



_Restructure_IXNF schemaGDTD

AEnvironment_ XML DM

Find_PathLink_with_Dependency

Do_Insert_ New_ComplexElement_Node
Do_Replicate_Attribute_Node

Do_Replicate_SimpleElement_Node

current_schema? : schemaGDTD

Jound_partial_fd\, new_fd\, current_fd? : FFunctional_Dependencies
result! : Report_status

check_dependency!: Report

Is_ 1XNF(current _schema?) = true
Is 2XNF(current_schema?, current_fd?) # true
check_dependency! = found_dependency!
Jound_partial_fd \= Find_Partial_Dependencies (current_fd?) A
V ce:ComplexElement_Node; se : SimpleElement_Node |
3 elements : Elements; created_att. Attribute_Node ;
created_se: SimpleElement_Node o
elements = getFD _element (found_partial_fd!) A
att € ran elements A se € ran elements A
parent_att att = ce A parent_se se = ce ¢
new_fd! = current_fd? \ found_partial fd! A
Vschema': schemaGDTDe
3 created_ce: ComplexElement_Node; created_att: Attribute_Node;
created_se: SimpleElement_Node; new_link: Path_Link;
new_partlink: Part_of Link; new_haslink: Has_A_Link »
schema' = Delete_Has_A_Link (ce, se, part_of, current_schema?)
created_ce = new_ce! A created_att = new_att! A
created_se = new_se! A new_link = newlink!
new_partlink = new_part_link!
new_haslink = new_has_link! A
schema'. Attnodes = schema.Attnodes U created_att A
schema'.Snodes = schema.Snode U created_se A
schema'.Cnodes = schema.Cnodes U created ce A
schema'.PathLink = schema.PathLink U new_link A
schema'. Partof =schema. Partof U new_partlink A
schema'.HasA = schema.HasA U new_haslink A
result! = Second_NormalForm

199



Second_NormalForm_GDTD =2 Restucture_IXNF schemaGDTD V

Not_NormalForm

5.6.5 Restructure 2XNF Schema Operations

To normalize 2XNF to 3XNF G-DTD, the schema Restructure 2XNF _SchemaGDTD is
used to capture the process. The input for the schema is set of FDs and schemaGDTD
while the result reports the status of the new schema. The precondition for this
operation is to test whether the path links types existing in SchemaGDTD have one-to-
many/many-to-many or many-to-one relationship. If the precondition is satisfied, all the
PFD will be extracted from the given set of FDs and then eliminated. This process is
captured by the following schema.

_Find_Path_Link_with_TFD,
A Environment XML _DM
new_fd\, current_fd? : FFunctional_Dependencies
current_schema? : SchemaGDTD

V hlink: Path_Link |
hlink € PathLink A
# hlink.degree > 2 A
Is_Rel Many to_Many (hlink, current_schema?) = true V
Is_Rel_One_to_Many (hlink, current_schema?) = true V
Is_Rel_Many_to_One (hlink, current_schema?) = true A
transitive_fd = Find_Transitive_Dependencies (current_fd?)
new_fd |= current_fd? \transitive_fd

Schema Restructure 2XNF_SchemaGDTD presents the operation to eliminate PFD
from SchemaGTD. In this schema, three operations are included, Query Complex
Element Node, Find_Simple_Element_Node and Find_AttributeNode to determine the
location of complex element, simple element and attribute node in schema G-DTD.
Each path link type is identified to confirm that all the related complex element nodes
must be a member of a set of complex element node in schemaGDID. The new created

complex element node can be linked to either a root node or another complex element
200



node. Once TFD(s) have been removed from the SchemaGDID, the operation will
generate a 2XNF result. Finally the total specification to normalize GDTD to 2XNF is

given as follows.

_Restructure_2XNF SchemaGDTD
A Environment XML DM
Find_Path_Link_with TFD
Query_ComplexElement_Node
Query_SimpleElement_Node
Query_Attribute_Node
current_schema?, new_schema! : schemaGDTD
result! : Report Status

(Vcel, ce2, created_ce : ComplexElement_Node; hlink :Path_Link |
cel, ce2 € current_schema?.CNodes A
hlink € current_schema? .PathLink
cel » ce2 € hlink.path_link
ce2.level - cel.level = 1 = ce2.level = cel.level
3 existed_att: Attribute_Node ;
existed_se: SimpleElement_Node ; schema'. schemaGTD |
existed_att = found_ant! A existed_se = found_se! ¢
existed_att.level A existed_se.level = ce2.level +1
(31root.ComplexElement_Node; new_link: Path_Link |
root.level = 0 A
Is_Root (parent_ce(cel), current_Schema?) = true
= new_link = Create_Path_Link (ce2, root))
Is_Root (parent_ce(cel), current_Schema?) = false
= new_link = Create_Path_Link (ce2, parent_ce(cel))
current_schema?'. Attnodes =current_schema? Attnodes U existed_att
current_schema?'.Snodes =current_schema?.Snode U existed_se
current_schema?'.PathLink =
current_schema?.PathLink U new_ link o
result!= Third NormalForm

Third_NormalForm_GDTD 2 Restucture 2XNF _SchemaGDTD V Not_NormalForm

201



5.6.6 Restructure 3XNF Schema Operations

To transform from 3XNF to 4XNF G-DTD, the schema
Restucture 3XNF_SchemaGDTD is defined to represent the process. This schema
include schema Find_Path_Link with_GFD as defined in the following section.

_Find_Path_Link_with_GFD
AEnvironment XML DM
current_schema? : SchemaGTD

new_fd\, current_fd? : PFunctional_Dependencies

V hlink : Path_Link |
hlink € current_schema? PathLink A
# hlink.degree > 2 A
Is_Rel Many to_Many (hlink, current_schema?)= true V
Is_Rel One_to_Many (hlink, current_schema?) = true V
Is_Rel_Many to_One(hlink, current_schema?) = true A
global_fd =Find_Global_Dependencies (current_fd!)

newfd!= current_fd?\ global fd

The schema Find_Path_Link_with_GFD is used to capture an operation to eliminate
path links of n-ary many-to-many or one-to-many type with GFD. This operation is
similar to Find_Path_Link_with_PFD except the new created complex element node is

inserted directly under a root node.

The schema Restucture_3XNF_SchemaGDTD has a set of GFD and SchemaGDTD
while the result will be a new schema and a report in fourth normal form G-DTD. Like

the previous schema, the same preconditions are tested and GFD will be removed from
the set of FDs.

202



_Restucture_3XNF_SchemaGDTD

A Environment XML _DM
Find_Path_Link_with_ GFD

Query ComplexElement_Node
Insert_New_ComplexElement_Node
Insert_SimpleElement_Node
Insert_Attribute_Node

current_schema?, new_schema! : schemaGTD
global_FD? : Functional _Dependencies
result!: Report Status

(Vcel, ce2, created_ce : ComplexElement_Node; hlink: Path_Link ;
schema: schemaGDTD |
hlink € current_schema? PathLink
cel, ce2 € current_schema?.CNodes A
cel » ce2 €hlink.path_link
(2 new_link : Path_Link ; created_att: Attribute_Node
created_se: SimpleElement_Node ; schema': schemaGDTD |
created_ce = new_ce! A created_att = new_att! A
created_se = new_se!
new_link = newlink!
new_part_of = new_part _link!
new_has_link = new_has_link! o
(2 elements : Elements |elements = getFD_element (global_FD?)
att € ran element A se € ran elements
parent_att att = ce2 A
parent_se se = ce2 A
Delete_Has_A_Link (ce2, se, part_of,current_schema?) = schema
schema'. Attnodes = schema.Attnodes U created_att A
schema'.Snodes = schema.Snodes \U created _se A
schema'.Cnodes = schema.Cnodes U created_ce A
schema'.PathLink = schema.PathLink U new_link A
schema'. Partof =schema.Partof U new_part_of A
schema'.HasA = schema.HasA U new_has _link))) »
new_schema\ = schema'
result!= Fouth_NormalForm

’

203



We define the following schema, which reports the status of G-DTD as being in not

normal form

_Not_Normal_Form

status!: Report_Status

status! = not_normalForm

The total specification of the 4XNF is given as follows

Fourth_NormalForm_GDTD 2 Restucture 3XNF_SchemaGDTD VNot_NormalForm

5.7 Formal Specification of G-DTD Translator

Once the final schemaGDTD is derived it will then map back to a DTD format. The
user can design a redundancy-free XML document on the basis of this new DTD format.
The algorithm for this mapping purpose has been presented in Chapter 3 (Section 3.7).
In this algorithm we provide a depth first traversal method for each element in
schemaGDTD map to DTD format. We use flat mapping in this approach since it is
simpler.  The mapping process uses one-to-one mapping between nodes in
schemaGDTD with building blocks in DTD. The main building blocks of DTD are
element and ettribute, defined by the tags <!ELEMENT> and <!ATTLIST>
respectively. Keywords PCDATA and CDATA are used as string types for element and

attribute respectively. We capture this process using the following definition.

The given set [DTD] and following free type definitions:

204



Operators::=+ |7 |*
Tag ::= DOCTYPE| ELEMENT| ATTLIST
keyword::= ID | REQUIRED| PCDATA| CDATA| EMPTY

We define the following function to map directly each complex element node, simple
element node and attribute node of schemaGDTD to DTD structure. Function ce_tag is
used to mapcomplex element node to I[ELEMENT tag while function att_tag is used to
map attribute_node with !ATTLIST ID REQUIRED and function se_tag is used to map
simpleelement_node with !ATTLIST PCDATA or EMPTY. Function op is to map all
types of operators used by depending on the type of semantic relationship between the

complex element nodes.

ce_tag : ComplexElement_Node —Tag
se_tag : SimplelElement_Node — Tag
att_tag :Attribute_Node — Tag

op : ComplexElement_Node — Operators

(Vce:ComplexElement_Node, att: Attribute_Node, se: SimpleElement_Node |
ce € schema.Cnodes
att € schema.Attnodes
se € schema.Snodes
(Is_root ce) => ce_tag ce = DOCTYPE
v
—(Is_root ce) = ce_tag ce = ELEMENT
ait_tag att = ATTLIST
(Vhl:path_link, cel,ce2: ComplexElement_Node |
cel »ce2 €hle
Voperators: {
op (ce2) = * & Is_one_to_many(hl) V hl.degree > 2
Vop(ce2) = ? & Is_zero_to_one (hl) A hl.degree > 2
Vop(ce2) = + & Is zero_to_many (hl) A hl.degree > 2))

205



Map : SchemaGDTD — DTD

3Ischema: SchemaGDTD, D: DTD+
map schema = D &
(Vce:ComplexElement_Node, att: Attribute_Node, se:SimpleElement_Node
hl: path_link; has_a: Has_a_link, part_of: part_of |
ce € Cnodes
att € AttNodes
se € Snodes
hl € PathLink «
ce_tag(ce) V
ce v parent_ce~(ce) € hl A op (parent_ce~ (ce))
ce w se € has_a A se_tag (se)
ce > att € part_of A att_tag(att) )

Finally the process to map the shcemaGDTD to a new DTD is captured by the schema
GDTD_Translator. The input fot schema is schemaDGTD and the output is DTD.

In this schema the function map is used to map each node in SchemaGDTD to

DTD structure.

_GDTD_Translator
A Environment XML_DM
schema?:. SchemaGDTD
output!: DTD

output! = map (schema?)

DoGDTD _Translator £ GDTD_Translator A success

58 Summary

In this chapter, we have constructed a formal specification of the XML document design
prototype. The purpose of this specification is to help the user to understand the whole
picture of the proposed prototype system. More importantly, by using Z, we can define
precisely the data structure, semantic constraints and operations of the XML document

206



design system. In particular, the important components of the system, which are the
conceptual model G-DTD and G-DTD normalizer, have been precisely formalized to
capture both the structure of the XML document and the normalization process. It is
observed that application of formal specification in XML normalization has increased
the correctness of the system at the abstract level and gives more confidence to automate

the process of XML document normalization.

207



Chapter 6

Specification Testing — A Case Study

6.1 Introduction

In this chapter we will test the specification that was constructed in Chapter 5 with the

specific case study to check

“Does the specification describe for the properties of XML document design represent

what the users want/are expecting to get?”

Because Z specifications are formal descriptions based on predicate logic, we can test
them in ways that enable us to prove that they satisfy certain fundamental criteria in
respect to the question above. This will increase the confidence in the implementation

later.

In this chapter we are checking the properties of XML document design, in particular
the G-DTD normaliser layer, to seek for the consistency of the operations defined in
Chapter 4 with the specification defined in Chapter 5. With respect to the above
question we must ensure that the specification presented in Chapter 5, specifically the
G-DTD normaliser specification can be used to derive a required normal form design
using the set of normal forms and normalization rules presented in Chapter 4. Even
though we have illustrated this concept informally through the case study presented in
Chapter 4 Section 4.5, in this chapter we formally demonstrate again the properties of
XML document design through Z specification to show the validity of the specification.
In this case study, the G-DTD normaliser layer is chosen as an example because it
contains the important properties of XML document design such as 1XNF, 2XNF,
3XNF and 4XNF designs. To show the consistency and correctness of the specification
of the G-DTD normaliser constructed in Chapter 5 (Section 5.6), we reapply the same
case study as in Chapter 4 (Section 4.5) throughout this chapter.

208



The rest of the chapter is organized as follows. Section 6.2 presents an example of a G-
DTD diagram in a Z specification. Section 6.3 presents the consistency of the
operations in G-DTD normaliser by formally demonstrating the normalization steps to
transform from INXF until to 4XNF design using Z specification. Finally, a summary

of the work is presented in section 6.4.

6.2  Representing G-DTD Diagram in a Z Specification

We illustrate how a G-DTD schema diagram of the university database in Figure 4.2 can
be represented using the Z specification as defined in Chapter 5 (Section 5.5). Ina Z
specification, a G-DTD schema is represented as a SchemaGDTD. The SchemaGDTD
defines a G-DTD schema in sets and relations expressions with predicates representing
associated constraints. The SchemaGDTD contains a root, Cnodes, Snodes and Attnodes
which represent a root, a set of complex element nodes, a set of simple element nodes
and a set of attribute nodes respectively. The sets of relations named Partof, Has4 and
PathLink are presented as relations to represent a set of ordered pairs between a set of
complex element nodes and a set of attribute nodes, a set of ordered pairs between a set
of complex element nodes and a set of simple element nodes and a set of ordered pairs
between a set of complex element nodes and a set of complex element nodes
respectively. In this specification, PathLink is represented as a sequence of a set of
relation between complex element nodes and complex element nodes. Figure 6.1
presents the SchemaGDTD for the G-DTD diagram represented in a Z specification. As
shown in Figure 6.1, a root which is (J, department, 0) is a special case of a complex
elements node which is always located at level 0. The set Cnodes contains four complex
element nodes: {(1, department, 0), (2, course, 1), (5, student, 2), (9, lecturer, 3)}. The
set of Snodes contains four simple element nodes: {(4, titles, 2), {(7, fname, 3), (8, Iname,
3)} (11, name, 4)} and the set of Attnodes consists of three attribute nodes: {(3, cno, 2),
(6, sno, 3), (10, tno, 4)}.

The Partof relation is a type of total and injective function because each complex

element node in Cnodes except the root node (J, Department, 0) has a unique attribute

node. The range of the Partof relation is a set of attribute nodes: Attnodes, for instance,
209



{(2, course, 1) » (3, cno, 2), (3, student,2) v (6, sno, 3), (9, lecturer, 3) » (10, tno, 4)}.
The HasA relation has its domain as a set of complex element nodes and it range as a set
of simple element node; Snodes, for instance: {(2, course, 1) = (4, titles, 2), (3, student,
2) » {(7, fname, 3), (8, Iname, 3)}, (9, lecturer,3 ) v (11, name, 4)}. For the
HieararchicalLink, both its domain and range belong to a set of complex element nodes:
Cnodes, for instance <{((l, department, 0) v (2, course, 1), 2, 1..n, 1..1), ((2, course,
I)» (5, student, 2), 2, 1..n, 1..n), ((5, Student, 2) v (9, lecturer, 3)}>

Root = {(1, department, 0)}
Cnodes = {(1, department, 0), (2, course, 1), (5, student, 2), (9, lecturer, 3)}
Snodes = {(4, titles, 2), {(7, fname, 3), (8, Iname, 3)}, (11, name, 4) }
Attnodes = {(3, cno, 2), (6, sno, 3), (10, tno, 4)}
Partof = {(2, course, 1) + (3, cno, 2), (5, student, 2) + (6, sno, 3),
(9, lecturer, 3)= (10, tno, 4)}
HasA = {(2, course, 1) + (4, titles, 2),
(5, student, 2) ~ {(7, fname, 3), (8, Iname, 3)},
(9, lecturer, 3) ~ (11, name, 4)}
PathLink = <{(1, department, 0) +(2, course, 1), 2, 1..n, 1..1),
((2, course, 1)~ (5, student, 2), 2, 1..n, 1..n),

(3, student, 2) =(9, lecturer, 3), 2, 1..1, 1..n)}>

Figure 6.1: SchemaGDTD

210



KD: {(3, cno, 2) —(2, Course, 1),
(6, sno, 3)— (3, Student, 2),
(10, tno, 4)—(9, lecturer, 3)}
GFD = {(6, sno, 3) — {<((7, fname, 3), (8, Iname, 3)>,
(10, tno, 4)— (11, tname, 4)
TFD = (3, cno, 2)— (10, tno, 4)
(10, tno, 4)— (11, tname, 4)
(3, cno, 2) —(11, tname, 4)
PFD = {<(3, cno, 2), (10, tno, 4)> — (11, tname, 4),

(10, tno, 4)> — (11, tname, 4)}

Figure 6.2: Set of KD and FDs

As shown in Figure 6.2, FD is defined as a set of homogenous relations between a set of

attributes/simple elements and a set of attributes/simple elements

6.3  Consistency of the Operations in G-DTD Normalizer

In this section, we present formally the G-DTD normaliser operations by demonstrating
how SchemaGDTD is transformed from IXNF, 2XNF, 3XNF and 4XNF design on the
basis of a set of normal forms and normalization rules presented in Chapter 5 (Section
5.6).

211



6.3.1 IXNF

The above schemaGDTD in Figure 6.1 is in 1XNF because it satisfies all the seven
predicates listed in the 1XNF rules (see function Is_IXNF in section 5.6.3). We listed all

the predicates as follows:
(1) 3 root = Department (True)
) Veel, ce2:Cnodes| cel # ce2 o cel.name # ce2.name ( True)
This predicate is true because for set Cnodes, each node has a unique name
a3) Vsel, se2:Snodes| sel # se2 o sel.name # se2.name (True)
This predicate is true because for set Snodes, each node has a unique name
@) Vattl, att2: Attnodes| attl # att2  attl.name # att2.name
Vattl.level # att2.level (True)
This predicate is true because for set Attnodes, each node has a unique name
) V hlink: Path_Link ¢ dom hlink.path_link € Cnodes
A ran hlink.path_link € Cnodes Aroot & ran hlink (True)

(6) Vpart_of link: Part_of « dom part_of link € Cnodes

Aran part_of link. AttributeKey € Attnodes

Aroot &dom part_of link (True)
(7) ¥ has_link: HasA ¢ dom has_link.hasa € Cnodes

Aran has_link hasa € Snodes

A root &dom has_link.hasa (True)

Since all the seven predicates return the true value, the schemaGDTD satisfies IXNF.

212



6.3.2 Normalize 1XNF to 2XNF

Given SchemaGDTD with a set of KD and FD as shown in Figures 6.1 and 6.2
respectively, G-DTD normaliser will check the status of SchemaGDTD using the
function Is_2XNF. The SchemaGDTD is not in the 2XNF form since it does not satisfy

some of the predicates listed in the function Is_2XNF. This can be proved as follows:

Function Is_2XNF contains three predicates:
(1) Is_IXNF (schema) =true

The first predicate is true since the SchemaGDTD has satisfied all the predicates as

shown in section 6.3.1
(2) —~(V hlink,, hlink,: seq Path_Link |
Is Rel Many_to_One (hlink,.1, schema) = True A
Is_Rel_Many_to_Many(hlink;.2, schema) = True A
3; (hlink,: seq Path_Link| lastlink = last hlink, ¢
Is_Rel One_to_Many(lastlink, schema) = True))

= (True A True A True) Negation of these predicates returns a false value

In the second predicate, each Path_Link is identified in a sequence starting from the first
position until the last position of the Hieararchical Link. Function
Is_Rel_Many_to_One is used to check if (1, department, 0)+=(2, course, 1), 2, 1..n, 1..1)

is a many_to_one relationship. This returns a true value since it satisfies the following
condition:

(firstrel.pc> 1 A secondrelpc>2 A firstrelcc =1 A secondrel.cc=1)

Function Is_Rel_Many to_Many, returns a true value for the Path_Link ((2, Course,
1) (5, Student, 2), 2, 1..n, 1..n) since it satisfies the following condition:

213



(firstrelpc > 1 Arel.secondpc>2 A firstrel.cc > 1 A secondrel.cc > 2)

and Function Is_Rel _One_to_Many returns a true value for the Path_Link ((5,Student,

2) + (9, lecturer, 3), 2, 1..1, 1..n) since it satisfies the following condition:

firstrelpc> 1 A second rel.pc > 1 A first rel.cc = 1 A second rel.cc = 2)

Note : pc and cc refer to parent constraint and child constraint respectively.

(3) — ( VgivenFD : Funcional_Dependencies o
{ 3 pfd: partial_FD |pfd = Find_Partial_Dependencies (givenFD) A
pfd € partial_ dependency}  pfd)

The third predicate indicates that the function Find_Partial_Dependencies returns a true
value since PFD (10, tno, 4)—(11, name, 4) is found in the set of givenFD as it satisfies

the following predicate:

(V fds: given set FD :
Ffdl:fd2: fds | fd1.2 N\ fd2.1# GAfd]l.2 = fd2.2 « fd2 €partial FD)
For instance: fdl: {(3, cno, 2), (10, tno, 4)} — {(11, tname, 4)}
fd2: {{(10, tno, 4)}— {(11, tname, 4)}
thus, the following statement returns a true value as
=fd1.2Nfd2.1# PAfd.2 = fd2.2
={(3, cno, 2), (10, tno, 4)} N{(10, tno, 4)} # @ A (11, tname, 4) = (11, tname, 4)
= fd2: (10, tno, 4)—(11, tname, 4) is a PFD
Hence, — (True) = False

214



As aresult of the conjunction of all the three predicates with the values (True A False A
False), the function Is_2XNF will return the False value. This means the SchemaGDTD
is not in the 2XNF. To transform the SchemaGDTD to the 2XNF design, the following
schema is applied

Second_NormalForm_GDTD 2Restructure_IXNF_schemaGDTD v Not_NormalForm

As presented in Chapter 5 (Section 5.6.4), Schema Restructure_IXNF_schemaGDTD

consists of the following schemas inclusion
(1) Find_PathLink_with_Dependency
(1.1) Find_Partial_Dependencies
(2) Do_Insert New_ComplexElement_Node
(3) Do_Replicate_Attribute_Node
(4) Do_Replicate_SimpleElement_Node

We present here how each of the above functions is used to normalize the structure of
1XNF SchemaGDTD.

Step 1: Find_PathLink_with_Dependency

The Find_PathLink_with_Dependency schema returns the value true since there exist
many-to-one and many-to-many relationships in the set of relations PathLink in the
SchemaGDTD. This process is executed using the functions Is_Rel_Many_to_One and
Is_Rel_Many_to_Many (the process similar to predicate in function Is_2XNF). For
instance, with the existence of the following relations in the PathLink set, the schema
will generate an Existence report.

<{(1, Department, 0)(2, Course, 1), 2, 1..n, 1.1),

((2, Course, 1)~ (3, Student, 2), 2, 1..n, 1..n)}>
215



Step 1.1: Function Find_Partial_Dependencies is used to get the PFD in the givenFD.

In this function, one argument is given, which is a set of FD and returns the PFD

The function Find_Partial_Dependencies returns (10, tno, 4)— (11, name, 4) asit

satisfies the following predicate:
( V' fds: givenFD :
Ffdl fd2: fds | fdl.2 N\ fd2.1# G Afd].2 = fd2.2 «fd2 € partial FD)

Step 1.2: Then, the parent of LHS and RHS of PFD is determined using the relation
Has_A_Link and Part of Link. Hence,

Has_A_Link~((10, tno, 4))= (9, lecturer, 3) A

Part_of Link™((11, name, 4))= (9, lecturer, 3)

Step 2: Do_Insert_New_ComplexElement_Node

Once the complex element node (9, lecturer, 3) is determined, the following schema is
applied.

Do_Insert_New_ComplexElemen Node 2 Insert NewComplexElement_Node A success

4
ComplexElement_Node_AlreadyExisted

Step 2.1 Insert_New_ComplexElement Node will insert a newly created complex
element node into a new position in the SchemaGDTD. Before the insertion is made, a
new complex element node must be created using the function
Create_NewComplexElement_Node. In this function, the properties of the new complex
element node such as ID, name and level are created. The ID is generated automatically
based on the preorder traversal method. For instance in this case, the ID is 12, the name
for the new complex element is given as lecturer_new based on the complex element

node (9, lecturer, 3) which has been determined from step 1.2. The level is equivalent

216



to a parent of complex element node (9, lecturer, 3). This process is demonstrated using

the following predicates:

¢)) Using parent_ce function

= (9, lecturer, 3) » (5, Student, 2) € parent_ce

> (9, lecturer, 3) # (3, Student, 2)

& Get_level (5, Student, 2)< Get_Level((9, lecturer, 3)

«3-2=1

= (3, Student, 2)

) Get_level(lecturer_new)= 2 and Get_ID(lecturernew) = 12
(3)  newnode = (12, lecturer new, 2)

@) (12, lecturer_new, 2) & schema.Cnodes

(5)  schema'.Cnodes = schema.Cnodes U {(12, lecturer_new, 2)}

Step 2.2 The (12, lecturer_new, 2) is linked with a parent node using the following

statement
new_link! = Create_Path_Link (newnode, parent_ce (parent_ce ce!))

A Path_Link is created between new node (12, lecturer_new, 2) and the parent of (5,
student, 2) which is (2, Course, 1) .

The instance of a new Path_Link which is (2, 1.1, 1..n) is replicated from the previous
Path_Link between (2, Course, 1) and (12, lecturer_new, 2). This process is shown
using the following predicates:

(2, Course, 1) + (12, lecturer_new, 2) € newlink.PathLink <
(1) (2 Course, 1) + (12, lecturer_new, 2) & newlink.PathLink®  (True)

(2) (2 Course, 1) = Parent_ce (12, lecturer_new, 2) (True)

217



(3) newlink = (2, Course, 1) + (12, lecturer_new, 2) A newlink.degree =2 A
(4) newlink.pc = 1..1 Anewlink.cc = 1.n
(5) schema’.PathLink =

schema.PathLink U {(2, Course, 1) + (12, lecturer_new, 2),2, 1..1, 1..n}

Step 3: Do_Replicate_Attribute_Node

Do_Replicate_Attribute_Node £ Replicate_Attribute_Node A success
4
Attribute_Node_AlreadyExisted

newnode?= (12, lecturer_new, 2) and oldnode? = (9, lecturer, 3)
(1) found_attkey! = partof ((oldnode) )
= Partof (9, lecturer, 3))
= (10, tno, 4)
(2) new_ID=ID~n
=13
(3) replicate_name = Get_Name (found_attkey!)
= Get_Name ((10, tno, 4)
=tno
(4) new_level = Get_Level(newnode)+1

=QGet_Level (12, lecturer_new, 2)+1

(5) replicate_att! = Create_Attribute_Node(new_.ID, replicate_name, new_level)
= Create_Attribute_Node (13, tno, 3)
(6) new_Partof Link = Create_Partof Link (replicate_attribute, newnode)

218




= Create_Partof Link ((13, tno, 3), (12, lecturer_new, 2))
= (12, lecturer_new, 2) ~ (13, tno, 3) € Partof
= schemaGDTD’. Partof = schemaGDTD.Partof U

(12, lecturer_new, 2) (13, tno, 3)

Step 4: Do_ Replicate_SimpleElement_Node

Do_Replicate_SimpleElementNode 2 Replicate_SimpleElement Node A success

Schema Replicate _SimpleElement Node consists of following predicates

newnode? = (12, lecturer_new, 2) and oldnode? =(9, lecturer, 3)
(1)  found_se! = HasA{ (oldnode?))
= HasA ((9, lecturer, 3))
= (11, tname, 4)
(2) new_ ID = IDwn
=ID~14
(3)  replicate_name= Get_Name (found_se!)
= Get_Name (11, thame, 4)
= tname
(4)  new_level = Get_Level(newnode)+1
= Get_Level (12, lecturer_new, 2)+1

=2+1 =3

219



)

(6)

o)

@)

replicate_se |= Create_SimpleElement_Node(new_ID, replicate_name,

new_level)
= Create_SimpleElement_Node (14, tname, 3)
new_has_a_link! =Create_Has_A_Link (replicate_se, newnode)
= Create_Has A_Link ((14, tname, 3), (12, lecturer_new, 2))
= (12, lecturer_new, 2) ~ (14, tname, 3) € HasA

= schemaGDTD’.HasA = schemaGDTD.HasA U
(12, lecturer_new, 2) » (14, tname, 3)

Snodes’ = Snodes | oldnode
= Snodes \ (11, tname, 4)

Schema’.HAsA = schema.HasA \(9, lecturer, 3) » (11, tname, 4)

Step 5: Update a set of complex element nodes, simple element nodes and attribute

nodes

The process of updating is done using the following predicates:

)
@
€))
(4)

&)
©)

schema'. Attnodes = schema.Attnodes U( 13, tno, 3)
schema'.Snodes = schema.Snodes @ (14, tname, 3)
schema'.Cnodes = schema.Cnodes U (12, lecturer_new, 2)
schema'.HierachicalLink = schema.HierachicalLink U

{(2, Course, 1) + (12, lecturer_new, 2), 2, 1..1, 1..N}
schema’. Partof=schema. PartofLink U{ (12, lecturer_new, 2) (13, tno, 3)}

schema'.HasA = schema.HasA U (12, lecturer_new, 2 + 14, tname, 3)

Step 6: Update the data dependencies

Data dependencies are updated using the following predicates

220



(1) KD’=KD U{((13, tno, 3) »12, lecturer_new, 2) }
) FD’=FD \{(10, tno, 4) — (11, tname, 4)}

(3)  FD’=FD U{(13, tno, 3) — (14, tname, 3)}

The following Figure 6.3 and Figure 6.4 are the SchemaGDTD in a 2XNF design and
updated set of FDs respectively.

Root = {(1, Department, ()}
Cnodes = {(1, Department, 0), (2, Course, 1), (5, Student, 2), (9, lecturer, 3),
(12, lecturer_new, 2)}
Snodes = {(4, titles, 2), {(7, fname, 3), (8, Iname, 3)}, (14, tname, 3) }
Attnodes = {(3, cno, 2), (6, sno, 3), (10, tno, 4), (13, tno, 3)}
Partof = {(2, course, 1) + (3, cno, 2), (5, student, 2) + (6, sno, 3),
(9, lecturer, 3) + (10, tno, 4), (12, lecturer_new, 2) +(13, tno, 3)}
HasA = {(2, course, 1) +(4, titles, 2), (5, student, 2) + {(7, fname, 3),
(8, Iname, 3)}, ((12, lecturer_new, 2) ~ 14, tname, 3)}
PathLink = <{(1, Department, 0) ~(2,Course, 1), 2, 1..n, 1..1),
(2, Course, 1)+ (5, Student, 2), 2, 1..n, 1..n),
((5, Student, 2) (9, lecturer, 3), 2, 1..1, 1..n)}>,
(2, Course, 1) (12, lecturer_new, 2), 2, 1..1, 1..N)> }>

Figure 6.3: Schema GDTD in 2XNF

221



KD= {(3, cno, 2) = (2, Course, 1),

(6, sno, 3) — (5, Student, 2),
(10, tno, 4)— (9, lecturer, 3),
(13, tno, 3) — (12, lecturer_new, 2)}

GFD = {(6, sno, 3) = {((7, frame, 3),(8, Iname, 3),
(13, tno, 3) — (14, tname, 3)

TFD = (3, cno, 2) — (13, tno, 3)
(13, tno, 3) — (14, tname, 3)
(3, cno, 2) — (14, tname, 3)

PFD = {< (3, cno, 2), (6, sno, 3)> — (13, tno, 3),
(13, o, 3) — (14, tname, 3)}

Figure 6.4: Set of KDs and FDs

6.3.3 Normalize 2XNF to 3XNF

Given SchemaGDTD with a set of FDs as shown in Figure 6.3 and Figure 6.4, first,
GTD normaliser will check the status of SchemaGDTD using function Is_3XNF. If the
SchemaGDTD is in 3XNF, the function will return the value true.

Function Is_3XNF contains three predicates:
(1) Is_2XNF (schema) = true

The first predicate is true since the SchemaGDTD has satisfied all the predicates as
shown in Figure 6.3

(2) ~(V hlink,, hlink;: seq Path_Link |

Is_Rel_Many to_One (hlink;.1, schema) = True A

222



Is_Rel_Many to_Many (hlink,.2, schema) = True A
3 (hlink,: seq Path_Link | lastlink = last hlink,
Is_Rel_One_to_Many (lastlink, schema) = True))

= (True A True A True) Negation of these predicates returns a false value

In the second predicate, each Path_Link is identified in a sequence starting from the first
position until the last position of the Path_Link. Function Is_Rel Many to_One is used
to check if (1, department, 0) ~ (2, course, 1), 2, 1.n, 1..1) is a many_to_one

relationship. This returns a true value since it satisfies the following condition:

(first rel. pc 2 1 A second rel.pc >2 A first relcc =1 A second rel.cc=1)

Function Is_Rel Many to_Many, returns a true value for the Path link ((2, Course, 1) +~
(5, Student, 2), 2, 1..n, 1..n) since it satisfies the following condition:

(firstrelpc 2 1 Arel.secondpc>2 A firstrel.cc> 1 Asecond rel.cc > 2)

and Function Is_Rel_One_to_Many returns a true value for the path link ((5, Student, 2)

+ (9, lecturer, 3), 2, 1..1, 1..n) since it satisfies the following condition:

first relpc > 1 A second rel.pc > 1 A first rel.cc = 1 A second rel.cc = 2)

Note : pc and cc refer to parent constraint and child constraint respectively.

(1) — (VgivenFD : Funcional_Dependencies o

{ 3tfd: transitive_FD |pfd = Find_Transitive_Dependencies (givenFD)
Apfd € partial_ dependency} e tfd)

223



The third predicate indicates the function Find_Transitive_Dependencies returns a true
value since TFD (3, cno, 2) — (14, tname, 3) is found in the set of givenFD as its

satisfies the following predicate:

( Vfds: given set XFD :
Ffdl, fd2, fd3: fds | (fd1.1 N fd2.1) = @A (fdl.2 N fd2.2) = @)Afd1.2 = fd2.1 A
fd3 = fdl.1 —fd2.2 «fd3Etransitive_FD) ¢ fd3

For instance: fdl : (3, cno, 2) — (13, tno, 3)}
fd2 : (13, tno, 3)} — (14, tname, 3)

fd3 :(3, cno, 2—(14, tname, 3)

Thus, the following statement returns a true value since
(3, cno, 2) N (13, tno, 3) = GA (13, tno, 3) N (14, tname, 3) = @
and fd3: (3, cno, 2)—(14, thame, 3) is a TFD

Hence, — (True) =False

The disjunction of all the predicates in the Is_3XNF function returns a false value.
This means the SchemaGDTD is not in the 3XNF. To transform the SchemaGDTD to
the 3XNF form, the following schema is applied.

Third_NormalForm_GDTD £Restructure 2XNF_schemaGDTD V Not_NormalForm

As presented in Chapter 5 (Section 5.6.5), Schema Restructure_2XNF_schemaGDTD
consists of the following schemas inclusion:

224



(1) Find_PathLink_with_Dependency
(2) Query_ComplexElement_Node
(3) Query_SimpleElement_Node

(4) Query_AttributeKey_Node

We present here how each of the above functions is used to normalize the structure of
2XNF SchemaGDTD to 3XNF design.

Step 1: Find_PathLink_with_Dependency

The schema will return the value true since there exist the following many-to-one and

many-to-many relationship types in the PathLink set:
(1, Department, 0) = (2, Course, 1), 2, 1..n, 1..1),

(2, Course, 1)+ (5, Student, 2), 2, 1..n, 1..n)

Step 1.2: Function Find_Transitive_Dependencies is used to get the TFD in the set of
given XFD. In this function, one argument is given which is a set of XFD and return the
TFD

The function Find_Transitive_Dependencies returns (3, cno, 2) — (14, tname, 3)

since it satisfies the following predicate:

( Vfds : givenFD »
3fdl, fd2, fd3: fds |(fd1.1 0 fd2.1) = @A (fd1.2 0\ fd2.2) = @)Afd].2 = fd2.1 A
Jd3 = fdl.1 —fd2.2 « fd3 &transitive_FD) « fd3

225



Step 2 : Query_ComplexElement_Node

After the TFD is found, the parent of LHS and RHS of TFD: (3, cno, 2) —(14, tname, 3)

is determined using the relation Has A_Link and Part_of Link . Hence,
& Part of Link~((3, cno, 2))= (2, course, 1)
¢> Has A_Link~((14, tname, 3)0 = (12, lecturer_new, 2)

(2, course, 1) - (12, lecturer_new, 2) € PathLink (True)

Step 2.1

Once the complex elements (2, course, 1) and (12, lecturer_new, 2) nodes are
determined, the current position of the (12, lecturer_new, 2) node is changed to be

equivalent to (2, course, 1) level.

(2, course, 1) (12, lecturer_new, 2) € PathLink
< lecturer_new.level = Get_Level (2, course, 1)

= (12, lecturer _new, 1)
Step 3: Query_SimpleElement_Node

The simple element node of (12, lecturer_new, 2) is determined using the relation

Has_A link and the level of node is changed to one level only. Hence,
& found_se! = schema.Has_A(ce? )
= schema.Has_ A0(12, lecturer_new, 2))
=(14, tname, 3)
= Simple_Element.level =Get_ Level (found_se!) -1
=3-1=2
= (14, tname, 2)
Step 4: Query_AttributeKey Node
226



The attribute node of (12, lecturer_new, 2) is determined using the relation

Part_of link.

found_attkey! = schema.Part_of (ce? )

=schema.part_of (12, lecturer_new, 2))

= (13, tno, 3)

= Get_Level_Attribute = Get_Level (found_attkey!)-1

=(13, tno, 2)

Step 5: Create_Path_Link

The (12, lecturer_new, 1) is linked with a parent node using the following statement:

new_link! = Create_Path_Link (newnode, parent_ce (parent_ce ce!l))

The path_link is created between newnode (12, lecturer_new, 1) with parent of (5,
Student, 2) which is (1, department, 0).

The instance of path_link, (2, 1.1, 1.n) is replicated from the previous path_link

between (2, Course, 1) and (12, lecturer_new, 2). This process is shown using the

following predicates

(1, department, 0) - (12, lecturer_new, 1) € newlink.PathLink ¢

)
@)
€))
@
&)

(1, department, 0) -(12,lecturer_new,1) Enewlink.PathLink* (True)
(1,department,0)= Parent_ce (12, lecturer_new, 1) (True)
newlink = (1, department, 0)+ (12, lecturer_new, 1) A newlink.degree = 2 A
newlink.pc = 1.n A newlink.cc = 1..1

= schema’ PathLink = schema, PathLink U

{(1, department, 0) ~ (12, lecturer_new, 1), 2, 1..n, 1.1}

227



Step 6: Create_Has_A_Link
newlink = (12, lecturer_new,1) ~ (14, tname, 2) € newlink hasa

= schema'. HasA = schema.HasA @ (12, lecturer new, 1) + (14, tname, 2)

Step 7: Create_Part_of Link
newlink = (12, lecturer_new, 1) + (13, tno, 2) € newlink.part_of
= schema'.Partof =schema.Partof

{12, lecturer_new, 1) + (13, tno, 2)}

Step 8: Update set of complex element nodes, simple element nodes and attributes

nodes
The set of nodes are updated using the following predicates
1)  schema' Attnodes = schema.Attnodes @(13, tno, 2)
2)  schema'.Snodes = schema.Snodes @ (14, tname, 2)

3)  schema'.Cnodes = schema.Cnodes @ (12, lecturer_new, 1)

Step 9: Update the data dependencies

The KD and FD are updated using the following predicates
(1) KD’ =KD @ (13, tno, 2) — (12, lecturer_new, 1)
(2) TFD’=TFD (3, cno, 2) =(14, tname, 2)

The following Figure 6.5 is the SchemaGDTD in the 3XNF form consisting of the
following sets and relations.

228



Root = {(1, Department, 0)}
Cnodes = {(1, Department, 0), (2, Course, 1), (5, Student, 2), (9, lecturer, 3),
(12, lecturer_new, 1)}

Snodes = {(4, titles, 2), {(7, fname, 3), (8, Iname, 3)}, (14, tname, 2)}
Attnodes = {(3, cno, 2), (6, sno, 3), (10, tno, 4), (13, tno, 2)}
Partof = {(2, course, 1) = (3, cno, 2), (5, student, 2) + (6, sno, 3),

(9, lecturer, 3) + (10, tno, 4) ,(12, lecturer_new, 1) +(13, tno, 2)}
HasA = {(2, course, 1) » (4, titles, 2), (5, student, 2) +» {(7, fname, 3),

(8, Iname, 3)}, (12, lecturer_new, 1) » (14, tname, 2)}
PathLink = {<{(1, Department, 0) (2, Course, 1), 2, 1..n, 1..1),

| ((2, Course, 1) = (3, Student, 2), 2, 1..n, 1..n),
((5, Student, 2) + (9, lecturer, 3), 2, 1..1, 1..n)}>,

<(1, Department, 0) (12, lecturer_new, 1) 2, 1..n, 1..1)>

Figure 6.5: SchemaGDTD in 3XNF

229




KD= {(3, cno, 2) — (2, Course, 1), (6, sno, 3)—(5, Student, 2)
(10, tno, 4)— (9, lecturer, 3),
(13, tno, 2) — (12, lecturer_new, 1)}
GFD = {(6, sno, 3) = < (7, fname, 3),(8, Iname, 3)>,
(13, tno, 2)— (14, tname, 2)}
TFD = {(3, cno, 2) — (13, tno, 2)
(13, tno, 2)— (14, tname, 2)
(3, cno, 2) — (14, tname, 2)}
PFD = {< (3, cno, 2), (6, sno, 3)> — (13, tno, 2),

(13, tno, 2) — (14, tname, 2)}

Figure 6.6: Set of FDs

6.3.4 Normalize 3XNF to 4XNF

Given SchemaGDTD with a set of FD as shown in Figure 6.5 and Figure 6.6, the G-
DTD normalizer will check the status of SchemaGDTD using function Is_4XNF. If the
SchemaGDTD is in the 4XNF form, the function will return the true value. However
the SchemaGDTD is not in the 4XNF design as it does not satisfy some of the predicates
listed in function Is_4XNF. This can be proved as follows:

Function Is_4XNF contains three predicates
(1) Is_IXNF (schema) = true

The first predicate is true since the SchemaGDTD has satisfied all the predicates as
shown in section 6.3.2

230



(2) —(V hlink,, hlink,: seq Path_Link |
Is_Rel_Many to_One (hlink;. 1, schema) = True A
Is Rel Many to Many (hlink,.2, schema) = True A
3, (hlink,: seq Path_Link | lastlink = last hlink, ¢
Is_Rel_One_to_Many (lastlink, schema) = True))

= (True A True A True) Negation of these predicates return false value

In the second predicate, each Path_Link is identified in a sequence starting from the first
position until the last position of the Hieararchical Link. Function
Is_Rel Many to_One is used to check if (1, Department, 0) ~ (2, Course, 1), 2, 1..n,
1..1) is a Many to_One relationship type. This function returns a true value since its

predicate satisfies the following condition:

(firstrel. pc> 1 Asecond relpc>2 A firstrel.cc = 1 A secondrel.cc=1)

Function Is_Rel_Many_to_Many, returns a true value for the Path_Link ((2, Course,
)+ (5, Student, 2), 2, 1..n, 1..n) since it satisfies the following condition:

(firstrelpc 2 1 Arel.secondpc>2 A firstrel.cc> 1 A second rel.cc 2 2)

and Function Is_Rel_One_to_Many returns a true value for the Path_Link ((5, Student,

2) = (9, lecturer, 3), 2, 1..1, 1..n) since it satisfies the following condition:

Sirst rel.pc 2 1 A second rel.pc > 1 A first rel.cc = 1 A second rel.cc = 2)

Note : pc and cc are refer to parent constraint and child constraint respectively.

(3) — ( VYgivenFD : Funcional_Dependencies ¢
{ 3 gfd: global_FD |gfd = Find_Global_Dependencies (givenFD) A
gfd € global _ dependency} » gfd )

231



The third predicate indicates that the function Find_Global_Dependencies returns a true
value since GFD {(6, sno, 3) — {< (7, fname, 3),(8, Iname, 3)>} is found in the set of

givenFD since it satisfies the following predicate:

( Vfds: givenFD o

(3 fd.fds, att: Attribute_Node; se: SimpleElement_node; ce: ComplexElement_node |
current_element = getFD_element (fd) A current_element = att U se

A get_level (att) = get_level (se) A Is_last (se, schema) = true

A has_link Gatt) = part of link lse) = att +se € global_FD) ¢ fd)

For instance: fd: {(6, sno, 3) — {< (7, fname, 3),(8, Iname, 3)>}

Since all attribute nodes and simple element nodes are located at the same level, which
where is the last level in the schemaGDTD.

Hence, — (True) = False

The conjunction of all the three predicates with (True A False A False) will return a
False value. This means that the SchemaGDTD is not in the 4XNF. To transform the
SchemaGDTD to the 4XNF form, the following schema is applied:

[Fourth_NormalForm_GDTD£Restructure_3XNF_schemaGDTD v Not_NormalForm

As presented in Chapter 5 (Section 5.6.6), Schema Restructure 3XNF_schemaGDTD
consists of the following schemas inclusion

(1) Find_Path_Link_with_Dependency
(1.1) Find_Global_Dependencies
232



(2) Do_Insert New_ComplexElement Node
(3) Do_Replicate_Attribute_Node

(4) Do_Replicate_SimpleElement Node

We present here how each of the above functions is used to normalise the structure of
SchemaGDTD.

Step 1: Find_Path_Link_with_Dependency schema returns the value true since there
exist many-to-one and many-to-many relationship in a set of relation PathLink in the

SchemaGDTD. For instance, with the existence of the following path links,
<{(1, Department, 0) (2, Course, 1), 2, 1..n, 1..1),

((2, Course, 1) (5, Student, 2), 2, 1..n, 1..n)>,

<{(1, Department, 0) 12, lecturer_new, 1) 2, 1..n, 1..1)}>

the schema then generates an Existence report.

Step 1.1: Function Find_Global_Dependencies is used to get the GFD in the given FD.
In this function, one argument is given which is a set of FD and returns the GFD

The function Find_Global_Dependencies returns
{(6, sno, 3) = {<(7, fname, 3),(8, Iname, 3)>)

Step 1.2: Then, the parent of LHS and RHS of GFD is determined using the relation
Has_A_Link and Part_of Link. Thus,

Has_A_Link~#(7, fname, 3),(8, Iname, 3)} )= (5, student, 2) A
Part_of Link™ U((6, sno, 3)))= (5, student, 2)

Step 2: Once the complex element (5, student, 2) is determined, schema

233



Do _InsertNewComplexElement_Node £ Insert_NewComplexElement_Node A
success V
ComplexElement_Node_AlreadyExisted

is applied.

Step 2.1 Insert_New_ComplexElement_Node will insert a newly created complex
element node into a new position in the schemaGDTD. Before the insertion is made, the
new complex element node must be created wusing the function
Create_NewComplexElement_Node. In this function, the properties of the new complex
element node such as ID, name and level, are created. The ID is generated automatically
based on the ordered preorder traversal method. For instance, in this case the ID is 15,
the name for a new complex element is given as student_new based on the complex
element node (5, student, 2) which has been determined from step 1.2. The level is

equivalent to level 1. This process is demonstrated using the following predicates

(1)  student_new.level = 1 and student new.ID = 15
(2)  newnode = (15, student_new, 1)
3) (15, student_new, 2) & schema.Cnodes

(4)  schema'.Cnodes = schema.Cnodes U{(15, student_new, 1)}

Step 2.2 The (15, student_new, 1) is linked with a root node using the following

statement
new_link! = Create_Path_Link (newnode, root_node)

A Path_Link is created between the newnode (15, student_new, 1) and root node which
is (1, department, ().

234



The instance of a new Path_Link which is (2, 1..n, 1..1) is replicated from the previous
Path_Link between (1, department, 0) and (15, student_new, 1). This process is shown

using the following predicates:

(1, department, 0) v (15, student_new, 1) Enewlink. PathLink ¢

(1) (1, department, 0) = (15, student_new, 1) & newlink.PathLink (True)

2 Is_root (1,department, 0) (True)
3) newlink = (1, department, 0) v~ (135, student_new, 1)

“4) newlink.degree = 2 \

(5) newlink.pc = 1..1 Anewlink.cc = 1..n

(6)  schema’.PathLink = schema. PathLink U

{(1, department, 0) v (15, student_new, 1), 2, 1..n, 1..1 }

Step 3: Do_Replicate_Attribute_Node

Do_Replicate_Attribute_Node 2 Replicate_Attribute_Node Asuccess
\
Attribute_Node_AlreadyExisted

newnode ?= (15, student_new, 1) and oldnode?= (3, lecturer, 2)

(1) found_att! = partof { (oldnode?) )

=Part of ( (5, lecturer, 2) )

= (6, sno, 3)
(2) newlD =IDwn

=16
(3) replicate_name = Get_Name (found_att!)
=Get_Name ((6, sno, 3)

= 8sno

235



(@) new_level = Get_Level(newnode) +1
= Get_Level (15, student_new, 1)+1
=]+] =2
(5) replicate_attribute = create_Attribute_Node(newID, replicate_name, new_level)
= create_Attribute_Node (16, sno, 2)
(6) new_Partof link! =Create_Partof Link (replicate_attribute, newnode)
= Create_Partof Link ((16, sno, 2), (15, student_new, 1))
= (15, student_new, 1) » (16, sno, 2) € Partof

(7) schemaGDTD’.Partof = schemaGDTD U (15, student_new, 1) » (16, sno, 2)

Step 4: Do_ Replicate_SimpleElement_Node

Do_Replicate_SimpleElementNode 0 Replicate_SimpleElement_Node A success

Schema Replicate SimpleElement_Node consists of the following predicates:
newnode? = (15, student_new, 1) and oldnode? = (5, student, 2)
(1)  found_se!= HasA ((5, student, 2) )
= {(7, fname, 3), (8, Iname, 3)}
(2) new ID=IDwn
=ID {17, 18}
(3)  replicate_name= Get_Name (oldnode?)
= Get_Name (3, student, 2)
= {fname, Iname}

(4)  new level = Get_Level (newnode?) +1
236



= Get_Level (15, student_new, 1)+ 1

(5) replicate_se = Create_SimpleElement_Node(new_ID, replicate_name,

new_level)
= Create_SimpleElement_Node (17, fname, 2),
= Create_SimpleElement_Node (18, Iname, 2)})
(6) new_has_a_link! =Create_Has_A_Link (replicate_se, newnode)
= Create_Has A_Link ({(17, fname, 2), (15, student_new, 1)}
= Create_Has A_Link ({(18, Iname, 2), (13, student_new, 1)}
= (15, student_new, 1) v ({(17, fname, 2)) € HasA

= (15, student_new, 1) v ({(18, fname, 2)) € HasA
(7)  schemaGDTD’ HasA = schemaGDTD U

{(15, student_new, 1) »({(17, fname, 2)
(15, student_new, 1) v (18, Iname, 2)})
(8)  Snodes’ = Snodes \ oldnode

= Snodes \ {(7, fname, 3),(8, Iname, 3)}

Step 5: Update the set of complex element nodes, simple element nodes and attribute

nodes using the following predicates
(1)  schema'Attnodes = schema.Attnodes U( 16, sno, 2)
(2)  schema'Snodes = schema.Snodes @ ({(17, fname, 2),(18, Iname, 2)})
(3)  schema'.Cnodes = schema.Cnodes U (15, student_new, 1)
(4)  schema' HierachicalLink = schema.HierachicalLink U
{(1, department, 0)~ (15, student_new, 1), 2, 1..n, 1..1}

(5)  schema'.Partof=schema.Partof U (15, student_new, 1) v (16, sno, 2)}
237



(6)  schema'HasA = schema.HasA U

(15, student_new, 1)~ ({(17, fname, 2),(18, Iname, 2)})

Step 6: Update the data dependencies using the following predicates

(1) KD’=KDU{(16, sno, 2) —(15, student_new, 1)

(2) FD’=FDV {(16, sno, 2) — {(17, fname, 2),(18, Iname, 2)}}

The following Figures 6.7 and 6.8 are the SchemaGDTD in the 4XNF and set of FD.

Root = {(1, Department, ()}
Cnodes = {(1, Department, 0), (2, Course, 1), (5, Student, 2), (9, lecturer, 3),
(12, lecturer_new, 1), (15, student_new, 1)}
Snodes = {(4, titles, 2), {(17, fname, 2), (18, Iname, 2)}, (14, tname, 3)}
Attnodes = {(3, cno, 2), (6, sno, 3), (10, tno, 4), (13, tno, 3), (16, sno, 2)}
Partof = {(2, course, 1)1 (3, cno, 2), (5, student, 2) » (6, sno, 3),
(9, lecturer, 3)+ (10, tno, 4) ,(12, lecturer_new, 2) (13, tno, 3),
(15, student_new, 1)+(16, sno, 2)}
HasA = {(2, course, 1)-(4, titles, 2),
(13, student, 2)- {(17, fname, 3), (18, Iname, 3)},
(12, lecturer_new, 2) + 14, tname, 3)}
PathLink = <{(1, Department, 0) (2, Course, 1), 2, 1..n, 1..1),
(2, Course, 1)~ (3, Student, 2), 2, 1..n, 1..n),
(5, Student, 2) - (9, lecturer, 3), 2, 1..1, 1..n)}>,
< {(1, Department, 0) =2, Course, 1), 2, 1..n, 1..1)

(2, Course, 1)~ (12, lecturer_new, 2), 2, 1..m, 1..1)}>

Figure 6.7: SchemaGDTD in 4XNF
238



KD= {(3, cno, 2) — (2, Course, 1),
(6, sno, 3)— (3, Student, 2),
(10, tno, 4)— (9, lecturer, 3),
(13, tno, 2) — (12, lecturer_new, 1)
((16, sno, 2) (15, student_new, 1)}
GFD = {(16, sno, 2) — {< ((17, fname, 2), (18, Iname, 2)>,
(13, tno, 2)— (14, tname, 2)
TFD = (3, cno, 2) — (13, tno, 2)
(13, tno, 2)— (14, tname, 2)
(3, cno, 2) — (14, tname, 2)

PED = {(3, cno, 2), (13, tno, 2) = (14, tname, 2),

(13, tno, 2) — (14, tname, 2)}
Figure 6.8: Set of KDs and FDs

6.4  Summary

In this chapter, we have tested the formal specification of the XML document design
prototype, specifically the GDTD normaliser operations. To show the consistency and
the correctness of the specification, we reused the same case study as provided in
Chapter 4 and demonstrated step by step how the schema GDTD can be transformed
from 1XNF design to 4XNF design in a formal way. We show that our specification for
the GDTD normalizer operations defined in Chapter 5 is consistent with the normal
forms and normalization rules defined in Chapter 4. This proves that our approach can
be used as a prototype to design a non-redundant XML document and gives confidence

that our prototype can be implemented successfully to generate an automatic XML
document schema design.

239



Chapter 7

Conclusion and Future Work

7.1 Contributions of the Research

This thesis has examined the requirements and problems of XML documents schema
design. This thesis argues that to produce a non-redundant schema of an XML
document for application 4, we should first produce a conceptual model, G-DTD at
schema level and then apply a normalization rule to transform G-DTD into a normal
form G-DTD’ and finally convert the conceptual model G-DTD’ back to the XML
schema DTD (see also statement of hypothesis in the Introduction).

To assess and support this research hypothesis, a main research aim and several
objectives were defined. In the following discussion, we revisit these objectives and

summarize how, and to what extent, they have been achieved.

Objective 1. To investigate how design guidelines for relational schema are applied to
XML database schema design using normalization theory. This involves
examining XML functional dependency (XFD) concepts, discussing various
definitions of XML normal forms based on these XFDs and highlighting their
strengths and limitations.

This thesis investigated an approach to database design and discussed theory that has
been developed to design non-redundant schema related to relational databases in
general. The review of database design theory presented in Chapter 2 provides the basic
concepts like data dependency, such as functional dependency, key dependency and
multi valued dependency. These data dependencies are formal constraints among
attributes, which are used as the main tool for formally measuring the semantic relations

among attributes. The functional dependencies, key dependencies and multi-valued

240



dependencies can be used to group attributes into a normal form relation schema. To
address the normalization process, algorithms for 3NF and BCNF design that are based

on functional dependency are presented.

The thesis also described how design guidelines for relational schemas are applied to
XML document schema design using a normalization theory. As a relational database,
XML documents are also associated to a schema. Previous studies used DTD as a
schema for XML documents. In this thesis, we have presented and compared
thoroughly the notion of data dependency, namely, XML functional dependencies
(XFDs) by looking into the approaches taken to define the XFDs. The advantages and
disadvantages of the XFDs are highlighted with particular emphasis on semantic

expressiveness, which is a desirable property for defining XML normal forms.

In this thesis, various definitions of XML normal forms proposed by Arenas and Libkin
(2004), Vincent et al. (2004), Wang and Topor (2005), Kolahi (2007) and Yu and
Jagadish(2008) are presented and discussed. Most of them proposed the XNF, except
Kolahi proposed XML third normal form (X3NF). From the study of the characteristics,
we identified that XML normal form XNF, proposed by Arenas and Libkin (2004)
achieves the best possible design from the point of view of eliminating redundancies in
XML documents (Kolahi, 2007). Arenas and Libkin (2004) have defined XFDs and
XML normal forms (XNF) entirely on the concept of ‘tree tuple' within the context of
the XML document and DTD.

However, it was found that the problem with Arenas and Libkin’s approach is that the
way they express the semantic constraint i.e. XFD is complicated due to the textual
presentation of a DTD. This led to difficulty in term of XML normal form notion and
posed an obstacle to database designer in designing redundancy-free XML document
schema. We have therefore suggested that this approach needs simplification for the

241



benefit of the users. The new approach and method are explained further in the next

objectives.

Objective 2. To propose a systematic approach to simplify XML document schema
design by proposing a graphical XML schema based on DTD called Graph Data
Type Definition (G-DTD) at the schema level. We believe having the G-GTD
model as a tool could describe the structure of XML documents at the schema

level clearly and precisely

This thesis has proposed G-DTD, as a conceptual model to describe XML document at
the schema level in a precise and simple way. Following the review of prominent
current XML models, we have decided to adopt some of ER diagram (Chen, 1976) and
ORA-SS diagram (Dobbie et al., 2000) notation in the G-DTD’s notation, based on the
argument made in Chapter 3. We accommodated semantic constraints in the G-DTD

explicitly to help to achieve automation of XML document schema normalization.

In Chapter 3, the objective and the rationale of having G-DTD were discussed. The
structure and semantics of G-DTD were introduced and developed to describe the XML
document at the schema level. G-DTD consists of five main parts: complex element
node, simple element node, attribute node, root node and relationship type. G-DTD
represents an XML document in a simpler and clearer manner compared with the
original textual representation, DTD. The second important property of the G-DTD is
that it has path links, Part_of link, and Has_A link type. These properties distinguished
G-DTD from other data models. More importantly, the semantic relationship between
complex element types can be modelled at the schema level using n-ary one-to-

many/many-to-one/many-to-many path relationships.

The thesis also presented the conceptual operations of the G-DTD model, which
describes the dynamic properties of the model. These operations are classified into five
main parts: Query operations, Insert operations, Delete Operations, Replicate Operations
and Update Operations. These operations are important as they are basic operations
during the normalization process, which we discussed further in Chapter 5.

242



The result of G-DTD offers a clear and precise meaning for designers by providing them
with information on the structure of attributes, simple element and complex element
types and the semantic relationship between them. This ultimately helps contribute to a
better understanding of DTD and DTD design. In Chapter 4, the thesis has shown that
having the G-DTD as a tool can assist in the design process, i.e. the normalization
process which as it is always easier to understand and interpret than a theoretical

approach.

Once the G-DTD is in a normal form design, it is important to transform it back to DTD.
To enable G-DTD to be used practically, the thesis proposed transformation rules to
transform from G-DTD back to DTD.

Objective 3. To redefine a set of normal forms for G-DTD on the basis of Arenas and
Libkin’s rule (2004) and Ly et al.’s rules (2004), which is easy to understand
and implement programmatically. To achieve this, a basic property of XML
normal form, which is functional dependency, is proposed, such as relationship
dependency, partial functional dependency, transitive functional dependency
and global functional dependency. In the context of XML document schema
normalization, it is important to develop normalization rules to transform an

XML document schema into a normalised one.

The thesis has refined a set of normal forms for G-DTD called as First Normal Form
(1XNF), Second Normal Form (2XNF), Third Normal Form (3XNF) and Fourth Normal
Form (4XNF). The set of normal forms for G-DTD have been generalised from Arenas
and Libkin (2004) and Lv et al.’s (2004) normal form. In defining these normal forms
we have adopted and applied traditional data dependencies based on functional
dependency, transitive dependency and partial dependency.

The thesis enhanced the normalization algorithm proposed by Arenas and Libkin (2004)
by adding two rules. One rule is to check whether a semantic constraint caused by GFD,
TFD or PFD existed. If one of these constraints exists, a complex element node together
with its children are moved up to another location and level or a new complex element

node is created and put under a root node. These rules are used to eliminate TFD and

243



PFD in the G-DTD. The other rule is to check the structure of G-DTD by considering
one-to-many, many-to-many or many-to-one path links between complex element nodes
in G-DTD. Particularly, these algorithms have restructured the original G-DTD by
considering the tree structure, the level of nodes and semantic relationship types

between nodes associated with a given set of functional dependencies.

In Chapter 4, a case study illustrated and demonstrated that the application of G-DTD
normal forms and normalization rules achieved a redundancy-free XML document
schema design. In this case study, we showed how a G-DTD can simplify the complex
procedure of XML document design and normalization. Even though the length of the
XML document is longer than the original document, the structure is free from data
redundancy and update anomalies. Although our approach uses a simple case study, it
supports the claim that users (designers) can benefit in development of real XML

document schema normalization.

The thesis has compared the approach with the previous work proposed by Arenas and
Libkin (2004), Lv et al. (2004) and Kolahi (2007) based on three criteria: Expression of
DTD structure, XML normal forms and normalization algorithm. From the discussion,
we found that our approach complements to Arenas and Libkin’s approach, since it
produces the same result as Arenas and Libkin. However, our approach provides an
alternative method which is easy to implement and more practical, because it is a
simple, precise and understandable and more importantly it works with a minimum of
abstract concepts. It is relatively easier for a schema designer. Another benefit is the
new set of normal form presented in this thesis, which has shown three advantages.
First, the designer can indentify complex elements, simple elements and attributes
graphically and can add the relationship types between the nodes from the user
specification. This will give more control to the designer to evaluate each successive
normal form G-DTD. Second, normalizing the G-DTD can effectively removes
redundancies and anomalies at a schema level. More importantly, it is able to preserve
both DTD tree structure and XML document structure and satisfy user requirements.

244



Objective 4. To develop a prototype of an XML document schema design using a
formal approach. More specifically, to propose a formal framework of XML
document normalization using Z formal specification language in order to give a

precise and a clearer understanding of the whole system requirement.

The thesis proposed a novel prototype of an XML Document Schema Design. This is to
support the claim that users (designers) can profitably bring formal specification to bear
in development of a real XML Document Schema Design tool. The complete
framework and formal specification of the XML Document Design model was presented
in Chapter 5. The full specification of the model using Z notation was constructed,

which gives the precise and clear meaning of the model.

This formal description is divided into three main layers: the G-DTD layer which aims
to define the data types and operations precisely to reveal the semantic constraint of the
G-DTD model; the G-DTD normalizer layer which presents the operations and
functions required to transform from one normal form to another normal form. A
specification to define normalization rules for normalization of G-DTD schema is
constructed and applied to the rules for normalization presented in Chapter 4. Finally
the G-DTD translator layer which presents the operation to map from G-DTD back to
DTD is presented. The specification has shown that it is both possible and promising to

use our approach to design non-redundant XML document schema in a practical way.

Objective 5. The final research objective is to test the specification constructed to show

the consistency of the specification using a simple case study

The thesis developed a justification of the XML document design specification. The
justification can be found in Chapter 6. The rationale of this specification testing is to
enable us to demonstrate that the specification constructed in Chapter S is satisfied and
consistent with certain fundamental criteria of XML document design. This will
increase the confidence in the implementation later. We tested the properties of XML
document design, in particular in G-DTD normaliser layer, to seek the validity of the

specification and assurance that the specification can be used to derive a required

245



normal form one using our normalization algorithm. It can therefore increase the

confidence in the design model before the decision is taken to progress towards the

implementation of the model.

7.2

Limitations and Future Research

Having discussed the contributions that this research has made to the current state-of-

the-art in XML design, we would like to look at the limitations of the work, and

promising avenues for future research.

(1) The scope of the research is applied and limited to a simple DTD schema with

¢)

simple application only. However this approach can be extended in future to be
applied to a more complex DTD. In this way, the G-DTD model can be enriched
to allow users to declare more general applications with specific integrity
constraints. This model can also be extended to another schema language such as
XSD. Such extension is trivial because the syntax and semantics used in the
model can be generalized to XSD with some changes, as there is a similarity
between XSD and DTD in structure (Bex et al., 2004). Recently, XSD has
become one of the primary schemas for XML documents and is widely supported
by many applications (Lv. and Yan, 2006). This is because XSD addresses most
of shortcomings of DTDs and in particular, is more expressive than DTDs and
most importantly it uses XML as the syntax for describing schemas (Marten et al.,
2007). XSD itself provides a rich set of data description mechanisms, including
mixed/fived value, empty content and cardinality constraints. It would be

interesting to incorporate there features into the G-DTD model.

Another limitation is the time to implement the system. We provide only a
precise framework of XML document design using Z specification. Of course,
developing a formal specification is not easy and quite challenging; hence we are
bound to make mistakes. However, writing a specification led to the discovery of
some difficulties in the earlier design and enabled the final prototype to meet the
definition of the data model. Thus, the programming effort is much reduced when

there is a formal specification of the data model. For future work, an automatic

246



3

XML document design system could be developed based on our formal
specification in order to derive an automatic generation of non-redundant XML
document design. The XML _DM system will consist of three major components:
(1) a graphical input layer to assist users in drawing their application-specific G-
DTD. This input must be conducted in an easy, natural and user-friendly manner
for the purpose of editing and drawing a G-DTD. (2) A normalization layer that
performs the automatic normalization process, which is always easy to understand
and interpret rather than a theoretical approach. This can offer a facility to
normalize the schema in one click. This can enable the XML document designer
to have this automation performed at a very early stage of XML document design,
i.e. at the conceptual level. (3) An output layer that shows the transformation

results in a DTD schema file.

In theory, another avenue for potential future research is using formal methods to
help validate the G-DTD model. Proofs of important properties of the G-DTD
model could, in principle help the designer to build a confidence in the claim that
the model captures the intuitively desired structure and meanings. Formal
verification of G-DTD properties against such a specification could similarly
build confidence that the specification will be satisfied by the implementation.

Our work provides a concrete starting point for exploring this idea.

247



Bibliography

Abiteboul, S. and Segoufin, L. (2006). Representing and querying XML with
incomplete information. ACM Transaction on Database System, Vol 31(1), pp. 208-
254.

Abiteboul, S., Hull, R. and Viannu, V. (1995). Foundation of Database. Reading:
Addison-Wesley.

Abiteboul, S., Buneman, P., and Suciu, D. (2000). Data on the Web: From Relation to
Semistructured Data and XML. California: Morgan Kaufmann.

Amalio, N., Stepney, S., Polack, F. (2004). Formal proof from UML Models. In
Proceeding of the 6th International Conference on Formal Engineering Methods,
ICFEM, Lecture Notes in Computer Science, Vol 3308, Springer, pp. 418-433.

Armstrong, W. W. (1974). Dependency structures of database relationships. In IFIP
Congress, pp. 580-583.

Anutariya, C., Wuwongse, V., Nantajeewarawat, E., and Akama, K., (2000). Towards a
Foundation for XML Document Database. Electronic Commerce and Web

Technologies, Lecture Notes in Computer Science, Vol. 1875, pp. 324 -333

Apparoa, V and Byrne, S. (1998). Document Object Model (DOM) level 1 specification.
W3C Recommendation, Available at http://www.w3.0org/TR/1998/PR-DOM-Level-
1-19980818.

Arenas, M. (2006). Normalization theory for XML. SIGMOD record, Vol 35(4), pp. 57-
64.

Arenas, M., Fan,W., and Libkin, L. (2002). What's hard about XML schema constraints?
Lecture Notes in Computer Science 2543 , pp. 269-278.

Arenas, M. and Libkin, L. (2004). A normal form for XML documents. ACM
Transaction on Database System,Vol 29(1) , pp. 195-232.

248


http://www.w3.orgITR/1998IPR-DOM-Level-

Arenas, M. and Libkin, L. (2005). An information-theoretic approach to normal form for
relational and XML data. Journal of the ACM, Vol 52.(2) , pp. 246-283.

Atzeni, P. and De Antonellis, V. (2003). Relational Database Theory: A comprehensive
Introduction. London: Addison-Wesley.

Beeri C. and Bernstein, P. A. (1979). Computational problems related to the design of

normal form relational schemas. ACM Transactions on Database Systems, Vol 4(1).
pp. 30-59

Beeri, C., Bernstein, P. and Goodman, N. (1978). A sophisticate's introduction to
database normalization theory. In Fourth International Conference on Very Large
DataBases, Seattle, pp. 113-124.

Beeri, C., Fagin, R.,and Howard, J. (1977). A Complete axiomatization for functional
and multivalued dependencies in database relations. ACM SIGMOD International
Conference on Management of Data, New York, USA, pp. 47-61.

Bernstein, P. A. (1976). Synthesizing third normal form relations from functional
dependencies. ACM Transactions on Database Systems, Vol 1(4). pp. 277- 298.

Bertino, E.; Guerrini, G.; and Mesiti, M. (2008). Measuring the structural simillarity
among XML documants and DTDs. Journal Intelligence Information System,Vol
30, pp. 55-92.

Bex,G.J., Neven, F., Bussche, J.V. (2004). DTD versus XML Schema. A Practical
Study. In Proceeding of the Seventh International Workshop on the Web and
Databases, Paris, France, pp. 79-84.

Bidiot, N., Cerrito, S., and Thion, V. (2004). A first step towards modelling

semistructured data in hybrid multimodal logic. Journal of Applied Non-Classical
Logic, Vol 14, pp.

Biggs, N. L. (1985). Discrete Mathematics. London: Oxford University Press.

249



Bird, L., Goodchild, A., and Halpin, T. ( 2000). Object role modelling and XML-
schema. In Proceedings of the Ninth International Conference of Conceptual
Modeling(ER2000), Salt Lake City,Utah, pp. 309-322.

Biskup, J. (1995). Achivement of relational database schema design theory revisited
semantic in database. Lecture Notes Computer Science, Vol 1066, pp.14-44.

Biskup, J., Dayal, U., Bernstein, P. A.(1979). Synthesizing independent database
schemas. In Proceeding of the 1979 ACM SIGMOD International Conference on
Management of Data. New York, USA, pp. 143-151.

Bisova, V., and Richta, K. (September 2000). Transformation of UML models into
XML. In Proceeding of the 2000 ADBIS-DASFAA symposium on Advance in
Database and Information Systems, Praque Czech Republic, pp. 33-45.

Borros, D. (1994). On the formal spesification and derivation of relational database
application. PhD Thesis, Department of Computer Science. University of Glasgow.

Bottaci, L., and Jones, J. (1995). Formal Specification using Z. London: International
Thomson Publishing Inc.

Bourret, R.(2007). XML database product.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm.

Bowen, J. (2003). Formal Specification and documentation using Z: A case study

approach, London: International Thompson Computer Press.

Buneman, P., Davidson,B,S.,Fan, W., Hara, S.C., and Tan, W.C. (2003). Reasoning
about keys for XML. Information System 28(8), pp. 1037-1063.

Buneman,P., Fan,W ,Simeon,J., and Wienstein,S. (2001). Constraints for semistructured
data and XML, SIGMOD Record, Vol 30, pp. 47-54.

Calvanese,D., Giacomo,G.D., and Lenzerini,M. (1999). Representing and reasoning on

XML documents: A Descriptive Logic Approach. Journal of Logic and
Computation, Vol 9, pp. 295-318.

250


http://www.rpbourret.comlxmllXMLDatabaseProds.htm.

Chaudhri, B.A., Rashid, A. and Zicari, R. (2003). XML Data Management; Native XML
and XML-Enabled Database Systems. USA: Pearson Education.

Chen, P. P., (1976).The entity-relational model: Towards a unified view of data. ACM
Transaction on Database System, Vol 1(1), pp. 9-36.

Choi, B. (2002). What are Real DTDs like. Technical Reports, Department of Computer

and Informatioan Science, University of Pennsylvania .

Clack ,J. and Murata, M. (2001). RELAX NG Specification. December 2001,
http.//www.oasis-open.org/committee/relax-ng/spec-20011203. html.

Clack, J. (2001). TREX - Tree Regular Expression for XML: language Specification.
February 2001. . http://www.thaiopensource.com/trex/spec.html.

Codd, E. (1970). A relational model of data for large shared data banks. Communication
of the ACM, Vol 13 (6) , pp. 377-387.

Codd, E. (1972). Further normalization of the database relational model. In Database
system, Computer Science Symposia Series 6. Englewood Cliffs, New York:

Prentice Hall.

Codd, E. (1974). Recent investigation into relational database system. Proc IFIP
congress, Stockholm, Sweden, pp 1017-1021.

Connolly, T.M and. Begg, C.E (2002). Database Systems: A practical approach to
Design, Implementation and Management. USA: Addison Wesley.

Conforti,G., and Ghelli, G. (2003). Spatial tree logics to reason about semistructured
Data. In Proceeding of 11th Italian Symposium and Advance Database System,
Italy, pp. 37-48.

Conrad,R., Scheffner,D., and Freytag, J. (2000). XML conceptual modelling using
UML. In Proceeding of the International Conference on Conceptual Modeling ,
New York, USA, pp. 558-571.

251


http://www.oasis-open.orglcommitteelrelax-ng!spec-20011203.html.
http://www.thaiopensource.comltrex!spec.html.

Coronato, A. and De Petro, G. (2010). Formal specification of wireless and pervasive
healthcare applications. ACM Transaction on Embedded Computing Systems,
Vol.10(1), Article 12. pp. 1-18.

Cover,T., and Thomas,J. (1991). Element of Information Theory. New York: Wiley.
Date, C. (2000). An Introduction to Database Systems. London: Addison Wesley.

D'Inverno, M and Hu, M.J. (1997). A Z specification of the soft-link hyperytext model.
ZUM'97: 10" International Conference of Z Users, Lecture Notes in Computer
Science, Reading, UK, pp. 297-316.

D'Inverno, M, Justo, G.R. and Howell, P. (1991). A formal framework for specifying
design methodologies. Sofiware Process: Improvement and Practice, Vol 2(3), pp.
181-195.

D'Inverno, M. and Luck, M. (1996). A formal view of social dependence networks. In
Distibuted Artificial Intelligence Architecture and Modelling: Proceeding of the
First Australian Workshops on Distributed Artificial Intelligence, Lecture Notes in
Artificial Intelligence, Springer, 1087, pp. 115-129.

Diller, A. (2001). Z: An Introduction To Formal Methods. London: John Wiley and

Sons.

Dobbie,G., Xiaoying,W., Ling. T.W., and Lee, M.L. (2000). ORA-SS: An object-
relationship-attribute = model for semi-structured data. Technical Report,
Department of Computer Science, National University of Singapore .

Embley, D. and Mok, W.Y. (2001). Developing XML documents with guaranteed
"good" properties. In Preceedings of the 20th International Conference on
Conceptual Modeling, London, UK, pp. 426-441.

Fagin, R. (1977). Multivalued dependencies and a new normal form for relational
databases. ACM Transaction on Database System, Vol 2(3), pp. 262-278.

252



Fan, W. and Libkin, L. (2002). On XML Integrity constraints in the presence of DTDs.
Journal of the ACM, 49(3), pp. 386-406.

Fan, W. and Simeon, J. (2000). Integrity constraints for XML. In Proceedings of the
Nineteenth ACM SIGMOD -SIGACT Symposium on Principle of Database Systems,
New York, USA, pp. 23-34.

Fan, W. and Simeon, J. (2003). Integrity constraint for XML. Journal of Computer and
System Sciences, Vol 66(1), pp. 254-291.

- Feng, L., ChangE., and Dillon,T. (2002). A Semantic network-based design
methodology for XML documents. ACM Transactions on Information Systems. Vol
20(4), pp. 390-421.

Florecsu, D. and Kossmann, D. (1999). Storing and querying XML data using RDMS.
IEEE Computer Society on Data Engineering, pp. 27-34.

Goldman, R., and Widom, J. (1997). Dataguides:enabling query formulation and
oprimization in semisructured database. In Proceeding of the 23rd International

Conference on Very Large Databases, Athens, pp. 436-445.

Gustas, R. (2010). A look behind conceptual modelling constructs in information
system, analysis and design. International Journal of Information System Modeling
and Design, Vol 1(1), pp 79-108.

Hall, A. (1990). Seven myths of formal methods. EEE Software, pp 11-19.

Hall, A. (1998). What does industry need from formal specification techniques?. In
Proceeding of the second workshop of Industrial Strength Formal Specification
Techniques, IEEE Computer Society, Washington DC, NewYork. pp. 2-7.

Hall, A. (2000). Realising the benefit of formal methods. Formal Methods and Sofiware
Engineering, Lecture Notes Computer Science, Vol (3785). Springer. pp. 1-4.

253



Hall, A. (2010), Z word tools. Retrieved on September 5, 2010 Accessed http:/
http://sourceforge.net/projects/zwordtools/files/.

Halpin, T. (2010). Object Role Modelling: principle and benefit. International Journal
of Information System Modeling and Design, Vol 1(1), pp 33-55.

Halasz, F. and Schwartz, M.(1994). The dexter hypertext. Communication of the ACM,
Vol. 37(2), pp.30-39.

Hartmann, S. and Link, S. (2006). Deciding implications for functional dependencies in
complex-value databases. Theoretical Computer Science , pp. 212-240.

Hartmann, S. and Link, S. (2004). Multi-valued dependencies in the presence of list.
ACM Transaction on Database System, pp. 330-341.

Hartmann, S., Link,S., Schewe K.D. (2005). Functional dependency over XML
documents with DTDs. ACTA Cybern, pp. 153-171.

Hartmann, S. and Link, S. (2003). More functional dependencies for XML. Lecture
Notes in Computer Science, pp. 355-369.

Hegaret, P.(2002). The W3C Document Object Model(DOM). Available at
Http://www.w3.0rg/2002/07/26/dom-article.

Hexthausen, A and Peleska, J.(2000). Formal development and verification of a
distributed railway control system. IEEE Transaction on Software Engineering, Vol
26(8). pp. 687-701.

Hunter, D. (2000). Beginning XML. USA:Wrox Press.
Jacob, K. (2004). Integration of life science databases. Biosilico Vol 2( 2) , pp. 61-68.

Jacky, J. (1997). Specifying a safe critical control system in Z. Journal of IEEE
Transaction on Software Engineering, Vol 21(2). pp 95-106.

254


http://sourceforge.net/projectslzwordtooislfiles/.
http://Http://www.w3.org/2002/01126/dom-articie.

Jones, C.B. (1986). Systematic software development using VDM. Englewood Cliffs,

New Jesey : Prentice-Hall

Kanellakis, P. (1990). Elements of relational database theory. In Handstudent of
Theoretical computer Science, Vol B, pp. 1074-1144,

Kim, S.W., Shin, P.S., Kim, Y.H., and Lim, H.C. (2002). A data model and algebra for
document -centric XML document. Lecture Notes in Computer Science, Vol 2344 ,
pp- 714 -723.

Kolahi, S. (2007). Dependency-preserving normalization of relational and XML data.
Journal of Computer and system Sciences, Vol 73, pp. 636-647.

Kolahi, S. and Libkin, L. (2006). On redundancy vs dependency preservation in
normalization: an informatics-theoretic study of 3NF. In Proceedings of the 25t
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
USA, pp. 114-123

Kolahi, S. and Libkin, L. (2007). XML design for relational storage. Journal of
Computer and System Sciences, Vol 73(4), pp.636-647.

Lange, D.B. (1990). A formal approach to hypertext using post-prototype formal
specification. Lecture Notes in Computer Science, Vol 428, pp.99-121

Lee, LM, Ling, W.T., and Low. L.W. (2002). Designing functional dependencies for
XML. In Proceeding of the 8" International Conference on Extending Database
Technology: Advance in Database Technology, London, UK, pp. 27-36.

Lee, S.J., Dobbie, G., Sun, J. and Groves, L. (2010). Theorem prover approach to semi-
structured data design. Formal Methods System Design, Vol 37, pp. 1-60

Lee, S.J., Sun, J., Dobbie, G., and Groves, L. (2009). Formal Verification of Semi-
structured Data in PVS. Journal of Universal Computer Science, Vol 15(1), pp.
241-272

Lee, S.J, Sun, J., Dobbie, G. and Li, Y.F. (2006) . A Z Approach in Validating ORA-SS
Data Models. Electronic Notes in Theoretical Computer Science, Vol. 157, pp. 95-
109.

255



Lee, S.J, Sun, J., Dobbie, G., Groves, L., and Li, Y.F. (2008). Correctness Criteria for
Normalization of Semi-structured Data. In Proceeding 19" Australian Conference
od Software Engineering. Australia, pp. 248-257.

Lee, S.Y., Lee, M.L., Ling, T.W., and Kalinichenko, L.A. (1999). Designing good semi-

strucutred databases. Lecture Notes in Computer Science, Vol. 890, pp. 131-145.

Leftonen, M. (2006). Preparing heterogeneous XML for full-text search. ACM
Transaction on Information System, Vol 24(4) , pp. 455-474.

Ley, M. (2002). DBLP. http://www.informatik.uni-trier.de/~ley/db/index.html.

Libkin, L. (2007). Normalization theory for XML. In Proceeding of the 5™ International
XML Database Symposium, Austria, pp.1-13.

Lightfoot, D. (1991). Formal Specification Using Z. London: The Macmillan Press Ltd.

Ling, T.W, (1985). A normal form for entity-relationship diagram. Proceeding 4"
International Conference on Entity Relationship Approach, pp. 24-35.

Ling, T.W., Lee, M.L., and Dobbie, G. (2005). Semistructured Database Design, New
York, USA: Springer.

Ling T.W. and Yan, L.L. (1994). NF-NR: A practical normal form for nested relations.
Journal of Systems Integration, Vol 4(4), pp. 309-340.

Liu,.F., Li, C., Yu, J, (2011). Description of web service composition model based on Z
notation. In International Conference on Computer Science and Automatic
Engineering (CSAE) ,IEEE , Shanghai, pp. 587-591.

Lu, J.J. and Renjen, S. (2005). Normalizing XML Schemas through relational. 43rd
ACM Southeast Conference USA, pp. 220-221.

Luck, M. and D'Inverno, M.(1995). Structuring a Z specification to provide a formal
framework for autonomous agent systems. ZUM'95: 9" International Conference of

Z Users, Lecture Notes in Computer Science, Springer-Verlag. Berlin, pp.48-62.

256


http://www.informatik.uni-trier.del-Iey/db/index.html.

Lv, T., Gu, N., and Yan, P. (2004). Normal forms for XML documents. Information and
Software Technology, pp. 839-846.

Lv, T. and Yan, P. (2006). Mapping DTDs to relational schemas with semantic
constraint. Elsevier-Information and SoftwareTechnology 48, pp. 245-252.

Lv, T. and Yan, P. (2007). XML normal forms based on constraint_tree-based
functional dependencies. Lecture Notes in Computer Science, Vol 4537, pp. 348-
357.

Ma, Z.M. and Yan, L. (2007). Fuzzy XML data modelling with UML and relational data
models. Elsevier: Data and Knowledge Engineering (63), pp. 972-996.

Mani, M., Lee, D., and Muntz, R. R. (2001). Semantic data modeling using XML
Schemas. In Proceeding of 20th International Conference on Conceptual
Modelling, London, UK, pp. 149-163.

Mannila, H. and Raiha, K.J. (1989). Practical algorithms for finding prime attributes and
testing normal forms. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGAT

Symposium on Principles of Database Systems, pp. 128-133.

Martens, W., Neven, F., and Schwentick, T. (2007). Simple off the shelf abstraction for
XML schema. SIGMOD Record, Vol 36(3), pp. 15-22.

McHugh J, Abiteboul S, Quass D, and Wisdom J.(1997). Lore: a database management
system for semistructured data. SIGMOD Record, Vol 26(3), pp. 54-66

Melton, J. and Simon, A.R. (1993). Understanding the new SQL: A Complete Guide.
USA: Morgan Kaufmann.

Mian, N.A and Zafar, N.A.(2010). Key analysis of normalization process using formal
techniques in DBRE. In Proceeding of Second International Conference on
Computer Engineering and Application, IEEE Computer Society, pp. 370-374.

Mok, W. Y.(2002). A comparative study of various normal forms. IEEE Transaction on
Knowledge and Data Engineering, Vol 14, pp.369-385.

257



Mok, W. Y. and Embley, D. (2006). On utilizing variables for specifying FDs in data-
centric XML documents. Data and Knowledge Engineering, Vol 60, pp 494-510.

Mok, W. Y., and Embley, D. (2006). Generating compact redundancy-free XML
documents from conceptual-model hypergraphs. IEEE Transaction on Knowledge. Data
Data Engineering. Vol 18(8), pp.1082-1096

Mok, W.Y., Ng Y., and Embley, D. (1996). A normal form for precisely characterizing

redundancy in nested relations. ACM Transaction on Database System, Vol 21(1),
pp. 77-106.

Moller, A. and Schwartzback, M. (2006). An Introduction to XML and Web Technology.
England:Addison Wesley.

Murata, M. (1999). Hedge automata: A formal model for XML schemata, Fuji Xerox
Information System, Available at www.xml.gr jp/relax/hedge_nice.html.

Murata, M., Lee, D., Mani, M, and Kawaguchi, K. (2003). Taxonomy of XML Schema

language using formal language. ACM Transaction and Database, Vol 45(7), pp
27-67.

Nevan, F. (2002). Automata theory for XML researchers. SIGMOD Record, Vol 31(3) ,
pp. 39-46.

Ozsoyoglu, M. and Yuan, L. (1989). On the normalization in nested relationa databases.

In Nested Relations and Complex Object , Springer, pp. 243-271.

Ozsoyoglu, M. and Yuan, L. (1987). A new normal form for nested relations. ACM
Transaction on Database Sytsem, Vol 12(1), pp. 111-136.

Pankowski, T. (2009). Transformation of XML data into XML normal form.
Informatica, Vol 33, pp. 417-430.

Papakonstantinou, Y., Molina,G. and Wisdom, J. (1995). Object exchange across
heterogenoues information sources. In Proceeding of the Eleventh International

Conference on Data Engineering, Taipei, Taiwan, pp. 251-260.
258


http://www.xml.grjplrelaxlhedge_nice.html.

Partsch, H. A. (1990). Specification and Transformation of Program. New York:
Springer-Verlag

Paterno, F., Santoro, C. and Tahmassebi, L.(1998). Formal models for cooperative task,
concept and application for route air traffic control. In Proceeding of 5t

International Workshop on Design and Specification New York, USA, pp. 1-10.

Philippi, S. and Kohler, J.(2004). Using XML technology for the ontology based
semantic integration of the life sience databases, IEEE Transaction Information
Technology Biomed, Vol 8(2), pp. 154-160.

PIR International Protein Sequence Database.

(http://pir.georgertown.edu/pirwww/search/textpsd.html).
Powell, G. (2007). Beginning XML Databases. USA: Wiley .

Ratcliff, B. (1994). Introduction Specification using Z: A Practical Case Study
Approach. England: McGraw-Hill Student Company Europe.

Rosen, K.H. (1995). Discrete Mathematics and lts Applications. Third Edition, New
York: McGraw-Hill.

Runapongsa, K., and Patel, J.M. (2002). Storing and querying XML data in object-
relational DBMSs. Lecture Notes in Computer Science 2490, pp. 266-285.

Saaltink, M. (1997). ZUM'97: Z formal specification notation. Lecture Notes in
Computer Science, Vol 1212, pp. 72-75.

Sahuguet, A. (2000). Everything you ever wanted to know about DTDs, but were afraid
to ask. In Proceesings of the International Conference on the Web and Databases,
Texas, pp. 69-74.

Schewe, K. (2005). Redundancy, dependencies and normal forms for XML databases.
Sixteenth Australasian Database Conference(4DC2005), Australia, pp. 7-16.

259



Schwentick, T. (2007). Automata for XML-Survey. Journal of Computer System
Sciences, Vol 73(3), pp. 289-315.

Simpson, A. (2002). Discrete Mathematics by Example, England:McGraw-Hill.

Singh, M. and Patterh, M.S. (2010). Formal specification of common criteria based

access control policy model. International Journal of Network Security, Vol. 11(3),
pp. 139-148.

Sommerville, 1. (2010). Software Engineering, 9™ Edition, USA:Addison Wesley.
Spivey, J.M. (1988). Understanding Z. Cambridge: University Press,Cambridge.

Spivey, J.M. (1992). The Z notation: A reference manual. International Series in

Computer Science, Prentice Hall.

Syukur, Z., Alias, N., Mohamed Halip, M.H. and Indrus, B. (2007) Formal validation on
the safety of sack protocol using theorem proving technique. Journal of Computer
Science, Vol 3(6). pp. 449-453.

Tatarit_lov, L, Ives, Z., Halevy, A. and Weld, D. (2001). Updating XML. In Proceedings
of the 2001 ACM SIDMOD International Conference on Management of Data.
Santa Barbara, Colifornia, pp. 412-424.

Varlamis, 1. and Vazirgiannis, M. (2001). Bridging XML-Schema and relational
database. A system for generating and manipulating relational database using valid
XML documents. DogEng, pp. 105-114.

Vincent, M.W., and Levene, M. (2000). Restructuring partitioned normal relations
without information loss. SIAM Journal on Computing, Vol 39(5), pp. 1550-1567.

Vincent, M.W. and Liu, J.(2003). Multivalued dependencies in XML, Lecture Notes in
Computer Science 2712, pp.4-18.

260



Vincent, M.W., Liu, J., and Liu, C. (2004). Strong functional dependencies and their
application to normal form in XML. ACM Transactions on Database Systems, Vol
29(3), pp. 445-462.

Vincet, M., Liu, J., and Mohania, M. (2007). On the equivalence between FDs in XML
and FDs in relations. Acta Informatica, pp. 2007-247.

Wang, B. (1993). Integrating database and hypertext to support documentation

environments. In PhD. Thesis. University of York.

Wang, B. (1999). A hybrid system approach for supporting digital libraries.
International Journal on Digital Libraries, Vol(2), Springer, pp. 91-110.

W3C. (2010). XQuery: An XML Query Language, Available at HITP./
www.w3.0rg/TR/2010/REC-xquery-20101214

W3C. (2001). XML Schema . W3C recommendation, Available at HTTP./
www.w3.0rg/TR/XMLschema.

W3C. (1998). XML Specification DTD, available at
http:/fwww.w3.0rg/XML/1998/06/xmispec-report-1991010.html.

Wang, J. (2005). A comparative study of functional dependencies for XML. Lecture
Notes in Computer Science, Vol 3399, pp. 308-319.

Wang, J. and Topor, R. (2005). Removing XML data redundancies using functional and
equality-generating dependencies. In Proceesing of the 16th Australasian Database
Conference, Australia, pp. 65-74.

Wang, L., Dobbie, G., Sun, J., and Groves, L.(2006). Validating ORA-SS data models
using Alloy. In Proceeding of the 2006 Australian Sofiware Engineering
Conference, IEEE Computer Society, Australia, pp 231-242.

Woodcock, J. and Davies, J. (1996). Using Z:Specification, Refinement and Proof.

International Series in Computer Science, England: Prentice Hall.

261


http://www.w3.orgffRl2010IREC-xquery-20101214
http://www.w3.orgffRlXMLschema.

Wordsworth, J. (1992). Software Development with Z: A Practical Approach to Formal
Methods in Software Engineering. England: Addson-Wesley.

Wu, X., Ling, T.W., Lee, M.L., and Dobbie, G. (2001). Designing semistructured
databases using ORA-SS model. In Proceeding International Conference on Web

Information System Engineering, Kyoto, Japan ,pp. 171-180.

Wu, Y. (2004). Normalization design of XML database schema for elimanting
redundant shemas and satisfying losless join. In International Conference on Web
Intelligence 1IEEE, Beijing, China, pp. 660-663.

Wuwongse, V., Akama, K., Anutariya,C., and Nantajeewarawat, E. (2003). A data
mode! for XML Databases. Journal Intelligence Information. System, Vol 20(1), pp.
63-80

Wyke, R. A., and Watt, A. (2002). XML Schema Essentials. New York:Wiley.

Yu, C. and Jagadish, J.H. (2006). Efficient discovery of XML data redundancies.
VLDB'06 Korea: ACM, pp. 103-114.

Yu, C. and Jagadish, J.H. (2008). XML schema refinement through redundancy
detection and normalization. The VLDB Journal, pp. 203-223.

Yuliana, O.Y. and Chittayasothorn, S. (2005). XML schema re-engineering using a
conceptual schema approach. International Conference on Information Technology:

Coding and Computing. Las Vegas, Nevada, pp 25-31.

262



Appendix A

Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesis. The glossary is
based on the glossary of Z notation presented in Spivey (1982)

Al Schema Notation

Schema is the basic unit in Z. It contains a two-dimensional graphical notation for

grouping together. It has the following basic form:

_SchemaName
Declarations

Predicate

The declaration part is used to define variable names, each with a type. The predicate
part presents a relationship between the variables declared in the declaration part

The schema also can be written in a linear form as follows:

SchemaName 2 [ Declaration | Predicate]

A.1.1 The A and = Conventions in Schema

The A notation is used for a schema to represent the change of state. Suppose we have a

schema S. In a linear form the schema S can be written as follows:

For example AS 2 SA S’

S

-

aa:.Declarations

Predicate

263



Then AS can be represented as follows:

AS

S
S

Predicate

In a linear form the schema S can be written as follows:
AS2SAS

The E notation is used for a schema to represent no change of state

ES.

AS

aa = aa'

A.2 Axiomatic Definitions

According to Spivey’s definition (Spivey, 1982), an axiomatic schema introduces a
global variable definition. It can be used throughout the whole specification. It has the

following basic form:

| Declarations
I Predicate
A3 SetinZ
V4 the set of integers (whole numbers)
N the set of natural numbers( > 0)
N, the set of positive natural numbers (> 1)
tes t is an element of S
t& S t is not an element of S
SeT Siscontained in T
ScT S is strictly contained in T

264



@ or {} the empty set

PS Power set: the set of all subsets of S
FS the set of finite subsets of S

SuT Union

SNT Intersection

S\T Difference

# not equal

A4 Relationsin Z

X, Y are sets and R is the name of a relation

XxY the set of ordered pairs of X and Y

XeY the set of relations from X to Y

Xy x.y)

domR the domain of a relation ={ x:X| (3 y:Y.xRy) ¢ x }
ranR the range of a relation= { y:Y| @ x:X.xRy)*y}
R(SD the relational image of S inR

S<R the relation R domain restricted to S

S> R the relation R range restricted to S

S4R the relation R domain anti-restricted to S

SPR the relation R range anti-restricted to S

R the repeated self- composition of R

R~ the inverse of R

A.S FunctioninZ

X+Y the set of partial functions from Xto Y

={f: X «Y|reX » Y AVy:ran fe (3, x:dom f «(x, y) € f)}
X—-Y the set of total functions from X to Y

== {f: X » Y| dom f=Xe f)
XY the set of total injection functions from Xto Y

265



fx or f(x) the function f applied to x

fdg functional overriding=—=(domg<€4f)ug
A6 SequencesinZ
Seq X The set of sequence whose elements are drawn from X
=={ S:N -+ X| dom S = 1..#S8}
#S The length of the sequence S
<Xy Xp> =={1 X;,...,n = X;}
Head S ==§]
LastS ==S #S
266



