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ABSTRACT

The eXtensible Markup Language (XML) is fast emerging as the dominant standard for

storing, describing and interchanging data among various systems and databases on the

internet. It offers schema such as Document Type Definition (DTD) or XML Schema

Definition (XSD) for defining the syntax and structure of XML documents. To enable

efficient usage of XML documents in any application in large scale electronic

environment, it is necessary to avoid data redundancies and update anomalies.

Redundancy and anomalies in XML documents can lead not only to higher data storage

cost but also to increased costs for data transfer and data manipulation.

To overcome this problem, this thesis proposes to establish a formal framework of

XML document schema design. To achieve this aim, we propose a method to improve

and simplify XML schema design by incorporating a conceptual model of the DTD with

a theory of database normalization. A conceptual diagram, Graph-Document Type

Definition (G-DTD) is proposed to describe the structure of XML documents at the

schema level. For G-DTD itself, we define a structure which incorporates attributes,

simple elements, complex elements, and relationship types among them. Furthermore,

semantic constraints are also precisely defined in order to capture semantic meanings

among the defined XML objects.

In addition, to provide a guideline to a well-designed schema for XML documents, we

propose a set of normal forms for G-DTD on the basis of rules proposed by Arenas and

Libkin and Lv. et al. The corresponding normalization rules to transform from a G-

DID into a normal form schema are also discussed. A case study is given to illustrate

the applicability of the concept. As a result, we found that the new normal forms are

more concise and practical, in particular as they allow the user to find an 'optimal'

structure ofXML elements/attributes at the schema level. To prove that our approach is

applicable for the database designer, we develop a prototype ofXML document schema

design using a Z formal specification language. Finally, using the same case study, this

formal specification is tested to check for correctness and consistency of the

specification. Thus, this gives a confidence that our prototype can be implemented

successfully to generate an automatic XML schema design.
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Chapter 1

Introduction

1.1 Motivation of the Research

With the wide utilization of the web and the availability of a huge amount of electronic

data, XML (eXtensible Markup Language) has been used as a standard means of

information representation and exchange over the Web. Its usage has increased

extensively in many commercial applications with complex data structures such as

Manufacturing, Bioinformatics, B2B (Business to Business), Medicine and

Geographical data (Powell, 2007; Ma and Van, 2007; Pankowski, 2009). Thus,

effective means of the management of XML documents as databases are needed for

query, consistent and efficient storage. Various databases, including relational, object-

oriented, and object-relational databases have been used for mapping to and from XML

documents (Florecsu and Kossmann, 1999; Runapongsa and Patel, 2002). Among this

kind of database, most researchers use a relational database as a persistent storage since

it is a more promising alternative, because of its maturity.

However, this approach has disadvantages, since it does not support well complex data

structures such as scientific data because it cannot retain the original of XML documents

(Bourret, 2007). With such problem, has led to the development of native XML

database system for a number of applications and its use is increasingly rapidly because

its ability to hold and manage highly complex data structures (Bourret, 2007; Philippi

and Kohler, 2004; Lee et al., 2010). Such applications may use native XML database

facilities (Kanne and Moerkotte, 2000) to store and update XML data (Tatarinov et al.,

2001). The native XML database stores XML documents directly without performing

any conversion or shredding the XML documents into another format thus reduce

processing time and provide better performance. However, native XML database is still

in its infancy and not as mature as traditional databases (e.g. relational database), hence

many important problems and questions remain unanswered, especially on the principles

ofXML database design (Arenas, 2006; Schewe, 2005; Libkin, 2007).
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Essentially, an XML document can be regarded as a native XML database because

every XML document contains both metadata and data (Powell, 2007). It is important

to design non-redundant XML document for the sake of readability and manageability.

The non-redundant design means there are no duplicate information, store correct and

complete information. This is because duplicate information will waste space and

increases the likelihood of errors and inconsistencies.

Like managing traditional database, the management of XML documents requires

capabilities to handle with integrity, consistency, data dependency, redundancy, views,

access rights, integration, and normal forms (Yu and Jagadish, 2008; Libkin, 2007;

Arenas and Libkin, 2004; Dobbie, 2001; Feng et al., 2002). Amongst the important

problem related to XML database design are data redundancies and update anomalies.

Similar to relational database, reducing data redundancy is an important step in XML

design because it cause update anomalies, which lead to an efficient use of the database.

In XML documents, redundancies and update anomalies occur when the schema such as

Document Type Definition (DTD) allows addition of redundant values (Arenas and

Libkin 2004). The redundancy of data in XML documents highly depends on how the

schema is designed. Thus, we can say that efficient use of XML documents depends on

the quality of schema design.

However, to formulate the criteria for non-redundant of XML document schema design

is very challenging for the following reasons (Arenas, 2006; Libkin, 2007):

• The structure of XML documents is different from that of relational databases

which contain a complicated path structure, so it is difficult to see whether it

contains redundancies.

• Expression of semantic constraints of XML documents imposed by schema such

as DTD and XML Schema Definition (XSD) is limited.
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• There are problems of ensuring that data and semantic constraint of designed

schema are not lost and preserved after the process of normalization of the

schema.

• No acceptable notion of an XML updates as yet exists, comparable to the notion

of the relational updates, which makes it hard to say what makes an update

anomaly.

• There is no standard query language for XML document compared to relational

algebra for relational databases.

Thus, the above challenges and issues motivate us to investigate further the needs and

requirements to achieve a non-redundant XML document design, particularly one that is

free from data redundancy.

1.2 Outline of Research Problems and Hypothesis

XML can be classified into two main types (Bourret, 2007; Wang and Topor, 2005;

Vincet et al., 2007). The first type of application is called document centric XML and the

second type is called data centric XML. Document centric XML is used as a mark up

language for semi-structured text documents with mixed-content elements, where the

content and order of sibling elements is significant, for instance a user's manual,

webpage, etc. Data centric XML consist of more regular structured data for automated

processing and there are few or no elements with mixed content, comment and

processing instruction, such as geographic and scientific databases which contain

complex semi-structured data, e.g molecular biology, protein data being the most

prevalent example. In this thesis, we will focus on data centric applications and we will

refer to data centric XML as XML documents.

To date, several normal forms and normalization algorithms for XML documents have

been proposed. The reason for this is to give a guideline to the user to eliminate data

redundancy in XML documents. For example, different notions of normal forms for
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XML documents have been proposed by Arenas and Libkin (2004), Lv et al., (2004),

Wang and Topor (2005), Kolahi (2006), and Yu and Jagadish (2008). Generally these

normal forms are based on functional dependency (Yu and Jagadish, 2008; Arenas and

Libkin, 2004; Vincent et at, 2004; Wong and Topor, 2005; Emberly and Mok, 2001;

Ling, 2001, Lee et al., 1999; Mani et al., 2001; Wu et al., 2001) or multivalued

dependencies (Vincent, 2003; Emberly and Mok, 2001). Many notions of XML

functional dependencies (XFD) have been defined by them to represent the semantic

constraints in XML as well. However, the best approach so far to defining XML

functional dependencies is that based on tree tuples, proposed by Arenas and Libkin

(2004), since they used a well-developed concept from the relational model (Codd,

1970). Arenas and Libkin proposed a notion of tree tuple based on the idea from

relational schema (Codd, 1972)and nested relational schema (Mok et al., 1996).

However there are problems with Arenas and Libkin's definition of normal forms and

normalization algorithms, as follows:

• The current definitions of XML normal forms are presented in term that are

difficult to be understood by non technical users or practitioners. Thus, the

approach did not show the tremendous benefit to practitioners because proposed

XML normalization concepts have been very complicated for designers to apply

effectively in real world applications (Bourret, 2007). In particular, the

information system academics or practitioners might be interested in finding out

some means of normalization without formulas, interpretation, theorems etc.

XML normal form needs to be defined in a simple way that is easy to be
implemented.

• The normalization algorithms only work for the existing normal forms, which

have limited semantic expressiveness (Yu and Jagadish, 2008; Pankowski,
2009).
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• Even though the proposed normalization algorithms can eliminate data

redundancy, the semantics of the original data (dependency preserving) for

initial schema could not be preserved during the construction of the new schema

and the original information might be lost (Kolahi, 2001). XML normalization

needs to be improved to bemore precise and understandable.

• The cost of restructuring the original XML documents schema will be very

expensive if it involves a huge XML document, since decomposition is an

expensive operation (Arenas and Libkin, 2006).

Therefore, in this work, we are looking into the first two issues. For these issues, such

XML normal forms need to be redefined in an easy and more practical way. We believe

that defining a simple definition of XML normal form will make XML document

schema design easier. Under this assumption, we argue that to produce a non-redundant

schema of an XML document for application A, we should first produce a conceptual

model, S at schema level and then apply a normalization rule to transform S into a

normal form S' and finally convert the conceptual model S' back to the XML schema.

1.3 ThesisAim and Objectives

The research aim is to establish a formal framework of XML document schema

design by incorporating a conceptual model of XML schema, specifically DTD,

with a theory of database normalization.

To achieve this aim the following research objectives were defined:

(1) To investigate how design guidelines for relational schema are applied to XML

database schema design using normalization theory. This involves examining of

XML functional dependency (XFD) concepts and discussing various definitions of

XML normal forms based on these XFDs and highlights their strengths and

limitations.
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(2) To propose a systematic approach to simplify XML document schema design by

first proposing a graphical XML schema based on DTD called Graph Document

Type Definition (G-DTD) at the schema level. We believe having the G-GTD

model as a tool could describe the structure of XML documents at the schema

level clearly and precisely.

(3) To redefine a set of normal form for G-DTD on the basis of Arenas and Libkin's

rule (2004) and Lv et al.'s rules (2004) which is easy to understand and implement

programmatically. To achieve this, a basic property of XML normal form, which

is functional dependency, is proposed, such as relationship dependency, partial

functional dependency, transitive functional dependency and global functional

dependency. In the context of XML document normalization, it is important to

develop normalization rules to transform an XML document schema into a

normalised one.

(4) To develop a prototype of an XML document schema design using a formal

approach. More specifically, to propose a formal framework of XML document

normalization using Z formal specification language in order to give a precise and

a clearer understanding of the whole system requirement.

(5) The final research objective is to test the specification constructed to show the

consistency of the specification using a simple case study.

1.4 ThesisContributions

The thesis contributes to the research literature, by proposing a specific solution to the

problem mentioned previously, using conceptual model and database normalization

theory. More specifically, these significant contributions can be measured along four

dimensions:

(1) This thesis has proposed G-DTD, as a conceptual model to describe XML

documents at the schema level in a precise and simple way by adopting some of

ER diagram (Chen, 1976) and ORA-SS diagram (Dobbie et al., 2000) notations.

The structure, semantic and conceptual operations of G-DTD model were
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introduced and developed to describe the XML document at the schema level and

the dynamic properties of D-DTD model. This ultimately helps contribute to

understanding the DTD and DTD design.

(2) The thesis has refined a set of normal forms for G-DTD: First Normal Form

(IXNF), Second Normal Form (2XNF), Third Normal Form (3XNF) and Fourth

Normal Form (4XNF). The set of normal forms for G-DTD have been generalised

from Arenas and Libkin (2004) and Lv et al.'s (2004) normal forms. This set of

normal form can be used as a guideline to the user to design non-redundant XML

document schema on the basis of their application.

(3) The thesis proposed a novel prototype of an XML Document Schema Design.

This is to support the claim that users (designers) can profitably bring formal

specification to bear in development of a real XML Document Schema Design

tool. The complete framework and formal specification of the XML Document

Design model was presented in Chapter 5. The full specification of the model

using Z notation was constructed, which gives the precise and clear meaning of

the model.

(4) The thesis developed a case study to test the XML document design specification

to enable us to demonstrate that the specification constructed in Chapter 5 is

satisfied and consistent with certain fundamental criteria of XML document

design. This will increase the confidence in the implemention of an automatic

XML document design.

1.5 Thesis Structure

The thesis is organised as follows.

Chapter 2 presents an overview of relational database design. We discuss how the

concept of relational database design is applied to XML database design by the XML

database researchers. The current work of related to XML document design, which

includes definition of functional dependencies and normal forms, is thoroughly

reviewed.
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Chapter 3 proposes a conceptual model to describe an XML document. The current

conceptual model for XML document is reviewed with particularly focus on the model

of schema level. The informal definition of a G-DTD is presented. We precisely define

what a G-DTD looks like.

Chapter 4 defines a set of normal forms for G-DTD such as First Normal Form (IXNF),

Second Normal Form (2XNF), Third Normal Form (3XNF) and Fourth Normal Form

(4XNF). In order to implement XML document normalization, we propose

normalization rules and algorithm to obtain a normalised G-DTD up to fourth normal

form. Then a case study is provided to illustrate the application of these normal forms

and normalization algorithms. This chapter also evaluates the proposed work with the

existing approach. A comparison between our work and existing approaches is based on

a number of criteria, specifically on expression of DTD structure, XML normal forms

and normalization algorithms.

Chapter 5 presents a formal specification of the XML document design system called

XML design model (XML_DM) which comprises the conceptual model G-DTD and

normalization procedure, discussed in chapters 3 and 4. This formal specification is used

to describe a fundamental framework of what the XML_DM can do and also as an

abstraction of a full complete system which can serve as a reliable reference blueprint

for those who want implement the prototype later. In this chapter, we describe the

specification into three layers: a formal specification of a G-DTD model, G-DTD

normalizer and G-DID mapping tool. All these specifications are described using Z

notation style, which gives precise, mathematical meaning and provide a deeper

understanding of the modelled syntax, structure, and semantics of model properties.

The use of formal specification techniques contributes to the clarity and conciseness of

the model, and enables formal derivation of model properties to be performed easily.

Chapter 6 demonstrates precisely how we test the XML document design in order to

illustrate the consistency of the specification, using the same case study as in Chapter 4.

G-DTD normaliser is chosen as an example because it contains the important properties

ofXML document design, such as IXNF, 2XNF, 3XNF and 4XNF designs.
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Chapter 7 concludes the thesis with a summary of the main contributions of the thesis

and gives some suggestions for future work.
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Chapter 2

Background and Literature Review

2.1 Introduction

There are two approaches to the design process to achieve a non-redundant relational

schema. The first is the logical (or conceptual) level which interprets the relational

schema and the meaning of attributes. The second is the implementation (or storage

level) which describes how the tuples in a relation are stored and updated. In this thesis

we focus on the conceptual level of database design and how this theory is applied to

XML database design.

We start in section 2.2 by presenting a review of conceptual modelling of database

design and discuss theory that has been developed to design non-redundant schema

related to relational databases in general. This includes basic concepts like data

dependency such as functional dependency, key dependency and multi valued

dependency. These data dependencies are formal constraints among attributes that are

used as the main tool for formally measuring the semantic relation among attributes. We

also describe how functional dependencies, key dependencies and multi valued

dependencies can be used to group attributes into relational schema that are in a normal

form. To address the normalization process, we present an algorithm for 3NF and BCNF

design based on functional dependency and measure the correctness using two

properties: information lossless and data dependency preservation.

In section 2.3, we describe how design guidelines for relational schemas are applied to

XML database design using normalization theory. Schema for XML such as DTD and

XSD are discussed. Different definitions of XML functional dependencies based on a

path-based approach and subtree approach are presented and compared thoroughly.

Lastly, we discuss various definitions of XML normal forms based on both
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normalization theory and a conceptual approach and finally highlight the problems of

existing XML normalization algorithms.

2.2 Relational Database

2.2.1 Introduction

Designing a relational database means selection of an appropriate relational schema for

the particular data. The relational schema, which describes an overall description of the

relational database, consists of a set of relations, or tables and a set of constraints over

these relations. For instance, a relational database storing information about students in

a library branch is shown in Figure 2.1. Each row of this table contains the student

number (SNO), its title, author and branch.

SNO Tide Author Branch

0201385902 Database System Date, C.J BJL

0301456101 Data Structure Berztiess BJL

0501652111 Conceptual Database Batini KDL

0201385902 Database System Date, C.J KDL

Figure 2.1: Relation Student

The relation shown in Figure 2.1 consists of the data about the student and the schema

of the relation. These two parts are the main component of the relational model.

Formally, the relational schema is an expression of the form R[U],where R is the name

of the relation and U = { A], .., An} is a set of attributes. For example, the schema of the

relation in Figure 2.1 is Student[U], where U= {SNO, Title, Author, Branch} and

domain(SNO) is the set of numbers. A tuple t is a mapping to associate value to each

attribute of U. An instance I of a relational schema R[U] is a set of U-tuples. For

example, the instance shown in Figure 2.1 contains four tuples; the first is defined as

t)(SNO) = 0201385902, t) (Title) = Database System, t) (Author) = Date, C.J and t)

11



(Branch) = BJL. Thus, tuple t1 is represented as (0201385902 Database System, Date,

C.J, BJL). A database schema is a set of relational schemas S= {Rl[Ul], ..,Rn[Un]}.

Constraints or semantic constraints must be satisfied in the database. For example, in the

relation shown in Figure 2.1, each SNO is associated to each Title. This semantic

constraint is called data dependency. Thus, given a relational schema R[U] and a set of

data dependencies I over R, (R[ U], I) is also called a relational schema.

2.2.2 Data Dependencies in Relational Databases

The usefulness of data dependency theory for designing a well-formed relational

database has been successfully proven over the past 30 years (Abiteboul et aI., 1995)

The theory concerns the question of non-redundant database design in terms of syntax

and semantic properties (integrity constraints). Integrity constraints are the constraints

that are imposed in order to protect the database from becoming inconsistent.

Furthermore, integrity constraints are important for schema specification and query

optimization because if the schema can satisfy these constraints, the problems of data

redundancy and update anomalies in the database can be eliminated. Data dependency

in a relational database can be classified into functional dependency, inclusion

dependency, join dependency, key dependency, domain dependency and multi valued

dependency. However, functional dependency (FD) and key dependency are the most
useful.

Functional Dependency

A functional dependency (FD) over a relational schema R[U] is written as FD:X .... Y,

where X; Y is a subset or equal set of attributes in R. The set of attributesX is called the

left hand side (LHS) of FD, and Y is called the right-hand side (RHS). Thus this

means that X is a set of attributes that determine sets of attributes Y in a relation if and

only if, in every possible value of R, whenever two tuples t1, t2 in I agree on their X
value, they also agree on their Yvalue. This can be denoted as tl[X] = t2[X] implies tl[Y]

= t2[Y]. For example, the relation shown in Figure 2.1 satisfies the functional
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dependency SNO -+ Title, since each SNO number determines the Title because the two

tuples of this relation have the same value of attribute SNO and attribute Title. However

the functional dependency SNO -+ Branch is not satisfied because the values on the

attribute Branch are different.

The number of functional dependencies will depend on the size of the set of relational

schema. One obvious way to reduce the size of the set of FDs is to eliminate trivial

dependencies. A dependency is trivial if it cannot be satisfied. This happens if and only

if the right-hand side(RHS) is a subset of the left- hand side(LHS) (Date, 2000). For

instance, the following FD for relational schema Figure 2.1 was trivial: {SNO, Title} -+

SHOo We are more interested in practice in nontrivial dependencies because they show

the real integrity constraint.

Key Dependency

Key dependency (KO) over relational schema R[UJ is written as KO: X -+ U where X is

a primary key as all attributes (U) of the relation R are functionally dependent on X

However X is a key or candidate key if there are many attributes that can determine

attributes in relation R. For instance, there is no primary key but {SNO, Title, Branch}

is a key for the relation shown in Figure 2.1.

Multivalued Dependency

Multivalued dependency (MVD) is a generalization of functional dependency, such that

every FD is an MVD, but the converse is not true (i.e. there exist MVDs that are not

FDs). For example let R[UJ = {X, Y, Z}. A multivalued dependency over relational

schema R[U] is written as X -+-+ Y, where X and Yare subsets of attribute U. It reads as

X multi-determines Y. An instance I of R[UJ satisfies a multivalued dependency, written

as I 1= X -+-+ Y, if every possible value set of Y values matching a given value (X value,

Z value) pair depends only on the X value and is independent of the Z value (Fagin,
1977).

13



branchno staffname ownemame

B003 Ann Beech Carol Farrel

B003 David Ford Carol Farrel

B003 Ann Beech Tina Murphy

B003 David Ford Tina Murphy

Figure 2.2: Relation BranchStaffOwner

For example, consider a relational schema BranchStafJOwner (branchno, staffname,

onwername) (Connolly and Begg, 2002) of Figure 2.2, which multivalued dependency

branchno-+-+stajfname holds for BranchStafJOwner because there is no direct relation

between member of staffname and ownername at a given branchno. Hence a tuple for

every combination of member of staffname and ownemame must be created to ensure

the relation is consistent. For example, if a new ownername for BOOJ needs to be added

to the relation, two new tuples for staffname have to be created as well to ensure the

relation remains consistent.

Inference Rules for Functional and Multi-Valued Dependencies

The set of functional dependencies ~ over R[UJ that are implied by a given set

functional dependencies X is called the closure of X written X. A set of inference rules

called Armstrong's axiom specifies how the closure of set of functional dependencies X

can be inferred from given a set of functional dependencies ~ (Abiteboul et al., 1995).

These inference rules or dependency implications have been studied for a relational

database as it is an issue in a normalization theory. The following is a sound and

complete set of inference rules for functional dependency:

Reflexibility : IfY is a subset of A, then X -+ Y, where A is a set of Attributes.

Augmentation: IfX -+Y, then X, Z -+Y, Z.
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Transitivity : If X -+ Y and Y -+ Z, then X -+ Z

The following is a sound and complete set of inference rules for multi-valued

dependencies (Beeri et al., 1977) :

Complementation : IfX-+-+Y, then X-+-+( U-Y).

Reflexivity : IfY subset or equal X, then X-+-+Y.

Augmentation : IfX-+-+Y, then XZ-+-+YZ.

Transitivity : If X-+-+ Y and Y-+-+Z, then X-+-+( Z- Y).

Two rules have to be added to this set of inference rules in order to have a sound and

complete set of rules for functional and multi-valued dependencies (Beeri et al., 1977):

Conversion : If X -+ Y, then X-+-+ Y.

Interaction : IfX-+-+Y and XY-+Z, then X-+(Z-Y).

By sound is meant that any dependency that can be inferred from l; holds in every

relational schema on R that satisfies the dependencies in l;. Complete means functional

dependencies can be inferred repeatedly until no more dependencies can be inferred

from l; (Abiteboul et al., 1995). These inference rules are very important in

normalization theory since they can be used to check and verify the correctness of a

normalization algorithm, i.e. whether the generated relational schema is semantically

equivalent to the original relational schema.
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2.2.3 Normal Forms for Relational Database

A normal form in a relational database consists of INF, 2NF, 3NF, BCNF, 4NF and

SNF. The first three (INF, 2NF, 3NF) were defined by Codd (1972). Figure 2.3 shows

a level of normalization which defines that all normalised relational schema are in INF;

some INF are also in 2NF; and some 2NF are also in 3NF. Generally, a non-redundant

database design should have 3NF relation since it is more desirable than 2NF and INF.

A revised normal form called the Boyce-Codd normal form (BCNF) was defined in

Codd(1974) to replace from 3NF. Subsequently, Fagin (1977) defined new fourth

normal form (4NF) and projection-join normal form (PJINF) also known as the fifth

normal form or SNF.

INF relation

2 NF relation

3 NF relation -- BCNF

4 NF relation

I I
5 NF relation

.FIgure 2.3: Level of Normalization (Date, 2000)

However in this work, we are more interested in 3NF and BCNF since they are most

used in practice as they are well designed. BCNF decomposition guarantees to produce

relations that do not cause any redundant data whiJe 3NF decomposition may not

produce non-redundant relations, but guarantees to preserve all the FDs (Abiteboul et
aI., 1995).
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First Normal Form (INF)

A relational schema is in first normal form (INF) if and only if all attributes contain only

atomic value; that is, there is no repeated group or attribute within a row. A relation in

INF often suffers from data duplication, update performance and update integrity

problems. These issues are related to concepts of key such as superkey, candidate key

and primary key. A superkey is a set of one or more attributes which can uniquely

identify an entity. Any subset of superkey is called a candidate key. A primary key is

selected from the set of candidate keys to be used as index for the relation.

Second Normal Form (2NF)

A relational schema (R[Uj, 1::) is in 2NF if and only if it is in INF and every nonkey

attribute is fully dependent on the primary key. An attribute is fully dependent on the

primary key if it is on the RHS of an FD for which the LHS is either the primary key

itself or something that can be derived from the primary key using transitivity of FD.

Third Normal Form (3NF)

A relational schema (R[ Uj, 1::) is in 3NF if and only if for every nontrivial FD X -+ A E

1::+, where X is superkey or A is a prime attribute. A database schema S is in 3NF if

every relation schema in S is in 3NF. For example consider a relation Patient (Patient

No, Appointment Date, Appointment time, Dr_ID, Room_No) with the following FDs:

FDI {Room_No, Appointment Date, Appointment_Time} --+ Dr_ID, Patient_No and

FD2 {Dr_ID, Appointment_Date} --+ Room_No, Appointment_Time. The instance of a

relational schema shown in Figure 2.4 is in 3NF since for both of RHS FDl: {DrID,

PatientNo} andFD2: {Room_No, Appointment_Time} are prime attributes.
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Patient Appointment Appointment Room
Dr ID

No Date Time No

P34 1 Sept 08 10.30 JP 2 112

P14 1 Sept 08 12.00 JP 2 112

P35 1 Sept 08 12.00 Ale 3 102

P15 10 Sept 08 10.30 JP 2 102

Figure 2.4: Relation Patient

Maniila and Raiha (1989) has developed an algorithm to check whether the relation

schema is in 3NF by testing if an attribute is a prime attribute. Given relational schema

R [Uj, and l; a set of FDs over U (R[Uj, l;), for every As U. max (AJ ={ Y s: U. where

Y is a maximal set such that Y-+A E l;+} where max refers to a prime attribute. Xe max

(A) if and only if X-+ A E l;+ and XB -+ A e l;+, for every B€U-XA such that XA is a

superkey.

When transforming a database schema into a new one which is normalised it must be

tested whether the transformation is correct or not. Two basic properties have been used

to test their correctness: information lossless and dependency preservation (Abiteboul et

aI., 1995). To check this property, Berstein (1976) developed an algorithm for

producing dependency preserving 3NF which was extended later on by Biskup et al.

(1979) to produce 3NF with information lossless. Figure 2.5 shows the algorithm to

check the correctness of 3NF.

As presented in Figure 2.5, minimal cover r is a set of functional dependencies I that
satisfies the following:

1. Every functional dependency in I has a single attribute for its right hand side
(RHS).
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2. Any functional dependency FD X -+ A E :Ecannot be replaced with FD Y -+ A,

where Y is a proper subset of X, and there is a set of FD that is equivalent to :E.

3. Any FD from :Ecan be removed and still have a set of FD that is equivalent to :E.

Generally we can simplify the above condition as a set of FD in a standard or canonical

form with no redundancies. A partition E 10 .. , :En of:E is a LHS partition of:E ifno two set

of:E have the same LHS.

SetS': = 0

Find a minimal cover f from the set of FD

Find a LHS partition I'ls ... I'n of each FD in set FD

S':= {(Ri[ ~], fi) IUi is the set of all attributes in fi}

If there is (Ri[Ui], fJ such that ~ is a superkey

Then output S'

Else

Determine a key X of U

Output S'U {R n+l[X], O}

Figure 2.5: An Algorithm to Check the Correctness of3NF (Abiteboul et al., 1995)

Boyce-Codd Normal Forms (BCNF)

A relational schema (R[ U], :E)is in BCNF if and only if for every nontrivial FD X -+ Y

E :E,where X is superkey attribute, X -+ U E :E", A database schema S is in BCNF if

every relational schema in S is in BCNF. Using the same relational schema and FDs as

in Figure 2.4, however it is not in BCNF due to presence of LHS of FD2 with {DR_ID,

Appointment _Date} attribute, which is not a superkey for the relation. BCNF requires

that every LHS attributes in FD is a superkey for the relation. For example, if instance of

DR_ID which is JP_2 is assigned a new room number on 1 Sept 08, two tuples have to

be updated. As a consequence, the Patient Relation may suffer from update anomalies.

19



2.2.4 Normalization Process

The process of normalization was first developed by Codd (1972). Normalization is

often performed by a decomposition of a relational schema so that it satisfies the

requirement of a given normal form such as BCNF. The process of normalization is a

formal method that identifies relations based on functional dependency among their

attributes. This process is applied to each relation so that a relational schema can be

normalised to a specific schema that prevents data redundancy and update anomalies in

the database, and hence, reduces file storage space required.

An example of redundancy in a relational schema is shown Figure 2.4, where JP_2

appears redundantly on 1 Sept 08. On the other hand, update anomalies can be

classified as insertion, deletion, or modification anomalies. In Figure 2.4, for example,

to change the room number for JP_2 on 1 Sept 08, we must update two tuples. If only

one tuple is updated with a new room number, this results in inconsistency of the

database. As a consequence, the Patient Relation may suffer from update anomalies or

more specifically modification anomalies. To overcome this problem, Codd (1972)

informally showed how to transform a relation to generate a schema that satisfies

BCNF. For instance, the relation patient schema shown in Figure 2.4 should be split

into two new relation schemas called Appointment and Dr_room to avoid the anomalies

presented above. Figures 2.6 and 2.7 show the Appointment and Dr_room relations
respectively.
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Patient Appointment Appointment Dr ID
No Date Time

P34 1 Sept 08 10.30 JP 2

P14 1 Sept 08 12.00 JP 2

P35 1 Sept 08 12.00 Alex_3

P15 10 Sept 08 10.30 JP 2

Figure 2.6: Relation Appointment

Dr_ID Appointment Room

Date No

JP 2 1 Sept 08 112

Alex 3 1 Sept 08 102

JP 2 10 Sept 08 102

Figure 2.7: Relation Dr_room

To test whether a given database schema satisfies a BCNF, a normalization algorithm

has been developed by Beeri and Berbstein (1979) as shown in Figure 2.8. This

algorithm shows how to transform a given database schema into a BCNF form.

Like 3NF, the transformation of a database schema in BCNF is semantically correct if it

satisfies information lossless and dependency preservation properties ( Abiteboul et al.,

1995). To check these properties consider the following examples. Let SI, S2 be two

database schemas. Two instances II of SI and hof S2 contain the same information if it

is possible to retrieve the same information from them; for every query QI over II there

exists query Q2 over It such that Qt(Jt) = Q2(J2), and vice versa.
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Choose a relation schema «R' [U1, ~'»E S' that in not in BCNF

Set S':= {(R [U], ~)}

Repeat until S' is in BCNF

Choose non empty disjoint set of attributes X, Y, Z such that

XYZ = U',~' satisfies X -+ Y and E' not satisfies X -+A,foreveryAE Z

Replace «R '[U1 , 1:'» by (R1[XY], 7txy(1:'» and (R2[XZ], 1txz~'»,

Where RI and R2 are new relation names and 7t is a projection of set of FD over the
related attributes

Figure 2.8: A BCNF Algorithm (Abiteboul el at, 1995)

Normalization algorithm tries to achieve the goal of information losslessness; if any of

them transform a database schema S into a database S', then S' should semantically

equivalent with S ( Abiteboul et al., 1995). The normalization algorithm presented in

Figure 2.8 takes a relational schema S = (R[U] , 1:) as input and uses a projection

operator to transform it into a new database schema S' =(R[U],~) in BCNF. Then, S' is

a loss less decomposition of S if every instance of I of S can be transformed into an

instance I' of S' by using a projection operator, and I can be constructed from I' by

using ajoin operator. It is proved that S' is a lossless decomposition ofS if and only if1:

satisfies all the joining attributes, 1: 1= M[Ut, ..,Un].

Projection operator and join operator are among the core operators for query language

operator used in a relational database. Normally in relational algebra, they are presented

in the form 1tand M respectively ( Abiteboul et al., 1995).
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2.3 XMLDocuments

In this section, we review basic notions of XML documents, such as XML trees, DTDs,

XML Schema and present some proposals for XML integrity constraints as well as the

existing design principles for XML documents.

2.3.1 Introduction

XML is a simple and flexible text format. It allows us to model information systems in

a natural and intuitive way. It was originally designed for publishing electronic data.

However, today it is has emerged as the standard language for storing and interchanging

data on the web. XML has a number of powerful capabilities to model information

(Chaudhri et al., 2003):

• Heterogeneity: Since in the real world, data is not actually organised into tables,

rows and columns, there is an advantage for XML to express information, as it

exists without restrictions, where each "record" can contain different data fields.

• Extensibility: New data types of data can be added when it is necessary, with no

need for them to be determined in advance.

• Flexibility: data fields can vary in size and can be configured from time to time

without any restriction on the data.

Information is modelled and designed into an XML document using for basic

components: tags, data elements, attributes, and hierarchy. For example, as shown in

Figure 2.9, this document contains two different types of tag: start-taqs, such as

<course> and <student>, and end-tags, such as </course> and <lstudent>. These tags

must be balanced and they are used to delimit elements. Every element can contain raw

text, other elements, or a mixture of them. For instance, the element <firstname> David

</firstname> contains raw text while the element <student> contains three sub elements:
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<firstnarne>, <lastnarne> and <lecturer>. Elements can also contain attributes, such as

element <student sno = "112344">. Student element contains one attribute: sno with the

value "112344". XML documents have a nested structure. This gives a lot of flexibility

when storing information. The document shown in Figure 2.9 is part of a database

storing information about students.

<!DOCTYPE department [
<course>
<course cno = "cscltll ">
< title> XML database <Ititle>
< student>

<student sno = "J 12344 ">
<firstname> David</firstname>
<lastname> Grey</lastname>
<lecturer>

<lecturer tno = "J23 ">
<names-Bing </name>

</lecturer>
<Jstudent>
< student>

<student sno = "112345 ">
<firstname> Helen </firstname>
<lecturer>
<lecturer tno = "123 ">
<name> Bing <Iname>

</lecturer>
</studem>

<!course>
<IDepartment> J

Figure 2.9: An XML Document

2.3.2 Schema Languages for Markup Languages Based Documents

Like relational database, XML also has a schema to specify the structure of XML

documents such Document Type Definition (DTD) (W3C, 1998), RELAX (Murata et

al., 2003), TREX (Clack, 2001), and XML Schema (XSD) (W3C, 2001). However
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compared to the number of schemas we can find on the web, DTD and XSD seem the

most accepted ones and they are standard schema being used currently to validate the

structure of XML documents (Arenas et al., 2002; Schwentick, 2007). Hence in this

section, we provide briefly the background on the DTD and XSD.

DTD

DTD was the first form of schema for XML documents that the W3C recommended in

1998 when XML was first released. DTD is a means for defining constraints on the

syntax and structure of valid XML documents. An example of DTD for the XML

document in Figure 2.9 is shown in Figure 2.10.

<!DOCTYPE department!

<!ELEMENT departmenucourse'")

<!ELEMENT course (title, student=)

<!AITLIST course cno ID #REQUIRED>

<!ELEMENT title (#PCDATA»

<!ELEMENT student Ifirsmameilastnamei, lecturer»

<!AITLIST student Sno ID #REQUIRED

<!ELEMENT flrstname(#PCDATA) >

<!ELEMENT lastname(#PCDATA) >

<!ELEMENT lecturer (name»

<!AITLIST lecturer tno ID #REQUIRED>

<!ELEMENTname (#PCDATA) >

J>
Figure 2.10: A DTD Describing the XML Document (Arenas and Libkin, 2004)

This DTD specifies the elements allowed in XML documents by means of ELEMENT

declaration. For example, <course> is an element since <!ELEMENT course (title,

students) appears in the DID. An ELEMENT declaration also specifies the sub-

elements of an element by means of a regular expression over the alphabet of elements.

One element name is designated as the start symbol course. The keyword #PCDA TA is
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indicated as text data; it derives its name from "Parsed Character Data" for instance

<! ELEMENT first_name (#PCDATA». The keyword CDATA #REQUIRED

indicates that the attribute of an element contains character data and the value must be

specified for that attribute. For instance attribute <! ATTLIST Sno ID #REQUIRED>.

The details ofDTD specificationwill be presented in Chapter 3, Section 3.4.

XSD

XSD defines both a type system and class of integrity constraints. Its type system

subsumes DTDs. It supports a variety of simple data types (e.g., string, integer, float,

double, byte), complex data types (e.g., sequence, choice) and path mechanisms (e.g.,

extension, restriction). For example Figure 2.11 represents the XML Schema for the

XML document in Figure 2.9.

< xsd: element name = "course">
<xsd: Complex Type>
<xsd: sequence>

<xsd: element name= "Student" type = "Student'Iype" minoccurs ="}"
maxOccurs = "unbounded'">

</xsd: sequence>
<xsd: attribute name = "sno" type "xsd.integer'">

</xsd: Complex Type >
</ xsd: element>
< xsd: Simple Type name = "student'Iype">
<xsd: sequence>
<xsdielement name = "firstname'' type "xsdtstring'Z>
<xsd.element name = " last name" type "xsd.string"/>

<rxsd: sequence>
</xsd: Simple Type name>

</xsd.schema>

Figure 2.11: A Fragment of an XSD for XML Documents

The above XSD consists of two kinds of types elements: simple and complex types.

Simple type, indicated by <xsd: Simple Type > describes an element that can contain

data type as string, integer, or float for instance element first name and last_name. A
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complex type element indicated as <xsd: Complex Type> describes that the element can

have multiple data elements sharing the same parent in a given element. XSD permits

the occurrence of the elements through cardinality, which a DTD is unable to provide.

For example, in the XML document shown in Figure 2.9, the element student contains

two elements indicated by attributes minoccurs ="1" maxOccurs = "unbounded". A

sequence of child elements that appeare within the content of a parent attribute, for

instance element student which consist of child elements (first_name and last_name) is

indicated by <xsd: sequence>.

DTD verses XSD

As presented in the above section, DTD and XSD are different in syntax expressive

power on attribute class, element class and data-value class. For example DID has

many drawbacks such as no modularity, no XML syntax, limited basic data types,

restricted referencing mechanism and limited expressiveness. Most of these concerns

have been addressed by XSD, which it can provide a rich set of data types that can be

used to define the values of elements, provide much richer means for defining nested

tags for instance tag with sub-tag and provide the namespace mechanism to combine

XML documents with heterogeneous vocabulary (Arenas et al., 2002; Wyke and Watt,
2002).

XSD also supports namespaces and richer and more complex structures than DTDs. In

addition, stronger typing constraint on the data enclosed by a tag can be described

because a range of primitive data types such as string, decimals and integer are

supported. This makes XSD highly suitable for defining data-centric documents.

Another significant advantage is that XSD definitions can be exploited the same data

management mechanism, as XSD is an XML document itself. This is in direct contrast

with DTDs, which require specific support to build into an XML data management

system. The descriptive power ofXSD makes it suitable for XML database schema. For
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instance Tamino XML server uses this concept and supports the schema description of

documents via XSD.

However, XSD do have problem in consistency (Arenas et al., 2002). This problem has

been studied in their research work and they proved that the semantics of XSD

constraint makes the consistency analysis of a schema rather intricate. They proved that

checking consistency for XSD is very hard and expensive (NP-hard and PSPACE-hard)

(Arenas et al., 2002). This indicates that the current semantic of XSD is inconsistent

and fail to validate documents. Even though XSD has been improved from DTD, some

researchers found that it is still too complicated and not well defined (Wyke and Watt,

2002; Moller and Schwartzback, 2006). In terms of structure, DID and XSD, are very

similar. The structure of both DTD and XSD can be represented as tree models as

described in the literature (Lv and Yan, 2006;Arenas and Libkin, 2004). Functional

Dependencies(FDs) over XSD can also be presented as relationships between paths, the

same as in DTDs (Yu and Jagadish, 2008). However, DTDs have been of more interest

to the database research community, and thus we consider only DTDs since they have

been used by other reserchers to address integrity constraints and design issues for XML

data.

2.3.3 Basic notations

We present a formal model for XML documents and DTDs adapted from Arenas and

Libkin (2004) and review some basic concept such as conformity, path in DTDs and

XML documents. These notations are very important since they will be used in this

thesis.

Assume that we have the following disjoint sets: El represent element names, All

represents attribute name, str represents attribute values and text, and Vert represents

node identifiers. All attribute names start with the symbol @, S and .1 (null) are
reserved symbols.
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XML documents

Arenas and Libkin (2004) represented XML documents as trees. An XML tree is

defined to be a rooted tree T= (v, lab, ele, ott, root), where

(1) Vis afinite set of nodes

(2) lab:V ~ El assigns a label to each node of the tree

(3) ele: V ~ str U V* assign to each node a string or an ordered set of nodes as its

children

(4) ott is apartialjunction of type V x Att-« Str. For each v E V, the set {@l eAtt I
ott (v, @) is defined} isfinite.

(5) root E V is the root node tree T.

The parent-child edge relation on V, {VI, V2) e VxVI V2 occurs in ele (VI)}, is

required to form a rooted tree. For each v E V, the set of all v' E V that occur in ele

(v) are caned subelements or children of V, and the set {@l E Att I ott (v'@) is

defined} is called attributes of node v,

29



department Vo

course Vu

Cno

cscl0l

Cno title Vu

esel02 Z formal method

nudentvM nudentvutitle Va nudent II)

XMI7!I\
nudentv.

snc 14 Vs V. 5nO V, VlO Vu sno V20 Vu Yaa

fname Iname lecturer fname Iname lecturer fname Iname lecturer fname Iname lecturer

112344 "''''' G~ 112345 H," 1\ 112344 "''''' G...,1\
tno name V, tno name Vu name Vu

112345H"" A
tno namevn

123 BlnB 123 BlnB 124 BoUaei 124 Bottael

Figure 2.12: Tree Representation of XML Document

The XML tree in Figure 2.12 shows the tree representation of the XML documents

shown in Figure 2.9. Note that, for simplicity we abbreviate both first name and

last_name as fname and lname respectively.

This tree contains a set of nodes V = {Vi I ie[O, n]} and v 0 is the root. Part of the

functions lab, ele, and att is shown below:

lab (vo) = department

lab (v I)= course

lab (v 2) = title

ele (VI) = [V2,V3,Va]

ele (V2) = XML database
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lab (V3) = student

lab(v4)= fname

lab (vs)= lname ele (vs)= Grey

lab (V6) = lecturer

For function att are defined as follows:

att (v), @cno ) = cscl01

att (V3, @sno ) = 112344

att (V6, @tno ) = 123

DTD

Arenas and Libkin (2004) defined a DTD to be D = (E, A, P, R, r), where:

(1) ES;;El is afinite set of element types.

(2) AS;;Att is afinite set of attributes.

(3) P is a mappingfrom E to element type definition defined in a regular expression

a:= elT' I a; I au er I a* where s is the empty sequence, T' €E, and .., " , "U"

and "." denote concatenation, union, and Kleene star, respectively.

(4) R is a mappingfrom E to thepower set of value of R : P(A)

(5) r EE and is called the element type of the root.

The symbols E and S represent element type declaration EMPTY and #PCDAT A,

respectively.
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For example, the DID shown in Figure 2.10 is represented as follows:

E = {department, course, student, lecturer, title, fname, lname, name}

A = {@cno, @sno, @tno}

r = Department

Furthermore, P and R are defined as follows:

P( department) = course" P(lecturer) = name

P( course) = title, student" P (lname) = S

P(student) = fname, lname, lecturer P(mame) = S

R (department) = 0

R(student) = {@Sno}

R(lname) = 0

P(name) =S

R (course) = {@cno}

R(lecturer) = {@tno} R(mame) = 0

Conformity

The notion of conformity of a DID with XML tree is defined as follows (Arenas and

Libkin, 2004):

Given a DTD D = (E, A, P, R, r) and XML tree T = (V, lab, ele, att, root), T is said to

conform to D, denoted T I=D,if

(1) lab maps every node in V to E.

(2) for every element node VE V. if ele (v) = (Vl,oo,v,J then the sequence

lab(vJ),oo,lab(v,J is regarded as string Swhich is defined by P(lab(v)) = S

(3) att is a partial function from V x Att to Sir. For each v E V, and @l EA, att (v,

@l) is defined iff@l ER(lab(v)).

(4) labtroot) = r

For example, the XML tree in Figure 2.12 conforms to the DID shown in Figure 2.10.
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Paths in XML Documents and DTDs

The notion of path is used to navigate and query XML trees and is also used to define

constraints for XML. Given an XML tree T = (V, lab, ele, att, root), a path in T is a

string w = WI .... WIt, with WI wIt E El and Wn e El uAtt u Is}, such that there are nodes

Vb...,V,,-lin V with labels WI WIt, respectively, such that ( Arenas and Libkin, 2004):

(1) V 1+1is a child of Vb i e [1, n-2],

(2) If WIt E El, then there is a child v" with label wc.lf WIt= @l is an attribute in Att,

then att(v,,_l,@l) is defined lfw; = S. then V,,-lhas a child in Str.

The set of all paths in a tree T that start from the root is denoted by path (1). For

example, course. student, course.student.@sno, course. student. lname,

course.student.lname.S all path in XML T is shown in Figure 2.12 and DTD in Figure

2.10.

Paths can also be defined for DTDs. Given a DID D = (E, A, P, R, r), a path in D is a

string W = Wl •••.W" such that Wt is in the alphabet of P(Wt-/) for i e [2, n-l], and WItis

either an attribute @l E R(Wn-/) or is in the alphabet ofP(W,,_l)'

Paths are an important component of XML, as they have been used as one of the basic

languages for navigating and querying XML documents (Arenas and Libkin, 2004).

The available query languages that use path and are used currently are Xpath (Clark and

Derose, 1999) and XQuery (W3C, 2007). Generally, the semantic to retrieve a

particular data in a tree using a path is as follows. Given an XML tree T, a node V of T,

and a path W in T, retrieve (v, w) is defined to be the set of all nodes and values in T

reached by following w from v in this tree. Thus, for example the result of retrieving a

particular node in a XML tree in Figure 2.12, is as follows.

retrieve (vn, department,course,student,lname) = {VS,VIO.V16,V21 }

retrieve (vn, department,course,student,lname.S) = {Grey, 0, Grey, 0}

retrieve (vn, department,course,student) = { V3,V8.Vu, V19}
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2.3.4 Functional Dependencies for XML (XFD)

As in the case of a relational database, the design of an XML database is also guided by

integrity constraints or data dependencies. Several classes of integrity constraints have

been extended and defined for XML including key dependencies, inclusion

dependencies, equality-generating dependencies, path constraints, join dependencies,

functional dependencies and multi-valued dependencies. To the best of our knowledge,

however, the most prominent form of data dependency in XML is functional

dependency since it has been most widely studied in the literature on the XML database

design. This is because of its ubiquity, simplicity and application to database design as

well as to maintaining data integrity (Wang and Topor, 2005; Arenas and Libkin, 2004).

Although functional dependency (FO) has matured and proved to be a useful class of

integrity constraint for relational database, however the principles and systematic theory

for XML data are stiJI in the infancy stage. This is because XML is new compared to

relational database, and there are many differences between relational schemas and

XML schemas in their structure: relational models are flat and structured while XML

data are nested and unstructured. Due to this, several different definitions of XML

functional dependency (XFO) have been put forward by Lee et al., (2002), Arenas and

Libkin (2004), Vincent et al., (2004), Hartmann and Link (2003), Wang and Topor

(2005), and Yu and Jagadish (2008). Generally, these definitions differ from each other

in term of the method of choosing sub-trees, path identifier or value equality to describe

the relationship between elements and attributes in XML database. Most of them define

a functional dependency as an expression of the form Pl ..•. ,P2 --+ q, where p, .. "Pl. q are

path expressions.

Here, to demonstrate the XFOs definition, reconsider Figure 2.12 which illustrates an

example of XML document. The example shows a university department which offers

different courses. Each course consists of course number (cno), its title and the list of

students taking the course. The XML tree of Figure 2.12 satisfies the following

constraints.
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Constraint 1: Any two lecturers, with the same tno values will have the same name

(2.1)

Constraint 2: For any specific course, no two students can have the same value of

attribute @Sno (2.2)

Constraint 1 involves a single element such as a lecturer with the same tno value (e.g.

value tno = '123') will have the same name (e.g node element V7 and VJ2). Meanwhile

constraint 2 involves a multiple hierarchies which involve a node course element (VI)

that is an ancestor for a node student element (V3). For instance, for course with 'title =
XML database' it cannot have a student with same sno (e.g sno = 112344 and sno =
112345).

Two main approaches have been followed in order to define these XML functional

dependencies (XFDs). In the first approach, XFDs are defined based on path identifiers

based on schema (DTD or XSD) (Lee et al., 2002; Arenas and Libkin, 2002; Vincent et

al., 2004; Schewe, 2005; Yu and Jagadish, 2008), while in the second one XFDs are

defined based on sub-trees (Hartmann and Link, 2003).

In this section, we compare XFDs definition using both approaches and discover their

strengths and limitations. In the following section, for brevity, we abbreviate the XFDs

defined by Lee et al., (2002), Arenas and Libkin (2004), Vincent et al. (2004), Hartmann

and Link (2003), Wang and Topor (2005), and Yu and Jagadish (2008) as XFD 02, XFD

04(a), XFD 03, XFD 04(b), XFD 05, and XFD 08 respectively. We present both

approaches next.
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Path Based Approach

XFD02

Lee et al. (2002) informally proposed XFD notation and DTD for XML by considering

. the path nature of an XML database. They used the notation of Xpath to define XFD.

We present their definition next.

Definition XFD 02: is an expression of the form (Q. [P,•...•P" -+ P ,,+J]). where Q is a

path starting from the XML document root which defines the scope in which the

constraint holds. and Pt. for i e(J •...• n+1) is either an element or an element followed

by dot and a set of key attributes of the element.

An XML tree is to satisfies the XFD 02 if for any two sub trees rooted at a node in

root(Q), if they agree on the value of P), ... ,Pn, they also agree on the value P n+t.

provided these values exist (Lee et al., 2002).

Based on the above definition, constraint 1 in (2.1) can be expressed by XFD-02 as

follows:

XFD 1: (department. course. student. [lecturer. tno-mame J) (2.3)

Constraint 2 in (2.2) cannot be expressed and satisfied by XFD 02 because relative

constraints (that only hold in a part of the document) are not considered. Thus the

semantics only work properly if some syntactic restrictions are imposed on the XFD

(Lee et al., 2002). Furthermore, no exact definitions for the value of an element, set

elements and null values are provided.

XFD 04(a)

To overcome the above limitation, Arenas and Libkin(2004) formally defined XFD

04(a) by considering a relational representation of XML documents. They proposed two

types of constraint: relative constraint and absolute constraint. that hold in the entire

document. They extend the notion of tuple for relational databases and use the concept
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of path particularly tree-tuples to the definition. The tree-tuples map between a set of

paths on a DTD to a set of node (values) in an XML tree. They assumed a DTD as a

single relation schema, a set of all paths in DTD Paths(D) as an attribute, and a tree

tuple is all tuples in that relation. This concept is adopted from the concept of total

unnesting of a nested relation (Atzeni and DeAntonel1is, 1993). To present this

definition, we need to introduce an example of a tree-tuple. Consider the DTD in Figure

2.10 and XML tree in Figure 2.12. This tree contains four tree tuples. One of tree tuple

can also be represented as a function as follows.

t(department) = Vo

t(department.course) = VI

t(department.course.@cno) = csclOI

t(department.course.title) = V2

t(department.course.title.S) = XML database

t(department.course.student) = V3

t(department.course.student.@sno) = 112344

t(department.course.student.fname) = V4

t(department.course.student.fname.S) = David

t(department.course.student.lname) = Vs

t(department.course.student.lname.S) = Grey

t(department.course.student.lecturer) = V6

t(department.course.student.lecturer.@tno) = 123

t(department.course.student.lecturer.name) = v,

t(department.course.student.lecturer.tname.S) = Bing

37



In a tree tuple, each path which ends with an element name is mapped to a distinct node

or the null value (.1), and every other path ending with an attribute name or S is mapped

to either a string (PCDATA) or.l.

Definition XFD 04(a): XFD over D is an expression in the form p] -+Pl where PI, Pl
are finite non-empty of path in Paths/D). An XML documents conforming to the DTD is

said to be satisfy the XFD 04(a) iffor every two tree-tuples t] and tl, ti.P] = tl.P], and

ti.P, is not null and imply t].P2 = t2.P2 (Arenas and Libkin 2004).

Generally, the semantic of this XFD is defined as the following: for any two tree tuples,

which consist of a set of paths on LHS of the XFD and a single path on the RHS, they

are defined to be satisfied if whenever two tree tuples agree on the LHS path, they must

also agree on the path of the RHS.

Using the above definition, the constraints 1 and constraint 2 can be expressed as

follows:

XFDI : department.course.student.lecturer.@tno-+

department. course. student. lecturer. name.S (2.4)

XFD2: department. course.deparment. course. student. @Sno-+department.course.student

(2.5)

XFD04(b)

Alternatively, Vincent et al. (2004) defines an XFD O4(b) close to XFD O4(a) definition

with a few significant differences. Firstly, they did not use either DTD or XSD but

consider a scheme file. Secondly, they used the concept of "closest path" to link values

in both sides ofXFD. Path is of the same as path in XFD 04(a) and closed means that if

a path is in the set, then all prefixes of the path are also in the set. Lastly, they labelled

every node in V (not just element nodes) and allow for mixed context in XML

document. Mixed context is an element node that can contain both text and element

nodes as children.
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Definition XFD 04(b): An XFD 04 is an expression of the form Pl •....•pn -+q. where

Pt •...• q are paths in P and n~ 1. (Vincent et al.• 2004)

XFD 1:department. course. student. lecturer. @tno-+

department. course.student.lecturer.name.S

(2.6)

XFD2: department.course, deparment.course.student.@Sno-+department.course.student

(2.7)

The notion of strong satisfaction of an XFD by an XML tree is defined using the

agreement path instances in the tree on the paths in the XFD. The major difference

between XFD 04(a) and XFD 04(b) lies in the treatment of null values or missing nodes.

When null values exist, the satisfaction of XFD 04(b) over XML tree is stronger than

XFD 04(a). However, when there is no missing information in the XML document, the

definition of Vincent et a1. (2004) coincides with the definition of Arenas and Libldn
(2004).

XFD05

On the other hand, Wang and Topor (2005) defined XML tree differently from Lee et.

al. (2002), Arenas and Libkin (2004) and Vincent et aI. (2004) since they explicitly

distinguished complex and simple element so that special text (8) node under simple

element is not required such that E = EIUE2. Simple element (El) is an element that

only has a single value that is the same as an attribute and complex element (E2) is an

element that has sub elements and/or attributes. Furthermore they also made the

ordering of child elements insignificant by treating them as a set rather than a sequence.

For example, in Figure 2.12, title and name are simple elements while department,

course and student are complex elements.
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Wang and Topor also defined a path in an XML tree more precisely by distinguishing

paths into four types: simple path, downward path, upward path and composite path.

These four types of path are subclasses of Xpath as well.

A simple path is of the form h...lm, where l, is a simple element and 1mcan be a simple

element, complex element or attribute. The number of labels (element names and

attribute names) in a simple path is called the length of the path. A simple path with

length 0 is called an empty path, denoted E.

A downward path is a simple path which can be expressed as II ... In where (Ii E El UE2U

AU{_, -*} for i E[l, n-1], In E EIUE2U A). The symbol_ represents wildcard (which can

be matched with any label) and _* represent Kleene closure of the wildcard.

An upward path is of the form 1t.•. 1t and composite path is of the form ~.p,where ~ is an

upward path, and p is a simple path.

In order to provide XFD 05 definition, we presented path equality based on agreement

of two nodes. This agreement can be defined as (Wang and Topor, 2005):

• nl and nz node agree ( N- agree) on path p if p is a simple path or p is upward
path

• nl and n2 is set agree (S-agree )on path p if for every node VI in nl [P], there is a

node vs in 1l2[P] such that "1= 1'2 (value equality) and vice versa.

• nl and nz is intersect agree (I-agree) on path p if there exist nodes VIE nl[Pland V2

E n2[p] such that VI=V2

For example, in Figure 2.12, V3 and Vs are N-agree on upward path.

Definition XFD 05: A XFD is an expression of the form Q: PI (ci), ...Pn(c,J -+ Pn+dcn+V

where Q is a downward path, Pl,P2,"Pn are simple paths, Pn+l is a simple path of length

1 or 0, and c, (i= 1,..., n+1) is one of N, Sand 1 (Wang and Topor, 2005).
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XFD 05 satisfies an XML tree if for any two nodes nI, n2 E root(Q), if every path

agrees with of I-agree, N-agree and S-agree for all other paths.

For example, constraint 1 and constraint 2 are satisfied and expressed as follows:

department.course.student.lecturer: @tno -+ name (N) (2.8)

department. course, deparment.course.student.@Sno-+department.course.student (N, I)

(2.9)

XFD 05 overcomes the limitation of XFD 02(a), XFD 02(b) and XFD 04 by unifying

and generalising them by defining more semantic constraints such as set elements. For

example reconsider again the same example but a set of address is added for a lecturer

as in Figure 2.13.

department Vo

course VI

~

course Vu

Cno title Vz student Y3 student v.
(sc101 XMl71l\ »:

sno '. Vs sno v, Vl0 Vu

Cno title VI. student Vu student V,.~~ZfMm'A~
sno V11

fname Iname lecturer fname Iname lecturer fname Iname lecturer fname Iname lecturer

123
tno

address address

HUS2lB HU67RX

address address

HU52lB HU67RlC

address address

HU34lB HU6 7RlC

address address

HU3 418 HU6 7RlC

Figure 2.13: Tree representation ofan XML Document
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For constraint XFD3:

Lecturer number (tno) determines the lecturer's set of addresses satisfied by the XML

tree in Figure 2.13 and it can be represented using XFD 05 as below.

department.course.studem.lecturer : @tno-+ address(S) (2.10)

This is because XFD 05 determines and defines the path of the element node

specifically. This is an advantage of XFD 05 since it can be used to capture more

semantic constraints, hence it can detect more data redundancies in XML documents.

However in defining the XFD 05, Wang and Topor did not use any specific XML

schema to associate with XML documents. We believe it is very important to use DTD

or XSD in defining XFD since it can determine whether the XFD is significant or

consistent with an XML document.

XFD08

Recently, Yu and Jagadish (2008) have taken the same approach with Wang and Topor

(2005) by incorporating set of elements to define XFD 08. They named the notion as

Generalized Tree tuple (GTT FD). OTT FD is similar to the original tree tuple (Arenas

and Libkin 2004); however it has an extra parameter called pivot node. The pivot node

can be used to prevent separation between sibling nodes in the same path and preserve

the ancestor node and descendent nodes of that pivot node. For instance, in Figure 2.13,

node student (v3, v8, v14, v19) are pivot nodes, node course (vl, v13) are an ancestor

and sno.fname, lname and lecturer are descendant nodes for the node student.

Yu and Jagadish used XSD instead of DID as a schema for XML documents and used

Xpath notation to express the path in XML Schema. Figure 2.14 illustrates the schema

of the XML Document in Figure 2.13.
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department :Rcd
course: setOjRcd

cno: Str
title: str
student: SetOjRcd

snotstr
fname:str
lname: str
lecturer: setOjRcd
tno:str
name: str
address: setOjRcd

Figure 2.14: XSDModel

Apart from that, the author also associated the notion of XML key with XFD. The

notion of XML key has common similarities with the notion proposed by Buneman et

al. (2003) which contains a target path (which identifies a set of nodes) and a set of key

paths. We present the notion of OTT and key adopted from Yu and Jagadish (2008)

before we present the definition ofXFD 08.

A OTT of XML Tree T = (N, P, V, nr), with regard to a particular data element np

(called pivot node), is a tree tTnp = (N, Ph Vb n), where:

1. IV' S;;N is the set of nodes

2. Pt S;;P is the set of parent-child edges;

3. Vt S;;V is the set of value assignment

4. N, is the same root node in both lnp and T;

5. n€ IV' if and only if i) n is a descendant or ancestor of np in T or n is a non -

repeatable direct descendant of an ancestor of'n, in T
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Definition XFD 08: An XFD 08 is a triple (Cp>LRS, RHS), is an expression of the form:

LRS -I RHS w.r.t Cp>where Cp denotes a pivot tuple class, LRS is a set of paths for left

hand side relative to p and RRS is a single path of RHS relative to p (Yu and Jagadish,
2008).

For an XML tree, T satisfies an XFD-08 if and only if for any two generalised tree

tuples tl, t2 E Cp if:

1. exist tl.PJj = .1or t2.Pli =.1 where ie[l, n]

2. all path values are equal between tl.PJj = t2,PIi, then ti.P, ...lor t2.Pr" J., tl.Pr=
t2,Pr

Based on the above definition, constraint 1 and constraint 2 are satisfied and can be

expressed as follows:

XFD1: department.course.student.lecturer.tno-+

department.course.student.lecturer.name w.r.t Ckctllrtlr (2.11)

XFD2: department. course, department. course. studnet.sno

-+ department.course w.r.t Cstudent (2.13)

XFD3: department.course.student.lecturer.tno -+

department. course.student. lecturer. name. address w.r.t C'ectllrtlr (2.14)

Generally the advantage of XFD 08 compared to XFD 02 XFD 04(a), XFD 04(b) is, it

allows more flexible notions to express the multiple set of tree tuples within each set

instead of a single element. This is because the elements are only separated if they are

not descendants of the pivot nodes.
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Sub Tree Based Approach

XFD03

Hartmann and Link (2003) took a different approach to define XFD. They defined XFD

03 based on sub trees of the XML data tree. For the schema for XML documents, they

used a schema graph instead of DTD or XSD. The schema graph is an XML tree T
together with an edge assigned a frequency of ether 1 or *. In a schema graph, no two

descendants of a node can have the same type and label while in a data tree, every leaf

node is assigned a value. Figure 2.15 shows the schema graph corresponding to the

XSD in Figure 2.14.

department

coo student

800 fuame lname lecturer

too name address

Figure 2.15: Scheme Graph

XFD 03 is defined using homomorphism, v-subtrees and isomorphism of XML trees

(Hartmann and Link, 2003). A homomorphism between two trees T and G is a mapping

o from nodes of T to the nodes of G such that

(1) the root of T is mapped to the root of G, 0(rooh) = root 0
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(2) image node v in T is the same kind as the node itself, kind (v) = kind«(/J(v)for all

nodes in T

(3) image of node carries the same name as the node itself, name(v) = name«(/J(v))

for nodes in T

(4) every edge of T is mapped to edge of G, (v, w)E Vo implies((/J(v), (/J(w )

A v-subgraph is a sub graph which roots at node v and it is determined by the paths from

v to a given subset of leaves of the original tree. The isomorphism between the two

subtrees is a one to one mapping between the two sets of nodes which is homomorphism

in both directions. Two XML trees are equivalent if there is an isomorphism between

them and the value(v) = value«(/J(v)for the leaf nodes.

Definition XFD 03: An XFD 03 is defined to be in the form of an expression v: X -+ Y,

where v is a node of T, and X and Y are v-subtrees of 1. An XML tree conforms to the

schema graph ifit satisfies the following (Hartmann and Link, 2003):

(1) Every two pre- images WJ and W2 of subtree T(v) rooted at v, are

equivalent for each image of the leaves of X and Y

(2) A maximal subcopy of U (v) is a sub tree of T which is isomorphic to a

subtree of U (v)

For example constraint 1 and constraint 3 are expressed as follows:

XFD 1: XFD v lecl1lrer:X -+ Y, where X is the Vlectun"- subgraph with the single leaf Vtno,

while Y is the vlecturer-subgraph with the single leaf Vnamc (2.14)

XFD3: XFD v lecturer: X-+ Y, where X is the VIeCI1Ire'-subgraph with the single leaf Vtno,

while Y is the Vlecl1lrer-subgraphwith the set of leaves Vaddrcss
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lecturer lecturer lecturer lecturer

tnotno tno

123 123 124 Bottae) 124 Bottae)

address address

HUS2lB HU6 7RX

address address

HU5 2LB HU6 7RX

address address

HU3 4LB HU6 7RX

address address

HU3 4LB HU6 7RX

Figure 2.16: Four Pre-Images of the v lecturer: X-+ Y

As shown in Figure 2.16, the first and second, third and fourth sub graphs satisfy the

XFO 03 since their pre-images are equivalent respectively.

Generally, the approaches taken by Yu and Jagadish (2008) and Hartmann and Link
(2003) are almost similar, as they preserve all the element nodes under descendant
nodes. However, the limitation of XFO 03 is that, it cannot define constraint 3 which
involves multiple hierarchies' constraint. Since the previous definitions of XML FOs
(Arenas and Libkin 2004; Vincent et al., 2004) use path expression, they are not able to
express functional dependencies of this kind.

2.3.5 Inference Rules for XML Functional Dependencies

Inference Rules or Implication problems have been studied thoroughly in regards to
relational databases. In section 2.2.1.4, we have presented inference rules for FOs and
MVD for relational database (Beeri et al., 1977). In XML database context, to best of
our knowledge, only Arena and Libkin, Vincent et al. and Yu and Jagadish studied this
problem for XFO. This problem is very important in the normalization process because
it will determine a non-redundant database schema (Arenas and Libkin, 2004; Vincent et
al., 2004; Schewe, 2005; Hartmann and Link, 2004). Recently, Yu and Jagadish have
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derived the following inference rules to compute the closure of XFD which is similar to

the Armstrong Rules in the relational case (Vu and Jagadish, 2008). The only difference

is the way it was presented. Vu and Jagadish(2008) used a path notation. We present

them next.

Rule 1 (Reflexivity) LRS -+ PI w.r.t. Cp is satisfied if PI {; LRS.

Rule 2 (Augmentation) LRS -+ PI w.r.t. Cp then {LRS, P2} -+ PI w.r.t. Cp-

Rule 3 (Transitivity) LRS -+ PI w.r.t. c, A... A LHS-+ r,w.r.t. c, A {Pl, ...,Pn} -+P c,
=*LRS-+ P w.r.t. Cp.

Vu and Jagadish (2008) have argued that deriving XFD inference rules formally from

existing set of XFDs is very difficult and thus they have proposed an algorithm called

DiscoveryXFD to detect all XFDs automatically.

Arenas and Libkin also investigated implication problems for XFD; in fact the XNF

decomposition algorithm in Figure 2.18 envolves XFD implication to test the

membership in (D, ~:>+. These XFDs implication have been tested on two classes of

DTD: Simple Regular Expression DTD and Disjunctions DTD. Thus, they proved that

the implication problem for a simple DTD can be solved in quadratime time and the

implication problem for disjunctive DTDs can be solved in polynomial time (Arenas and

Libkin,2004). However they did not state clearly the inference rules for XFD in their

work. In this work, we will not consider this problem.

2.3.6 Data Redundancies and Anomalies for XML Documents

Given a schema and a set of data dependencies, the goal is to refine the schema into a

better schema so that update, insertion, or deletion anomalies are eliminated. We have

examined many DTDs and XSDs on the Web and found many data redundancies

appeared in the schema. As a first example, consider Figure 2.12 which illustrates the

example DTD for an XML document (Arenan and Libkin, 2004). The example of

constraint 1 in section 2.3.4 caused the information in the XML document to become
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redundant. For instance, for tno = '123', the lecturer named Bing who teaches the

course number (cno) csclOl is stored twice, causing redundancy in XML document. As

with a relational database, if we would like to update the name of the lecturer to full

name "Bing Wang" in the XML document, this name needs to be updated twice. This

type of update is called update anomalies.

Consider another real example for the DID below. This is a part of a DBLP database for

storing data about conferences (Ley, 2002)

<!DOCTYPE db [
<!ELEMENTdb (con,r»

<!ELEMENT con! (author, issue+)
<!ELEMENT author(#PCDATA)
<!ELEMENTissue (inproceedings+}
<!ELEMENT inproceedings (pages+, year»
<!ATfUST inproceedings

Key ID #REQUIRED

pages CDATA #REQUIRED
year CDATA #REQUIRED >

1>

Figure 2.17: DID for DBLP Database

The DID shown in Figure 2.17 describes that each conference has an author, and one or

more issue. Papers are stored in the in proceedings element which consists of key,

pages and year as its attributes. The document contains the following constraint: Any

two in proceedings children of the same issue must have the same value of year. This

constraint is considered relative to the issue element only. The constraint leads to

redundancy since the value of year is stored redundantly for a conference.

As with a relational database, such data redundancies and anomalies presented above

can be avoided by designing a non-redundant XML database schema. Those

redundancies could be eliminated if we could refine the original schema to a new
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schema by eliminating some XFDs from XML documents. Thus the concept of

normalization theory is applied to improve the XML schema design for an XML

database in order to use it efficiently. In this section, we present the XML normal form

that has been defined currently.

2.3.7 Normal Forms for XML Documents

In section 2.2, 3NF and BCNF were presented for designing a relational database. If a

relational schema satisfies these normal forms, then the relations on the schema are well

designed. It is well known that BCNF is able to remove data redundancy caused by

FDs; however, it is not dependency preserving. On the other hand, 3NF is dependency

preserving but it not able to remove redundancy caused by FDs in all cases. This

information is very important for the database designer to design a non-redundant

database. In the context of an XML database, the same knowledge is needed to guide

the designer for producing well designed XML schema (DTD or XSD). Due to this,

several normal forms for XML documents have been defined in order to provide a well

designed schema (Arenas and Libkin, 2004; Vincent et. aI., 2004; Wang and Topor,

2005; Kolahi and Libkin, 2006; Yu and Jagadish, 2008). These normal form definitions

differed in terms of schema used and constraints description, but most of them are based

on Arenas and Libkin's proposal, because it is the most fundamental.

Hence, the main purpose of this section is to compare these XML normal forms with

respect to their definitions and normalization algorithm to reduce data redundancy. To

distinguish between them we will use the following notation: XNF 04(a), XNF 04(b),

X3NF and XNF 08 introduced by Arenas and Libkin (2004), Vincent et aI., (2004),

Kolahi (2007) and Yu and Jagadish (2008) respectively. In the following discussion, we

will the use constraints I, constraint 2 and constraint 3 presented in section 2.3.4 and

expresse them using XFDI, XFD2 and XFD3 respectively. We present them next.
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XNF04(a)

Arenas and Libkin (2004) followed the standard BCNF and a nested form NNF-96

(Mok et al., 1996) to define XNF 04. A nested form NNF -96 is normal form defined for

a nested relational database.

We now present XNF 04(a)

Definition XNF 04(a): Given a DTD D and a set ofL of FDs over D, (D, Lt is in XML

normal form (XNF) if and only iffor every nontrivial XFD S ~p.@l or S ~p.s or, the

XFD S~p is also in (D, Lt. Where S is a subset of path (D), p is a set of path (D)

(Arenas and Libkin, 2004).

This normal form generalises BCNF for XML documents and disallows any redundancy

caused by XFD. For example, the DTD shown in Figure 2.l0 is not in XNF since the

following XFD 1 is not XNF.

department.course.student.lecturer.@tno~ department. course. student. lecturer. name.S

This XFD 1 is not in XNF because it does not imply the functional dependency

department. course. student. lecturer. @tno ~ department. course. student. lecturer. name

and is not in the set of closure (0,£)+. The functional dependency XFD 1 here leads to

redundancy where name occurs multiple times for a lecturer. This kind of functional

dependency is calJed anomalous XFD over (D, L). Arenas and Libkin (2004) proposed

an XNF decomposition algorithm to eliminate the above anomalous XFD and transform

a DTD D and set of XFDs L into a new specification (D', L') that is XNF. We present

this algorithm using the illustrated examples.
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Choose a (D.D- minimal anomalous XFD (q, PI.@h ...,p",@I,J-+p·@I

(1) IF (D.D is in XNF then return (D,D,otherwise go to step (2).

(2) / • moving attribute" /

Ifthere is an anomalous XFD q-+p.@landq €paths(D) such that q-+ X€ (D,D+ then:

2.1 Choose an attribute @m

2.2 D:= D[p.@l:=q.@m]

2.3 L:= Lfp·@1:=q.@m]

2.4 Go to step (1)

(3)/ • create new element types" /

(3.1) Create fresh element types 1; TI.". Tn

(3.2) D:= D[p.@I :=q.1{TI.@lI, ...• T",@I",@I]]

(3.3) L:=Lfp.@1 :=q.1{Tl.@h .... Tn.@I",@l]]

(3.4) Go to step (1)

Figure 2.18: XNF Decomposition Algorithm (Arenas and Libkin, 2004)

Figure 2.18 shows the XNF Decomposition Algorithm. The input of this algorithm is a

set schema D contains an anomalous XFD corresponds to relative constraint or minimal

anomalous XFD corresponds to absolute constraint. The definition of minimal

anomalous XFD is similar to relational database context (see section 2.1.2.1) but is more

complex because of the used path in XFD. The output of this algorithm is a new XML

schema specification (D', L~that is in XNF which contains the same information.

Moving Attribute

Consider the following anomalous XFD satisfied for the DTD in Figure 2.18 that causes

data redundancy.
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db.corf.issue -t db.con/issue.inproceding.@Jlear (2.11)

db

inproceedings issues

year

Figure 2.19: Moving Attribute

As illustrated in Figure 2.19, to eliminate the anomalous XFD, the attribute @year from

the set of attributes of inproceedings is moved to the new attribute issue. After

transforming DTD (D) into a new DID(D'), a new set of XFD (L1is generated and the

set of XFDs does not include this anomalous XFD (2.11) and thus, contains only

reduced anomalous path (Arenas and Libkin, 2004). However, this algorithm only

restructures the DID but it does not decompose the original DID.

Create New Element Type

Consider the university database shown in Figure 2.13, which contains the following

minimal anomalous XFD 1.

department. course. student. lecturer. @lno -tdepartment.course.student.lecturer.name.S

(2.12)

To remove the above XFD 1 in (2.12), the following steps are needed:

(i) a new element type lecturer _info as a child of Department is created.

S3

mailto:db.con/issue.inproceding.@Jlear


(ii) Then name.S from lecturer element is made an attribute for lecturer_info

(iii) Make loo as a child of lecturer _info as its attribute where the original @tno

attribute of lecturer remains the same.

department

A~A
cno title student student eno title student student tno name addressaddres/!\ ~ r-,~ ",H.s'LS HU',.,

fname Iname lecturer fname Iname lectu~er ~r~ecturer, I I ,

lecturer info.c:
124 Bottlel HU3 SLB Hu6 7RX

tno tno tno tno

123 123 124 124

Figure 2.20: Create New Element

This rule will be repeatedly applied until all anomalous XFDs are removed from the
DTD. The restructured version of the XML document that reflects this decomposition is
illustrated in Figure 2.20. Arenas and Libkin (2004) tested the complexity of XNF for
simple DTD and relational DTDs which are in cubic time and are coNP-complete
respectively. This XNF decomposition algorithm can transform any DTD to the XNF
normal form without loss of any information from the original XML documents. This is
achieved if there is a mappingffrom paths in DTD D' to paths in the DTD D such that
every tree T conforms to schema specification (0, ~.:>,there is a tree T' that conforms to
schema specification (D', L') such that T and T' agree on all paths with respect to this
mapping f (Arenas and Libkin, 2004). They used a classical information theory
approach (Cover and Thomas, 1991) namely entropy to measure the effectiveness of a
XML database design and proved that their XNF is equivalent to BCNF in the relational

environment and XML documents at the instance level. In this approach the authors
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measured the amount of redundancy for a schema regardless of any query/update

language (Arenas and Libkin, 2005).

XNF04(b)

XNF 04(b) is an extension from XNF 04(a) where the condition of last (q) E S has been

added to the definition to guarantee that the redundancy can be eliminated.

Definition XNF 04(b) : Let P be a closed set of paths and let L be a set ofXFDs such

that PLJ:; P. L of XFDs is in XML normal form (XNF) if for every nontrivial XFD

Pl, .... 'pm --+q cL+' Last(q) es and if Lasttq) cA then pi, ....,Pm--+Prefzx(q) cL+ where

L+denotes the set of XFDs logically implied by L .(Vincent et al., 2004).

For example, consider the DTD in Figure 2.10 and the set of XFDs

XFDl :department. course.student.leeturer.tno

--+ department. course. student. lecturer. name. S

This is not in XNF because the last label in the path

department. course. studem.lecturer. name.S is a text node.

Vincent et al., (2004) have formally proved that XNF 04(b) can eliminate data

redundancy using formal justification adopted from (Vincent and Levene, 2000). They

showed that the implication problem is decidable for simple XFDs and provide an

algorithm to compute the closure for a unary XFD (only one path in LHS) with linear

run time. To the best of our knowledge, they did not provide any normalization

algorithm to convert un-normallzed XML documents to normalized ones.
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XNFOS

Like BCNF, Wang and Topor (2005) defined normal form for XML by using key

dependencies where LHS of nontrivial functional dependency is a super key. To present

normal form XNF 05, we define a terminology for key. We present them next.

If there is a XFD, Q: plc I), ...Pn(e,J --+ E over the DTD D, then we call p I(e U, ...Pn(C,J a

key ofQ.(Wang and Topor, 2005)

PI(CI),,,.Pn(Cn) is a key ofQ( ofT) means that, for every XML tree T conforming to D,

and for any two nodes ni and n2 in XML tree, if n, and n2 Ct.agree onp, , then ni and n2

must be the same node. This definition is different from (Buneman et al., 2003) since

they define several different interpretations of path agreements (see XFD 05 definition

in section 2.3.4.).

Definition XNF OS: A DTD D is said to be in XNF with respect to a set of XFD, iffor

every non-trivial XFD the following conditions hold

1. The LHS is a key

or

1. Q: PI (ci), ...Pn(e,J --+ P n+I(C n+U in (D, Lt

2. Q: PI(C I), ·..Pn(C,J --+ P n+I(N) is also in (D, Lt
Q is a downward path, PJ.P2"'Pn are simple paths, Pn+I is a simple path of length 1or 0,

and C, e {N, Sand J} for (ie 1, n+l). (Wang and Topor, 2005)

For example, the DTD in Figure 2.10 is not in normal form with respect to the following

XFDI (2.8) Department.course.student.lecturer,' tno +-name because the XFDI is non

trivial and,' Department. course. student. lecturer :tno --+ E cannot be derived from the

DTD. This means that Department.course.student.lecturer ttno is not a key since there

are two different nodes tno label with '123' in XML tree shown in Figure 2.12.
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However, to date there is no justification of this XNF 05 and no algorithm has been

developed to transform an XML document to a normal form.

XNF08

Similar to Wang and Topor's definition, Yu and Jagadish (2008) also used key to define

XML normal form. An XSD is inXNF08, ifeachXML FD (Cp, LHS, RHS), (Cp, LHS)

is an XML key, where LHS is a set of paths and RHS is a single path.

An XML key is a pair (Cp, LHS), where T satisfies the XML FD (Cp, LHS, .@key) (Yu

and Jagadish, 2008). This notion of XML key has similarities with the key notion

proposed by Buneman et al. (2003).

For example XSD in Figure 2.14 that satisfies the XFDI (2.11), is not in a normal form

since (Clecture,.,{Department.course.student.lecturer.@tno} is not a key; hence it cannot

be used to uniquely identify an individual lecturer in the set of lecturers.

Yu and Jagadish (2008) proposed a normalization algorithm to eliminate such XFD and

refine XSD into a XNF. This algorithm is actually an extension of the normalization

algorithm proposed Arenas and Libkin but their algorithm is more comprehensive since

it can be used to eliminate XFD caused by a set of elements. As shown in Figure 2.20

generally, the input of this algorithm will be a schema with a set non trivial ofXFD and

XML keys while the output is XSD with no redundancy.

Particularly, in this algorithm, the authors classified XFD into two categories: Local

XFD and global XFD: local XFD means the XFD satisfies within a relative subtree

while global XFD means the XFD satisfies the absolute XML tree. For example XFDI

and XFD3 are global XFD while XFD2 is a local XFD. Similar to Arenas and Libkin

(2004), Yu and Jagadish (2008) also include two rules in the algorithm: creating new

element and moving an element. For example to eliminate global XFD such as XFD I

and XFD3, procedure 1 is applied where a new element containing both its LHS element

(e.g. tno) and RHS element (e.g. name) is created and put under the root. The RHS

element is then removed from its original position. Meanwhile, procedure 2 is applied
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to eliminate a local XFD such as XFD2, where a new element containing the subset of

its LHS elements is created (e.g. sno) that are not part of the key for the ancestor tuple

class (e.g, course) and RHS element (e.g. lname), and this new element is put under the

schema element corresponding to the pivot path of the ancestor tuple class. Figure 2.21

illustrate the XSD after eliminating all XFDs.

Furthermore, to eliminate redundancy, the structure of the XML tree needs to restructure

by moving the attribute/element or creating a new element. For instance, procedures 1

and 2 have similarities with the procedure create element and moving element in the

XNF decomposition algorithm (Arenas and Libkin, 2004) but the differences are where

the location of element will be created and the type of this new element. We simplified

the process of this normalization algorithm as follows:

1. XFDs are grouped into local XFD and global XFD according to LHS (for

example XFD 1 and XFD3 are grouped together since both have the same

LHS {../tno}.

2. XFDs are processed according to number of paths in their LHS as a strategy

to reduce storage cost.

3. XFDs are processed according to the hierarchy depth of their tuple class by

using a bottom-up approach

4. The algorithm is terminated after procedure 1 or procedure 2 removes at least

one redundancy indicated by XFD.

We note that this algorithm has been analysed and been tested on a real data set

namely PIR schema by normalizing the existing schema to GTT-XNF normal form

(Yu and Jagadish, 2008). However, to the best of our knowledge, no justification has

been given to verify the correctness of this algorithm and this algorithm can only be

applied if XML data is stored in a relational database. Hence, there is a need for

further enhancement if the XML data needs to be stored in an XML database.
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'Input: Schema S, a set L of redundancy - indicating FDs, a set 'Y of XML keys

1. Group FDs in L based on tuples class Cp and LHS, order them according to

decreasing depth of Cp (lowest first) and increasing number of paths in LHS second

(fewest first);

2. While L is not empty

2.1 let ~ be the first set of FDs in Lwith the same LHS and Cp;

2.2 Let F be the first FD in ~;

2.3 If F is local; Modify Sby applying procedure 2;

2.4 Else (if F is global) Modify S by applying procedure 1

2.5 For each additional F'E r.
2.5.1 Modify S in the same way by applying procedure 1 or 2, but using

the new schema element already created in dealing with F
2.6 remove all Fds in ~ from L;
2.7 For each FEL;

2.7.1 if F no longer valid: remove F from L;
2.7.2 if F in now structurally - redundant;

Convert F into its equivalent F that is not structurally redundant and add

FtoL
Output: schema S', the modified redundancy-free schema

Figure 2.21: Algorithm of Schema Normalization (Yu and Jagadish, 2008)
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department :Rcd
course: setOjRcd

cno: str
title: sir
student :setOjRcd

snotstr
fnametstr
lnametstr
lecturer

tno: sir
lecturer_info: SetOjRcd

tnotstr
name: str
address: setOfSIr

Figure 2.22: Normalized XSD

A Third Normal Form for XML (X3NF)

Kolahi and Libkin (2006) have proposed a third normal form for XML by extending

3NF to XML. Kolahi adopted the notions of XML tree and DTD from Arenas and

Libkin (2004) but extended the notion of prime attribute from relational database to the

case of paths to XML tree. We present here the definition of a prime attribute path in

order to present X3NF:

A path attribute p.@l is a prime path if there exist a nontrtvial FD: S- q E(D, ~.t
such that

J. q is an element path,

2. p.@lES

3. Sis minimal (not implied by other XFDs)
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Definition X3NF: XML specification (D, D is in X3NF if and only if for every

nontrivial XFD S-.p.@! E(D, D+.we have that S-'p E(D, D+ or p.@! is a prime path

(Kolahi and Libkin, 2006).

As a relational counterpart, a prime path is a path that uniquely determines path

elements of a tree tuple from the root. Like the 3NF, X3NF tries to achieve a schema

that can preserve functional dependency and at the same time reduce data redundancy in

XML documents. For example reconsider the XML document in Figure 2.12 which

illustrates a university database. This document satisfies the following constraints.

XFD4: department. course. student. lecturer. @!no

-. department. course. student. lecturer. @name

means any two lecturers with the same tno value must have the same name.

XFD5: department. course. title. department. course. student. lecturer. @name

-. department. course

means if two lecturers with the same name and teaching based on course title, they are

teaching the same course.
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departmentVo

coursevl eoursev12

Cno title V2 studentv, studentv. Cno title Vu studentVu studentVl.

aclOl

sno Vzo VZl VZl

fname lname lecturer fname Iname lecturer

112344 .. ~ 01\ 112345H_ /\

fname Iname lecturer fname Iname lecturer

112344.. ~ on 112345Hel..A
tno nameV, too namevu tno namevl. tno nameVn

123 123 Bini 124 Bottael 124 Bottael

Figure 2.23: An XML Document in X3NF

According to this example, XFD4 and XFDS satisfy the X3NF because

department. course. student. lecturer. name is a prime path since it can uniquely determine

the path element department. course.

Like 3NF, Kolahi claimed that this X3NF can preserve functional dependency and

reduce data redundancy to a certain extent. However, to date no normalization

algorithm has been developed and it remains to be proved that the decomposition

algorithm based on X3NF definition is dependency preserving for any XML document.
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2.3.8 Other Definitions of Normal Forms

Another common way to design a relational database is to model the requirements using

ER diagrams (Chen, 1976). In order to combine requirement modelling and

normalization, Ling (1985) proposed normal form for ER diagrams, which ensured that

all relations mapped form ER diagram are in a normal form such as in 3NF or 5NF. The

concept of normalization has been extended to the nested relational data model, where

normal forms such as NNF (Nested Normal Form) (Ozsoyoglu and Yuan, 1987) and

NF-NR (Normal Form for Nested Relation) (Ling and Yan, 1994) have been proposed

to guarantee non-redundant properties for underlying nested relational databases. Many

XML database researchers have applied this approach, i.e. conceptual data modelling

approach to design non- redundant XML documents (Embley and Mok, 2001; Lee et aI.,

1999; Ling et al., 2005; Mani et al., 2001; Yuliana and Chittayasothom, 2005). The one

most related to our work is proposed by Ling et al. (2005) which defined a semi-

structured data model, Object Relational Attribute-Semi-Structured (ORA-SS) (Dobbie

et al., 2000) to represent data conceptually. The details of the ORA-SS schema diagram

will be explained in Chapter 3.

The concept of normal form ORA-SS depends on the twin concepts of an object class

normal form (O-NF) and a relationship type normal form (R-NF) which is an extension

to the NF-NR for nested relation (Ling and Van, 1994). Object and relationship of the

ORA-SS schema diagram are similar to entity and relation in an ER diagram. This

approach differs from Arenas and Libkin's approach, because they take constraints from

the conceptual model rather than from a specified XML functional dependency (XFD).

The nature of the definition for the normal form ORA-SS depends on a number of

conditions. First, none of the attributes of the object class have multi-value or transitive

dependency on the key of object class and relationship type. Second, every nested object

class and relationship within the parent object class must be non-redundant.
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Definition (NF): An ORA-SS schema diagram D is said to be in normal form (NF), if
and only if it satisfies thefollowing four conditions (Ling et al., 2005):

1. Every object class 0 in D is in O-NF.

2. Every relationship type R is in R-NF

3. No attributes or relationship types can be derived from other attributes or
relationship types in D

4. Thefollowing two cases are satisfied:

(a) The attributes of object class and relationship types are connected to correct

object class

(b) The relationship type is connected to the correct object class.

SIlO title

(2.1:n,1:n)

SIlO o
!name too tname

Figure 2.24: ORA-SS Schema Diagram

Ling et al. (2005) have proposed an algorithm to convert the ORA-SS schema diagram to

a normal form ORA-SS schema diagram. Using their normalization algorithm (Ling et

al., 2005) a normal form ORA-SS as shown in Figure 2.25 is derived.
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SIlO
tno tname

tno

Figure 2.2S: Normalized ORA-SS Schema Diagram

2.3.9 Discussion of Current XML Normal Forms

We have presented definitions of XML normal forms proposed by Arenas and Libkin

(2004), Vincent et al. (2004), Wang and Topor(200S), Kolahi(2007) and Yu and

Jagadish(2008). Most of them proposed the XNF, except Kolahi proposed XML third

nonnaI form (X3NF). However, XML normal form XNF, proposed by Arenas and

Libkin (2004) achieves the best possible design from the point of view of eliminating

redundancies in XML documents (Kolahi, 2007). Arenas and Libkin (2004) have

defmed XFDs and XML normal forms (XNF) entirely within the context of the XML

document. XFD is fonnally defined based on the concept of 'tree tuple'. Arenas and

Libkin (2004) proved that their XNF can avoid redundancies and update anomalies

using information theory measure (Arenas and Libkin, 200S) at the schema and instance

levels. They also showed that XNF is generalised from BCNF if the XML schema is

converted into a relational presentation. However, the problem with this approach is

that the way they express the semantic constraint (functional dependency) is very

complicated due to the textual presentation of a schema. As we know, functional
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dependency is already the area where designers have the most problem specifying in

relational models, so making them more complicated and unfamiliar to designers makes

XML document design more difficult. Moreover, a common problem with this

approach is that the whole schema has to be redesigned when requirements change and

information is added or withdrawn. In addition, the functional dependencies defined by

Arenas and Libkin (2004) are dependent on the XML labelled tree (a model for XML

documents) where paths are defined through the tree. Therefore when paths change, the

functional dependency is adjusted as well. For this reason XNF can never be

dependency preserving (Kolahi, 2007). Another shortcoming is that both DTD and

XML tree are represented in textual representation, and so as a result it is difficult to

visualise the data and their relationship. Furthermore, as discussed in section 2.3.7, the

XML normal form proposed by Arenas and Libkin (2004) is limited in its ability to

capture certain semantic constraints. The notion of XML normal forms is presented in a

term difficult to understand because of the lack of graphical interpretations for the

proposed theories. As a consequence, the current approach to XML normal form does

not have the tremendous benefit for practitioners (Bourret, 2007). As shown in section

2.3.4, the definition of XFD and normal forms are very difficult for the normal users to

understand if they do not have a theoretical background. Thus, these limitations will

directly affect the application of XML normal form in practice by the end user. We

believe that by simplifying the current definitions of XML normal form with a simple

presentation will help end users to apply it and design XML documents in an easily and

simpJeway.

In contrast, an ORA-SS data model is proposed to assist in XML document design

(Dobbie et al., 2004) at the conceptual level. The tree structure of the object class is

clearly shown in the ORA-SS model. In Dobbie et al.'s work, it assumes that the

starting point for the design of an XML document is at a conceptual model ORA-SS.

Using the algorithm, then an XML document is derived from a normal form ORA-SS.

This approach follows from the ER normal form (Ling and Van, 1994). Ling and Van

(1994) have shown that this approach is guaranteed to produce a redundancy-free and

compact relational database. In traditional database design, practitioners routinely use an

ER model and convert the ER diagram to a relational model. Another advantage of this
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approach is that it is easier and simpler for designers compared to normalization theory

(Ling et al., 2005; Halpin, 2010). However, the normal form ORA-SS relies upon

definition ofNF-NR (Ling and Van, 1994). In order to use and understand the normal

ORA-SS the user must understand normal form for nested relations first. Another

disadvantage, in Ling et al.'s approach, is that they assume the XML document is not

associated with DTD; hence extraction of the schema from the XML document is

required.

2.4 Summary

In this chapter, we gave a brief background of relational database design and discussed

thoroughly an XML database design through the normalization approach. We described

some criteria for non-redundant and bad relational schemas. Based on such approaches,

functional dependency was considered to represent the semantic constraint of XML

data. This is because functional dependency forms the important basis for the

normalization process in the database design. However, we noticed that the definitions

of functional dependencies, the notion of XML data tree, definition of element and path

in XML database are very difficult in terms of their presentation and use a lot of

theoretical or mathematical notions. From the discussion of existing XFDs and XML

normal forms, we are aware of their advantages and limitations, the latter of which will

influence XML document design in real world practice. To overcome these limitations

is one main task of this thesis. Furthermore through our investigation of some XML

normal forms, we have found that this XML normal forms notion could be defined in a

simpler way. We noticed also that, a non-redundant graphical data model for XML

needs to be developed to support XML design. These issues are very important for

XML database design. Therefore, we will propose such a model to support the XML

design process. This will be examined inmore detail in the next chapter.
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Chapter3

A G-DTD: A Graph Model for Describing XML Documents

3.1 Introduction

In database design theory, conceptual data modelling is an important part of database

designs which deals with structure, organization and effective use of the information.

Moreover, the purpose of any data model is to allow us to describe constraints,

manipulate objects and relationships among objects in the real world that we intend to

reflect in the database (Beeri and Bernstein, 1979). As pointed out by Biskup (1995),

finding a unifying data model and extending achievement of database design theory to

advanced databases consisting of complex object types such as XML is a very

challenging task. This is because, first, XML is hierarchically structured and requires to

be conformed to its schema such as DTD (Mani et al., 2001). Second, the expression of

dependency constraints such as functional dependency will be different from the

conventional model due to XML structure (Arenas and Libkin, 2004). Third, mapping

an XML document into well-defined and highly-structured schemas, such as those in

relational and object oriented models, often requires a lot of effort and frequent schema

modification. These difficulties have prevented the use of relational and object oriented

approaches to XML data modelling. Therefore an appropriate conceptual model for

XML documents has become important.

In this chapter, we propose a conceptual model of DTD called Graph-DTD (G-DTD).

The G-DTD helps to give a better understanding of DTD structures, to improve XML

design and also the normalization process as well. G-DTD has a richer syntax and

structure which incorporate attribute identity, simple data types, complex data types and

relationship types between the elements. Furthermore, the semantic constraints that are

important in XML documents are defined clearly and precisely to express the semantic

expressiveness. We believe G-DID can be used to represent and supportXML structure
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explicitly and capture more semantics of XML documents in order to solve some difficult

issues, for example, query processing, information losslessness and normalization.

A G-DTD model is proposed to assist in XML document design at the conceptual level.

In this work, it is assumed that the starting point for the design of an XML document is at

a conceptual model G-DTD. Using the algorithm, then an XML document is derived

from a normal form G-DTD. As shown in Figure 3.1, the process of designing an XML

document has several steps. First, we take DTD as input and represent it into G-DTD.

Second, we transform G-DTD to norma) form G-DTD. During this step, normalization is

carried out automatically based on the number of data dependencies provided by the user

in the conceptual model. Third, we map the normal form G-DTD to DID and finally,

the XML document is generated on the basis of the normalized DTD.

step 1 step 3 step 5

Unnormalized D

T

D Normalized
Normalization of

T XML
G-DTD DocumentD,

}

XML
Document

step4

D.....___-,'I-
step2

Transformation normalized

G-DTDto DTD

Transformation DTD

toG-DTD

Figure 3.1: XML Document Design Process
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Our contributions in this chapter are as follows:

• We will present a graphical representation of G-DTD using a directed and

labelled tree. The important features of G-DTD such as element and sub-

element relationships and attributes are presented clearly. This G-DID has

richer syntax and structure which incorporate element/attribute identity, simple

and complex data types and relationship types between the elements.

• We proposed a transformation rule to transform from G-DTD to DTD structure.

This chapter is organized as follows. In section 3.2 we review other related XML data

models. In section 3.3 the basic notation, structure ofDTD and rationale for G-DTD are

described. We propose the G-DTD's notations, component, structure and semantics in

section 3.4 and in section 3.5 discuss the operations of G-DTD. Lastly section 3.6

proposes the transformation rule to show that G-DTD can also be transformed back to

DTD structure.

3.2 XMLModelReview

Major current data models that are commonly used to represent instances of XML

documents and their schemas are based on a directed graph model. This model consists

of nodes and directed edges which, respectively, represent XML elements in the

document and relationships among the elements, e.g. element-sub-element and

relationships between elements. The current XML models can be categorized into three

types. There are XML models to represent instances of XML documents, XML models

to represent XML schema and XML models to represent both XML documents and

XML schema. Some common data models used to represent an instance of XML

documents are the Document Object Model (DaM) (Apparoa and Byrne, 1998) and

Object Exchange Model (OEM)( McHugh et al., 1997). On the other hand, the

Semi structure-graph (S3-graph) (Lee et al., 1999), Semantic network (Feng et al., 2002),

Concept Model Hypergraph (CM-Hypergraph)( Mok and Embley, 2006), Dataguide

(Goldman and Widom, 1997) and Extended Entity Relational(EER) models (Mani et al.,

2001) are models to represent only the XML schema while the XML Tree (Arenas and
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Libkin, 2004) and Object Relational Attribute-SemiStructured (ORA-SS)(Dobbie et aI.,
2000) models can be used to model both instances and XML schema. We also noticed

that there are other methods found in the literature used to represent XML documents

and their schema, such as Hedge automaton theory, Declarative Description (XDD)

theory and the Functional programming approach. In the following section, we will

present the above data models by classifying these models into three types: models for

instance level, models for schema level and models for a mix of schema and instance

levels. We describe each of these models as follows.

3.2.1 Models for Schema level

The following models can only be used represent the schema level but cannot represent

an instance of an XML document.

Semi- Structured Schema Graph

A Semi-structured schema graph (S3-graph)(Lee et al., 1999) is a directed graph model

for schema where each node in a graph can be classified as an entity node or a reference

node. An entity node represents an entity which can be a basic atomic data type such as

string, or complex object type. A reference node is a node which references to another

entity node. Each directed edge in the graph is associated with a tag. The tag represents

the relationship between the source node and destination node. The tag may be suffixed

with a "*,, to indicate that it can have one or many children. S3-Graph can represent the

hierarchical structure of the element sets and represent one to many relationships

However, it does not distinguish between elements and attributes. Semantic constraints

such as cardinality of the element, relationship between elements and attributes are not

presented precisely.

Semantic Network

The semantic network model for XML was introduced by Feng et al. (2002) to model a

schema level. This model is based on hierarchical graph model and adopts entity type

and attribute notation from the Entity-Relationship (E-R) model. Nodes in semantic
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networks are used for modelling objects from the real world and their attributes, and

edges are used for modelling relationships between the objects. Only binary

relationship between nodes can be represented in this model. Many constraints can be

specified in the semantic network model, such as constraints on edge and constraints on

nodes. The details of this model can be found in Feng et al. (2002).

Concept Model Hypergrapb

A data model Concept Model Hypergraph (CM Hypergraph) was proposed by Mok and

Embley (2006). The model is used to represent object sets, relationship sets and some

semantic constraints conceptually. Object sets that refer to element sets represented as

labelled rectangles, relationship sets are represented by edges and constraints are

depicted using arrows. The graphical type of arrow is used to distinguish between the

types of relationship between the object set. For example, an edge with no arrow heads

represents a many-to-many relationship set, an edge with one arrow head represents a

many-to-one relationship, and an edge with an arrow head at both ends represents a one-

to- one relationship. The symbol "0" on the arrow indicates that the object is optional.

CM hypergraph can model both binary and n-ary relationships but it cannot represent

the hierarchical structure of the schema. The sequence and the disjunction of objects set

cannot be represented in this model either.

Extended Entity Relational diagram

An Extended Entity Relational (EER) diagram for modelling XML schemas was defined

in Mani et al. (2001). This model is extended from the Entity Relational (ER) diagram

and can be used to capture the hierarchical link and ordering of entity sets. The

hierarchical link or element-subelement relationship is represented using a 'has'

relationship. The ordering of the entity sets is presented as a solid line between the

relationship set and entity sets. Similar to ER notation, entity sets are represented as

rectangles and relationship sets are represented by diamonds on the edge. The concept

of attributes here is the same as in an ER diagram; however it not possible to show
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whether the attributes are optional or required. Furthermore, in an EER diagram, it is

not indicated which entity set is the root of the tree and the relationship between the

entity sets is not presented clearly.

DataGuide

A DataGuide (Goldman and Widom, 1997) models the schema of an OEM instance

graph. In the DataGuide, the complex objects are depicted by a triangle. Recently, Yu

and Jagadish (2008) used the DataGuide to represent a schema called Schema Tree

based on XSD. However, DataGuide is less expressive than DTD since it is not possible

to represent relationships and semantics constraint among elements. DataGuide depicts

only the hierarchical structure of the element sets using textual representation and as

with the OEM there is no distinction between element set and attributes.

3.2.2 Models for Instance Level

Document Object Model

The Document Object Model (DOM) proposed by Apparoa and Byrne (1998) represents

the instance of a semi-structured data as a tree. Each node represents an object that

contains one of the components from an XML structure. The three most common types

of node are element nodes, attribute nodes and text nodes. A DOM represents the

instance of a document, showing the hierarchical structure of the elements and the

relationship between the elements. DOM can distinguish between elements and

attributes. However DOM only represents the instance of a semi-structured data, it is

does not represent the schema information directly or the constraints of the elements.
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Object Exchange Model

The Object Exchange Model (OEM) which was proposed by McHugh et al.(1997) also

represents an instance of semi-structured data. An OEM model is a labelled directed

graph where the vertices are object, and the edge is relationship. Each object has a

unique object identifier (OID), a label and a value. There are two types of objects,

atomic and complex. Both atomic and complex object are depicted as 3-tuples (OlD,

label, value). An atomic object contains a value with types e.g., integer, string, etc. A

complex object consists of sub-objects. An OEM indicates the hierarchical structure of

the objects. Similarly to DOM, OEM does not represent the schema and semantic

constraints clearly in the model.

3.2.3 Models for Mix of Instance and Schema Levels

Object Relational Attribute- Semi Structured (ORA-SS)

ORA-SS is a rich hierarchical model of a semi-structured database proposed by Dobbie

et al. (2000). An ORA-SS model can represent an instance of XML document and

ORA-SS schema as well. ORA-SS has three basic components: object types,

relationship types and attributes. The Object type's notation is similar to entity type

from a conventional ER model. The ORA-SS schema diagram is like a CM hypergraph

diagram and an ORA-SS instance diagram is similar to a DOM tree. Relationship type

between object types represents hierarchical relationships. ORA-SS has the features of

cardinality constraint, ordering concepts and disjunction between two or more attributes.

The advantage of this model is that it can represent n-ary hierarchical relationships and

it can distinguish between elements and attributes clearly. However the attributes

described here are different from attributes defined in XML documents since it uses the

same concept of attribute as an ER model. Even though the relationship between

element set is defined precisely, but the presentation simple element type and complex

element type is not well distinguished in terms of graphical notation. More details of

this model can be found in Dobbie et al. (2000).
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XMLtree

As described in Chapter 2, XML tree proposed by Arenas and Libkin (2004) is used to

represent the XML document graphically and define languages for describing DTD.

Their approach is able to represent both instances and schemas of XML documents

precisely. However, it has the disadvantage that it is not possible to represent semantic

relationships between nodes and distinguish relationship between attributes and element

sets. Furthermore, the DTD is described in this model using textual presentation, so it is

very difficult to interpret the data and relationships between elements. Moreover, the

notion ofDTD defined by Arenas and Libkin (2004) is quite different from normal DTD

since they incorporate the value of elements and attributes together in the notation.

3.2.4 Other data models

Hedge automaton theory was developed by Murata (1999) using the basic ideas of string

automaton theory to formalize XML documents and their DTDs. A hedge is a sequence

of trees or a sequence of XML elements. An XML document is represented by a hedge

and a set of documents conforming to a DTD by a regular hedge language, which can be

described by a regular hedge grammar. By using hedge automaton, one can validate

whether a document conforms to a given regular hedge grammar. XGrammar (Mani et

al., 2001) is an example of an XML model based on hedge automaton theory.

Wuwongse et al. (2003) have proposed data model for an XML database using XML

Declarative Description (XDD) theory (Anutariya et al., 2000). In this model, XML

elements are associated with variables called XML expression and the constraint and

relationship is represented in terms of XML clauses. There is other related work using

multimodallogic (Bidiot et al., 2004) and spatial tree logic (Conforti and Ghelli, 2003)

to present and reason about semi structure data.

A functional programming approach to modelling XML documents and formalizing

operation has been developed by Fernandez (1999) by incorporating the notion of node:
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Algebra for XML queries, expressed in terms of list comprehensions in the functional

programming paradigm. On the other hand, Conrad et aI. (2000) proposed to

conceptually model DTD using Unified Modeling Language (UML). They used

important features of UML to model DTD. We are also aware that Bird et al. (2000),

used Object Role Modeling (Halpin, 1999) as their conceptual model to describe XML

schema.

In conclusion, data model such as OEM, DOM and DataGuide have been designed for

the purpose of information or schema integration. The focus of these data models is on

modelling the nested structure of semi-structured data but not modelling the constraints

that hold in the data. In contrast, data models such as S3-Graph, CMHyper graph, EER,

XML Trees and ORA-SS have been defined specifically for data management. On the

other hand, we noticed that a graph based model provides an effective and

straightforward way to handle XML documents. Based on the above review, we

proposed to adopt ORA-SS's (Dobbie et al., 2000) because of its capability and because

the model uses established notations from traditional ER model (Chen, 1976) which is

already well known to database designers. However some modification needs to be

made. The rationale is, these models can only be used to represent semi-structured data.

The semi-structured data model described above assumes that the collected of data or

elements are unordered, whereas with XML documents, elements are ordered (Connolly

and Begg, 2002) and the XML document must be associated with its schema, i.e. DTD.

3.3 Document Type Definition (DTD) - Its Basic and Rationale

3.3.1 Introduction

As presented in Chapter 2, Section 2.3.2, to define the structures for XML documents,

we need to use a schema. We use a DTD in our work as it has been well accepted.

Even though DTDs are less expressive than XML Schema, in general they are

expressive enough for a large variety of applications (Arenas and Libkin, 2004).

Moreover, from a theoretical point of view, DTD can be characterized in terms of
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unranked tree automata (Nevan, 2002), which have been widely studied in automata

theory and more recently in database theory (Arenas and Libkin 2004). Furthermore

DTD is an early standard for XML, and many legacies XML document structures are

defined by DTDs. Therefore in this thesis, we aim to represent the details of DTD

syntax and structure for the purpose of XML data modelling and normalization.

3.3.2 Overview of DTD syntax

The DID consists of the set of rules that each XML document must conform to.

Normally, such rules are represented using context free grammar and instances of a

DID are seen as a syntax tree. DTD defined here is much like tree structure (Arenas

and Libkin, 2004; Murata et al., 2003). The DTD can be used to map between metadata

and instance and validate whether the structure of XML document is correct or not. The

main criteria of DTD consist of root, element, attribute and element type definition,

which is represented as regular expression.

A DTD document begins with a document type declaration in its simplest form as

shown below:

<l DOCTYPE root < [all the elements in the document>]>

the DOCTYPE declaration will followed by all element and attribute declaration.

Similar to DOCTYPE declarations, the basic common syntax of each line in the DTD

must start with the symbol start tag '<I' followed by element declaration and end with

end-tags '>'. These tags must be balanced and they are used to delimit elements. To

differentiate between elements and attributes, the keyword ELEMENT or ATrLlST is

written after the start symbol '<'. For example the general syntax is wrriten as follows.

<t ELEMENT Element declaration> and

<! AITUST attribute declaration>
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DTD Elements

The more specific syntax for declaring DTD elements is as follows;

<!ELEMENT elementname ( [content)) } >

Elementname represents name of object and content of DID can be categoried as

follows:

EMPTY Keyword is applicable to element that does not require data content. For

example <!ELEMENT year EMPTY>

ANY keyword indicates a combination of elements that can contain data of type

#PCDAIA or any other element defined in DTD.

<!ELEMENTyearAUVY>

<!ELEMENT lname (#PCDATA»

<!ELEMENTconf(lname, issue) >

where conf is the name of the element and lname and issue are two sub elements of

element Conf. The symbol "," depicts that lname and issue must be in sequence.

• Choice of subelements

Content of sublement can also be a set of choice, represented by a "I "symbol

(sometimes called OR operator). For example, consider in the following DID syntax,

where the student element can contain a sequence of sub-elements sno, name and

optionally contain sub-element hostel or home element.

<!ELEMENT student (sno, name, (hostel I home) >
<t ELEMENT sno (#PCDATA) >

</ELEMENT name (#PCDATA) >

<!ELEMENT hostel (address»

<!ELEMENT address(#PCDATA) >
<!ELEMENT home (address»
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<!ELEMENT address(#PCDATA) >

DTD element cardinality

In a DTD, the cardinality determines how many times an element can occur within a

spesific content layer. There are four DTD cardinality constraint syntax specifiers:

In the following example, there can be zero or more course elements contained within

each department element.

<!ELEMENT department (course")

DTD attributes

For XML documents, attributes are defined in DTDs using the ATILiST declaration.

An attribute can be tagged as an identifier, indicating that it is expected to have a unique

value within an instance XML document. An attribute can have a string value or be a

reference to the identifying attributes of an element sets. Attributes are defined using

the following syntax:

<!A1TLIST [element] [ott name] [ attribute type] [default] >

element represents element name, ott name represents attribute name, while attribute

types can be defined using various different types as follows:

Types

CDATA

Description

characters

(p, q[,···D

ID

IDREF(S)

NMTOKEN(s)

originates from list of values

unique identifier

identifier of a different element(s)

XMLname(s)
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and atribute defaults categories as follows:

Default

Value

Descriptions

the initial seting for an attribute

An attribute must have a default value

An attribute does not have to have a default value

#REQUlRED

#IMPLIED

#FIXED value An attribute value is predetermined

For example the following syntax;

<!AITLIST course cno ID #REQUIRED>

represents that the element course has attribute name cno with type ID and an attribute

default is required.
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Consider again following example of DTD to summarise the above definition:

1 <!DOCTYPE department[

2 <!ELEMENT departmenucourse")
3 <!ELEMENT course (title, studem")

4 <!AITLIST course cno ID #REQUIRED>

5 <!ELEMENTtitle (#PCDATA»

7 <!ELEMENT student tftrstnameilastnamet, lecturer»

8 <!AITLIST student Sno ID #REQUIRED

9 <!ELEMENTfirstname(#PCDATA) >

10 <!ELEMENT lastname(#PCDATA) >

11 <!ELEMENT lecturer (name»

12 <!AITLIST lecturer tno ID #REQUIRED>

13 <!ELEMENTname (#PCDATA»]

Figure 3.2: DTD

The detailed specification of DTD is described as follows: The first line of DTD in
Figure 3.2 depicts that department is the root of the DTD. The second line shows that
department consists of the sub-element course. The semantic relationship between
department and course is indicated by the symbol ., representing that department can
consist of zero or many course for each department. The third line of the DTD shows
that each element course has sub-element title and element student. The symbol ","
between them indicates that they must occur in sequence. The fourth line indicates that
element course has an attribute cno. The keyword '#REQUIRED' represents that the
attribute cno must appear in every course while "ID" indicates that the value of cno is
unique within the XML document. The fifth line of the DTD shows that the keyword
"PCDATA" depicts that element Iname has no sub-elements and it is a leaf element and
has a string value. The same semantics are applied to DTD from line 6 to line 13.

More specifically, this DID has the following information:
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• Each department offers many courses indicated by the notation •.

• Every course is described by the attribute course no (cno), title and numbers of

students taking the course.

• Each student has a student number (sno), first name or last name as optional and an

assigned lecturer.

• Each lecturer has hislher number (tno), and name (tname).

As shown in Figure 3.2, DTD is commonly represented as textual representation in a

hierarchical structure which is difficult to be analysed and understood by end users or

practitioners. Normally even the design of a simple DTD may cause difficulties, partly

due to the textual form of the grammar itself. Moreover, DTD lacks of clarity and

readability, which may cause errors during the design process. DTD description using

graphic interpretation is very important for the purpose of better understanding of the

XML design because graphical notations are commonly regarded as more accessible

than formal notation. Furthermore, the absence in current approaches of graphic

notations of the DTD could cause difficulties in the normalization process. For

example, the normalization process proposed by Arenas and Libkin (2004), Kolahi

(2007), Wang and Topor (2005), Vu and Jagadish (2008) is very difficult to understand

and hard to be implemented programmatically due to the many theoretical or

mathematical terms defined.

Hence, a summary of the existing XML models in section 3.3 is necessary and important

in particular to survey which approaches and notations are the best to be adopted and

applied in our model. Our focus is to propose a graphical data model at a schema level.

In our model we propose to differentiate between elements that contain sub-elements

and elements with no sub-elements more explicitly. This is important for the

normalization process because elements with sub-elements will normally cause data

redundancy in XML documents. We called the former complex elements and the latter

simple elements. Specifically, a simple element is an element associated with the

keyword #PCDATA in DTD syntax. Most previous models do not distinguish precisely

between complex elements and simple elements. Instead they define simple elements
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similarly to attributes. As shown in Figure 3.2, the attributes DTD is used to define the

property or an identifier for a complex element; hence it must be distinguished from a

simple element. In the G-DTD model, various different notations are proposed to

represent all the most important features of DTD in a very simple and practical way,

thus providing a more flexible modelling approach. Furthermore, in the G-DTD model,

the representation of semantic constraints between the complex elements, simple

elements and attributes is emphasized.

3.4 G-DTD Data Model

3.4.1 Objectives of tbe Model

The conceptual data model represented here is called G-DTD. It has enhanced the

current XML data models by including different structural node types and relationship

types. The aim of this extended XML data model is to capture the syntax and semantics

ofXML documents in a simple but precise way. G-DTD has richer syntax and structure

which incorporates attribute entity, simple data types, complex element data types,

relationships types, tree structure, cardinality, sequence and disjunctions between

elements or attributes. It is important that all these structures and semantic constraints

in XML documents are defined clearly and precisely to express semantic expressiveness

at the schema level. Having G-DTD as a tool, helps the user to arrange the content of

XML documents in order to give a better understanding of DTD structures, to improve

XML design and the normalization process.

3.4.2 Overall view of G-DTD

Generally, a G-DTD is a labelled and ordered tree consisting of a hierarchy of nodes that

are connected to each other through directed unlabelled or labelled arrows. In addition,

particularly, each node in a tree corresponds to a complex element, simple element or

attribute, while the link or edge between each node denotes the type of relationship

between nodes. Nodes that represent elements that have basic property types of
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#PCDA TA are considered as the leaves of the tree. The G-DTD represents the structure

and the semantic constraints of the XML document at schema level. The G-DTD adopts

graphic notation with some modification from conventional entity relational data model

(Chen, 1976) and semi-structured data model (Dobbie et al., 2000) because of its clarity

and simplicity.

The main features supported by this G-DTD are as follows:

• Supports structure of individual nodes by defining the type, level and cardinality

of each node.

• Enhances the abilities of the current XML model by its complex element nodes

and simple element nodes and attributes.

• Provides semantic relationship definition to allow users to define semantic

relationship between node types. A semantic relationship between two node

types such as path link and part-of link can be defined by the user. The path link

can be a binary relationship or n-ary relationship. Each path link is assigned a

unique name, type of relationship, parent constraint and child constraint.

• Allows the user to define the structure of nodes in an ordered and in a

hierarchical way

3.4.3 G-DTDComponents

G-DTD has six basic components:

• A set of complex element nodes representing the elements that have
subelements.

• A set of simple element nodes representing the elements that have no
subelements.

• A set of attribute nodes representing the attributes defined in ATTLIST.

• A set of relationships representing the semantic relationships between the

complex elements, simple elements and attribute nodes.
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• A root node representing the first element in the DTD and every node has a

level, i.e. the distance from the root.

• A last node.

3.4.3.1 Simple Element Nodes

A simple element node is used to represent an element associated with #PCDA TA or

#CDATA. It is illustrated as a labelled rounded rectangular box with the form <name,

type> where name is the name of simple element and type represents PCDATA or

CDATA or string'S'. A simple element node can be:

• Single -valued which has only one value

• Multi - valued which can have a set of values

• Required/mandatory, which must have a value for every instance

• Optional which may not have a value in some instances

All simple element nodes are assumed to be mandatory and single valued, unless the

node contains an ?, which signifies it is single valued and optional, or + which signifies

that it is optional and multi-valued. This notation is similar to ORA-SS (Dobbie et al.,

2000). The symbol is written in front of the tuple <name, type> to differentiate among
them accordingly.

Notation Meaning

( < firstname, S> )
Mandatory, single value, PCDATA

( +<tutor, S> ) Required, multi value, PCDA TA
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) Optional, single value, PCDATA
( ? <Iastname, S>

( • <address, S> ) Optional, multi value, PCDATA

Figure 3.3: Types of Simple Element Nodes

Figure 3.3 shows the notation and semantics of each simple element, for example simple

element firstname is mandatory, simple element lastname is optional, tutor is multi-

valued and required while address is multi-valued and optional. All of them have type

#PCDATA.

3.4.3.2 Complex Element Nodes

Complex element node is used to represent a set of elements which has other sub

elements and attributes. The sub element node of complex element node can be

classified as follows:

PCDATA, EMPTY, ANY, mixed context, complex element and simple element. Each

complex element node has one or more labelled directed arrow going from it to another

node. The complex element node is illustrated as a labelled rectangular box. This

notation is adopted from the ER model (Chen, 1976) and is similar to entity. The label

is written in a rectangular box as the tuple <name> where name represents the name of

the node in the G-DTD. The name is mandatory. Figure 3.4 gives an example of a

complex element node labelled as <student> which represents that complex element

node student is located at level one of the G-DID.
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Levell <student>

Figure 3.4: Complex Element Node Student

3.4.3.3 Attributes nodes

Attribute nodes are used to represent attributes defined in AITLIST, which describe the

property of a complex element node. For an attribute node, the attribute name, attribute

type and attribute default must be presented clearly in the diagram. These criteria will

be written as tuple <name, type>. However the attribute default is presented using

different notations to differentiate among them. The attribute node is represented by

various notations of labelled oval diagrams corresponding to attribute default as

follows:

Notations Attribute default

o
o
o
o

#REQUlRED(mandotary)

#IMPLIED( optional)

#FIXED( optinal)

#IDREF(reference)

Normally an attribute is an identifier for a complex element, presented as ID

#REQUIRED. This means that it is unique among the instances of complex element

and mandatory, while an optional attribute is defined by the keyword #IMPLIED in the

DTD. Attributes can be classified as single attribute or multi attributes. A single

attribute has only an atomic value but a multi attribute for a complex element such as

IDREF(s) has special meaning value(s). In addition, some attributes such as IDREFS

contain one more data values. For example the following notation represents that

attribute name SNO and it is required (unique) in DTD:

87



<sno, ID>

The above notation is represented in DTD as follows:

<t AITLIST Student sno ID # REQUIRED>

3.4.3.4 Root Node

A root node is a member of a complex element node but the level of the root node

always started at level O. Root node notation similar to complex element notation where

it is a special case of complex element node. The root node can be identified from DTD

using the key keyword DOCTYPE. For example

<!DOCTYPE courses [ content..]>

In G-DTD, the root node for the above example will be presented as follows:

LevelO <courses>

3.4.3.5 Relationships

Links between nodes represent relationships which contains type of cardinality

constraint. Three types of link exist in this model:

• Path link

• Part of link

• Has A link
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Path Link

The path link is a relationship between a complex element node and another complex

element node. This link shows the relation between parent nodes to child nodes or

ancestor node to descendant node, where child node should not be in the same set as

parent node.

Because the structure of G-DTD is a directed graph, a parent for each type of related

node, i.e. complex element node, simple element node and attribute node is determined

by the level position of the node; a parent node is always at the level position less than a

child node by one level difference only.

In a hierachical link, the order between complex element nodes is important since it will

determine the immediate parent and child of the complex element node. Another

important feature of hiearachical links is that they can be composed among themselves

and can be repeated as many times as desired. The constraint relationship on the

hierachical link must be a positive number and the link is cycle free, meaning that no

complex element node is mapped to itself.

In the path link, a semantic meaning, which is indicated by the connectivity between

complex element occurrences, is important. The connectivity of a relationship specifies

the mapping of the associated complex element occurrence in a relationship. Basic

constructs for connectivity are: one-to-one (unary or binary relationship), one-to-many
(unary or binary relationship), and many-to-one, many-to-many (unary or binary

relationship). All these types of relationship are indicated by directional arrows. To

differentiate among them, both cardinality constraint and degree are attached to the

arrow. The notation is presented as (name, d, cp, cc) where name represents the name of

the relationship, d is the degree of relationship, cp and cc are cardinality constraints for

parent and child respectively. This notation is similar to ORA-SS (Dobbie et al., 2000).
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(a) Degree of relationship

Degree of relationship is the number of complex elements associated with the

relationship. An n-ary relationship is of degree n. Unary, binary and ternary

relationships are special cases in which the degree is 1, 2, and 3, respectively.

(b) Cardinality constraint for complex element

To reveal more semantics in their relationship, the cardinality constraint is associated

with the path link. As described in section 3.4, in a DTD declaration, there are four

possible cardinality relationships between parents and children: This is illustrated as

follows

<t ELEMENT E (El, E2+, E3*, E4?»

The above segment of DTD shows that complex element E has four children El, E2, E3

and E4. The cardinality of the constraint is described as follows:

• Only (default): An element Emust have one and only one child El.

• Any (*): An element E can have zero or more child E3.

• Optional(?): An element E can have either zero or one child E4

• At least (+) : An element E can have one or more child E2.

The same rule applies for cardinality constraints for both parent node (cp) and child

node (cc). Here cardinality of complex elements in a relationship is represented as a 2

tuple (min: max). The constraint (0: N) (0:1) and (1: N) is represented as the operators •

? and + respectively except cardinality constraint (1:1) is presented as 1. This

relationship cardinality constraint is indicated using a directional arrow. For instance,

the diagram in Figure 3.5 illustrates a binary path link between complex element courses

and complex element student, where a student can take zero or many courses while

many courses can be taken by zero or many students.
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Level 1

(SC,2,*,*)

<Courses>

Level2 <student>

Figure 3.5: Many-to-Many Binary Relationship

Figure 3.5 also illustrates that two complex elements must be conceptually located at

different levels between parent node and child node. In this example complex element

course is a parent node and complex element student is a child node, which is located at

level land level 2 respectively. The label se is a name relationship which refers to

student and course complex elements node.

Part_ofLink and Hu_A Link

Part _of link is a relationship between complex element node and attribute node. Each
complex element node has a unique attribute node which is mandatory or a set of

attributes (optional). It is illustrated as bold double arrow. Has_A link is a relationship

between a complex element node and a simple element node. It is illustrated as a double

arrow. These types of relationship are illustrated using the following notation.

<name>

Part_of

<name>

1 Bu-A

[ <name, type> 1
Figure 3.6: Part_ofLink and Has_A Link

For example, Figure 3.7 illustrates that attributes cno and sno are identifiers and

required for complex element courses and student respectively. The relationship

between complex element student and attribute sno is defined as a Part-of link while the
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relationship between complex element student and simple element fname and lname is

shown as Has-A link. All simple element nodes have type #PCDA TA. The depth of

each node in this diagram is denoted by the level number.

Level3

Levell

Level2

Figure 3.7: Relationship between Complex Element, Attribute and Simple Element
Nodes

3.4.3.6 Semantic Constraint Between set Relationship

Sequence between set of child elements nodes

The complex element node may consist of child element nodes in a particular sequence.

For example the complex element student consists of child elements first name, last

name and grade. We say that all child elements of complex element student are in

sequence: fname first, then lname and grade in the end. To illustrate this, we draw

children of a complex element node in a sequence starting from the left position to right

end of position in G-DID.

<!ELEMENT student (fname,lname,grade»
<!ELEMENT jname(#PCDATA) >
<!ELEMENT lname(#PCDATA) >
<!ELEMENT grade(#PCDATA) >
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(<-S> 1 ,--_<I_naDl_C,_S_> __

Figure 3.8: Sequence of Simple Elements

However, normally each complex element node consists of a single attribute node or

multi attribute nodes. We emphasise in our notation that these attribute nodes must be

located first in the sequence before including other simple or complex element nodes.

Consider the folJowing segment of DTD and its G-DTD where attribute sno is located in

first position in the sequence of child elements.

<!ELEMENT student ({name. lname, grade »
<!A17'LI8T student

Sno ID #REQUIRED>
<!ELEMENT fname(#PCDATA»
<!ELEMENT Iname(#PCDATA»
<!ELEMENT grade(#PCDATA»

<student>

<grade,S>

Figure 3.9: Sequence of Attribute and Simple Elements
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Disjunction between the set of subelements

We have a set of sub-elements that are in an exclusive "OR" {XOR} relationship to

represent notation "I"in DTD. For example, for the complex element node student only

one of its sub-elements either fname or lname, appears as its sub-element in the XML

document, which is represented in DTD as follows:

<!ELEMENT student (fnameilname, grade)

As shown in Figure 3.10, in G-DTD, we illustrate this as a line labelled with {XOR}

across all the set of relationships involved.

<student,>

( <fname, S> <!name,s> <grade,S> )

Figure 3.10: Binary Disjunction of Simple Elements

Following is another real example of an application taken from ETDML DTD (Powell,
2007).

<!ELEMENT chapter (pagel citation I table)" > which is equivalent with
<!ELEMENTchapter (page·1 cttauon" I table"} >

can be represented in G-DTD as follows:
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<chapter>

{XOR}

-<citation, S>

Figure 3.11: Disjunction of Several Simple Elements

Figure 3.11 shows that the line with label {XOR} indicates that more than two

disjunction relationships are involved. Generally, this notation is flexible and

corresponds to a number of disjunction sub-elements defined in the DTD. Sub-elements

page, citation and table are simple multi-valued elements.

3.S Example of G-DTD

Finally to illustrate the use of G-DTD's notation (summarised in Figure 3.12) let us

consider a DTD in Figure 3.2 which describes a university database. Figure 3.13 shows

the G-DTD describing the structure of an XML document corresponding to the DTD in

Figure 3.2. Root node Department has a binary path link with the complex element

node course.

The simple element node title is part-of the complex element courses. One course can

be taken by many students while the complex element student consists of a sequence of

attribute node sno, simple elements fname, lname and complex element lecturer.

Attribute node sno is required for the complex element student. Complex element node

student requires only one of its sub-elements, either fname or lname, to appear in the

XML document while the simple element lname is optional.

The semantic relationship between course, student and lecturer is indicated as a ternary

relationship since each student is assigned to a lecturer who is teaching the course. The
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semantic relationship between them reveals that the Department can have one-to-many

courses at one time.

The complex element course has a sequence of attribute cno, simple element node title

and complex element node student. The part-of link attribute is a mandatory

relationship where the attribute node cno is required and unique for every course in the

XML document.

Attribute tno is required while simple element tname is mandatory and string S denotes

that a node is a type PCDT A. Attribute key tno and simple element tname is the last

node in G-DTD. The level of each node is indicated explicitly in the model.
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Notations

<name>

( <name, S>

( +<uame,S>

( ?<name, S>

( ·<name, S>

ooo
III

name, 2, -. 1

name, 3,', •

XOR

Meaning

Complex element

J
Mandatory simple element, single value,

. CDATA

)
)
)

Required simple element, multi value, CDATA

Optional simple element, single value,
CDATA

Optional simple element, multi value, CDATA

Composite Attribute

Reference Attribute

Required Attribute

Has _A link simple element (complex element and simple
element)

Part_oflink attribute (Complex element and attribute)

2-ary many-to-one Path link

3-ary many-to-many Path link

Disjunction between set of relationships

Figure 3.12: G-DTD's Notations
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3.6 G-DTDOperations

The operations of the G-DID model describe the dynamic properties of the model. G-

OlD model operations are classified into five main parts: Query Operations, Insert

operations, Delete Operation, Searching Operations and Update Operation. An operation

to determine the root and leaves of the G-DID is also required. Later, these operations

will be used in normalizing the G-DID into normal forms. In the following description

we will conceptually discuss the semantic meaning of these operations according to this

classification.

3.6.1 Query Operations

Query operations allow the user to query the node types and information, related nodes

and links information defined in G-DID.

(1) Query a Node Type and Information

The operations of querying node types allow the user to query different types of node

stored in G-DID such as complex element, simple element or attribute nodes. The user

can also query the information of a particular node, such as name, level and node type.

If the queried node does not exist, an error message is given.

(2) Query a Related Node

Since the structure of G-DID is like a tree structure, the query operation allows the user

to query the related node that links to a particular node using a path through existing link

such as a Path, Partof or HasA link. For instance, the user can detect the parent of a

complex element node by using the path link between two complex element nodes. As

another example, the simple element for a particular complex element node can be
determined through the Has_A link.
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(3) Query a Path Link

Path links are the most important links in G-DID. This operation allows the user to

query the instance of a path link, such as name of link, degree of relations and parent

and child constraint.

3.6.2 Insert Operations

Insert operations allow the user to insert a new complex element node to the G-DTD.

When a new node is being inserted in the G-DTD model, the following situations are

possible:

• A new complex element node, simple element node or attribute node is created

• A new path link is built between the complex element node and created complex

element node

• A new Has_Alink is built between the created complex element node and a

simple element node

• A Part_of link is built between the created complex element node and an

attribute node

To ensure the new node is not redundant with any node in the given G-DTD, it must be

tested whether the node already exists. Then the proper location of the new node needs

to be determined before it can be inserted into the G-DTD. More importantly, it must

satisfy the data integrity constraint of the given G-DID.

(1) Inserting a Node

In this case a new node is inserted into the G-DTD. Before the user can insert a new

node, it must be created first. Whether the new node is a complex element, simple

element or attribute node, the properties of the inserted node such as ID, level and types

are inserted and stored together in the G-DTD. The operation of inserting a new node

implies that when the node is inserted, related nodes such as parent node or child node

should be reported to the user since the structure of the G-DTD is changed.
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If the newly inserted node is a complex element node, the position of the new complex

element node is based on the rules provided in the normalization procedure (see Chapter

4). In such a situation, a path link is created with its parent node. In this case, the parent

node may be a root node or another complex element node based on the normalization

rules provided. However if the created node is a simple element or an attribute node, a

Part_of link or Has_A link is built between it and the parent node, which is a complex

element node.

(2) Inserting an Instance of a path link

Inserting an instance of a path link means that the semantic relation between two

complex element nodes has to be created. The user needs to know the semantic

relationships before he/she can insert them to the G-DTD. The user can make links and

insert the corresponding link information such as name, degree, parent constraint and

child constraint. In contrast, for a part-of link and has-a link, the user is not required to

put any instance for the links.

3.6.3 Delete Operations

Delete operations results in the corresponding data being removed from the G-DTD.

Since the structure defined in the G-DTD is a tree structure, delete will affect the

location of the existing nodes in the G-DTD, especially the parent node and child node.

The delete operation in G-DTD must satisfy the conditions and constraints given in the

normalization rules defined in Chapter 4. In the following, we will discuss the different

situations of delete operations in the G-DTD

(1) Deleting a Complex Element Node

Deleting a complex element node is a complex deleting process in G-DTD. This is

because every complex element node is related to its parent node and child node.
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Before the process of deleting a complex element node is started, it is important for the

user to find its related nodes such as parent node and child nodes.

Eventually, by deleting a complex element node, its attribute and simple element nodes

with the relevant Part_of and Has_A links are automatically deleted as well. A new link

is built up with its new parent node and chi1d node.

(2) Deleting a Path Link type and its Instance

According to the path link type definition, each instance of a path link type represents a

semantic relationship between two complex element nodes. When such an instance is

deleted, the specific relationship between the two nodes has no further semantic link

between them.

3.6.4 Replicate Operations

Replicate operations copy the name of the current node such as simple element node and

attribute node and create a replicated node. However the new level and new ID of a

copied node are depending on the current complex element node. The replicated node

can be moved around from one location to another. In the process of replicating a node,

all the related nodes including complex element nodes should be notified if the

replicating node has a relationship with them. It may be necessary to move an attribute

node and simple element node up to another level when there exists dependency

between an attribute node and a simple element node. In this situation, it is not

necessary to create a new complex element node but rather to restructure the G-DTD by

moving up the node at level n (nn) to level n-l (nn-I).

3.6.5 Determine the root node and last node

This operation will determine the root node and last node (last level) in the G-DTD. The

last node may be a simple element node or attribute node. These operations are very
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important because in order to avoid duplication, we need to move the corresponding

node as near as possible to the root node.

3.7 Rules for cODvertingG-DTD to DTD

Another feature of our approach is that instead of generating XML DTD directly, we first

generate a conceptual schema, G-DID. After obtaining a set of normal forms G-DTD,

we can apply the transformation rules to generate a DTD of an XML document. This

approach is adopted from Mok and Embley (2006) with some modification to suit the

tree structure of G-DID. In this section, we describe the mapping from the G-DID

consisting of nodes, links and constraints to the DID, which is mainly concerned with

elements/attributes declarations and simple/complex element type definitions. I n

principle, each basic node in the G-DID can be mapped to either an element or an

attribute. Each complex element node in the G-DTD can be transformed to an element,

whose content may include embedded sub-elements. The transformation rules include

both generic and semantic rules. This mapping simply represents G-DID syntactically in

this XML document schema in one-to-one correspondence, depth by depth starting from

the lowest node depth. For this transformation, we must take into account the

hierarchical characteristic of XML document structure. In the following, we describe our

transformation rules which incorporate general rules and semantic rules. General rules

consist of the following four categories: Root node; Complex Element node/ Simple

element node and Attribute node. Semantic Rules are applied for element and sub-

element relationship, cardinality constraint, sequence and disjoint

3.7.1 General Rule

In the following, we illustrate the G-DTD construct while explaining the transformation

of this construct into the DID fragments.
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Root node

A special type of complex element node is a root node which has the same properties,

consisting of node label and level. Thus, we transform the G-DTD root node into a

DID element type declaration. As indicated in step 1 of Figure 3.14, the root node

name A will be mapped to the name of the element type starting with <!DOCTYPE A[

subelement] >

The following graphical notation for root node will be transformed to the following

syntax

<A> <!DOCTYPE A [ ] >

G-DTD (transform) DTD

Complex Element node and Simple element node

The complex element node label becomes the name of the ELEMENT types. The

simple elements are transformed into ELEMENT content description. This is motivated

by considering a simple element node to be part of a complex element node. The name

of simple element node provides the name for the simple element type in content

specification. InG-DTD simple element names are mandatory. If there is no more sub

element node representing a suitable declaration for the simple element node, the simple

element node type is assumed to be a simple element type whose content type is

#PCDATA. The following diagram depicts a complex element node and its simple

element node with the transformation result.

104



<A> r:::::::> <!ELEMENT A (B,C,D)

(transform) <!ELEMENT B # PCDATA>

<!ELEMENT C #PCDATA>

<B.S> <C.S> <D.S> <!ELEMENT D #PCDATA>

G-DTD DTD

Attribute node

Similarly, each attribute node consists of label, level and type node. After the

transformation, such attribute that has an additional ID attribute will be declared as it

label followed by ID #REQUlRED

<A>
<!ELEMENT A (C,D)

(tran~foi:n) <IATTLIST A B ID #REQUIRED

<!ELEMENT C #PCDATA>

<!ELEMENT D #PCDATA>
<C,S>

G-DTD DTD

3.7.2 Semantic Rule

The sequence among nodes, especially the sequence among sibling simple elements

within complex element, is significant. The sequence of sibling elements within parent

element is represented left to right in the graph. The order in the sequence is explicitly

given by the notation, an up-curved arrow. As show in the following diagram, after

mapping, DTD element types appear exactly in a sequence. The Has_Alink specifies a

relationship between complex element node and simple element node. .
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<!ELEMENT C #PCDATA>

( <8. s» «C. s> ) ~ (transform) <!ELEMENT D #PCDATA>

<!ELEMENT A (B,C,D)

<!ELEMENT B #PCDATA>

G-DTD DTD

Disjunctive Relationsbip

<A,I> <!ELEMENT A (BIC,D)

c:::> <!ELEMENT B #PCATA>

<!ELEMENT C #PCDATA>

{XOR} (transform) <!ELEMENT D #PCDATA>

( <8,S> ) ( <C,s> ) ( <D,S> )

G-DID DTD

Sub-elements of complex element A; simple element B and C are linked using has a link

relationship and illustrated using {XOR}. This portion of the diagram is transformed as

fragment DID using notation "I" to represent a disjunctive relationship between

complex element A and sub-elements B and C.
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Cardinality Semantic

<!ELEMENT A (B, C, D*)

c::::::> <!ELEMENT B #PCDATA>

<!ELEMENTC #PCDATA>

( <8.S> ) ( <C S> ) .___I _<D_> __, < !ELEMENT D (EMPTY)

G-DTD DTD

The cardinality specifications spesified in a path link between complex element A and

complex element D will be mapped into cardinality specification with operator 1, *, + .
For example a many to many path link between complex elements A and D is mapped

using operator *.

In Figure 3.14 we present a straightforward transformation rule which combines together

the general and semantic rules to map from G-DTD back to DTD. This mapping rule

requires the input to be a G-DTD and the output is DTD. This algorithm consists of 4

steps. Generally, step 1 is to select a root element node N of G-DTD and generate <!

DOCTVPE N [<complex element type definition> <simple element type definition>]>.

In step 2, the initial structure of G-DTD is determined to identity the number of node,

types of nodes and relationship type. In Step 3, for each complex element name at the

first level that appears in sequence in the G-DTD, replace < complex element type

definition> by <!ELEMENT N (<sub-element ofNi» where N, is the list of sub-element

nodes. The relationship type and cardinality semantic (semantic constraint) will be

verified to map using the right symbols. In step 4, stating from level 2 of G-DTD, the

nodes need to be traversed using depth first traversal, where the complex element from

the left side will be first identified in the sequence. The process of step 3 is recursively

applied until the last level of G-DTD. All attribute nodes with part-of link will be
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replaced with <! ATILIST N; attribute name ID # REQUIRED> and a simple element

node with has-a link will be replaced with <!ELEMENT simple element name

#PCDATA>. The process in step 4 is continued for all nodes in sub tree G-DTD.

Step 1 Level 0, a root node is represented by <!DOCTYPE root node name
[<Complex element type definition> <simple element type definition>]>

Step 2 Levell, identify the subtree of G-DTD, check the number of nodes, type of
nodes and relationship type

Step 3 If there is more than one node at levelland the relationship type between root
and child node(s) is a binary one-to-many/many-to-one hierarchical link then
generate

<!ELEMENT root node name (Ni) »
Where Ni is the list of subelementslchild nodes

3.1 Certify the relationship set between parent nodes and child nodes,

3.1.1 If {XOR} means the relationship between node is a disjunction and
will be represented using symbol 'I'
Else

3.1.2 If {sequence} means the relationship is sequence and will be
represented using symbol ','

3.2 Verify the semantic constraint between complex element nodes (parent) and
complex element nodes (child) in each relationship set and map to the
following operator:

3.2.1 if (m, 1, *) or (m, *, *) or (m, *, 1) map to operator *

3.2.2 if(m, 0, *) map to operator +

3.2.3 if (m, 0, 1) map to operator?

Where m is n-ary relationship and n > 1

Step 4 If the list of subelements (Ni) is not empty, using depth first traversal, for each
node in list subelement Nt

4.1 generate <I ELEMENT Ni (subelement Ni»
4.2 repeat step 3.1 and 3.2

4.3 for each complex element (NI), if the relationship between them is part-of
link attribute (one-to-one) then generate
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<IATILIST Nt attribute name ID # REQUIRED>

4.4 For subelementlVi

4.4.1 If Nj is a simple element has part of link simple element (many-to-
one or one-to-many relationship) with Ni then generate

<I ELEMENT simple element name #PCDATA>

(Repeat for all simple element nodes)

4.4.2 If lVi is a complex element node has path link with complex
elementNi

Repeat step 4

4.4.3 If Nj is a complex element node has part of link then generate

<I ELEMENT lVi (EMPTY) >

Step 5 Go to next subtree G-DTD and repeat step 4

Figure 3.14: Transformation Rules

3.8 Summary

In this chapter, we have presented several new features provided by G-DTD for

describing XML documents. The most important feature of this model is that the

complex elements; simple elements and attribute nodes are clearly distinguished and

presented. In particular, we illustrate how binary or n-ary relationships through parent-

child relationship can be represented using G-DTD. The sequence and disjunction

between the nodes are presented as well and the path structures of the node are shown

by level indicators. The relationships between complex element node, simple element

node and attribute nodes are illustrated using Path link, Part_of link and Has_A link.

We also developed transformation rules to generate new DTD.

We will propose a notion of normal forms for G-DTD on the basis of Arenas and

Libkin's (2004) normalization theory. The normal forms ofG-DID will be used later as

a guideline for the user to improve the quality of XML documents by reducing

undesirable redundancies caused by functional, transitive, partial and local dependencies

from the schema level. A normalization algorithm will be developed to convert from G-

DID to a normal form one. This will be presented in the next chapter.
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Chapter4

Normal Forms for XML Documents

4.1 Introduction

The concept of database design and normal forms are key components to achieve a high

performance database design. Normal forms which have been introduced in

normalization theory have been studied extensively for the relational model (Codd,

1970; Fagin, 1977). Three normal forms were initially proposed called first (INF),

second (2NF), and third (3NF) normal forms. Subsequently, Boyce and Codd introduced

a stronger definition of the third normal form called the Boyce Codd Normal Form
(BCNF)(Codd, 1974).

The purpose of normalization is primarily to remove redundancy that is, storing the

same information several times in the database. If this happens, it will have impact

whenever information is updated (Le. update anomalies), and may use more space than

needed. In the normalization process, the initial poorly designed relational schema is

decomposed into an equivalent set of well-designed schemas, i.e. into schemas in

desired normal forms (usually is 3NF and often also in BCNF). As presented in Chapter

2 (see Section 2.1), normalization involves the identification of the required attributes

and their subsequent aggregation into normalized relation based on functional

dependencies between attributes.

In this chapter, we will describe a systematic approach to designing a quality XML
schema design in order to achieve a redundancy-free XML document. Similar to

relational database theory, we propose a set of normal forms for XML documents. The

set of normal forms is defined on the basis of G-OTO which has been presented in

Chapter 3. Since G-DTD also utilizes association between complex elements, simple

elements and attributes as a basis to indentify the OTO, it is possible to apply data

dependency principles in the conceptual data model. We believe the capability of G-

DID to capture more semantics will make the approach of normalising XML documents
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more practical and speed its implementation. Normal forms of O-DTD are generalised

and simplified from the normal form proposed by Arenas and Libkin (2004) and Lvet

aI., (2004).

Our contribution in this chapter is as follows:

• We apply the data dependencies concept to represent O-DTD semantic.

• We present a set of a normal forms for XML documents called first normal form,

second normal form, third normal form and fourth normal form on the basis of

the O-DTD model

• We propose algorithms to transforms O-DID into the respective normal form 0-

DTD.

• We provide a case study to demonstrate the process of normalization of XML

documents based on O-DTD.

The rest of the chapter is organized as follows. In section 4.2 we present various

definition types of data dependencies for O-DTD. Section 4.3 defines multiple levels of

normal forms for O-DTD. The normalization procedure of XML document based on 0-

DTD is presented in section 4.4. A case study is given in section 4.5 to illustrate the

application of normal forms and normalization rules in designing a university database.

4.2 Data Dependency of G-DTD

In Chapter two (see Section 2.3.3) we have presented various definitions of data

dependency, especiaJIy XML functional dependency in defining XML normal forms. In

this chapter, we adopt the definition presented by Arenas and Libkin (2004) and Lv et

al. (2004). We simplify this XML normal form and present them in a more practical

way and provide a simple definition which can be easily understood by database

designers.
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It is well known that data dependencies are part of the real world semantics (Ling, 1985;

Arenas and Libkin, 2004; Vincent et al., 2007; Lv et al., 2004; Wang and Topor, 2005).

They represent the semantic information in the form of relationships between different

attributes in the XML documents (Maier, 1983). In Ling (1985), it is stated that "data

dependencies should be modelled precisely early in the design stage for a correct and

complete database representation of semantic." .

In line with the above statement, we provide various types of structural properties in the

G-DTD model, which can be applied in the normalization process later. In our

approach, first we consider two types of data dependency concept: functional

dependency and key dependency and later we propose normal forms for G-DTD on the

basis of these data dependencies.

To demonstrate the idea of data dependencies and normal forms for G-DTD, we

represent again the same example of XML document with its G-DTD as presented

previously in Chapter 3 section 3.5.

<!DOCTYPE department [
<course>
<course cno = "cscltil ">
< title> XML database <Ititle>
< student>

<student sno = "112344">
<fname> David</fname>
<lname> Grey<!lname>
<lecturer>

<lecturer tno = "123">
<tname> Bing <Itname>

<!lecturer>
</student>

< student>
<student sno = "1/2345">
<fname> Helen </fname>
<lecturer>
<lecturer tno = "123">
<tname> Bing </tname>
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<!lecturer>
<Istudent>

<Jcourse>
<course>

<course cno = "csc102">
< title> Zformal Method <Ititle>

< student>
<student sno = "112344">
<fname> David</fname>
<lname>Grey <!lname>
<lecturer>

<lecturer tno = "124">
<tname> Bottaci <nname>

<!lecturer>
<Istudent>
< student>

<student sno = "112345">
<fname> Helen </fname>
<lecturer>
<lecturer tno = "124">
<tname> Bottaci <Jtname>

<!lecturer>
<Istudent>

<Icourse>
<Icourses>
<IDepartment> ]

Figure 4.1: XML Document Conforming to G-DTD in Figure 4.2
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Figure 4.2: G-DTD
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4.2.1 Key Dependency (KD)

We define a key dependency as a unique attribute that can determine uniquely other

simple elements in the G-DID. Referring to G-DID in Figure 4.2, for instance, course

number (cno), student number (sno) and lecturer number (tno) are unique and

mandatory, because they are represented as one-to-one relationships between complex

elements and attribute nodes. We define this in G-DID as a key attribute similar to

Buneman et al., (2001). For instance, each course contains a unique course number or

each lecturer has a unique number is written as follows:

<cno.Z> -+ <course, 1> ----- (4.1)

<tno, 4> -+ <lecturer, 3> -----(4.2)

4.2.2 Functional Dependency (FD)

Functional dependency models real world constraints, showing the dependencies among

complex elements and simple elements/attributes. Based on the G-DID model, we

define three types of functional dependencies: global functional dependency, transitive

functional dependency and partial functional dependency.

Global Functional Dependency (GFD)

GFD occurs based on a few constraints (dependencies) that a database designer may

specify for his/her application. GFD holds in G-DID if a dependency occurs between

an attribute and simple element node of a particular complex element under n-ary many-

to-many path link are leaves node of G-DID. Both attribute and simple element are the

children for a particular complex element node. We adopted this definition from

(Connolly and Begg, 2002; Arenas and Libkin, 2004) with some modification to suit the

tree structure of G-DID.
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Definition 1:

Let CE be a complex element node under binary or n-ary one-to-many/many-to-

one/many-to-many path link. Let ATI' be set identifier attribute node of CE and SE

is set simple element node ofCE. The GFD ofG-DTD is defined asfollows:
(1) For each attribute node <ATI', In-I> of <CE, 1,...2>and simple element node

<SE, In-I> of <CE, 1,...2>,where <SE, 1,...1>and <ATI', In-I> are leaves nodes in G-

DTD.

<A1T, In_I>-+<SE, 1,...1>is a GFD in G-DTD iff

(a) <SE, 1,...1>is fully functionally dependent on <ATI', 1,...1>but not on any proper

subset of <A1T, In-I>. <SE, 1,...1>can be a set of simple elements, list of simple

elements or single value of a simple element.

(b) Both <A1T, In-I> and <SE, 1,...1>must be located at the same level in G-DTD

and share the same parent node.

For instance, in Figure 4.2, the possible GFD of the complex element lecturer is as
follows:

<tno, 4>-+ <tname, 4> -------(4.3)

This above GFD (4.3) represents the constraint, whenever two elements agree on the
value of all attributes tno, they also agree on the value of all attributes in tname. This
GFD can be viewed as a function from one set of attributes/simple elements to another
set of attributes/simple elements. Similar to the relational model, the left hand side
(LHS) of the arrow of GFD is called a determinant. For example, tno is the determinant
oftname.

Transitive Functional Dependency (TFD)

We adopted the definition of transitive dependence from the relational model (Codd,
1972) and nested relation (Lv et al., 2004). TFD between complex elements occur if
their attribute or simple element node has dependency with another simple element node
from a different level.
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Definition 2:

Case 1:Let ATT be a key identifier for complex element (CE) and {SEa. SEb} are

simple elements for CE

If there exist two constraints <ATT. 1>-+<SEa. I> and <SEa. 1>-+<SEb, I>,

then we say that attribute <SEb, I> is transitively dependent on <ATT. I>.

Case 2: Let ATTa be a key identifier for CEa. ATTb is a key identifier to CEb and

SE is a simple element for CEc and they are located in different levels.

If there exist two constraints:

FD1: <ATTa. 1>-+<ATTb, 1+1>

FD2:<ATTb, 1+1>-+ <SE, 1+1>,
then we say that

<ATTa. I> -+<SE, 1+1>is a TFD because <SE, 1+1>is transitively dependent on

<A TT. I> and they are located at different levels.

Partial Functional dependency (PFD)

We adopted the definition ofPFD from Lv et al. (2004).

Definition 3:

Let ATTa. ATT/h ATTm be a key identifier for CEa. CEb and CEm respectively. These

CE have a binary or tenary relationship with each other and are located in different
levels.

If there exist two constraints

FD1: {<ATTa. I>, <ATT/h I+I>,<ATT"" 1+2>}-+ <ATT", 1+3>
FD2: <ATTa. 1>-+ <ATT", 1+3>

Constraint FD2 is called PFD because it is a subset of FDl where attribute <ATTa. l>
alone can be used to determine <ATT", 1+3>
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PFD involves composite attribute keys. The composite key attribute could be from the

same level or from a different level. The subset of composite key attribute can

functionally determine the simple element node.

Relationship Dependency (RD)

The relationship dependencies are presented clearly in the G-DTD diagram using a

directional arrow. Our XML relationship dependency is defined in terms of structural

constraints of path link in the relationship between complex element nodes in G-DTD.

These types of relationships can cause data redundancy and must be eliminated from G-

DTD. The categories are: one-to-many n-ary path link, many-to-many n-ary path link,

and many-to-one n-ary path link dependency where n ~ 2

For instance, G-DTD in Figure 4.2 indicates the presence of a binary many-to-one path

link between complex elements department and course represented as <department,

O>-+R<course, 1> ) where R is (DC, 2, ., 1) DC is an abbreviation for both name of

complex element department and course.

As summary, we defined data constraints into semantic constraints and structural

constraints. Both KD and FD are categorized under semantic constraints while RD is

categorized under structural constraints. KD is defined based on attribute node key for

each of complex element node. FD such as a GFD, PFD and TFD is defined on the

basis of attribute nodes and simple element nodes of a complex element node and

presented as LHS and RHS of FDs. Every attribute node and simple element node is

associated with its level and this indicates the depth of the nodes in the G-DTD model.

As shown in the definitions, for the purpose of simplicity, we make an assumption that:

(1) Every complex element node in G-DTD has an attribute node.

(2) Every node, whether attribute node, simple element node or complex element node,

has a unique name. FDs such as GFD, TFD and PFD are in '<x, level> -+ <1,

level> 'form where X and Y represent the LHS and RHS of the FDs respectively.
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(3) A set of FD of a G-DTD ispresented as two element sets, onefor LHS and the other
for RHS set. Obviously, the order of attributes and element nodes in such a set is
important.

Compare with definitions defined by Arenas and Libkin(2004) and Lvet a1.(2004), they

use path expression based on ''tree-tuples'' to define the KD and FD ( see definition in

Chapter 2 (Section 2.3.4.) but we simplified their definition using unique node name and

level as indicated inG-DTD model.

4.3 Normal Forms for G-DTD

A normal form specifies a set of syntactic conditions that a well-designed schema

should satisfy (Codd, 1972). As mentioned in earlier section, normal form usually deals

with removing redundancies from a database to avoid possible anomalies during update

or insertion of data. Like the relational model (Codd, 1972), we next define a set of

normal forms for G-DTD. These normal forms are on the basis of data dependencies

and semantic relationship of G-DTD.

4.3.1 First XML Normal Form (IXNF)

The first normal form for G-DTD is about finding unique identifier attributes for the

complex elements set, and checking that no node (complex element, simple element or

attribute) actually represents multiple values. To be in first normal form, each attribute,

complex element or simple element is not NULL and has a single label. Only one value

for each simple element node or attribute node ofG-DTD can be stored. If there is more

than one value, we must add some new element nodes or attribute nodes to store them.

For instance, consider G-DTD in Figure 4.2. If the complex element course has two

titles, we need two title simple element nodes for each course to store the two title
names. This is equivalent to having 'no repeating group' in relational schema (Codd,

1972). More importantly, the primary key (unique identifier) for the complex element

must be defined. To be precise, we propose the following rules.

119



G-DTD is in first normal form if and only if:

(a) For all attribute, complex element and simple element node in G-DTD must have

exactly one unique label.

(b) Each complex element node in the G-DTD has at least one key attribute node.

(c) For all Path link relationship, the parent and child of the relationship must be a

complex element node.

(d) For all Part_oflink relationship, the parent must be a complex element node and the

child must be a simple element node.

(e) For all HasA link relationship, the parent of the relationship must be a complex

element node and the child must be is an attribute node.

4.3.2 Second XML Normal Form (2XNF)

If a relationship between a parent node (complex element node) and child node

(complex element node) is many-to-one (such as department and course, as shown in

Figure 4.2) the potential for data duplication might exist. Some nodes need to be

restructured. However they can then still be in a single G-DTD. This is possible in

XML because XML supports hierarchies in a single document, while relational

databases do not support hierarchies in a single row. This is different from the relational

second normal form (2NF), which requires many-to-one relationships to be in separate
tables.

The G-DTD is in second normal form if and only if:

(a) G-DTD is in lXNF.

(b) There is no nested binary path link or ternary path link under many-to-many/many-

to-one or one-to-many path links with the following condition:

For each nested complex elements <CE, 1+1> of <CE, P, and any key attribute

(ATT) of <CE, P, the key attribute and simple element node of <CE, 1+1> is not

partially functionally dependent on ATT of complex element node <CE, P.

120



4.3.3 Third XML Normal Form (3XNF)

In the third normal form of G-OTO, making a change to one unique complex element

node set would not affect the integrity of another complex element node set. If needed,

a complex element node set would be divided into two separate complex element node

sets.

G-OTO is in third normal form if and only if:

(a) G-OTD is in 2XNF.

(b) There exists no nested path link type of n-ary one-to-many or many-to-many under a

many-to-one path link set in G-DTD and the following conditions are satisfied:

(i) For each nested set of complex elements <CEllo 1+1>of set of complex elements

<CEa, 1>, any key attribute and simple element of <CEb, 1+1> is not transitively

functionally dependent on ATT of complex element <CE. 1>.

(ii) Any key attribute node of any complex element node located in a different level

is disjoint (ATT<CE, I>n ATT<CE, 1+1>n ATT<CE, n> =0).

4.3.4 Fourth XML Normal Form (4XNF)

GN- OTO is in fourth normal form if and only if:

(a) G-OTO is in 3XNF.

(b) For nested one-to-many/many-to-one or many-to-many path links in G-OTO, the

following condition is satisfied:

(i) There are no GFD between attributes and simple elements of complex element

nodes under nested many-to-one or many-to-many path links.

As summary, the set of normal forms proposed above are based on FO and RD among

attributes, simple element and complex elements of G-OTO. The higher normal form

such as 4XNF is better than others because it can avoid redundant data in XML

document which can causes update anomalies in implementation. In following section,

we discuss the process of normalization, which is important for the XML document
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schema design. In section 4.5 we present a case study to demonstrate the use of this set

of normal forms in the normalization process in detail.

4.4 The Process ofNormalization

The common feature of normalization procedure is to convert an initial schema into one

in a normal form to reduce anomalies and redundancies in the XML document. In this

section, we propose transformation rules to convert the un-normal form G-DTD into a

normal form one. Two approaches to normalize G-DTD are given: First, the approach

of restructuring the G-DTD which affects the relationship and location of the nodes in

G-DTD. Second, we focus on normalization rules for G-DTD with data dependencies

on the basis relationship dependency, GFD, PFD and TFD. Generally, in these rules, we

first restructure the G-DTD by creating a new complex element node, moving up node

and moving sub-tree node. We subsequently adjust the semantic relationship between

simple element nodes or attribute nodes in G-DTD. We next define the normalization

rules.

4.4.1 NormalizationRules

The following notations will be used in the following rules:-

r represents root element

A IT represents attribute

SE represents simple element

CE represents set of complex element

_..R represents relationship

I represents level of node where (0 ~ I ~ n-I), n is afinite positive number
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Rule 1: Restructure n-ary many-to-many or one-to-many/many-to-one path link

with partial functional dependency

To restructure n-ary many-to-many or one-to-many/many-to-one relationship we must

avoid multi-nested path link. For each, n-ary relationship R (n>2), many-to-many or

one-to-many/many-to-one relationship type

Let «CEa, 1> ~R<CEb, hI» be a path link and let 81:<att, 1+2>~ <Se, h2> is a PFD,

where <.AlT, 1+2>and <SE, 1+2>are children/or <CEb, 1+1>

1.1 Create a new complex element name <CEb_new, I>.

1.2 Insert node <CEb new, I> at the same level of level <CEI, 1> at the rightmost

position of G-DTD.

1.3 Create a new relationship type of binary one-to-many binary path link between

parent of <CEa, 1> and new complex element name <CEb_new, I>.

1.4 Replicate all children of <CEb, 1+1> to be children of the complex element

<CEb_ new, I>.

1.5 Delete all children of <CEb, 1+1>except the key attribute node.

1.6 PFD fh is transformed to 8j': <A1T, new _I>~<SE, new _I> where new _I is a level

equivalence to CEb level.

Rule 2: Restructure binary many-to-many/many-to-onelone-to-many path link

with transitive functional dependency

For each binary many-to-one relationship type

«CEa, 1> ~R<CEb, 1+1»

If extst, <CE(JJI> with attribute AlTa and <CEb>1+1>with attribute AlTb, and simple
element Sb;

Where 81: <.AlTa. 1+1>-+ <AlTb. 1+2>

82: <.AlTb. 1+2>~ <SEb. 1+2>
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2.1 Move up the set complex element <CEb, 1+1> along with its children to the same

level <CEa, I>

2.2 If parent of <CEa, I> is a root node

(a) Then create a new relationship type of many-to-one path link between parent of

<CEa• I>with set complex element node < CEb, 1+1 >

else

(b) Create new relationship type of many-to-many path link between parent of

<CEa, I>

2.3 TFD 83:<.A1Ta, hl>-+ <SEb. 1+2>is transformed to 83':<.A11'a,1+1>-+<SEb. new _I>

where new _I is equivalence to level of <.A.1Ta,I+J>

Rule 3: Restructure binary many-to-many/many-to-onelone-to-many path link

with global functional dependencies

Let 81:<.A17', 1"_I>-+{<SE, 1"-I>} is GFD corresponding for complex element

<CE,I"_2>

3.1 Create a new complex element name <CE _new, I>

3.2 Insert node <CE_new, I> at level one (/=1) at the rightmost position ofG-DTD

3.3 Create a new relationship type of binary many-to-one binary path link between root

and new set complex element name <CE_new, I>

3.4 Replicate attribute node <.A1T, 1".1>and simple node <SE, Ik-l>

3.4.1 Rename them as <..41T, I"ew> and simple node <SE, lnew> respectively where

lnew-levelof«CE_new, I» +1

3.4.1 Make them as children to node <CE new I>_ ,

3.4.2 Let new attribute node <.4.1T, I,_> of <CE_new, I> be a key node

3.5 Create a new relationship type of part-of link between attribute node <ATI', I,_>

and simple element node<SE, lnew> with <CE_new, I>
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3.6 Delete simple element node <SE, In-l> from its original location and relationship

3.7. GFD 81:<A1T, Ik_l>-+{<SE, Ik-l>} is transformed to 8/: <A1T, Inew>-+{<SE, lnew>}

4.4.2 Normalization Algorithms

Normalization is a process that analyses and restructures the schema of an XML

document to minimize redundancies with the help of data dependencies in the data. In

our approach, the normalization algorithm takes G-DTD and set of data dependencies

specified by the user as an input, and returns the normal form G-DTD as output. These

algorithms apply the normalization rules i.e. Rule 1,Rule 2 and Rule 3 which have been

presented in section 4.4.1. We propose three algorithms to transform a G-DTD into

second normal form, third normal form and fourth normal form, respectively.

Algorithm Restructure lXNF to lXNF G-DTD

In Figure 4.3 we present an algorithm for 2XNF converting a G-DTD into a second

normal form. This algorithm applies rule 1 (presented in section 4.4.1) which is used to

eliminate redundancy through restructure n-ary many-to-many or one-to-many/many-to-

one path links with PFD. To do this, firstly all path links between complex element

nodes in G-DTD are identified from the root until last node. Then, the data

dependencies given by the user will be identified and grouped into key dependency,

GFD, TFD and PFD accordingly based on the definitions given in section 4.4.1. If there

exist both PFD and multiple path links with many-to-many or one-or-many in the same

path, it indicates that the G-DTD is not in a second normal form. To transform the G-

DTD into a second normal, the PFD between attribute and simple element will be

removed by placing them under a new complex element node. The basic idea of rule 1

requires creating a new complex element node then locating this new node at a different

path and level so that the multi nested path link is restructured. As a consequence, a

new relationship type of path link and part-of link is created associated to the new
complex element node.
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Input: The G-DTD schema diagram D and given set 8 of specified data
dependencies.

Do:

(1) 1.1 Let CEa is a root element, where CE is complex element node in D
1.2 Let Cnodes = {CEa,CEb,..CEn} is a set complex element node in D

1.3 Let Snodes = {SEa, SEb,..SEn} is a set simple element node in D

1.4 Let Attnodes = {ATTa, AIT b,..ATT n} is a set of attribute nods in D
1.5 Let Hierarchical_Link = {Hlink., Hlink, ... ,Hlinkn} is set of

hierarchical link in D
1.6 Let (D, 8) is a IXNF

(2) If (D, 8) is a 2XNF, then return (D, 8)

(3) For each Hlinki E {Path_Link} in D {

(3.1) For level = 0 to k-I where k =Maximum level in D

(3.2) Let Hlink, (CEa, level) ..... (CEb, level+ 1) E Path_Link such that
CEa is a parent for CEb
/!Where Hllnk, is describes by a relation name denoted as (name, n, pc, cc)

where name is a name of relation, n is a type of relation, pc is a parent constraint
and cc is a child constraintl/

(3.3) If (pc= [N,..N2] and cc = [Nl ..N2]) II NI represent zero or one
N2 represent one or manyl/

Then Nested_Hierarchical_link = True;
(3.4) level = level + 1 ;}

(4) IfNested_Hierarchical_Link

4.11et (h: <A1T(JJl~vel>,<A1Tb, leveli,> .....<SE,level+1>
82: <A1T", levelu> .....<SE,level+1>

where <AITb,level+l> and <SE,level+l> are children for <CEb, level>

4.2 {e2eel} then e2 is PFD where {~, el} E 8
4.3 Restructure (D, 92) by applying rule 1

Output: (D, 8)' in 2XNF

Figure 4.3: Algorithm 2XNF
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Finally the data dependencies are updated on the basis of the new structure G-DTD.

This process is repeated until all PFD(s) are eliminated. This process is illustrated in

Figure 4.4.

Root

eel ce4

ce2

Root

ce2 ce3new

Figure 4.4: Create a New Complex Element Node

Algorithm restructure lXNF to 3XNFG-DTD

Figure 4.5 shows an algorithm 3XNF to transform a G-DTD into a third normal form by

applying rule 2 which have been presented in section 4.4.1. Like the 2XNF algorithm,

all path links between complex elements nodes in G-DTD are identified from the root

until to the last node. If there exist multiple nested one-to-many/many-to-many/many-

to-one path links with TFD then the G-DTD will be restructured. To transform the G-

DTD into a third normal form, the TFD between attribute and simple element will be

removed. Generally, in rule 2 requires moving up a complex element node along with
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its attribute and simple element node to be under a root node and creating a new

relationship type of path link and part-o/link. Finally data dependencies are updated on

the basis of the new structure G-DTD. This process is repeated until all TFD(s) are

eliminated. This process is illustrated in Figure 4.6.

Input: The G-DTD schema diagram D and given set (J of specified data dependecies.
Do:

(1) 1.1Let CEa is a root element, where ce is complex element node in D
1.2 Let Cnodes = {CE), CE2,..CEn} is a set complex element node in D

1.3 Let Snodes = {SE), SE2,..SEn} is a set simple element node in D

1.4 Let Attnodes = {ATT), ATI2, ..ATTn} is a set of attribute nods in D

1.5 Let Path_Link = {Hlink., Hlink2, ••, Hlink.} is set of path link in D

1.6 Let (DJ 8) is a 2XNF
(2) If (DJ (J) is a 3XNF, then return (DJ (J)

(3) For each Hlinki E {Path_Link} in D {

(3.1) For level = 0 to k-l where k =Maximum level in D

(3.2) Let Hlink, (CEa, level-» CEb, level+ 1) E Path_Link such that ce, is a
parent for ce,

//Wbere Hlink, describe by relation name denoted as (name, n, pc, cc) where name
is name of relation, n is type of relation, pc is a parent constraint and cc is a child
constraintl/

(3.3) If(pc= [Nl ..N2] and cc = [N, ..N2]) IINI represent zero or one
N2 represent one or many//

Then Nested_Path_link = True;
(3.4) level = level +1;}

(4) IfNested_Path_Link

4.1 Let 81: <.A1Ta,levehl> -+ <A1Tb level-s>
81:<.A1Tb, level+2> -+ <SEb, level+2> where {Eh.el} E (J

4.2 Then 83:<.AlTa, level+l>-+ <SEb, Ievel.a> is a TFD
4.3 Restructure (D, 93) by applying rule 2

Output: (DJ (})' in 3XNF

Figure 4.5: Algorithm 3XNF
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ce2 ce2neW ce2
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Figure 4.6: Moving Up a Complex ElementNode

Algorithm restructure 3XNF to 4XNF G-DTD

Figure 4.7 presents an algorithm 4XNF to convert a G-DTD into a fourth normal form.

The difference between 3XNF and 4XNF is the identification of OFD within the 0-

OTO's attributeS/simple element node. This algorithm uses rule 3 to eliminate

redundancy though global functional dependencies given in section 4.2.2. Three basic

ideas used in the rule 3 are creating a new complex element node, creating a new

relationship type of path link and part_ojlink/has_A link and replicating an attribute or

simple element node. Unlike rule 1, rule 3 requires a new complex element node to be

linked directly under the root node. This process is illustrated in Figure 4.8.
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Input: The G-DTD schema diagram D and given set 8 of specified data dependencies.
Do:

(I) 1.1 Let CEa is a root element, where CE is complex element node in D

1.2 Let Cnodes = {CEa, CEb,..CEn} is a set complex element node in D
1.3 Let Snodes = {SEa, SEb,..SEn} is a set simple element node in D
1.4 Let Attnodes = {Att;Allb, ..Attn} is a set of attribute nods in D
1.5 Let Path_Link = {Hlinki, Hlinks,., Hlink.} is set of path link in D
1.6 Let (D, 0) is a 3XNF

(2) If (D, 8) is a 4XNF, then return (D, 8)

(3) For each Hlinki E {Path_Link} in D {

(3.1) For level = 0 to k-I where k = Maximum level in D

(3.2) Let Hlink; (CEa, level) -+ (CEb, level+ I) E Path_Link such that CEa
is a parent for CEb

IlWhere Hlink, describe by relation name denoted as (name. n, pc, cc) where name
is name of relation. n is type of relation. pc is a parent constraint and cc is a child
constraintll

(3.3) If(pc= [N,..N2] and cc = [Nl ..N2]) II NI represent zero or one
N2 represent one or manyll

Then Nested_Path_link = True;
(3.4) level = level + I; }

(4) IfNested_Path_Link

4.1 let (h:<A1T, level,,>-+<SE, levels» is GFD where OlE 0

4.3 Restructure (D, 0.) by applying rule 3
Output: (D, 0)' in 4XNF

Figure 4.7: Algorithn14XNF
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Figure 4.8: Moving a Complex Element Node under a Root Node

The algorithm presented in Figure 4.7 is an extension from the normalization algorithm

proposed Arenas and Libkin (2004). For instance, rule 3(see section 4.4.1) that included

the algorithm has the similarities with the procedure create element and moving attribute

in the XNF decomposition algorithm (Arenas and Libkin, 2004). This rule is used to

eliminate redundancies caused by semantic constraint GFD only. However, in our

algorithm, we also check for the structural constraint in the G-DTD model. Both of the

algorithms presented in Figure 4.3 and Figure 4.5 are used another rules i.e. rule 1 and

rule 2 (see section 4.4.1) which are used to eliminate redundancy caused by semantic

constraints such as TFD and PFD and also the structural constraint relationship

dependency. In our algorithm, we make a distinction between type of node to be created

and where the node to be located and check the structure of G-DTD by using the
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relationship dependency i.e. path link types. We simplify the process of this

normalization algorithm as follows:

1. Semantic constraints are presented as FD and grouped into GFD, TFD and PFD

according to our definition given in section 4.4

2. FD are processed according to number of level! type of path links in G-DTD

3. FD are processed according to the hierarchy depth by using top-down approach

4. Structural constraints are presented as RD and identified as one-to-many/many-

to-one or many-to-many path relationship.

4.5 Case study

In this section, again, we use a G-DID (in Figure 4.2) and its instance of an XML

university database (in Figure 4.1) as a case study. As shown in Figure 4.1, this XML

document is prone to update anomaly. For instance, if the staff number (tno) of lecturer

named "Bottaci" is changed to '125', then two distinct places need to be updated. If any

of them is not updated, then the information in the document becomes inconsistent. This

anomaly was called an update anomaly by Codd( 1972) and it arises because the instance

is storing redundant information. To avoid this problem, the G-DTD needs to be in a

normal form. To demonstrate the process of normalizing G-DTD from lXNF to 4XNF,

we present here step by step transformation of G-DTD according to 1XNF, 2XNF,

3XNF and 4XNF design with respect to the following constraints or data dependencies.

The following constraints are given based on the database designer's requirements:

Constraint 1: Each set course, student and lecturer has a unique identifier.

Constraint 2: In the department, a student number (sno) determines fname and lname
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Constraint 3: In the department, course number (cno) and student number (sno)

determine lecturer number (tno)

Constraint 4: In the department, course number (cno) determines lecturer numberttno)

Constraint 5: In the department, course number (cno) and lecturer number (tno)

determine lecturer name (tname).

Constraint 6: In the department, lecturer number (tno) determines lecturer name

(tname)

Using the definition of data dependency G-DID given in section 4.2, the above

constraints are categorized and represented as follows respectively.

• Key dependency

Constraint 1 is considered as key dependency since key attributes can determine

their complex elements:

<cno, 2>--+<course, 1>,

<sno, 3>--+<student, 2>,

<tno, 4>--+ <lecturer, 3>

• Global functional dependency

Constraint 2 and constraint 6 are classified as GFD because they involve attributes and

simple elements at leaves.

<sno, 3> --+ (</name, 3>, <lname, 3»

<tno, 4>--+ <tname, 4>

• Transitive functional dependency

Constraint 4: < cno, 2> --+<tno, 4>

Constraint 6: <tno, 4> --+<tname, 4>

Simple element <tname, 4> is transitively dependent on attribute node key <cno, 2>

which derives he following TFD.

Constraint 7:< cno, 2> --+<tname,4>
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• Partial functional dependency

Constraint 5: <cno, 2>, <tno, 4>-+<tname, 4>

Constraint 6: < tno, 4> -+ <tname, 4>

Constraint 6 is called PFD because the attribute node key, course number <tno, 4>

alone can be used to determine lecturer name <tname, 4>.

• Relationship dependency

Based on G-DTD given, there exist a binary many-to-many path link between course

and student which represented as <course, I>-+R<student, 2> and a ternary one-to-

many path link between course, student and lecturer node which is represented as

«course, I>, <student, 2>-+R<lecturer, 3» where R = (CST, 3, I, .)

4.5.1 IXNF G-DTD

The G-DTD illustrated in Figure 4.2 shows that it is in first normal form (IXNF)

because each set of complex element nodes course, student and lecturer has cno, sno

and tno as a unique key identifier respectively, while all simple element nodes and

attribute nodes have one unique label. The department node is a root element since it is

located at level O. Moreover, the XML documents shown in Figure 4.1 satisfy and

conform to lXNF G-DTD in Figure 4.2.

4.5.2 2XNF G-DTD

G-DTD of Figure 4.2 is not in 2XNF because

• There exists a nested ternary path link type under many-to-onelmany-to-many path
link type, <course, I>, <student, 2>-+(cst,J.I··)<lecturer, 3>. This dependency

relationship involves complex element course, student and lecturer nodes. As a

consequence information about lecturer is stored redundantly in the XML document

and can cause update anomaly. If the information about the lecturer is changed, then

it must be updated in all subtree students who are taking the same course.
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• There exist constraints 5 and 6 which may give rise to PFD <tno, 4> -+ <tname, 4>.

The attribute node <tno, 4> and simple element node <tname, 4> are children of

complex element lecturer.

To be in 2XNF, the structure ofG-DTD needs to be restructured using algorithm 2XNF

(as presented in section 4.4.2.). Based on this algorithm, the new complex element

lecturernew along with its children is created and located at the same level as complex

element student node. A one-to-many path link between course and lecturernew node is

created. All children from the original complex element lecturer are deleted except key

attribute node tno. In this way, the original semantic relationship is preserved in G-

DTD. As a consequence, PFD under a ternary one-to-many path link is eliminated in

complex element lecturer, but still preserved in complex element lecturernew, which is

denoted as <tno, 3>-+<tname, 3>. At the same time, all constraints in the set of data

dependencies that involve the constraint <tno, 3>-+<tname, 3> are updated

accordingly. Figure 4.9 and Figure 4.10 illustrate the structure of the G-DTD in 2XNF

and the XML document conforms to 2XNF. Finally, the new version of the set of data

dependencies will look as follows:

• Key dependency
Constraint 1:

<cno, 2>-+<course, 1>, <sno, 3>-+<student, 2>,

<tno, 4>-+ <lecturer, 3>, <tno, 3>-+ <lecturernew, 2>

• Global functional dependency

Constraint2:< sno, 3> -+ {cfname. 3>,<lname, 3>}

Constraint 6: <tno, 3>-+<tname, 3>

• Transitive functional dependency
Constraint 4: <cno, 2> -+ <tno, 3>

Constraint 6: <tno, 3> -+<tname, 3>

Constraint 7: <cno, 2> -+<tname, 3> is TFD

• Partial functional dependency
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Constraint 5: < cno, 2>, <tno, 3>-+<tname, 3>

Constraint 6: < no, 3> -+<tname, 3> is a PFD

• Relationship dependency

As shown in Figure 4.9, there exists a binary one-to-many relationship between

complex element node course and complex element node lecturemew, represented as

<course, l>-+R<lecturernew, 2>, binary many-to-many path link between complex

element course and complex element student, <course, l>-+R<student, 2> and a

ternary one-to-many path link between course, student and lecturer node which is

represented as «course, 1>, <student, 2>-+R<lecturer, 3».

LevelO Department

(2,·,1)

Levell course

tname,S

lecturer

Figure 4.9: G-DID in a 2XNF

Level4
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<!DOCfYPE Department [
<course>

<course cno = "cscltll ">
< title> XML database </title>
<student>

<student sno = "112344">
<fname> David</fname>
<lname> Grey </lname>

<Jstudem >
<lecturer>
<lecturer tno = "123">

</lecturer>
<student>

<student sno = "112345">
</name>Hehn</fname>

</student >
<lecturer>
<lecturer tno = "123">
</lecturer>

<lecturemew>
<lecturemew tno = "123">
<tname> Bing <Itname>

<tlecturemew>
<rcourse>
<course>

<course cno = "csc201">
< title> Database technique <It/tie>
< student>

<student sno = "112344">
<fname> David<lfname>
<lname> Grey </lname>

</student>
<lecturer>
<lecturer tno = "123">

</lecturer
< student>

<studem sno = "112346">

<fname> Sally</fname>
<lname> Teoh <Aname>

<Istudent >
<lecturer>

<lecturer tno = "123 ">
</lecturer>

<lecturemew>
<lecturemew tno = "123">
<tname> Bing <ttname>

<Aecturemew>
<rcourse>
<course>

<course cna = "csc102">
< title> Zformal methods <ltitle>
<student>

<student sna = "112344">
<fname> David</fname>
<lname> Grey </lname>

<lstudent>
<lecturer>
<lecturer tno = "124">

</lecturer>
<lstudent>
< student>

<studem sno = "112345">
<fname> Helen</fname>

</student >
<lecturer>

<lecturer tno = "124">
</lecturer>

<lecturernew>
<lecturemew tno = "124">
<tname> Bonaci</tname>

</lecturemew>
</course>
</Department> J

Figure 4.10: An XML Document That Conforms to 2XNF
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4.5.3 3XNF G-DTD

Given the new set of data dependencies, the G-DTD of Figure 4.9 is not in 3XNF

because

• There exist one-to-many path links between element lecturemew and course node

under many-to-one path link.

• There exists TFP represented by constraint 7: <cno, 2>-.<tname, 3> caused by

constraint 4 and constraint 6 which involve complex element node course and

complex element node lecturernew

To be in 3XNF G-DTD, the path link between complex element node course and

complex element node lecturemew needs to be restructured and TFD is eliminated

within course node and complex element lecturernew. The complex element node

lecturernew along with its children is moved up and linked with department node.

Because department is a root, a binary many-to-one path link is created. Figure 4.11 and

Figure 4.12 present a new structure of a 3XNF G-DTD after eliminating the above

constraints and the instance XML document conforms to 3XNF.

Having this structure, TFD under a ternary one-to-many path link is eliminated between

complex element course and complex element leeturernew, but the semantic constraint

is still preserved between them, which is indicated as <cno, 2>....<tname, 2>. Finally,

all constraints in the set of data dependencies that involve the constraint

<cno,2> .... <tname, 2> need to be updated. As a consequence, the new version of set

data dependencies in 3XNF will be as follows:

• Key dependency

Constraint 1:

<cno, 2>....<course, I>, <sno, 3>-.<student, 2>, and <tno, 4>-.<leeturer, 3>,
<tno, 2>-.<leclurernew, 1>
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• Global functional dependency(GFD)
Constraint 2:<sno, 3> -+ {cfname, 3>,<lname, 3»

Constraint 6: <tno, 2>-+<mame, 2>

• Transitive functional dependency(l'FP)

Constraint 4: <cno, 2>-+<tno, 2>

Constraint 6: <tno, 2>-+<tname, 2>

Constraint 7: <coo, 2>-+<mame, 2> is TFD

• Partial functional dependency(PFD)

Constraint 5: <cno, 2>, <tno, 2>-+<tname, 2>

Constraint 6: <tno, 2>-+<mame, 2> is a PFD

• Relationship dependency

In 3XNF G-DTD, there exists a binary many-to-one path link between complex element

node department and complex element node lecturemew student, represented as

<department, O>-+R<lecturernew, ]>, a binary many-to-many path link between

complex element course and complex element student, <course,]>-+R<student,2>and a

ternary one-to-many path link between course, student and lecturer node, which is

represented as «course,]>, <student,2>-+R<lecturer, 3».
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Figure 4.11: G-DTD in a 3XNF
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</DOCTYPE Department [ <Iname> Teoh </lname>
<lstudent>

<lecturer>
<lecturer Ina = "123">

<rlecturer
<Jcourse>
<course>

<course cno = "cscI02">
< title> Zformal methods <Ititle>
< student >

<student sno = "112344">
<fname> David</fname>
<lname> Grey <Ilname>

<lstudent >
<lecturer>
<lecturer tno = "124">
</lecturer>

< student>
<student sno = "112345">
<fname> Helen<l/name>

</student>
<lecturer>

<lecturer tno = "124">
</lecturer>

<lcourse>
<lecturemew>

<lecturemew tno = "123">
<tname> Bing </tname>

</lecturemew>
<lecturemew>

<lecturernew tno = "124">
<tname> Bottaci<ltname>

«/lecturemew>
<lDepartmenl> 1

<course>
<course cno = "cscltll ">
< title> XML database <ltitle>
<student>

<student sno = "112344''>
<fname> David<lfname>
<lname> Grey </loome>

</ student>
<lecturer>
<lecturer tno = "123">
</lecturer>

<student >
<student sno = "112345">
<jname>Hekn<ljhame>
<Istudent>

<lecturer>
<lecturer tno = "123">
</lecturer>

</course>
<course>

<course cno = "csc201">
< title> Database technique <Ititle>
< student>

<student sno = "112344">
<fname> David</fname>
<Iname> Grey </lname>

<Istudent >
<lecturer>

<lecturer tno = "123">
</lecturer

< student >
<student sno = "112346">
<fname> Sally<ljhame>

Figure 4.12: An XML Documents Conform to 3XNF
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4.5.4 4XNF G-DTD

Given updated data dependencies, 3XNF G-DTD of Figure 4.11 is not in 4XNF because

(i) There exists GFD indicated in constraint 2: sno --+{fname, lname} for set of

complex elements student node and course node under a many-to-many path link.

This GFD may cause update anomalies if the information about the fname and

lname is changed.

To this GFD, a new of complex element node studentnew is created. The attribute

node sno and simple element nodes fname and lname are replicated and they become

children of the complex element studenmew. A part_oflink is created between them

accordingly. Both simple element node/name and Iname are deleted from student node

but key attribute node sno remains as a child for complex element student node.

Figure 4.13 illustrates the new structure of the 4XNF G-DTD. More importantly, as

shown, all data dependencies are still preserved in the 4XNF G-DTD. Figure 4.14 is an

XML document conforming to 4XNF G-DTD with no redundancy. Eventually, the G-

DID has the following dependencies.

• Key dependency

Constraintl :

<cno, 2>--+<course, 1>, <sno, 3>--+<student, 2>, <sno, 2>--+<studentnew, 1>,
<tno, 4>--+<lecturer, 3>,

<tno,2>--+<lecturernew1>

• Global functional dependency

Constraint 2:<sno, 2> --+ (</name, 2>,<lname, 2>)

Constraint 6: <tno, 2>--+<tname, 2>

• Transitive functional dependency

Constraint 4: < cno, 2> --+ <tno, 2>

Constraint 6: <tno, 2> --+<tname, 2>

Constraint 7: < cno, 2> --+<tname, 2> is TFD

• Partial functional dependency
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Constraint 5: <cno, 2>,<tno, 2>-+<tname, 2>

Constraint 6: <tno, 2> -+<tname, 2> is a PFn

• Relationship dependency

In Figure 4.13, finally 4XNF G-DTD consists of a binary many-to-one path link

between department and course, many-to-one path link between department and

lecturernew, and binary many-to-one path link between department and studentnew
which represented as <department, O>-+R<course, 1> <department,

O>-+R<lecturernew, 1>, and <department, O>-+R<studentnew, 1>. Meanwhile the

semantic relationships between complex element course and complex element student,

and lecturer remain the same.

LevelO

Levell

?lname,s

Level3

Level4

Figure 4.13: G-DTD in a 4XNF
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Finally, based on the transformation rules given in Chapter 3 (Section 3.7), we map the

4XNF G-DTD to the new DTD. The final DTD can be shown as follows.

<!DOCTYPEDepartment [

<!ELEMENT Departmenucourse", lecturernew", studentnew")

<!ELEMENT course(title, student·»

<!AITLIST course cno ID #REQUIRED>

<!ELEMENT title # PCDATA»

<!ELEMENT student (leaurer")

<!AITLIST student sno ID #REQUIRED>

<!ELEMENT lecturer (EMTPY»

<!AITLIST lecturer tno ID #REQUIRED>

<!ELEMENT lecturernew* (tname)

<!AITLIST lecturernew tno ID #REQUIRED>

<!ELEMENT studentnew" (fnamel?lname»

<!AITLIST studentnew sno ID #REQUIRED>

<!ELEMENTfname (#PCDATA»

<!ELEMENT lname # PCDATA»

]>

Form the above DTD the following XML document with no redundancy is generated:
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<!DOC/'YPE Department [
<lecturer>
<lecturer tno = "124">

<Ilecturer>
<lstudent>
< student >

<student sno = "I / 2345">
<lecturer>

<lecturer tno = "/24">
<Aecturer>

<lstudent>
<Icourse>

<lecturemew>
<lecturemew tno = "/23 ">
<tname> Bing <Jtname>

</lecturemew>
<lecturemew>

<lecturernew tno = "/24">
<tname> Bottaci<ltname>

</lecturemew>
<studemnew>

<studenmew sno = "I /2344 ">
<fname> David</fname>
<lname> Grey </lname>

<lstudentnew>
<studentnew>

<studenmew sno = "/12345 ">
~name>Hekn<~ame>

<lstudentnew>
<studentnew>

<studentnew sno = "/12346">
<fname> Sally</fname>
<lname> Teoh </lname>

<lstudentnew>
<lDepartment> 1

<course>
<course cno = "cscltil ">
< title> XML database <ttitle>
< student>

<student sno = "1/2344">
<lecturer>
<lecturer tno = "123 ">

<rlecturer>
<Istudent >
< student>

<student sno = "112345">
<Istudent >

</course»
<course>

<course cno = "csc201">
< title> Database technique <Ititle>
< student>

<student sno = "/12344">
<lecturer>

<lecturer tno = "124">
</lecturer

<Istudent >
< student>

<student sno = "/12346">
<Istudent>

</cowse>
<course>

<course cno = "cscI02">
< title> Zformal methods <Ititle>

< student>
<student sno = "112344 ">

Figure 4.14: An XML Document That Conforms to 4XNF
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4.6 Comparisonsof ProposedApproachwith ExistingApproaches

To evaluate this work, a comparison of our approach with existing approaches is

discussed. The comparison is based on a number of criteria, specifically:

(1) ExpressionofDTDstructure

In Arenas and Libkin's work, they used mathematical notations to represent the DTD

structure, which is hard to understand for a normal designer. For instance, we present

again here their formal definition of DTD as follows:

A DTD is defined to be D = (E, A, P, R, r), where (Arenas and Libkin, 2004):

1. E~ El is a finite set of element types.

2. A ~ Att ts a finite set of attributes.

3. P is a mapping form E to element type definition defined in a regular expression

a:= £ It' I a; I erU er I a* where £ is the empty sequence, r' E E, and "U", ","

and " ... denote union, concatenation, and Kleene star, respectively.

4. Ris a mappingfrom E to the power set ofvalue 0/R: JP (A)

5. r E E and is called the root element type

The symbols E and S represent element type declaration EMPTY and #PCDATA,

respectively.

For example, reconsider the DTD in Figure 2.10 which is presented by Arenas and

Libkin (2004) as follows:

E = {Department, Course, Student, Lecturer},

A = {cno, sno, tno}

r = Department

Furthermore, P and R are defined as follows:
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P (Department) = {course"}, P(course) = {title, Student"}, P(student) ={fuame, lname,

lecturer"}, P(title) = S,

P (fname) = S, P(lname) = S.

R( Department) = (1} R(course) = cno, R (student) = sno, R(lecturer)= tno .

The above definition clearly shows that textual grammar representation makes it

difficult to be analysed and understood. In practise, it often causes difficulties when

designing even a simple DID. More importantly, the semantic constraint and

relationship between the elements in the XML document cannot be represented

precisely and clearly. For instance the relation between course and student is not

defmed explicitly. The semantic relation between the elements presents only one-to-

many relationships by notation ., while other relationships such as many-to-many or

many-to-one relationships are not defined. The semantic relation presents only the

relationship between the parent and child while the relation between the child and parent

is not defined. The level of each element is not defined explicitly to show the hierarchy

of the elements

However, in our work, a graphical interpretation of G-DTD is used to visually represent

a DID structure which is used to describe an XML document. In this way, we believe

the user can have better understanding of the DTD structure. Indeed, the Mok and

EmbJey (2006) make the argument that: "The graphical conceptual modelling languages

offer one of the best human-oriented ways of describing an application"

Representation of the G-DID is slightly different from the Arenas and Libkin's DTD.

Firstly, we distinguish explicitly the difference between complex elements, simple

elements and attributes. We emphasise that a simple element is an element with no

child elements while an attribute is a key or candidate key of a complex element. The

reason for this is to avoid using S as a text representation, which will make it easier to

visualise during normalization process. Secondly, we present the G-DTD structure as a

tree structure of elements using level notation which is similar to XML document

structure, to provide an accurate picture of the XML document. The advantage of G-
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DID over DTD are: it allows users to define explicitly the structure of attribute nodes,

simple element nodes and complex element nodes in a hierarchical way and also allows

the user to determine the relationship dependency between the nodes. For G-DTD's

notation itself, we adopt some notations from Chen (1976) and Dobbie et al.(2000) but

we add a few semantics such as sequence, disjunction, path link, partof link, has_A

link between the nodes to reveal more semantics between the element nodes.

(2) XML Normal Forms

We have presented definitions of XML normal forms proposed by Arenas and Libkin,

(2004), Vincent et al. (2004), Wang and Topor (2005), Kolahi (2007) and Yu and

Jagadish (2008). Most of them generalised XNF fromBCNF except Kolahi proposed an

XML third normal form. The proposed work from Arenas and Libkin (2004) is most

fundamental and achieves the best possible design (Kolahi, 2007) while the others are

extensions and improvements of Arenas and Libkin's work. However, as discussed in

Chapter 2 (Section 2.3.9.), Arenas and Libkin's XML normal forms are limited in their

ability to capture certain semantic constraints. Most proposals represent semantic

constraints using XML functional dependencies and key dependencies to define XML

normal form. As shown in Chapter 2 (Section 2.3.7), the definition of XFD and normal

form is very difficult to understand by users without a theoretical background. Thus,

these limitations will directly affecting the application of XML normal form in real

practice by the end user. We believe that defining the current definitions of XML

normal form with simple presentation will help end users to apply and design XML

documents in a simple way.

Arenas and Libkin (2004) defined a normal form for XML documents (XNF) is based

on XML functional dependency (XFD) which is used to avoid update anomalies and

redundancies. Instead of formal definition of DTD, they define also an XML document

as a tree called 'XML tree' which consist of nodes, edges to represent a relation between

parent and child node, and a root node. In an XML tree, they use paths to represent

element nodes, starting form the root node until the last child node. The same path
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definition also applies to the path in DTD denoted as path (D). The child node is

normally an attribute node or a string (denoted as symbol @and S respectively). Every

path in XML tree will contain at least one element node type. For example,

Department.course.student.lecturer@tno and

Department.course.student.lecturer.tname.S are all paths in XML document.

In Arenas and Libkin (2004), XFD is used to represent the semantic constraint which

could cause data redundancy. They defined XFD as a path based on the idea from

relational schema (Codd, 1974) and nested relational schema (Ling, 1985). For

example, the constraint that two lecturer elements with same lecturer number (tno) must

have the same name is expressed as follows:

XFD:Department.course.student.lecturer.@tno,

-Department. course.student.lecturer.tname.S ------------------------------(4.1)

Where Department.course.student.lecturer.@tno is a Left Hand Side (LHS) path and

Department.course.student.lecturer.tname.S is a Right Hand Side (RHS) path. Using

this XFD definition, the following XML normal form is presented.

Definition XNF: Given a DTD and a set ofL of XFDs over D. (D. D is in XML

normal form (XNF) if and only iffor every nontrivial XFD p -q.@l or p -q.S or, the

XFD p-q is also in (D. rt. Wherep and q is a set of path(D).{ Arenas and Libkin,

2004)

Generally, the above definition means that a DTD is in a normal form (XNF) if every

functional dependency defined over DTD is in XNF. The XFD is XNF if every LHS

path can determine a unique value of a RHS path. In other words, XNF does not allow

any redundancy in data values occurring in the leaves of the XML tree. Intuitively, this

XNF ensures the value of q.@) or q.S will not be repeated in two different locations of

the XML tree. For instance, XFD in equation 4.1 is not in XNF since the value for the

element lecturer name is not unique for the attribute given, as lecturer name Bing
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appears twice in the XML document as shown in Figure 4.1. Because of this XFD in

equation 4.1, DID is not in XNF.

Based on Arenas and Libkin's definition, recently, Kolahi (2007) has proposed a third

normal form for XML by extending 3NF to XML. Kolahi adopted the notion of XML

tree and DTD from Arenas and Libkin (2004) but extended the notion of a prime

attribute from relational database to case of paths to XML tree. We present here the

definition of prime attribute path in order to present X3NF:

Definition X3NF: XML specification (D, D is in X3NF if and only if for every

nontrivial XFD p-+ q.@l €{D, D+, we have that p-+q €(D, D+ or q.@l is a prime

path. (Kolahi, 2007)

As a relational counterpart, a prime path is a path that uniquely determine path element

of a 'tree tuple' from the root. Like the 3NF, X3NF tries to achieve a schema that can

preserve the functional dependency and at the same time reduce data redundancy in

XML documents. However, to date there no normalization algorithm has been

developed based on X3NF defmition.

Other than that, based on Arenas and Libkin's work, Lvet al. (2004) also proposed first,

second and third normal forms which are considered partial functional dependency and

transitive functional dependency respectively. They defined second and third normal
forms as follows:

Definition lXNF: XML specification (D, D is in X2NF if and only if for every XFD

PI·P2.@Ir-+ PI·P2.p3.@l€{D, D, if there is another XFD' PI.@h-+ PI.P2.P3@1€(D, D,
there is no partial dependency PI.@1 -+PI. P2.P3@1and PI ::j:. r. Where Pi is a set of
path(D).{ Lv et al., 2004)

Definition 3XNF: XML specification (D, D is in X3NF if and only if for every XFD

PI.@I-+ Pl. P2.@1 €{D, D,ifthere is another XFD' PI.P2.@I-+ PI. P2. P3@1 €(D, D,
there is no transitive dependency PI.@I-+PI.P2.P3@1. Where Pi is a set ofpath(D), ( Lv
et al., 2004)
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Our work is similar to Arenas and Libkin (2004) but we simplify these definitions so

that they are more practical, easy to understand and implement and give the same result.

As shown in Section 4.3, we propose normal form for G-DTD (XNF G-DTD) at the

schema level based from Arenas and Libkin's definition. Furthermore, we present also

other normal forms such as lXNF, 2XNF and 3XNF which are generalised from

definitions given by Kolahi, (2007) and Lv et al. (2004). Generally, the nature of

definition of the normal form G-DTD depends on a number of conditions. First, except

root node, each complex element node must have an attribute node key. Second, there

should not exist any nested path link between complex element nodes starting from root

element node until last complex element node with global, transitive and partial

functional dependency. The significant differences between our normal form and the

one presented in Arenas and Libkin (2004), Kolahi (2007) and Lv et al. (2004) are:

a) Firstly, the G-DTD model is proposed to assist in XML document design at the

conceptual model. Our normal forms are based on a combination of different types

of functional dependencies such as relationship dependency, transitive functional

dependency, partial functional dependency, and global functional dependency

definitions. We define these functional dependencies based on G-DTD structure

without considering the path, which is simpler than in Arenas and Libkin's

approach. However Arenas and Libkin (2004), Kolahi (2007) and Lv et al.(2004)

they totally define their normal forms based on the XFD definitions. XFD is

formally defined on the concept 'tree-tuple' and path (Arenas and Libkin, 2004).

As we know, functional dependency is already the area where designers have the

most problem specifying in relational models (Date, 2000), so making them more

complicated and unfamiliar to designer make XML document design more

difficult.

b) Second, we apply our defined functional dependencies based on the structure of

G-DID at the schema level to present explicitly the position and level of complex

elements, simple elements, attribute nodes and the semantic relationships. Based

upon the analysis of these structural properties, the G-DTD schema is iteratively

transformed into refined normal form, preserving the data dependencies. To
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preserve data dependencies, all the data dependencies are updated iteratively to

match with the current G-OrO structure. We differ fundamentally from the

previous effort because we take the functional dependencies from a G-DID

schema rather than in various ways over path in XML document structure

(instance). We believe that it is easier for designers to specify and understand

functional dependency constraints in terms of a conceptual model than in terms of

XML document structures. We therefore also offer our approach as a way to

avoid having to specify these more complex and low-level constraints.

(3) Normalization Algorithm

Arenas and Libkin (2004) have proposed a normalization algorithm to transform XML

design into XNF design. This algorithm performs iteratively two rules to produce XNF

design.

(i) Moving attributes.

The rule is used to eliminate global dependency. Consider global XFD: p -+q.@J.

To eliminate this XFD, the attribute @l is moved from its original location to a

new location of the last element of p

(ii) Creating new element types

The rule is used to eliminate local dependency. Consider XFD: p,q}.@h ..,q".@ln

-+q.@J. To eliminate this type of XFD, a new element type e is created as a child

of last p and attribute @h.... @In are copied for T and @l is moved from its

original location to become an attribute of 1:

The algorithm proposed by Arenas and Libkin (2004) only considers the case of local

and global functional dependency. To make this algorithm more flexible, we enhance

the rules from Arenas and Libkin (2004) and Lv et a1. (2004) with some modification to

suit our normal forms definition. As presented in Chapter 4 Section 4.2, we next explain

it in a more general way.
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(a) Given the initial DTD, it will be analysed and carefully investigated. Using our

various notations, the recognition of complex elements, simple elements, attributes

and semantic relationships which include n-ary path links types of many-to-

many/many-to-one/one-to-many are carefully analysed. This will establish a better

G-DTD.

(b) Based on user requirements, the G-DTD is refined, by supplementing the additional

properties and data dependencies such as GFD, TFD, PFD and relationship

dependency.

(c) Transform the initial G-DID into normalised G-DID i.e. lXNF, 2XNF, 3XNF or

XNF design. This procedure is iteratively implemented by taking the previous

refined G-DID until it becomes normal form. In order to establish a systematic

approach to obtain a better G-DTD schema, we propose normalization rules. As

shown in section 4.4.1, we add another rule (rule 1and rule 2) which is moving up a

complex element together with its children to another location and level. These

rules are used to eliminate TFD and PFD in the G-DTD by considering one-to-

many, many-to-many or many-to-one path links between complex element nodes in

G-DTD.

(d) Based upon the analysis of these structural semantic relationships, the G-DTD

schema is iteratively transformed into refined normal form, preserving the data

dependencies as well. It is basically required that the data dependency should be

preserved throughout the transformation of the G-DTDmodel. To preserve the data

dependencies, each data dependency is updated to match the new location of

associated complex elements, simple elements and attributes in G-DTD. By the

analysis of the data dependencies, the initial G-DTD schema may be transformed

into a better schema which is normalised and simplified.
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4.7 Discussion

Arenas and Libkin's approach has a remarkable impact on the principles of XML

document normalization. However, we have found that XML database designers expect

a somewhat different and more practical technique in such a way that:

a) The definition has to be simple, precise, and understandable and should work with a

minimum of abstract concepts, similarly to ''the classical relational model

normalization". We believe that introduction of difficult notations distinctively

exceeding classical normal forms by having many types of concepts, is not desirable.

b) The focus should be concretely on the graphical interpretation of XML schema

model rather than textual representation. This is because graphical modelling

language is widely accepted as a more visually effective means of specifying and

communicating data requirements and suitable for users who have no technical

background (Gustas, 2010; Halpin, 2010).

c) We need to model structures and semantics of elements and attributes of the XML

document schema (i.e. DID) used for data storage and data manipulation. As stated

by Feng et al. (2001), "To enable efficient business application development in large-

scale electronic commerce environment, it is necessary to describe and model real

world semantics and their complex interrelationship" (pp 391).

d) It has to be flexible to enable designers to choose which normal form design is better

for their application requirements and at the same time preserve the data constraints.

We believe that our method complements to Arenas and Libkin (2004) approach but we

also consider all the four requirements that have been pointed up above when designing

an XML document. Besides that, we found that the main features of G-DID's notation

are that it is particularly easy to improve XML structural design and more importantly,

makes the XML normalization procedure simpler and practical. Since the semantic

relationships represented in this approach are not complicated, it is thus easy to use G-

DID to maintain XML documents as well.

154



4.8 Summary

A set of normal forms called first normal form (IXNF), second normal form (2XNF),

third, normal form (3XNF) and fourth normal form (4XNF) for G-DID have been

defined for XML documents. Normalization algorithms have been proposed to

transform from one normal form to another level of normal form. In this proposed

algorithm, an original G-DID is restructured by considering the tree structure, the level

of nodes and the semantic relationship between nodes associated to different types of

data dependencies such as partial functional dependency, transitive functional

dependency and global functional dependency.

To demonstrate the concept, we provide a simple case study to illustrate the application

of our proposed G-DID normal forms and normalization rules to achieve a redundancy-

free XML document. We show through a case study that having G-DID as a conceptual

model simplifies the complex procedure of XML document design and normalization.

Even though the length of XML document is longer than the original document, the

structure is free from data redundancy and update anomalies.

The normal form G-DID presented in this chapter has shown three advantages. First,

the designer can indentify complex elements, simple elements and attributes graphically

and can add the relationship types between the nodes from user specification. Hence,

this will give more control to the designer to evaluate each successive normal form G-

DID. Second, normalizing the G-DID can effectively remove redundancies and

anomalies at a schema level. More importantly, it is able to preserve both DID
hierarchical structure and XML document structure and satisfy user requirement. Next,

we will define formally the prototype system of XML document design using a formal

specification method.
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ChapterS

Formal Specification of XML Document Design Model

S.l Introduction

This chapter presents a formal specification of the XML document design system called

XML design model (XML_DM) which comprises a conceptual model G-DTD and

normalization procedure which we discussed in the previous chapter. This formal

specification is used to describe a fundamental framework of what the XML_DM can do

and also as an abstraction of a full complete system which can serve as a reliable

blueprint for those who want implement the prototype later. This formal specification is

important before the implementation of the real system is developed, as it allows a

designer to understand the big picture of the system; and helps to discover error early in

the lifecycle and reduce the overall cost of the project. As stated by Sommerville
(2010),

"... it is easier to build a system from a formal specification than by using other

methods. Coding from formal specification to be straight forward. The application of

formal methods can also make the development process of each stage clearer. More

importantly, monitoring is more reliable and thus development is less risky. "

The rest of the chapter is organized as follows. Section 5.2 explains the importance of

formal specification and some related work. Section 5.3 presents the benefis of Z

notation. In section 5.4 we present a conceptual design framework of an XML design

model (XML-DM). All the specification will be formalised using Z specification

language. In our work, we use a Z Word tools (Hall, 2010) where fuzz is used for typing
and checking Z specification.
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5.2 The Formal Specification and Its Importance

According to Spivey (1992), "Formal specification use mathematical notation to decribe

in a precise way the properties which an information system must have, without unduly

constraining the way in which these properties are achieved".

This statement also supported by Sommerville (2010), which stated that "..creating a

formal specification force you to make a detail system analysis that ussually reveals

error and inconsistencies in the formal requirement specification".

Amongt the important roles of formal specification are that it can be used to clarify the

understanding of the problem, to provide a prototype to demonstrate the idea and it can

be used as a basis for system design (Wang, 1999; Hall, 2000). Formal specification has

been widely recognized as a precise way to define the structure of a complex software

system such that its usages have increased in last two decades and now it is frequently

used in industry (Mian and Zafar, 2010). More importantly, the literature has shown

and proved that formal specification is particularly cost-effective with computerization

of small-to-medium sized information systems.

For instance, the use of formal specification has been applied in scheduling of railway

system design(Hexthausen and Peleska, 2000), air traffic control system(patemof et

al.,1998), a radiation therapy machine(Jacky, 1997), hypertext system (Wang, 1993;

Halasz and Schwartz, 1994 ; D'lnvemo and Hu, 1997), network security (Singh and

Patterh, 2010), healthcare application (Coronato and De Pietro, 2010), web service

system ( Liu, F. et al., 2011) and many more.

An attempt of using formal specification as a means of developing databases is also

found in the work of Boros (1994), which is focused on the provision ofa framework of

development, to enable software engineers to develop database specification and to

solve database design problems.

On the other hand, formal specification also can be used for checking and verification.

Related to semi-structured data design, there are many attempts to formally verify a
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semi-structured data model. The most relevant work using formal specification to verify
a data model called Object Relational Atribute for Semistructured(ORA-SS) is done by
Lee et al. (2006), Wang et al. (2006), Lee et al. (2009) and Lee et al. (2010). They used
different types of formal method language to present the syntax and semantics of the
model. For instance, Lee et al. (2006) used Z formal language to validate the syntac and
semantic of the ORA-SS model. They also validate the model to check the correctness
ofORA-SS at both schema and instance level. Similar to this work, the formalization of
ORA-SS using OWL was presented with improved verification performance. Recenlty,
Lee et al. (2009) used a different approach to define a formal specification for ORA-SS
using Prototype Verification System (PVS) language. In this work they also presented
type checking and theorem proving abilities. In other research, Wang et al. (2006)
presented a formalization of the ORA-SS notations using Alloy. However, to the best of
our knowledge no formal specification has been developed to define an automatic
system of XML document design. Thus, we can claim that our formal specification
presented here is a novel approach for an XML document design prototype.

5.3 Z notations

Growing awareness of the need of formal specification has led to the development of
various specification languages. The most popular specification languages are Z
(Spivey, 1988) and VDM (Jones, 1986), which have been recommended as official
standard software system specifications. Z is a formal specification language originally
developed at the Programming Research Group at Oxford University. In our work, the
Z specification language, in particular, is used as a means of formalization for a number
of reasons. First, the language is based upon primitive mathematical notation such as set
theory and first order predicate logic, making it accessible to researchers from a variety
of different backgrounds. Second, it is expressive enough to allow a consistent, formal
and unified representational of a system and its assiociated operations. Third, it is
model oriented (Bottaci and Jones, 1995). Model-oriented specification language seems
to be more appropiate to specify an XML design model and its operations. Moreover, it

has been claimed that, in general, human being tend to find model-oriented methods
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easier to understand. Finally, in particular, we have found Z is an established language,

widely accepted and appropriate for building formal frameworks, necessary to enable a

rigorous approach for any dicipline including interactive conferencing system

(D'Inverno et al., 1991), distributed artificial intelligence (D' Inverno and Hu, 1996),

multi-agents systems (D'Inverno and Luck, 1996) and design hypertext models (Lange,

1990;Halasz and Schwartz, 1994;Wang, 1993;D'Inverno et al., 1997).

However, we found that the main disadvantage of using Z is that mapping both the XML

design model (XML_DM) semantics and operations to Z can result in very verbose

specifications. Intuitively, expressing the XML design model (XML_DM) semantic

using a meta-model is much easier for non-specialists to understand and comprehend

than a Z specification. This is a critical shortcoming which will need to be addressed

where the user must have working knowledge of the formal notations. The main

difficulty is making the right connections between the real world and the mathematical

formalism. However, we believe that, even though many practitioners involved with

the development of computer systems are not mathematicians and do not make regular

use of mathematics, mathematical technique are increasingly important role in the

development of software and it is appropriate that they should be known and applied by

as many practitioners as possible. This is because the mathematics used in formal

specification is very simple; it only uses discrete mathematics which is concerned more

with sets and logic than with numbers.

5.4 The overview ofXML Document Design Model (XML_DM)

The XML_DM model consists of three layers:· the conceptual G-DTD layer, the

normalizer layer and G-DTD translator layer, as illustrated in Figure 5.1. The G-DTD

conceptual model layer helps the user to create, query, insert, and delete a node/link of a
G-DTD model.

159
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Delete Operations
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Insert Operations task
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operations

Figure 5.1: Layers of XML Document Design Model

It allows database designers/users to use a G-DID model to describe XML documents

by using simple notations provided at the interface layer. As presented in Chapter 3, G-

DTD describes an XML document using basic sets such as complex element, simple

element, attribute nodes and invariant relationships between these nodes. The details of

its conceptual operations have been presented in Chapter 3, Section (3.6).

The G-DTD normalizer layer allows the user to normalize a G-DID using the

normalization rules and algorithms which have been presented in Chapter 4. This layer

is used to assist the user to design redundancy-free XML documents by normalizing the

G-DTD on the basis of a set of normal forms. This specification describes what

XML_DM provides to achieve 1XNF, 2XNF, 3XNF and 4XNF ofG-DTD. It will serve
as a visual aid for the normalization process which is always easy to understand and

intepret rather than a theorietical approach.

The G-DTD lranslater layer provides the user the functionality to map a G-DID back

to DTD using transformation rules provided in Chapter 3 (Section 3.7), so that the

standard template of a redundancy-free XML document can be generated which

conforms and satisfies a new 010.
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We present the XML document design model (XML_OM) specification framework into

three sections: formal specification of a conceptual G-OTO model, formal specification

of G-DTD normalizer and formal specification of G-OTO translator. We present them

next.

5.5 Formal Specification of a Conceptual G-DTD Model

In XML-DM environment consists of a conceptual G-DTD model which represents an

abstract view of an XML document. It defines all the simple element, complex element

and attributes nodes and the links between these nodes. To define those types of node,

we define first the basic set used in a G-OTD.

5.5.1 Basic Type Definitions

[ID, Element_Name, Attribute_Name, Relation_Name]

where ID is a set of all unique ID for each element. Element_Name is the set of all

possible XML element node names and Attribute_Name is the set of all possible XML

attribute node names. Relation Name is a set of relationship names. Terms like complex

element or simple element are used but we will reserve these for spesific concepts, and

will be seen shortly.

The structure of the G-DTO is represented as collection of all types of nodes and links

where links can only exist between a pair of nodes in the space. Nodes cannot be linked

to themselves. As we described in Chapter 3 section 3.6, the characteriestic of each type

of node such as simple element, complex element and attribute node can be described

using the following representation.

5.5.2 The Data Structure of G-DTD

Simple Element Node

SimpleElement_Node schema consists of identity, name, level and type of simple

element. Simple element type can be classified either as single value, multi value,
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optional single value or optional multivalue. The type definition for a simple element is

defined as follows:

SimpleElement _Type::=singlevaluel multivaluel op_singlevaluel op_multivalue

SimpleElement_Node _

identity: ID
name: Element Name
level: RI
se_type: SimpleElement _Type

Attribute Node

The Attribute_Node schema denotes the unique identifier of each complex element

node. The Attribute_Node schema consists of identity, name, level and attribute type.

The type of attribute can be either composite, required or reference and is defined by

using the following attribute type definition.

Attribute_Type::= composite I required I reference

Attribute Node _

identity: ID
name: Attribute Name
level: 1\1
att_type :Attribute_Type

Complex Element Node

The ComplexElement Node schema is presented as follows which consists of it

identity, complex element name and level.

ComplexElement_Node, _
identity: ID
name: Element_Name
level: 1\1
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Parent for Complex Element Node, Simple Element Node and Attribute Node

A parent for each type of related node, i.e. complex element node, simple element node

and attribute node is described precisely in relationships. The functions Parent _Ce,

Parent Se and Parent Att are defined using the axiomatic function as a total function

because every complex element node, simple element node and attribute node must have

its own parent node and no node can have more than one parent. In the state invariant, it

is stated that complex element eel Heel E Parent_Ce means that eel is the parent of

eel if and only if eel is not the same as eel and the level position of eel must always be

less than the level position of eel by one level difference only. The same meaning is

applied for the second and third predicates associated to both parent of a simple element

node and parent of an attribute node.

Parent _Ce : ComplexElement _Node -+ ComplexElement _Node
Parent_Se: SimpleElement _Node -+ ComplexElement _Node
Parent_Att: Attribute_Node -+ ComplexElement_Node

't/ eel, ee2: Complexiilement Node »

ee 1 ....ee2 E Parent Ce ¢:>

(eel :f: ee21\. ee2.1evel-eel.level = 1)
V

('t/ se: SimpleElement_Node; ee: ComplexElement_Node,
3parent: Complexlilement Node»
se .... ee E Parent_Se ¢:> se E Parent_Se 0 parent D I\.

selevel+ce.level = 1»
V

('t/ att: Attribute_Node; ee: ComplexElement_Node ,.
3parent: ComplexElement _Node.
att t-+eeE Parent_Att ¢:> att E Parent_Att 0 parent D

att.level-ee.level = 1»
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Relationships

On the G-DTD schema diagram, we distinguish three types of relationship; PathLink;

Part_ol_Link, Has_A_Link. We define the schema of each type of relationship as

follows:

(1) Path_Link

As described in Chapter 3 Section (3.4.3.5), path link has very important features. To be

more precise we capture those features in following Path_Link schema. This schema

consists of the relation between two complex element nodes. The state invariant states

an ordered pair of complex element nodes eel H ce2 is an element of path_link if and

only ce2 is an immediate parent of eel, The complex element ce2 is a parent of eel if

and only if eel H ce2 Epath_link +; that is to say, a transitive closure relation (Diller,

1994), and the relation is a cycle free if and only if no complex element node is mapped

to itself. Weare using transitive closure because the transitive closure allows complex

element node to be directly reached in the same link (Diller, 1994).

Path Link---------------------------------------------path_link: ComplexElement_Node +-+ ComplexElement_Node
name: Relation Name
degree: NI
parent_constraint, child_constraint: (N x Nt)

(V eel, ce2: ComplexElement_Node
• ce1 t-+ ce2 E path_link
~ Parent_Ce (cel) = ce2 A cel t-+ ce2 Epath_link+
"(3 ce: ComplexElement_Node. ce t-+ ce Epath_Iink)
1\ (" namel, name2 :Relation_name. namel 'I- name 2)
1\ (d: degree • # degree ~ 2)
1\ ("pc :parent_constraint, cc : child_constraint, card: (Nx Nt) •

pc = second card ~first card"
cc = second card ~first card)
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The additional properties of path links such as name, degree of relationship, parent and

child cardinality constraint are defined to a path link. For a relationship's name, the

name of the relationship must be unique. The degree of relationship is represented as a

natural number and must be equal to or greater than two. Every path link type in a 0-

DTD model has its associated parent and child constraints to set the lower limit and

upper limit cardinality for them respectively.

(2) Part_oC_Link

The schema Part_of_Link presents the relation between a complex element node and

attribute node. It consists of two types of relations: Attributekey function and

Compositekey relation. Attributekey function is total and injective because each

complex element node has a unique attribute node. CompositeKey relation is a relation

between a complex element and set of attributes. In the the first predicate, ce 1-+ ott e
AttributeKey means that ott is an attributekey for ce if and only if attribute type is

required. In the second predicate, (ce 1-+attcom) eCompositeKey means that attcom is a

composite key for ce if and only if its attribute type is composite. The last predicate

indicates that domain for function AtributeKey and relation CompositeKey is a member

of a complex element node.

Part_of_Linlc, _
AttributeKey : ComplexElement _Node,.... Attribute Node
CompositeKey : ComplexElement _Node +-+ Attribute_Node

V ce : ComplexElement _Node; att :Attribtae Node»
(ce t-+ ott) EAttributeKey ~ att.att_type = required" Parent_Att (ott) = ce

V ce : ComplexElement _Node; attcom :Attrtbuu Node»
(ce t-+ attcom) E CompositeKey ~ attcom.att_Type =composite
"Parenl_Alt (attcom) = ce
dom AttributeKey U dom CompositeKey E ComplexElement _Node
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(3) Has_A_Link

The schema Has_A_Link presents the relation between a complex element node and

simple element node. The complex element node is declared as the parent node while

the simple element node is a child node

Has A Link. _

hasa : ComplexElement _Node +-+ SimpleElement _Node

Vee: ComplexElement_Node; se: SimpleElement_Node.
(ce .....se) E hasa ~ se.se type = singlevalue V se.se_type = multivalue
V se.setype = op_singlevalue V se.se fype = op_multivalue
1\ Parent_Se se = ce
ran hasa E PSimpleElement _Node

5.5.3 Abstract state of Environment XML_DM

We next define the following structure of O-DTD which is used later in presenting a

readable specification. The O-DTD consists of seven variables whose values are

restricted by the state invariant. These are a root node type, set of

ComplexElement_Node, and set of SimpJeElement_Node type, set of Attribute_Node

and set of relation Part_of, Has_A and Path_Link type. The following schema captures

the abstract state of the O-DTD.
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ScMmaGDTD __

root: ComplexElement _Node
Cnodes : fComplexElement _Node
Snodes: fSimpleElement_Node
Attnodes : fAttribute Node
Pathl.ink : seq (IPPath_Link)
HasA :Has A Link
Partof: Part_of_Link

3) root: Complexlilement Node » root.level= 0

V ce 1, ce2 : Cnodes I ce 1 if:. ce2 • ce I.name if:. ce2.name
V se 1, se2 : Snodes I se 1 if:. se2 • se I.name ;f:. se2.name
V attI, att2 :Attnodes Iattl if:. att2 • attl.name if:. ata.name
V partlink : Partof» partlinlc.AttributeKey ;f:. 0
V hi : PathLink ; haslink : HasA ;partlink :Partof •

Cnodes = U{dom hl.path_link, ran hl.path_link}
Snodes = ran haslinkhasa
Attnodes = ranpartlinlc.AttributeKey

The first predicate of the SCMmaGDTD states that there must exist one root node. The
second, third and fourth predicates indicate that at any point in time, each complex
element node, simple element node and attribute node must have a unique name. The
last three predicates ensure that all types of nodes and relationships defined exist in
SchemaGDTD.

Finally the abstract state of XML_DM environment consists of schema SchemaGDTD

Environment_XML_DM __

~hemaGDTD
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5.5.4 Initial state of Environment XML_DM

Before any operation can be performed on the model, we must define the initial state of

environment XML_DM. In our case, the initial state of environment XML_DM refers

to the situation in which there are no elements of SchemaGDTD existing in it. This is

characterized by the following schema definition:

Initialstate _

ll.Environment XML DM- -
Schema.Snodes = 0
Schema.Cnodes = 0
Schema.Attnodes = 0
Schema.Partof = 0
Schema.Hasn = 0
Schema.PathLink =0

This schema describe the Initial_state in which set of simple element node, complex

element node and attribute node are empty: in consequence, the PathLink, HasA and

Partof relation is empty too

5.5.8 Manipulating the G-DTD in an Environment

The manipulation of G-DTD in an XML_DM environment includes four groups of

operations known as querying, inserting, deleting and moving. We will formally define

those operations on the basis of their rules description defined in Chapter 3 Section

(3.6). However, before we present these operations we must first define the following

functions and schemas, since they will be used in future operations schema definition.

(1) Get ID, Level and Node Numbers

Before querying, inserting or deleting any node, we should be aware of its properties. In

order to achieve this aim we define the three functions Get_ID, GetName, GetLevel

and Get_Node_Type, which identify the ID, name, level and node type ofa node.
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Get_ID: ComplexElement _Node -++ ID
Get_Name: ComplexElement_Node -++ Element_Name
Get_Level: ComplexElement_Node -++ 14

V ce : ComplexElement _Node.
Get ID ce = ce.ID
Get_Name ce = ce.Name
Get_Level ce = ce.Level

(2) Create Complex Element Node

The Create_NewComplexElement_Node function is used to create a new complex

element node. Each new node must have an instance of ID, Element_Name and level.

The new complex element is added to a set of complex element nodes if it satisfies the

pre-condition that the new node is not already be one of the members of complex

element node in schemaGDTD. This is because only one unique complex element is

allowed in G-DTD schema.

Create_NewComplexElement_Node: (ID x Element Name x NI)
__.ComplexElement _Node

V newid : ID; newname :Element_Name; I: NI; schema, schema' : SchemaGDTD •
(3 ce, newnode: ComplexElement_Node; I
newnode = ce •
(ce.identity = newid A ce.name = newname A ce.level=Tyv
newnode E schema. Cnodes A

schema'. Cnodes = schema. Cnodes U {newnode}
=> createNewComplexElement (newid, newname, I) = newnode)

(3) Create Simple Element node

The Create _SimpleElement _Node function is used to create simple element node. Given

the instance of ID, Element_Name, level, simple element type and a simple element

node is created. The success of the operation relies on a given pre-condition. The new
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simple element node is added if and only if it is not already one of the members of
simple element node in schema GDTD. This is because only one unique simple element
node is allowed in schema GDTD.

Create_SimpleElement_Node:( IDx Element Name xN1 x Se_Type)
-+ SimpleElement _Node

V newid : ID; newname : Element _Name; I: RII; type : Se_Type;
schema:SchemaGDTD •
(3 se, newnode :SimpleElement _Node; schema' : SchemaGDTD I
newnode = se •
(se. identity = newid A

se.name = newname A

se.level=l A

se.seType = type) A

newnode et schema. Snodes A

env'.Snodes = env.Snodes U {newnode}
~ Create_SimpleElement_Node (newid, newname, l, type) = newnodei

(4) Create Attribute node

The description of the Create_Attribute_Node function is similar to the
Create _SimpleElement _Node function.
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Create_Attribute_Node: (ID x Attribute_Name x NI x All_Type)
-+ Attribute_Node

V newid : ID; newname :Attribute_Name; I: NI; type :All_Type;
Env : Environment XML DM.- -

(3 att, newnode :Attribute_Node; schema' : SchemaGDTD I
newnode = att •
(att. identity = newid A
att.name = newname A
att.level=l A

att. att'Iype = type) A

newnode E env.Attnodes A

schema.Attnodes = schema.Attnodes u {newnode}
=* createAttribute_Node (newid, newname, I, type) = newnode)

(5) Create Path_LiDk

Create_ Path_Link is a function to create a new Path_Link between two complex
element nodes. The function maps both given complex element node and complex
element node and assigns between them a new Path_Link if and only if is satisfies the
pre-conditions that the relation of these complex element nodes are not a cyclic relation
and they have a parent relation. If the condition is satisfied, the new instances of relation
name, level, parent and child constraint are assigned to a new Path_Link and added to
set of Path_Link.
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Create_Path_Link: (ComplexElement_Node x ComplexElement_Node)
-+Path Link

V ce I : ComplexElement _Node; ce2 : ComplexElement _Node;
schema:SchemaGDTD •

3 new_Path_Link, newlink : Path_Link;
deg: Nl;PC, cc: NxNl; newname :Relation_Name;
schema' : SchemaGDTDI
new_Path_Link = newlink»

ce I ....ce2 E newlink.path _link ¢::>

(ce I t-+ ce2 ~ newlink: path_link +

A ce2 = Parent_Ce (cel)
A newlink.name = newname
" newlink.degree =deg
" newlinkparent _constraint =pc
"newlink.child_constraint = cc)
tvscbemaPath Link=
schema. Path_Link U { new_Path_Link}
~ Create_Path_Link (cel, ce2) = new_Path_Link

(6) Create Has_A_ Link

Create Has _A_Link is a function to create a new Has_Alink between the complex

element node and simple element node. To build a Has_A link, a simple element node

must have a parent which is a complex element node. When a new Has_A link is

created, it is added to the set of Has_A links.

CreateHas_A_Link: (ComplexElement _Node x SimpleElement _Node)
-+Bas A Link

V ce: Comp/exElement_Node; se: SimpleElement_Node;
schema:SchemaGDTD •
3new _Haslink; newlink: Has _A_Link; schema':SchemaGDTDI
new_Haslink = newlink •

ce .... se E newlinkhasa
A schema'.HasA = schema.HasA U { new_BasUnk}

~ Create_Has _A_Link (ce, se) = new_Baslink
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(7) Create Part_or_Link

Function Create_Part_ol_Link is used to create part-of link between a complex element

nodes and attribute node. The new part-of link can be either Attributekey or

Compositekey and the parent of the attribute node must be a complex element node. A

new part_of link is added to the set of part of links if it satisfies the attributes type.

Create_Part _01_Link: (ComplexElement _Node x Attribute_Node)
- Part_ol_Linkr-----------------------

V ce: ComplexElement_Node; ott: Attrtbuie Node;
new _part _ol_link, part _ol_link: Part _01_Link;
schema: SchemaGDTD •

3 schema' : SchemaGDTD I
new _part _ol_link =part _ol_link •
ce ~ ott Epart _ol_link.AttributeKey <=>
att.Att_Type = required A Parent_Att(att) = ce V

ce ~ ott Epart _ol_lin1c.CompositeKey <=>
att.Att_Type = composite A Parent_Att(att) = ce A

schema'. PortoI= schema.Partof u {new _part _ol_link }
~ create_Part_ol_Link (ce, ott) = new_part_ol_link

173



(8) Deleting a Patb_Link

When deleting a complex element node, we should consider the task of deleting its

corresponding links. We further define a function, Delete_Hierarchical_Link, which

describe the general task of deleting the link. By deleting the link the instance of link

will automatically be deleted as well.

Delete Path Link:_ _
ComplexElement_Node x ComplexElement_Node x Path_Link
x SchemaGDTD -+ SchemaGDTD

V cel, ce2 : ComplexElement_Node; link: Path_Link;
schema, schema' : SchemaGDTD •

link E schema.Pathllnk
Delete_Path_Link (cel, ce2, link, schema) = schema' ~

cel ....ce2 E link A Parent ce (ce2) = cel
=> schema'.PathLinlc.hlink =

Pathl.ink ~ schema.Pathlsink.link

(9) Deleting a Has_A_Link

When deleting a simple element node, we should consider the task of deleting its

corresponding links. We further define a function, Delete_Has_A_Link, which describes

the general task of deleting the link between a complex element node and simple
element node.

Delete_Has_A_Link:
(ComplexElement_Node x SimpleElement_Node x Hos_A_Link
x SchemaGDTD -+ SchemaGDTD

V ce: ComplexElement_Node; se: SimpleElement_Node;
Link: Has_A_Link; schema, schema': SchemaGDTD.

link E schema.Hass
Delete _Has_A_Link (ce, se, link, schema) = schema'
~ ce ....se E has_a_link Aparent_se (se) = ce
=> schema'.HasA.link = HasA.link ~ schema.HasA.link
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(10) Deleting a Part_or_Link

Similar to the above schema, we further define a function, Delete_Part_of_Link, which
describes the general task of deleting the link between a complex element node and
attribute node.

Delete PartpfLink :
(ComplexElement_Node x Attribute Node x Part_ol_Link x SchemaGDTD

-+ SchemaGDTD

V ce: ComplexElement_Node; se: SimpleElement_Node; link: Part_ol_Link;
schema, schema': &hemaGDTD •

link E schema.Partof
Delete PartpfLink. (ce, se,link, schema) = schema'
¢::> ce-+se E link Aparent_se (se) = ce
=> schema.Partoflink = Partoflink ~ schema.Partoflink

(11) Checking type orPath_Llnk

The following four functions are used to check the Path_Link Type.
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Is_Rel_One_to_One: Path_Link x SchemaGDTD =Boolean
Is_Rel_One_to_Many: Path_Link x SchemaGDTD -+ Boolean
Is_Rel_Many_to_One: Path_Link x SchemaGDTD -+ Boolean
Is_Rel_Many_to_Many: Path_Link x SchemaGDTD -+ Boolean

Vre/: Path_Link; schema: SchemaGDTD I
rei eschema.Pathl.mk A

3pc: rel.parent constraint; cc: rei. child_constraint •
Is_Rei_One _to_One (rei, schema) = True <=>
(first rel.pc = 1 A second rel.pc= 1 rcfirst rel.cc = 1 A second rel.cc = 1) V
Is_Rei_One _to_Many (rei, schema) = True <=>
(first rel.pc = 1 A second rel.pc= 1 Afirst rel.cc ~ 1 A second rel.cc ~ 2) V

Is_Rei_Many _to_One (rei, schema) = True <=>
(first rel.pc ~ 1 A second rel.pc ~ 2 rcftrst rel.cc = 1 A second rel.cc = 2) V

Is_Rei_Many _to_Many (rei, schema) = True <=>
(first rel.pc ~ 1 A rei. second pc ~ 2 Afirst rel.cc ~ 1 A second rel.cc ~ 2)

(12) Checking the root and last node

To check the root node and last node in the G-DTD, the following functions are used.
The function Is_root has a complex element node and schemaGDTD as arguments and
returns the value true if the given complex element is a root node.

The status of a result node is defined using the set of Boolean messages.

Boolean::= Truel False

Is_root: ComplexElement_Node x SchemaGDTD -+ Boolean

3tce: ComplexElement_Node; schema: SchemaGDTD.
Isroot (ce, schema) = True <=>
ce E schema. Cnodes A ce.level = 0

Similar to function Is_rool, Islast function has a simple element node and schema
GDTD as arguments returns the value true if the node is a last node.
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Is_last: SimpleElement_Node x SchemaGDTD -+Boolean

V se : SimpleElement _Node; schema: SchemaGDTD.
Is_last(se, schema) = True ~
se E schema.Snodes A se.level = maxlevel+I

5.5.9 Operations of G-DTD in an Environment

(1) Query Operations

As presented in Chapter 3 Section (3.6), before manipulating the structure of any

complex element node of G-DTD, we should be aware of its related nodes such as its

attribute nodes and simple element nodes. Since the structure of G-DTD is like a tree

structure, a child or descendant and parent or ancestor of given complex element node

also need to be queried in some cases.

The status of a queried node is defined using the set of messages. It is defined by

enumeration like this:

Report::= Existencel Nonexistencei Inserted; Created

Based on this set, we define the following schema Success to output a confirmatory

message that the operation being performed has been succesfully completed.

Succe~ _

~report! : Report
report! = Existence

• Query a Node

Find _AttributeKey _Node shows how to get an attribute key associated to the
given Complex Element Node
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Fmd_AftribureKey_Node-----------------------------------
EEnvironment XML DM- -
ce? :ComplexElement_Node
found _attkey! :Attribute_Node
report! :Report

V schema:SchemaGDTD;part_of: Partof·
ce? E dom schemapartof ~ report!=Nonexistence V

dom schema.part_ofE schema.Cnodes
ce? !;;;; schema.Cnodes
ce? =f 0
found _attkey! = schema.part_of.AttributeKey (ce?)

Find_SimpleElement_Node schema describes that the Simple Element Node

(se!) has been found and belongs to the complex element node of G-OTO

defined in environment XML OM.

Find_SimpleElement_Node;--------------------------------
EEnvironment XML DM- -
ce? : ComplexElement_Node
found_se! :SimpleElement_Node
report! :Report

V has_link: HasA; schema:SchemaGDTD •
ce? E dom schemahas Iinkhasa ~ report!=Nonexistence V

found_se! = schema.has_linkhasa Q {ce?}D

Find_ComplexElement_Node schema describes that the ComplexElement_Node

(found_ee!) has been found since its ID, name and level are equal to the input

ID, name and level.

178



Find_ComplexElement_Node---- _
EEnvironment XML DM- -
Ce : ComplexElement _Node
ce name?: Element Name- -
ce levett :N
ce un. ID
found_cel : ComplexElement_Node
reports : Report

v schema: SchemaGDTD •
ce E schema.Cnodes
ce? E dom schema.Pathllnkpath _link =>
reports =Nonexistence V

(Get_Name ce = ce_name? " Get_Level ce = ce_leven "
Get_ID ce = ce_itll => found_cel)

Finally, based on the schema definitions above, we can finally define the

following schemas, which describes the state in which a complex element node,

simple element node or attribute node has been successfully queried.

Query _SimpleElement _Node ~ Find _SimpleElement _Node 11 Success

Query _AttributeKey _Node ~ Find _AttributeKey _Node 11Success

Query _ComplexElement _Node ~ Find _ComplexElement _Node 11Success

• Querying a Related Nodes

Query about the ancestor of complex element node can be done using a Path

Link as described in FindAncestor schema. We achieve this by forming the

relational inverse transitive closure of a Path_Link.
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Fmd_Ancesror~ __

EEnvironment _XML _DM
ce? : ComplexElement _Node
anc_ce! : JP ComplexElement_Node
report! =Report

V schema: SchemaGDTD, hI: Path_Link •
ce? E dom schema.hl.path_link =>
report!= Nonexistence
V

anc_ce! = (hl.hiearchical_link+)-G{ce?}D

We define the FindDescendants schema, which shows how to browse for
descendants of the given complex element node using a transitive closure of
path_link.

Find Descendants _
E Environment XML DM- -
ce? : ComplexElement _Node
des_ce! : JP ComplexElement_Node
report! :Report

v schema: SchemaGDTD, hi: Path_Link •
ce? E dom schemahl.path _link =>
report!= Nonexistence
V

des_cel = (hl.path_link+) G{ce?}D

Query _Anchestortiode ~ Ftnd Ancestors 11Success

Query_Descendants ~ Find Descendants 11Success

Query_Related_Nodes ~ Query _AnchestorNode 1\ Query_Descendants

As we said in Chapter 3 Section (3.6), path links are only allowed to be defined between
complex element nodes. Therefore, in the following schema definition, relating to the
finding of path links, we assume that all complex element nodes are connected to a path
link with a unique name. The user is allowed to find a Path_Link corresponding to the
input Path_Link name. We specify this schema as follows:
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Find_Path_Link~ _
:::Environment XML DM- -
hl name?: Relation Name- -
hI_degree? : NI
hl_pc?; hI_cc? :N x N
hI! : Path Link
found_hI: Path_Link -t+ Relation_Name

V schema: SchemaGDTD 13h/: Path_Link •
domfound_hl ~ schema.Pathl.ink
hI.name = hI_name? A hl.degree = hI_degree? A hl.parent_constarint = hl_pc?
A hl.ohild constratnt = hl.child_constraint =>
found_hI hI_name? = hi!

This schema means that the existing Path_Link whose name is equal to the input name

is found.

Query Path Link ~ Find Path Link A Success- - --

(2) Insert Operations

• Insert Complex Element Node

Insert operation allows the user to add new complex element nodes to the O-DTD. This

operation is captured by the schema Insert_New _ComplexElement _Node
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Insert New_ComplexElement _Node- _
IIEnvironment XML DM- -
levett : RI
newnamel : Element Name
newidl : ID
new_ce! : ComplexElement_Node
newlink! :Path Link

new_ce! = Create_NewComplexElement_Node (newidt, newname?, leven)
31 root: ComplexElement_Node, schema: schemaGDTD.

Is_root (parent_ce (new_ce!, schema» = True
=> new_link! = Create_Path_Link(newnode, root)
Isroot (parent_ce (new_ce!, schema» = False
=> new link: = Create_Path_Link(newnode,parent_ce(new_cel)

In this schema, the declaration A Environment _XML _DM alerts the user to the fact that
the schema is describing a state change of schema Environment _XML _DM by inserting
a new node into a schemaGDTD. Before the insertion is made, the precondition of this
operation is that the new complex element to be inserted must not already be one in the
schemaGDTD. This is because only one unique complex element is allowed in
schemaGDTD. To capture the condition where the complex element node is already a
member of schemaGDTD, the following schema is used:

ComplexElement _Node _AlreadyExisted, _
E Environment_XML_DM
ce_name?: Element_Name
ce! : ComplexElement_Node
found_ce: Element_Name -1+ ComplexElement_Node
report! = Report

3 schema: schemaGDTD; ce: ComplexElement_Node.
ce.name = ce_name? =>
found_ce ce_name? = cel A cel E schema.Cnodes
report! =Existed

If this condition is satisfied, the new node is created by using a
Create_NewComplexElement function and relationship type is created between a parent
or root node using a Create_Path_Link function. When the operation is successful, the
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schema success outputs a confirmatory message inserted meaning that the operation
being performed has been successfully completed.

success _

~rep! : Report
rep! = Inserted

To perform Do_InsertNewComplexElementNode operation the schema
Insert_New _ComplexElement _Node will be conjunctive with the schema success

disjunctive with schema ComplexElement _Node _AlreadyExisted

Do_InsertNewComplexElementNode :£: Insert_New _ComplexElement _Node A success

V

ComplexElement _Node _Alreadylixisted

• Insert Simple Element Node

Insert operation allows the user to add new simple element nodes to the G-DTD. This
operation is captured by the schema Insert _NewSimpleElement_ Node.

InsertNew_SimpleElement_Node.------------------------
Il. Environment _XML _DM
levett :N
newname'l " Element Name
newidt : ID
type? : SimpleElement _Type
new_se! : SimpleElement_Node
new_has _a_link! : Has A Link

new_se! = Create_NewSimpleElement_Node (newid], newnamel, levett, Type?)
new_has_a_link! = Create_Has_A_Link(newnode, Parent_se(newnode»

Similar to Insert_New_ComplexElement_Node. before the insertion is made, the
precondition must be satisfied that the new simple element to be inserted must not
already be one in the schemaGDTD. To capture the condition where the simple element
node is already a member of schemaGDTD, the following schema is used:
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SimpleElement _Node _AlreadyExisted-- _
E Environment XML DM- -
se name? : Element Name- -
se! : SimpleElement _Node
found_se: Element_Name ~ SimpleElement_Node
report! = Report

3 schema:schemaGDTD; se: Simplelilement Node»
se.name =se name? =>
found_se se_name? = se! A se! E schema.Snodes
report! = Existed

Finally the following schema is defined to describe the state in which a node has been
successfully inserted:

Do_InsertNewSimpleElementNode ~ Insert_New_SimpleElement_Node A success

V

SimpleElement _Node _AlreadyExisted

• Insert Attribute Node

The operation to insert attribute node is captured by the schema Insert_Attribute _Node

Insert_Attribute _Node _
Il. Environment _XML _DM
levett :N
newname'l : Attribute Name
newidt :ID
Type? :Attribute_Type
new_att! :Attribute Node
new_part_of_link! : Part_of_Link

new _att! = Create_Attribute_Node (newidt, newname], levet], Type?)
new_part_of_link! = Create_Part_of_Link (new_attl, Parent_att (new_att!»

To capture the condition where the attribute node is aJready a member of schemaGDTD,
the following schema is used:
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Attribute_Node_AlreadyExisted---- _
E Environment XML DM- -
att name? :Attribute Name- -
att! :Attribute Node
found _att :Attribute Name -t+ Attribute Node
report! = Report

3 schema:schemaGDTD, att: Attribute _Node-
att.name = att name? =>
found _att att_name? = att! "att! E schema.Attnodes
report! = Existed

Finally the following schema is defined to describe the state in which an attribute node
has been successfully inserted:

Do_Insert_Attribute _Node :a: Insert_Attribute _Node" success

V

Attribute Node _AlreadyExisted

(3) Delete Operations

In the following, we give schema definitions showing how to delete complex element
node, simple element node, attribute node and their related links in schemaGDTD, on
the basis of the definitions of deletion operation in Chapter 3 (section 3.6).

• Delete Complex Element Node

The user is allowed to delete a complex element node from schemaGDTD. In order to
capture what happens when a complex element node is deleted, we provide the
following definition.
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Delete_ComplexElement-Node----------------
IlEnvironment _XML _DM
Query _ComplexElement _Node
Query _SimpleELement _Node
Query_Attribute _Node
Query_Related_Nodes

V schema: SchemaGDTD; child_ce: P ComplexlilementNode»
3 ce; parent_ ce : ComplexElement _Node;
se: SimpleElement_Node;
att :Attribute_Node;
parent_link: Path_Link; has_a:Hos_A_Link;
part_of: Part_of_Link; schema': SchemaGDTD I

ce =found_ce! A se =found_se! A att =found_attkey! A
parent_ce = anc_ce! A childce = des_ce! •
parentce H child _ce E ran parent_link
Create_Path _Link(parent _ce, child_ce, parent _link, schema)

=schema'
Delete_Path _Link (parent_ce, ce,parent_link, schema)

=schema'
Delete_Part_of_Link{ce, se,part_of, schema) = schema'
Delete_Hos_A_Link{ce, att, has_a, schema) = schema'
schema. Cnodes' = schema. Cnodes \ce
schema.Snodes'= schema.Snodes\se
schema.Attnodes'= schema.Attnodes\att
V

ce E schema.Cnodes
report! =Nonexistence

Before the node can be deleted, the particular node and related nodes must be queried
and identified with a given node. The inclusion of schema
Query_ComplexElement_Node is used to find a corresponding complex element while
schema Query_SimpleElement_Node, and Query_Attribute_Node is used to find its
simple element node and attribute nodes respectively. The rationale of this process is to
make sure its attribute node and simple element node are automatically deleted as well.
While deleting a node, the link between parent node and child nodes of the deleted node
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is created using a function Create_Path_Link. After the complex element node is

deleted, the original Path_Link, Part_ol_Link and Hos_A_Link can be removed from the

SchemaGDTD state space without affecting other links and nodes. However, no nodes

can be removed unless all links to the nodes have been removed first. The complete

specification of the delete operation for complex element node is captured as follows:

Do_Delete _ComplexElement _Node :a: Delete _ComplexElement _Node 1\ success

(4) Replicate Operations

• Replicate Attribute Node

Replicate_Attribute_Node----------------
IIEnvironment XML DM- -
Query_AttributeKey _Node
newnodel : Complex_Element_Node
replicate_ott! :Attribute_Node

3new_level: N; replicatename : Attribute_Name; new_ID: IDI
new_id = ID -N
replicate_name = Get_Name (found_attkey!)
new_level = Get_Level (found_attkey!) +1 •
replicate_ott! = Create_Attribute _Node (new_id, replicate name, new_level)
newyart_ol_link! = Create_Part_of_Link(replicate_att!, newnode?)

Do_Replicate _Attribute_Node :a: Replicate_Attribute _Node A success
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• Replicate SimpleElement Node

Replicate _SimpleElement _Node _
AEnvironment XML DM- -
Query _SimpleElement _Node
newnode'l : Complex Element Node
replicate_se! : SimpleElement_Node

3 new level : N;found_se! : SimpleElement_Node;
replicate name : Element_Name; new_id: ID I
new_id = ID ....N
replicate_name = Get_Name (found_se!)
new_level = Get_Leve l(newnode?) +1 •

replicate_se! = Create_Attribute _Node (new_id, replicate name, new_level)
new_has_a _link! = Create_Part_of_Link(replicate_se!, newnode?)

Do_Replicate _SimpleElement _Node ~ Replicate _SimpleElement _Node A success

5.6 Formal Specification of G-DTD Normalizer

The second layer of XML_DM is the G-DTD Normalizer. Normalization is a step by
step process to transform the schemaGDTD into a new structure of schemaGDTD. As
presented in Chapter 4 (Section 4.3), our defined normal forms G-DTD ( IXNF, 2XNF,
3XNF and 4XNF) are archieved by restructuring each schemaGDTD using
normalization rules.
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We briefly defined again these normal forms. If each simple element node and attribute
node in the schemaGDTD has an atomic label node and has no repeating labels and
every complex element node has its own attribute key, it is said to be in a first normal
fonn( IXNF). In this work, it is assumed that the schemaGDTD satisfes this conditions.
A schemaGDTD is in a 2XNF if there exist no n-ary one-to-many/many-to-many
path_link with PFD between attribute node and simple element nodes. The 3XNF
schemaGDTD prohibits n-ary one-to-many/many-to-many path_links with TFD among
its attribute nodes and simple element nodes. And finally, schemaGDTD is in 4XNF, if
there exists no n-ary one-to-many/many-to-many path_link with GFD among its
attribute nodes and simple element nodes.

All the above processes are embedded into the G-DTD normalizer to help the user to
derive well-defined XML documents. In this layer, the user can input schemaGDTD
with the set of FDs and then it will be normalised to another level of normal form
based on her/his requirements. Generally, normalizing schemaGDTD involves a
process of creating a new complex element node, splitting a sequence of path_link and
moving a simple element node. In this section, we present the conceptual operations of
the G-DTD normalizer model, which consist of two main operations: first to determine
types of functional dependency which to classify into different PFD, TFD and GFD
types and secondly to normalize operations.

5.6.1 Determine Type Functional Dependency Operation

In this operation, a user is allowed to input a set of FDs. As a start the user is required
to input a set of FDs and then it will be classified and grouped according to the FD's
definition presented in Chapter 4 (Section 4.2.2). The model will classify the set of FDs
as a GFD, PFD and TFD on the basis of attribute nodes and simple element nodes in
LHS and RHS of FDs. Every attribute node and simple element node is associated with
its level and this indicates the depth of the nodes in the schemaGDTD. In this operation,
for the purpose of simplicity, we make an assumption that every complex element node
in schemaGDTD has an attribute key and every node, whether attribute node, simple
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element node or complex element node, has a unique name. As defined in Chapter 4
(Section 4.2.2), FOs such as GFO, TFO and PFO are in '<X, level> -+ <V, level>' form
where X and Y represent the LHS and RHS of the FOs respectively. A set of FO of a
schemaGDTD is presented as two element sets, one for LHS and the other for RHS set.
Obviously, the order of attributes and element nodes in such a set is important and
should be maintained with care throughout the normalization process.

5.6.2 Normalization Operations

After completing the classification of FOs, the user can choose the normalization
process or directly obtain the required normal forms by selecting the normalization
operation. In this operation the user is allowed to transform the schemaGDTD into a
normal form one. Normally the procedure of normalization is very tedious since it
involves theory. By having this model the user just clicks the button provided then
he/she can choose which normal form he/she requires INXF, 2XNF, 3XNF or 4XNF.
This of course will save a lot of user time and effort. This process is iteratively repeated
until the user is satisfied with the answer given.

(1) Normalize lXNF to lXNF Operation

The transformation from 1XNF to 2XNF is supported by our normalization algorithm
and rules which have been presented in Chapter 4 (Section 4.4). This normalization
algorithm is embedded as a backend process of the operations to help the user to achieve
the best results. In order to transform the schemaGDTD to 2XNF, all sets of PFO need
to be determined. For every PFO, the corresponding complex element node, simple
element node and attribute node are classified and eliminated from the schemaGDTD.
The detailed process of elimination of these PFO is based on normalization rules (rule 1)
provided in Chapter 4 (Section 4.4.1). Generally the process of normalization involved
of restructuring the structure of schemaGDTD into a new structure by (1) creating a new
complex element node, (2) creating a new path_link, part_of_link and has_a_link and
(3) reallocating this new complex element node and new links to a new location.
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(1) Normalize lXNF to 3XNF Operation

In this operation, the schemaGDTD is transformed to 3XNF by eliminating the TFD.

Before the process to eliminate the TFD starts, all the given set of FDs is browsed and

sorted by grouping them together according the LHS and RHS of the given FD. Each of

the elements from LHS and RHS of the FD is identified to determine its parent node,

related node, location and level in the schemaGDTD. The detailed process of

elimination of these TFD is based on normalization rules (rule 2) provided in Chapter 4

(Section 4.4.1). Generally, in this operation, the schemaGDTD is restructured by

moving up the corresponding complex element node and its associated attribute nodes

and simple element nodes to another level. The attribute key node will become an

attribute key for a new complex element node.

(3) Normalize 3XNF to 4XNF Operation

Similar to the above operations, the schemaGDTD is transformed to 4XNF by

eliminating the GFD. The detailed process of elimination of these GFD is based on

normalization rules (rule 3) can be found in Chapter 4 (Section 4.4.1). This process of

removing GFD involves restructuring schemaGDTD into a new structure by (1) creating

a new complex element node (2) creating a path_link, part_of link and has_a link and

(3) inserting this new complex element node to be directly under a root node of
schemaGDTD.

5.6.3 Basic Functions of G-DTD Normaliser

In this section we present formally the formal model of G-DTD normalizer on the basis

of conceptual operation defined in the Section 5.4.3 and Chapter 4. In this formal

approach, Functional_Dependencies is used to represent a set of FDs with a binary
relation over sets of elements.

Functional Dependencies = 1Ft Element +-+ IFtElement

where we construct new type Element fromAttribute_Node and SimpleElement_ Node
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Element::= 1_at«Attribute _Node»l/_ se«SimpleElement _Node»

using two constructor functions I_at and I_se

We define a set of [Report_status] for reporting the status ofSchemaGTD.

Report_status::= First_Norma/Form ISecond_NormalForm I
Third_NormalForml Fourth_NormalForml Not_Norma/Form

Before we define the normalization operations, we need to define the following

functions as a prerequisite to the main operations of normalize operation. We present

them as follows:

(1) Find Global Functional Dependencies(GFD)

The function Find _Global Dependencies is defined to capture the process to classify

and group all GFD. This classification of GFD is on the basis of definition presented in

Chapter 4 (Section 4.2.2). As defined in section 4.2.2, the FD is classified as GFD if the

set of elements of the LHS and RHS of FD is located at the same level and they share

the same parent node.

Find _Global_Dependencies: f Functtonal Dependencies
-+ fFunctionalDependenciesr--------------------------

V setojFD, global Jd:Functional_ Dependencies.
Find _Global_ Dependencles(setojFD) = global Jd ~
3 schema: SchemaGDTD;
simple_element: SimpleElement _Node;
ce 1, ce2 : Complexlilement _Node
attribute: Attrtbute Node ;
elements: fElement I
ott =1_at attribute" ott e schema.Attnodes
e/e =I_se simple_element" ele E schema.Snodes
ce2 =parent se (ele) " ce2E schema.Cnodes
eel =parent_ott (ott)" ce2e schema.Cnodes
eel = ce2"
att./evel = ele level "
ott .... e/e e g/obalJd • (ott .... ele)
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(2) Find Transitive Functional Dependency (TFD)

The function FindTransutve _Dependencies presented below is used to classify and

group all TFD. Before the classification, all the simple elements and attributes in FD are

queried on the basis of the definition stated in Chapter 4 (Section 4.2.2). To be more

precise, we present it formally as follows.

Find _Transitive _Dependencies: FFunctional_ Dependencies
- FFunctional_ Dependenciesr---------------------------

'V setofFD, transitive fd :FFunctional_Dependencies.
Find _Transitive _Dependencies(setojFD) = transitive Jd <=>
3 schema: SchemaGDTD;
simple element :SimpleElement _Node;
attribute :Attribute _Node;
attl, att2, ele : JPElement;
ce 1, ce2 : ComplexElement _Node I

attl =I_at attribute A attl E schema.Attnodes
ele =L» stmple element A ele E schema.Snodes
a1l2 =I_at attribute A att2 E schema.Attnodes
attl.level < attl.level t»
att2.level < ele.level A

parent _att att 1 :f.parent _at att2 ¢parent _se ele A
{attl .... att2, att2 H ele} E setofFD /\.
attl H ele E transittve fd» (attl H ele)
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(3) Find Partial Functional Dependency(PFD)

The function Find _Partial_Dependencies defined below is used to find all possible PFD

that exist in a set of FDs. This process is formally defined as follows:

Find _Partial_Dependencies: JPFunctional Dependencies
-+ fFunctional_ Dependencies~--------------------------v setojFD, partial Jd: Functional Dependencies •

Find _Partial_ Dependencies(setojFD) = partial Jd ~
3 schema: SchemaGDTD ;
simple_element: SimpleElement _Node;
attribute :Attribute_Node;
elements, aliI, 0112,ele: fElement;
eel, ce2: ComplexElement_Node I

attl =I_at attribute A attl e schema.Attnodes
att2 =I_at attribute A att2 e schema.Attnodes
ele =I_se simple_element A ele e schema.Snodes
attl.level < att2.level A att2.level = se.level
parent_ott attl -:f;parent_ott att2 A
({attI, att2} .....ele, att2 .....ele) E setojFD A

att2 .....ele E partial Jd • (att2 .....ele)

(4) Get elementsof Functional Dependencies

The function getFD _elements presented below is used to retrieve all elements in LHS

and RHS of FDs

getFD_elements: Functtonal Dependencies -+ FElement

vfds : Functional_Dependencies.
getFD_elements(jds) = U{fd:fds. domldU ran/d}
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(5) Checking the Status of Schema GDTD

The current status of schemaGDTD can be identified using four different functions:

Is_IXNF, Is_2XNF, Is_3XNF, Is_4XNF. These rules have been defined in Chapter 4

(Section 4.3). We formally capture each of rules as follows respectively:

• ChecklXNF

Is_IXNF: (SehemaGDTD) --+ Boolean

V schema : SehemaGDTD •
Is_lXNF(sehema) = true ~

31root : ComplexElement _Node • root. level = 0
V eel, ee2: Cnodes I eeI;#ee2. eel.name;# ee2.name
V seI, se2: Snodes IseI;#se2. sei name s. se2.name
vam, att2: Attnodes Iattl;tala • attl.name ;# ata.name
V hlinlc:Path Link.

dom hlinkpath _link E Cnodes A

ran hlink.path _link E Cnodes A

root r= ran hlinkpath_link
Vpart_of_link:Part_of_Link.
dom part _of_link E Cnodes A

ranpart_of_linkAttributeKey E Attnodes A

root E dom part _of_link
Vhas _link:Has _A_Link •

dom has_linkhasa E Cnodes A

ran has_linkhasa E Snodes 1\

root E dom has_link.hasa
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• Cbeck2XNF

Is_2XNF: (SchemaGDTD x IFFuncnonal_Dependencies) -+ Boolean

V schema: SchemaGDTD; givenFD,partiaIJd: Functional Dependencies»
Is_2XNF (schema, given FD ) = true ~

Is_lXNF(schema) = true A
...,(V hlink}, hUnk2: seq PathLtnk»

Is_Rel_Many_to_One (hUnkt.l, schema) = True A

Is_Rel_Many_to_Many (hlink2.2, schema) = True A

3t (hlink,,: seq PathLink I/astlink = last hlink;«
Is_Rel_One_to_Many (Iastlinlc, schema) = True» A

(V givenFD: Functional Dependencies»
FtndParttal Dependencies (givenFD) = partial fd

• Cbeck3XNF

Is_3XNF: (SchemaGDTD x IFFunctional_ Dependencies) -+ Boolean

V schema: SchemaGDTD;
givenFD, transitive Jd : Functional Dependenctes •

Is_2XNF (schema, givenFD ) = true ~
Is_2XNF (schema) = true A
--.(V hlink), hlink2: seq Path_Link.

Is_Rel_Many_to_One(hlinkt.l, schema) = True A

Is_Rel_Many_to_Many(hlink2.2, schema) = True A

31 (hlink,,: seq Path_Link I/astlink = last hlink".
Is_Rel_One_to_Many(lastlinlc, schema) = True» A

(V givenFD: Functional Dependenctes»
Find_ Transitive _Dependencies (givenFD) = transitive Jd
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• Check4XNF

Is_ 4XNF: (SchemaGDTD x lFFunctional_Dependencies) -+ Boolean

V schema: SchemaGDTD;
givenFD, partial Jd: Functional_ Dependencies •

Is_4XNF (schema, given FD ) = true <=>
Is_3XNF(schema) = true A

...,(V hlink», hlink2: seq PathLink»
Is_Rel_Many_to_One(hlinkJ.l, schema) = True A

Is_Rel_Many_to_Many(hlink2.2, schema) = True A

31 (hlink,,: seq Path_Link I lastlink = last hlink,,·
Is_Rel_One_to_Many(lastlink, schema) = True» A

(V givenFD: Functional Dependencies »

Find _Global_ Dependencies(givenFD ) = global Jd

5.6.4 Restructure IXNF Schema Operations

To normalize lXNF to 2XNF G-DTD, the Restructure_IXNF_schemaGDTD schema is
defined to represent the process. The input of the operation is the schemaGDTD and set
of FDs and the output of this operation is a new schemaGDTD in a 2XNF form. This
schema uses the Find_PathLink_with_Dependency operation as a precondition to test
whether path links of one-to-many/many-to-many or many-to-one relationship types
exist in SchemaGDTD.

Find_PathLink _with_Dependency· _
E Environment _XML _DM
found _dependency! = Report

V hlink : Path_Link I
hlink ecurrent_schema?PathLink A

:f; hlinlc.degree ~ 2 A

Is_Rel_Many_to_Many (hlink, Current_schema?)= true V

Is_Rel_One_to_Many (hUnk, Current_schema?) = true V

Is_Rel_Many_to_One(hlink, Current_schema?) = true •
found .dependency! = Existence
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If the precondition is satisfied, all the PFOs will be extracted from the given set of FOs

using a Find_Partial_Dependency function. In the Restructure_IXNF_schemaGDTD

schema, for each of PFO, the associated parent for both LHS and RHS elements of the

PFD is determined using parent _att and parent _se functions. When the parent node,

which is a complex element type, is determined, a new complex element node is created

and inserted using the operation Insert _New _ComplexElement _Node. Both

Insert_SimpleELement_Node and Insert_Attribute_Node schemas are used to create a

new simple element node and attribute node for the new complex element node. The

function Delete_Has_A_Linlc is applied to delete all Hss_A links between the former

simple element node and its parent node. Finally the new schemaGDTD without the

PFO is generated. The new schema in 2XNF form contains only the updated nodes and

links.
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Restructure_IXNF_schemaGDTD _
AEnvironment XML DM- -
Find _PathLink_ withDependency
Do_Insert_New _ComplexElement _Node
Do_Replicate _Attribute_Node
Do_Replicate _SimpleElement _Node
current_schema? : schemaGDTD
found panial fd i, newJdl, current fdl : FFunctional_Dependencies
result! : Report status
check_dependency!: Report

Is_IXNF(current_schema?) = true
Is_2XNF( current schemat, current Jdl) #: true
check_dependency! =found_dependency!
found partial fd t= Find_Partial_Dependencies (currentJdl) A

V ce:ComplexElement_Node; se: SimpleElement_Node I
3 elements: Elements; created_att: Attribute Node ;
created_se: SimpleElement_Node.

elements = getFD _element (found _partial Jdl) A

att E ran elements A se E ran elements A

parent _att att = ce A parent_se se = ce •
new Jd! = current Jdl \found_partialJd !A

Vschema': schemaGDTD.
3 created_ce: ComplexElement_Node; created_att: Attribute_Node;
created se: SimpleElement_Node; new _link: Path_Link;
new partlink: Part_oJ_Link; new haslink: Has_A_Link.

schema' =Delete_Has_A_Link (ce, se,part_of, current_schema?)
created ce = new _ce! A created_att = new _att! A

created se = new _se! A new_link = newlink!
new _partlink = new _part_link!
new _haslink = newhas_link! A

schema'.Attnodes = schema.Attnodes U created_att A
schema'.Snodes = schema.Snode U created_se A
schema'.Cnodes = schema.Cnodes U created_ce A
schema'.PathLink = schema.PathLink U new link A
schema'.Parto/=schema.Parto/U new.partlink A
schema'.HasA = schema.HasA U new _haslink A
result! = Second_NormalForm
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Second _NormalForm_ GDTD ~ Restucture _lXNF _schemaGDTD V

Not _NormalForm

5.6.5 Restructure 2XNF Scbema Operations

To normalize 2XNF to 3XNF G-OTO, the schema Restructure_2XNF_SchemaGDTD is

used to capture the process. The input for the schema is set of FOs and schemaGDTD

while the result reports the status of the new schema. The precondition for this

operation is to test whether the path links types existing in SchemaGDTD have one-to-

many/many-to-many or many-to-one relationship. If the precondition is satisfied, all the

PFO will be extracted from the given set of FOs and then eliminated. This process is

captured by the following schema.

Find_Path_Link_with_TFD, _
/).Environment_XML_DM
newJd!, current Jell : IFFunctional_ Dependencies
current_schema?: SchemaGDTD

V hlink: Path_Link I
hlink e PathLink A

-:f hlink.degree ~ 2 A

Is_Rel_Many_to_Many (hUnk, current_schema?) = true V

Is_Rel_One_to_Many (hlink, current_schema?) = true V

Is_Rel_Many_to_One (hlink, current_schema?) = true A

transitive Jd = Find _Transitive _Dependencies (current Jdl) •
newJd != current Jdl \transltive Jd

Schema Restructure_2XNF_SchemaGDTD presents the operation to eliminate PFO

from SchemaGTD. In this schema, three operations are included, Query _Complex

Element Node, Find _Simple _Element _Node and Find _AttributeNode to determine the

location of complex element, simple element and attribute node in schema G-DTD.

Each path link type is identified to confirm that all the related complex element nodes

must be a member of a set of complex element node in schemaGDTD. The new created

complex element node can be linked to either a root node or another complex element

200



node. Once TFD(s) have been removed from the &hemaGDTD, the operation will

generate a 2XNF result. Finally the total specification to normalize GDTD to 2XNF is

given as follows.

Restructure_2XNF_&hemaGDTD---- _
A Environment XML DM- -
Find Path Link with TFD- - - -
Query _ComplexElement _Node
Query _SimpleElement _Node
Query_Attribute _Node
current_schema?, new_schema! : schemaGDTD
result! : Report_Status

(VceI, ce2, created_ce: ComplexElement_Node; hlink. :Path_Link I
ce I, ce2 E current_schema? .CNodes "
hltnk E current schema? .Pathllnk
ce I ....ce2 E hlinkpath _link
ce2.level- ce I.level = 1 ~ ce2.level = ce I.level

3 existed _att: Attribute_Node ;
existed_se: SimpleElement_Node; schema': schemaGTD I
existed_att = found_att! A existed se =found_se! •
existed _att.level " existed _se.level = ce2.level +1
(31root:ComplexElement _Node; new_link: Path_Link I

root.level = 0"
Is_Root (parent_ce(cel), current_Schema?) = true
=> new_link = Create_Path_Link(ce2, root»
Is_Root (parent _ce(ce 1), current _&hema?) =false
~ new_link = Create_Path_Link(ce2,parent_ce(cel»
current _schema?'.Attnodes =current _schema? Attnodes U existed _att
current_schema?'.Snodes =current_schema?Snode U existed_se
current _schema?'.PathLink =

current schema?PathLink U new link.- -
result! = Third _NormalForm

Third _NormalForm _GDTD ~ Restucture _2XNF _SchemaGDTD VNot_NormalForm
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5.6.6 Restructure 3XNF Schema Operations

To transform from 3XNF to 4XNF G-DTD, the schema

Restucture_3XNF_SchemaGDTD is defined to represent the process. This schema

include schema Find_Path_Link_with_GFD as defined in the following section.

Find_Path_Link_with_GFD----------------
AEnvironment XML DM_ _
current _schema? : SchemaGTD
newJd!, current Jell : JPFunctional_ Dependencies

V hlink :Path _Link I
hltnk E current schema? .PathLink A

f; hlink. degree ~ 2 A

Is_Rel_Many_to_Many (hUnk, current_schema?)= true V

Is_Rel_One_to_Many (hUnk, current_schema?) = true V

Is_Rel_Many_to_One(hlink, current_schema?) = true A

global Jd =Find_Global_ Dependencies (current Jd!) •
newfd!= current Jell\ global Jd

The schema Find_Path_Link_with_GFD is used to capture an operation to eliminate

path links of n-ary many-to-many or one-to-many type with GFD. This operation is

similar to Find_Path_Link_with_PFD except the new created complex element node is

inserted directly under a root node.

The schema Restucture_3XNF_SchemaGDTD has a set of GFD and SchemaGDTD

while the result will be a new schema and a report in fourth normal form G-DTD. Like

the previous schema, the same preconditions are tested and GFD will be removed from
the set of FDs.
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Restucture_3XNF_SChemaGDTD- _
IlEnvironment XML DM- -
Find Path_Link_with _GFD
Query _ComplexElement _Node
Insert_New _ComplexElement _Node
Insert _SimpleElement _Node
Insert Attribute _Node
current_schema?, new_schema! : schemaGTD
global_ FD? : Functional _Dependencies
results: Report_Status

(Vcel, ce2, created_ce: ComplexElement_Node; hlink: PathLink ;
schema: schemaGDTD I

hlink: E current schema? .PathLink
cel, ce2 E current_schema?CNodes /\
ce 1H ce2 Ehlink.path _link.
(3 new_link: Path_Link; created _att: Attribute_Node ;

created se: SimpleElement_Node; schema': schemaGDTD I
created_ce = new_ce! /\ created_att = new_att! /\
created se = new_se!
new link = newlinki
new ~art _of= new _part _linkl
new has link = new has link! •- - --
(3 elements: Elements lelements = getFD _element (global_FD?)
att E ran element /\ se E ran elements
parent _att att = ce2 /\
parent_se se = ce2 /\
Delete_Has _A_Link (ce2, se, part _oj,current _schema?) = schema'
schemaAttnodes = schema.Attnodes U created_att /\
schema.Snodes = schema.Snodes U created_se /\
schema.Cnodes = schema.Cnodes U created_ce /\
schema'.PathLink = schema.PathLink U new_link /\
schema'.Partof=schema.PartofU new_part_of/\
schema'.HasA = schema.HasA U new_has _link ») •
new _schemal = schema'
results= Fouth_NormalForm
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We define the following schema, which reports the status of G-DTD as being in not

normal form

Not_Normal_Form ___

statust: Report _Status

status! = not_normalForm

The total specification of the 4XNF is given as follows

Fourth_NormalForm_GDTD~Restucture_3XNF_SchemaGDTD VNot NormalForm

S.7 Formal Specification ofG-DTD Translator

Once the final schemaGDTD is derived it will then map back to a DTD format. The

user can design a redundancy-free XML document on the basis of this new DTD format.

The algorithm for this mapping purpose has been presented in Chapter 3 (Section 3.7).

In this algorithm we provide a depth first traversal method for each element in

schemaGDTD map to DTD format. We use flat mapping in this approach since it is

simpler. The mapping process uses one-to-one mapping between nodes in

schemaGDTD with building blocks in DTD. The main building blocks of DTD are

element and ettribute, defined by the tags <!ELEMENT> and <lA TILlST>

respectively. Keywords PCDATA and CDATA are used as string types for element and

attribute respectively. We capture this process using the following definition.

The given set [DTD] and following free type definitions:
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Operators::= + I? 1*
Tag ::=DOCTYPEI ELEMEN11 AlTLIST
keyword:= ID IREQUIREDI PCDATAI CDATAI EMPTY

We define the following function to map directly each complex element node, simple

element node and attribute node of schemaGDTD to DTD structure. Function ee_tag is

used to mapcomplex element node to !ELEMENT tag while function ott_tag is used to

map attribute_node with !ATTLlST ID REQUIRED and function se_tag is used to map

simpleelement_node with !ATTLIST PCDATA or EMPTY. Function op is to map all

types of operators used by depending on the type of semantic relationship between the

complex element nodes.

ee_tag: Complexlilement _Node -+Tag
se_tag: SimplelElement_Node -+ Tag
ott_tag :Attribute_Node -+ Tag
op : ComplexElement _Node -+ Operators

(Vee:ComplexElement_Node, ott: Attribute_Node, se: SimpleElement_Node I
ee E schema.Cnodes
ott E schema.Attnodes
se E schema.Snodes •

(Is_root ee) => ee_tag ce =DOCTYPE
V

-'(Is _root ee) => ee_tag ee = ELEMENT
ott_tag ott =AITLIST

(vh/:path _link, ee 1,ee2: ComplexElement _Node I
ee 1 ....ee2 E hi •

't/operators: {
op (ee2) = * ~ Is_one_to_many(hl) V hl.degree ~ 2
Vop (ee2) = ? ~ Is_zero_to_one (hI) A hi. degree ~ 2
v op (ee2) = +~ Is_zero_to_many (hI) A hl.degree ~ 2»
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Map: SchemaGDTD -+ DTD

3schema: SchemaGDTD, D: DTD·
map schema = D <=>
(Vce:ComplexElement _Node, att: Attribute_Node, se:SimpleElement _Node
hi: path_link; has_a: Hos_a_link,part-of.part-ofl
ce E Cnodes
att EAttNodes
se E Snodes
hi E PathLink •
ce_tag (ce) V

ce t-+ parent_ce-(ce) E hi A op (parent_ce- (ce)
ce t-+ se E hasa A sejag (se)
ce t-+ att Epart_ofA att_tag(att»

Finally the process to map the shcemaGDTD to a new DTD is captured by the schema

GDTD _Translator. The input fot schema is schemaDGTD and the output is DTD.

In this schema the function map is used to map each node in SchemaGDTD to

DTD structure.
GDTD_Translator· _

A Environment XML DM- -
schema]: SchemaGDTD
output!: DTD

output! = map (schema?)

DoGDTD _Translator ~ GDTD _Translator A success

5.8 Summary

In this chapter, we have constructed a formal specification of the XML document design
prototype. The purpose of this specification is to help the user to understand the whole
picture of the proposed prototype system. More importantly, by using Z, we can define
precisely the data structure, semantic constraints and operations of the XML document
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design system. In particular, the important components of the system, which are the
conceptual model G-DTD and G-DTD normalizer, have been precisely formalized to
capture both the structure of the XML document and the normalization process. It is
observed that application of formal specification in XML normalization has increased
the correctness of the system at the abstract level and gives more confidence to automate
the process of XML document normalization.
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Chapter6

Specification Testing - A Case Study

6.1 Introduction

In this chapter we will test the specification that was constructed in Chapter S with the

specific case study to check

"Does the specification describe for the properties of XML document design represent

what the users want/are expecting to get? "

Because Z specifications are formal descriptions based on predicate logic, we can test

them in ways that enable us to prove that they satisfy certain fundamental criteria in

respect to the question above. This will increase the confidence in the implementation

later.

In this chapter we are checking the properties of XML document design, in particular

the G-DID normaliser layer, to seek for the consistency of the operations defined in

Chapter 4 with the specification defined in Chapter 5. With respect to the above

question we must ensure that the specification presented in Chapter S, specifically the

G-DTD normaliser specification can be used to derive a required normal form design

using the set of normal forms and normalization rules presented in Chapter 4. Even

though we have illustrated this concept informally through the case study presented in

Chapter 4 Section 4.5, in this chapter we formally demonstrate again the properties of

XML document design through Z specification to show the validity of the specification.

In this case study, the G-DID normaliser layer is chosen as an example because it

contains the important properties of XML document design such as 1XNF, 2XNF,

3XNF and 4XNF designs. To show the consistency and correctness of the specification

of the G-DID normaliser constructed in Chapter 5 (Section 5.6), we reapply the same

case study as in Chapter 4 (Section 4.5) throughout this chapter.
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The rest of the chapter is organized as follows. Section 6.2 presents an example of a G-
DTD diagram in a Z specification. Section 6.3 presents the consistency of the
operations in G-DTD normaliser by formally demonstrating the normalization steps to
transform from INXF until to 4XNF design using Z specification. Finally, a summary
of the work is presented in section 6.4.

6.2 Representing G-DTD Diagram in a Z Specification

We illustrate how a G-DTD schema diagram of the university database in Figure 4.2 can
be represented using the Z specification as defined in Chapter 5 (Section 5.5). In a Z
specification, a G-DID schema is represented as a SchemaGDTD. The SchemaGDTD
defines a G-DTD schema in sets and relations expressions with predicates representing
associated constraints. The SchemaGDTD contains a root, Cnodes, Snodes and Attnodes
which represent a root, a set of complex element nodes, a set of simple element nodes
and a set of attribute nodes respectively. The sets of relations named Partof, HasA and
PathLink are presented as relations to represent a set of ordered pairs between a set of
complex element nodes and a set of attribute nodes, a set of ordered pairs between a set
of complex element nodes and a set of simple element nodes and a set of ordered pairs
between a set of complex element nodes and a set of complex element nodes
respectively. In this specification, PatbLink is represented as a sequence of a set of
relation between complex element nodes and complex element nodes. Figure 6.1
presents the SchemaGDTD for the G-DTD diagram represented in a Z specification. As
shown in Figure 6.1, a root which is (1, department, 0) is a special case of a complex
elements node which is always located at level O.The set Cnodes contains four complex
element nodes: {(I, department, 0), (2, course, I), (5, student, 2), (9, lecturer, 3)). The

set of Snodes contains four simple element nodes: {(4, titles, 2), {(7,jhame, 3), (8, lname,
3)}, (11, name, 4)} and the set of Attnodes consists of three attribute nodes: {(3,cno, 2),
(6, sno, 3), (10, tno, 4)).

The Porto/ relation is a type of total and injective function because each complex
element node in Cnodes except the root node (1, Department, 0) has a unique attribute

node. The range of the Porto/relation is a set of attribute nodes: Attnodes, for instance,
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{(2, course, 1) .... (3, cno, 2), (5, student,2) .... (6, sno, 3), (9, lecturer, 3) .... (10, tno, 4)}.

The HasA relation has its domain as a set of complex element nodes and it range as a set
of simple element node; Snodes, for instance: {(2, course, 1) .... (4, titles, 2), (5, student,

2) .... {(7, fname, 3), (8, lname, 3)}, (9, lecturer,3 ) .... ut. name, 4)}. For the

Hteararchicall.tnk; both its domain and range belong to a set of complex element nodes:
Cnodes, for instance <{«I, department, 0) .... (2, course, 1),2, 1..n, 1..1), «2, course,

1) ....(5, student, 2),2, 1..n, 1..n), «5, Student, 2) t-+ (9, lecturer, 3)}>

Root = {(I, department, OJ)

Cnodes = {(l, department, 0), (2, course, 1), (5, student, 2), (9, lecturer, 3))

Snodes = {(4, titles,2), ({7,fname, 3), (8, lname, 3)}, (11, name, 4)}

Attnodes = {(3, cno, 2), (6, sno, 3), (10, lno,4)}

Partof= {(2, course, 1) H (3, cno,2), (5, student, 2) H (6, sno, 3),

(9, lecturer, 3)H (l0, lno,4)}

HasA = {(2, course, 1) H(4, titles,2),

(5, student, 2) H ({7,fname, 3), (8, lname, 3)),

(9, lecturer, 3) H (11, name, 4)}

PathLink = <{(I, department, 0) H(2, course, 1), 2, J..n, 1..1),

((2, course, I)H (5, student, 2), 2, l ..n, l ..n),

((5, student, 2) H(9, lecturer, 3), 2, 1..1, 1..n)}>

Figure 6.1: SehemaGDTD
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KD: {(3, cno, 2) -+(2, Course, 1),

(6, sno, 3)-+(5, Student, 2),

(l0, tno, 4)-+(9, lecturer, 3))

GFD = {(6, sno, 3) -+ {«(7,jname, 3), (8, lname, 3»,

(10, tno, 4)-+ (11, tname, 4)

TFD = (3, cno, 2)-+ (10, tno,4)

(l0, tno, 4)-+ (l1, tname, 4)

(3, cno, 2) -+(11, tname, 4)

PFD = {«3, cno, 2), (10, tno, 4» -+ (11, tname, 4),

(10, tno, 4» -+ (11, tname, 4))

Figure 6.2: Set ofKD and FDs

As shown in Figure 6.2, FD is defined as a set of homogenous relations between a set of

attributes/simple elements and a set of attributes/simple elements

6.3 Consistencyof the Operations in G-DTDNormalizer

In this section, we present formally the G-DTD normaliser operations by demonstrating

how SehemaGDTD is transformed from lXNF, 2XNF, 3XNF and 4XNF design on the

basis of a set of normal forms and normalization rules presented in Chapter 5 (Section
5.6).
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6.3.1 IXNF

The above sehemaGDTD in Figure 6.1 is in lXNF because it satisfies all the seven

predicates listed in the IXNF rules (see functionls_l.xNFin section 5.6.3). We listed all

the predicates as follows:

(1) :1] root = Department (/'rue)

(2) ¥eel, ee2:Cnodesl eel =1= ee2 • eel.name =1= ee2.name (True)

This predicate is true because for set Cnodes, each node has a unique name

(3) vsel, se2:Snodesl sel =1= se2 • sel.name f.se2.name (/'rue)

This predicate is true because for set Snodes, each node has a unique name

(4) Vattl, att2:Attnodesl attl =1= att2 • attl.name '* att2.name
Vattl.level f.att2.level (/'rue)

This predicate is true because for set Attnodes, each node has a unique name

(5) Vhlink: Path_Link • dom hlink.path_link r:Cnodes

11 ran hUnk.path_link eCnodes 11root ~ran hUnk (True)

(6) Vpart _of_link: Part_of • dom part _of_link r:Cnodes

11 ran part _of_link.AttributeKey r:Attnodes

/I root ~ dom part _of_link

(7) Ifhas_link: HasA • dom has_link. hasa r:Cnodes

/I ran has_link.hasa r:Snodes

11 root ~ dom has_link.hasa

(l'rue)

(l'rue)

Since all the seven predicates return the true value, the sehemaGDTD satisfies IXNF.
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6.3.2 Normalize lXNF to 2XNF

Given SchemaGDTD with a set of KD and FD as shown in Figures 6.1 and 6.2
respectively, G-DTD normaliser will check the status of SchemaGDTD using the
function Is_2XNF. The SchemaGDTD is not in the 2XNF form since it does not satisfy
some of the predicates listed in the function Is_2XNF. This can be proved as follows:

Function Is_2XNF contains three predicates:

(1) Is_lXNF (schema) =true

The first predicate is true since the SchemaGDTD has satisfied all the predicates as

shown in section 6.3.1

(2) -'(tlhlinkl' hUnk2: seq Path_Link I

Is_Rel_ Many_to_One (hUnk/.l, schema) = True 11

Is_Rel_Many_to_Many(hlink2.2, schema) = True 11

=1] (hlinkn: seq Path_Linlcllastlink = last hlinkn •

Is_Rel_One_to_Many(lastlink, schema) = True))

-, (True 11 True 11 True) Negation of these predicates returns a false value

In the second predicate, each Path_Link is identified in a sequence starting from the first
position until the last position of the Hieararchical_Link. Function
Is_Rel_Many_to_One is used to check if (I, department, O)I-+{2, course, 1), 2, l ..n, 1..1)

is a many_to_one relationship. This returns a true value since it satisfies the following
condition:

(first rei. pc ~ 1 A second rel.pc ~ 2 A first rel.cc = 1 A second rel.cc = 1)

Function Is_Rel_Many_to_Many, returns a true value for the Path Link «(2, Course,

l)H (5, Student, 2), 2, I.in, l..n) since it satisfies the following condition:
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(first rel.pc ~ 1A rei.second pc ~ 2 A first rel.cc ~ 1A second rel.cc ~ 2)

and Function Is_Rel_One_to_Many returns a true value for the Path_Link ((5,Student,

2) H (9, lecturer, 3),2, 1..1, l ..n) since it satisfies the following condition:

first rel.pc ~ 1A second rel.pc ~ 1Afirst rel.cc = 1A second rel.cc = 2)

Note: pc and cc refer to parent constraint and child constraint respectively.

(3) -, ( tfgivenFD: Funcional Dependencies •

( 3pfd: partial_ FD IPfd= Find_Partial_Dependencies (givenFD) II

pfd Epartial_ dependency) •pfd )

The third predicate indicates that the function Find_Partial_Dependencies returns a true

value since PFD (10, tno, 4)--.(11, name, 4) is found in the set of givenFD as it satisfies
the following predicate:

(tflds: given set FD:

3fdI·fd2:fds IfdI.2 nfd2.1 f:. (lJllfdI.2 = fd2.2 .ld2 Epartial_FD)

For instance: fdl: {(3, cno, 2), (10, tno, 4)) --. {(ll, tname, 4))

fd2: {{(lO, tno, 4))--. {(ll, tname, 4))

thus, the following statement returns a true value as

=fdI.2 nfd2.1 f:. {lJllfdI.2 =fd2.2

= {(3, cno, 2), (10, tno, 4)) n{(lO, tno, 4)) :f.: {IJ II (II, tname, 4) = (II, tname, 4)

=> fd2: (10, tno, 4)--.(lI, tname, 4) is a PFD

Hence, -, (True) = False
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As a result of the conjunction of all the three predicates with the values (True 11False 11

False), the function Is_2XNFwill return the False value. This means the SchemaGDTD
is not in the 2XNF. To transform the SchemaGDTD to the 2XNF design, the following
schema is applied

Second_NormaIForm_GDTD~Restructure_IXNF_schemaGDTD VNot_NormalForm

As presented in Chapter 5 (Section 5.6.4), Schema Restructure_lXNF_schemaGDTD
consists of the following schemas inclusion

(1) Find_PathLink_with_Dependency

(1.1) Find_Partial_Dependencies

(2) Do_Insert_New_ComplexElement_Node

(3) Do_Replicate_Attribute_Node

(4) Do_Replicate_SimpleElement_Node

We present here how each of the above functions is used to normalize the structure of
lXNF SchemaGDTD.

Step 1: Find_PathLink_with_Dependeney

The Find_PathLink_with_Dependency schema returns the value true since there exist
many-to-one and many-to-many relationships in the set of relations PathLink in the
SchemaGDTD. This process is executed using the functions Is_Rel_Many_to_One and
Is_Rel_Many_to_Many (the process similar to predicate in function Is_2XNF). For
instance, with the existence of the following relations in the PathLink set, the schema
will generate an Existence report.

<{(I, Department, O)H(2, Course, 1), 2, l ..n, l ..l},

((2, Course, I)H (5, Student, 2), 2, l ..n, l ..n)}>
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Step 1.1: Function FindPanial Dependencies is used to get the PFD in the givenFD.

In this function, one argument is given, which is a set of FD and returns the PFD

The function FindPanial Dependencies returns (10, tno, 4)-+ (11, name, 4) as it

satisfies the following predicate:

( Yfds: givenFD :

3fdl:fd2:fds Ifdl.2 nfd2.1;J; (iJAfdl.2 = fd2.2 ·fd2 Epartial_FD)

Step 1.2: Then, the parent ofLHS and RHS ofPFD is determined using the relation

Has_A_Link and Part_of_Link. Hence,

Has_A_Link-Q(JO, tno, 4)1= (9, lecturer, 3) A

Part_of_Link-Q(ll, name, 4)P= (9, lecturer, 3)

Step 2: Do_Insert_New_ComplexElement_Node

Once the complex element node (9, lecturer, 3) is determined, the following schema is
applied.

Do_Insert _New _ComplexElemen _Node :e. Insert _NewComplexElemenl_ Node A success
V

ComplexElemenl_ Node _AlreadyExisted

Step 2.1 lnsert_New_ComplexElement_Node will insert a newly created complex

element node into a new position in the SchemaGDTD. Before the insertion is made, a

new complex element node must be created using the function

Create_NewComplexElement_Node. In this function, the properties of the new complex

element node such as ID, name and level are created. The ID is generated automatically

based on the preorder traversal method. For instance in this case, the ID is 12, the name

for the new complex element is given as lecturer_new based on the complex element

node (9, lecturer, 3) which has been determined from step 1.2. The level is equivalent
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to a parent of complex element node (9, lecturer, 3). This process is demonstrated using

the following predicates:

(1) Using parent _ce function

= (9, lecturer, 3) H (5, Student, 2) €parent _ce

~ (9, lecturer, 3) 1:- (5, Student, 2)

~ Getlevel (5, Student, 2)< Get_Level((9, lecturer, 3)

~3-2 = 1

~ (5, Student, 2)

(2) Get_Ievel(lecturer _new)= 2 and Get_ID(lecturernew) = 12

(3) newnode = (12, lecturernew, 2)

(4) (J2,lecturer_new, 2) ~schema.Cnodes

(5) schema'.Cnodes = schema.Cnodes U{(12,lecturer_new, 2))

Step 2.2 The (12, lecturer-new, 2) is linked with a parent node using the following

statement

new_link/ = Create_Path_Link (newnode, parent_ce (parent_ce ce/))

A Path_Link is created between new node (12, lecturer new, 2) and the parent of (5,

student, 2) which is (2, Course, 1) .

The instance of a new Path_Link which is (2, 1..1, l..n) is replicated from the previous

Path_Link between (2, Course, J) and (12, lecturer_new, 2). This process is shown

using the following predicates:

(2, Course, 1) H (12, lecturer new, 2) t:newlink.PathLink ~

(1) (2, Course, 1) H(12, lecturer new; 2)~newlink.PathLink+ (True)

(2) (2, Course, 1) = Parent_ce (12, lecturer_new, 2) (True)
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(3) newlink = (2, Course, 1) H (12, lecturer_new, 2) A newlink.degree = 2 A

(4) newlink.pc = 1..1 A newlink.cc = l..n

(5) schema '.PathLink =

schema.Pathl.ink U{(2, Course, 1) H(12, lecturer new, 2),2,1 ..1, l ..n}

Step 3: Do_Replicate_Attribute_Node

Do _Replicate _Attribute_Node ~ Replicate_Attribute _Node A success
V

Attribute Node _AlreadyExisted

newnode?= (12, lecturer_new, 2) andoldnode? = (9,lecturer, 3)

(1) found_attkey! = partof d(oldnode)P

= Partof d(9, lecturer, 3)P

= (10, tno, 4)

(2) new .ID = IDHn

=13

(3) replicasename = Get_Name (found_attkey!)

= GetName ((10, InO, 4)

= tno

(4) new_level = Get_Level(newnode)+l

=Get_Level (12, lecturer_new, 2)+1

= 2+1 =3

(5) replicate_ott! = Create_Attribute_Node(new_.ID, replicate_name, newlevel)

= Create_Attribute_Node (13, tno, 3)

(6) new_Partof_Linlc = Create_Parto/_Link (replicate_attribute, newnode)
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=Create Partof Link ((13, tno, 3), (12, lecturernew, 2))

= (12, lecturernew, 2) H(13, tno, 3) ePartof

= schemaGDTD 'Partof = schemaGDTD.Partol U

(12, lecturernew, 2) H(J3, tno, 3)

Step 4: Do_ Replicate_SimpleElement_Node

lDo_Replicate _SimpleElementNode ~ Replicate _SimpleElement _Node 11success

Schema Replicate _SimpleElement _Node consists of following predicates

newnode? = (12, lecturer-new, 2) andoldnode? =(9, lecturer, 3)

(1) foundsel = HasAd(oldnode?)P

=HasA d(9, lecturer, 3)P

= (11, tname, 4)

(2) new_ID = IDHn

=IDHI4

(3) replicate name= Get_Name (found_se!)

= Get_Name (11, tname, 4)

= tname

(4) new level = Get_Level(newnode)+1

=Get_Level (12, lecturer new, 2)+1

= 2+1 =3
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(5) replicate se 1= Create_SimpleElement_Node(new_ID, replicate name,

newlevel)

= Create_SimpleElement_Node (14, tname, 3)

(6) new_has_a_linkl =Create_Has_A_Link (replicate_se, newnode)

= Create_Has_A_Link ((14, tname, 3), (12, lecturer new, 2))

= (12, lecturer new, 2) ~(l4, tname, 3) EHasA

= schemaGDTD '.HasA = schemaGDTD.HasA U

(12,lecturernew, 2) ~(14, tname,3)

(7) Snodes' = Snodes \ oldnode

= Snodes \ (11, tname, 4)

(8) Schema '.HAsA = schema.Hass \(9, lecturer, 3) ~ (11, tname, 4)

Step 5: Update a set of complex element nodes, simple element nodes and attribute

nodes

The process of updating is done using the following predicates:

(1) schema'.Attnodes = schema.Attnodes U( 13, tno, 3)

(2) schema'Bnodes = schema.Snodes (9 (14, tname, 3)

(3) schema'Enodes = schema.Cnodes U(12, lecturer new, 2)

(4) schema'.HierachicaILink = schema.HierachicalLink U

{(2, Course, 1) ~(12, lecturer_new, 2), 2,1..1, l..N}

(5) schema'.Partof=schema.PartojLink U{ (12, lecturer new,2) H(13, tno, 3))

(6) schema'.HasA = sehema.Hasn U (12, lecturer_new, 2 ~ 14, tname, 3)

Step 6: Update the data dependencies

Data dependencies are updated using the following predicates
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(1) KD' =KD U{((l3, tno, 3) H12, lecturer new, 2)}

(2) FD'=FD \f(l0, tno, 4) -+ (11, tname, 4)}

(3) FD' = FD U{(13, tno, 3) -+ (14, tname, 3)}

The following Figure 6.3 and Figure 6.4 are the SchemaGDTD in a 2XNF design and

updated set ofFDs respectively.

Root = {(1, Department, OJ)

Cnodes = {(I, Department, 0), (2, Course, 1), (5, Student, 2), (9, lecturer, 3),

(12, lecturer new, 2)}

Snodes = {(4, titles, 2), ({7,jname, 3), (8, lname, 3)}, (14, tname, 3)}

Attnodes = {(3, cno, 2), (6, sno.B), (10, tno, 4), (13, tno, 3)}

Partof= {(2, course, 1) H(3, cno,2), (5, student, 2) H(6, sno, 3),

(9, lecturer, 3) H(10, tno, 4), (12, lecturernew, 2) H(J3, tno, 3)}

HasA = {(2, course, 1) H(4, titles, 2), (5, student, 2) H ({7,jname, 3),

(8,lname, 3)}, ((12, lecturer new, 2) H 14, tname, 3)}

PathLinlc = <{(1, Department, 0) H(2,Course, 1),2, 1..n; 1..1),

((2, Course, l)H (5, Student, 2), 2. l ..n, l ..n),

((5, Student. 2) '""19, lecturer, 3), 2, 1..1, l ..nl}»,

(2, Course, 1) H(l2, lecturernew, 2), 2, 1..1, l ..N»}>

Figure 6.3: Schema GDTD in 2XNF
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KD= {(3, cno, 2) -+ (2,Course, 1),

(6, sno, 3) -+ (5, Student, 2),

(10, tno, 4)-+ (9, lecturer, 3),

(13, tno, 3) -+ (12, lecturer _new, 2))

GFD = {(6, sno, 3) -+ {((7,jname, 3),(8, lname.B),

(13, tno, 3) -+ (14, tname, 3)

TFD = (3, cno, 2) -+ (13, tno, 3)

(13, tno, 3) -+ (14, tname, 3)

(3, cno, 2) -+ (14, tname.B)

PFD = {< (3, cno, 2), (6, sno, 3» -+ (13, tno, 3),

(13, tno, 3) -+ (14, tname, 3))

Figure 6.4: Set ofKDs and FOs

6.3.3 Normalize lXNF to 3XNF

Given SchemaGDTD with a set ofFOs as shown in Figure 6.3 and Figure 6.4, first,

GTO normaliser will check the status of SchemaGDTD using function 1s_3XNF. If the

SchemaGDTD is in 3XNF, the function will return the value true.

Function Is_3XNF contains three predicates:

(1) Is_2XNF (schema) = true

The first predicate is true since the SchemaGDTD has satisfied all the predicates as

shown in Figure 6.3

(2) -.(tlhUnkj, hlink2: seq Path_Link I

Is_Rel_Many_to_One (hUnk/.I, schema) = True A
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Is_Rel_Many_to_Many (hlink2.2, schema) = True A

31 (hUnk,,: seq Path_Link Ilastlink = last hUnk" •

Is_Rel_One_to_Many (Iastlink, schema) = True))

....,(True A True A True) Negation of these predicates returns a false value

In the second predicate, each Path_Link is identified in a sequence starting from the first

position until the last position of the Path_Link. Function Is_Rel_Many_to_One is used

to check if (1, department, 0) H (2, course, 1), 2, l ..n, 1..1) is a many_to_one

relationship. This returns a true value since it satisfies the following condition:

(first rei. pc ~ 1 A second rel.pc ~ 2 A first rel.cc = 1 A second rel.cc = 1)

Function Is_Rel_Many _to _Many, returns a true value for the Path link «(2, Course, 1) H

(5, Student, 2), 2, Ln. l ..n) since it satisfies the following condition:

(first rel.pc ~ 1 A rei. second pc ~ 2 A first rel.cc ~ 1 A second rel.cc ~ 2)

and Function Is_Rel_One_to_Many returns a true value for the path link ((5, Student, 2)

H (9, lecturer, 3), 2, 1..1, l..n) since it satisfies the following condition:

first rel.pc ~ 1A second rel.pc ~ 1 Afirst rel.cc = 1A second rel.cc = 2)

Note :pe and cc refer to parent constraint and child constraint respectively.

(1) ....,(YgivenFD: Funcional Dependencies •

{3tfd: transitive_FD IPfd = Find_Transitive_Dependencies (givenFD)

Apfd Epartial_ dependency} • tfd)
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The third predicate indicates the function Find_Transitive _Dependencies returns a true

value since TFD (3, cno, 2) ~ (14, tname, 3) is found in the set of givenFD as its

satisfies the following predicate:

( t/fds: given set XFD :

3fd},fd2,fd3:fds I (fdl.) nfd2.1) = (J/1 (fd1.2 nfd2.2) = (J)/1fd1.2 =fd2.1 /1

fd3 =fdl.I ~fd2.2 ·fd3etransitive_FD) ·fd3

Forinstance: fdl : (3, cno, 2) ~ (13, tno, 3))

fd2 : (13, tno, 3)) ~ (14, tname, 3)

fd3 :(3, cno, 2~(J 4, tname, 3)

Thus, the following statement returns a true value since

(3, cno, 2) n (13, tno, 3) = (JA (13, tno, 3) n (14, tname, 3) = (J

and fd3: (3, cno, 2)~(14, tname, 3) is a TFD

Hence, ....,(True) = False

The disjunction of all the predicates in the Is_3XNF function returns a false value.

This means the SchemaGDTD is not in the 3XNF. To transform the SchemaGDTD to

the 3XNF form, the following schema is applied.

Third_NormaIForm_GDTD:&Restructure 2XNF schemaGDTD V Not_NormalForm

As presented in Chapter 5 (Section 5.6.5), Schema Restructure_2XNF_schemaGDTD

consists of the following schemas inclusion:
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(1) Find_PathLink _with_Dependency

(2) Query _ComplexElement_ Node

(3) Query_SimpleElement_Node

(4) Query _AttributeKey _Node

We present here how each of the above functions is used to normalize the structure of

2XNF SchemaGDTD to 3XNF design.

Step 1: Find_PathLink_with_Dependency

The schema will return the value true since there exist the following many-to-one and

many-to-many relationship types in the PathLink set:

(1, Department, 0) H(2, Course, 1), 2, Ln. 1..1),

(2, Course, l)H (5, Student, 2), 2, l ..n, l ..n)

Step 1.2: Function FtndTransttive Dependencies is used to get the TFD in the set of

given XFD. In this function, one argument is given which is a set of XFD and return the

TFD

The function Find_Transitive_Dependencies returns (3, cno, 2) -+ (14. tname, 3)

since it satisfies the following predicate:

( Y/ds: givenFD.

3/dl,/d2./d3:/ds I(/dl.1 n/d2.l) = "11 (fdl.2 nfd2.2) = "}ltfdl.2 = fd2.111
fd3 =fdl.l -+fd2.2 ·fd3etransltive_FD) .fd3
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Step 2: Query_ComplexElement_Node

After the TFD is found, the parent ofLHS and RHS ofTFD: (3. cno, 2) -+(14. tname, 3)

is determined using the relation Has_A_Link and Part _of_Link. Hence,

~Part_of_Link-d(3. cno, 2)P= (2. course. 1)

~Has_A_Link-d(l4. tname, 3)1= (12, lecturer new, 2)

~2, course, 1) H(12, lecturer new, 2) t:PathLink (l'rue)

Step 2.1

Once the complex elements (2, course. 1) and (12. lecturer _new. 2) nodes are
determined, the current position of the (12, lecturer _new, 2) node is changed to be

equivalent to (2, course, 1) level.

~(2, course. 1) H(12, lecturer new, 2) t:PathLink

~lecturer_new.level = Get_Level (2. course. I)

=> (12, lecturer_new, 1)

Step 3: Query _SimpleElement_Node

The simple element node of (12. lecturer _new, 2) is determined using the relation
Has_A link and the level of node is changed to one level only. Hence,

~ found_se! = schema.Has _A dee? P

= schema. Has_ A d(12. lecturer _new. 2)1

=(14, tname, 3)

=>Simple_Element.level =Get_Level (found_se!)-I

= 3-1 =2

=> (14. tname, 2)

Step 4: Query_AttributeKey_Node
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The attribute node of (12, lecturer new, 2) is determined using the relation

Part of link.

~found_attlcey! = schema.Part_ofdce?P

=schema.part _ofd (12, lecturer new, 2)P

= (13, tno, 3)

~ Get_Level_Attribute = GetLevel (found_attkey!)-l

=(13, tno, 2)

Step 5: Create_Patb_Link

The (J2, lecturer new, 1) is linkedwith a parent node using the following statement:

new_link! = Create_Path_Link (newnode, parent_ce (parent_ce cel))

The path_link is created between newnode (12, lecturer new, 1) with parent of (5,

Student, 2) which is (1, department, 0).

The instance of path_link, (2, 1..1, l..n) is replicated from the previous path_link

between (2, Course, 1) and (12, lecturer new, 2). This process is shown using the

following predicates

(I, department, O)H (12, lecturer_new, 1) enewlinlc.PathLink ~

(1) (1, department, 0)H(12,lecturer_new,l)$tewlinIc.PathLlnlc+ (True)

(2) (l,department,O)= Parent_ce (12, lecturer_new, 1) (/'rue)

(3) newlink = (I, department, O)H (12, lecturer_new, 1) 11newlinlc.degree = 211

(4) newlink.pc = 1..n A newlink.cc = 1..1

(5) ~schema'.PathLinlc = schema.PathLinlc U

{(I,department, 0) H(12, lecturer new, 1),2, l ..n, 1..1)
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Step 6: Create_Has_A_Link

newlink = (12, lecturer_new, 1) H (14, tname, 2) € newlinkhasa

= sehema'.RasA = schema.Hass (J) (12, lecturer_new, 1) H (14, tname, 2)

Step 7: Create_Part_of_Link

newlink = (12, lecturer new, 1) H (13, tno, 2) € newlinkpan _of

= schema'Partof =schema.Partof (J)

(12, lecturer new, 1) H(13, tno, 2))

Step 8: Update set of complex element nodes, simple element nodes and attributes
nodes

The set of nodes are updated using the following predicates

1) schema'Attnodes = schema.Attnodes (J)(13, tno, 2)

2) schema'Snodes= schema.Snodes (J) (14, tname, 2)

3) schema'. Cnodes = schema. Cnodes (J) (12, lecturer_new, 1)

Step 9: Update the data dependencies

The KD and FD are updated using the following predicates

(l) KD' =KD (j} (1J, tno, 2) -+ (12, lecturer_new, 1)

(2) TFD' = TFD (J)(J, cno, 2) -+(14, tname, 2)

The following Figure 6.5 is the SchemaGDTD in the 3XNF fonn consisting of the
following sets and relations.
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Root = ((1, Department, OJ)

Cnodes = ((I, Department, 0), (2, Course, 1), (5, Student, 2), (9, lecturer, 3),

(12, lecturer new, I)}

Snodes = ((4, titles, 2), ({7,foame, 3), (8, lname, 3)}, (14, tname, 2)}

Attnodes = ((3, cno, 2), (6, sno, 3), (IO, tno, 4), (13, lno,2)}

Partof= ((2, course, 1) H (3, cno,2), (5, student, 2) H (6, sno, 3),

(9, lecturer, 3) H (10, tno, 4) ,(I2, lecturer new, 1) H(J3, tno, 2)}

HasA = ((2, course, 1) H (4, titles, 2), (5, student, 2) H ((7,fname, 3),

(8, lname, 3)}, ((12, lecturer_new, 1) H (I4, tname, 2)}

Pathl.mk = «((I, Department, 0)H(2, Course, 1),2, 1..71, 1..1),

((2, Course, 1) H (5, Student, 2), 2, 1..71, 1..71),

((5, Student, 2) H (9, lecturer, 3), 2, 1.. 1, l ..n)}>,

«1, Department, 0)H(12, lecturer_new, 1) 2, l..n, 1..1»

Figure 6.5: SchemaGDTD in 3XNF
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KD= {(3, cno, 2) -. (2, Course, 1), (6, sno, 3)-.(5, Student, 2)

(10, tno, 4)-. (9, lecturer, 3),

(13, tno, 2) -. (12, lecturer new, I)}

GFD = {(6, sno, 3) -. < (7,fname, 3),(8, lname, 3»,

(13, tno, 2)-. (14, tname, 2))

TFD = {(3, cno, 2) -. (13. tno,2)

(13, tno, 2)-. (14, tname, 2)

(3, cno, 2) -. (14, tname, 2))

PFD = {< (3, cno, 2), (6, sno, 3» -. (13, tno, 2),

(13, tno, 2) -. (14, tname, 2))

Figure 6.6: Set of FDs

6.3.4 Normalize 3XNF to 4XNF

Given SchemaGDTD with a set of FD as shown in Figure 6.5 and Figure 6.6, the G-

DTD normalizer will check the status of SchemaGDTD using function Is_4XNF. If the

SchemaGDTD is in the 4XNF form, the function will return the true value. However

the SchemaGDTD is not in the 4XNF design as it does not satisfy some of the predicates

listed in function Is_4XNF. This can be proved as follows:

Function Is_4XNF contains three predicates

(1) Is_IXNF (schema) = true

The first predicate is true since the SchemaGDTD has satisfied all the predicates as
shown in section 6.3.2
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(2) -'(Vhlinkj, hlink2: seq Path_Link I

Is_Rel_ Many_to_One (hlink}.J, schema) = True'"

Is_Rel_Many_to_Many (hlink2.2, schema) = True,.,

3} (hlinkn: seq Path_Link Ilastlink = last hltnk; •

Is_Rel_One_to_Many (lastlink, schema) = True))

-. (True A True A True) Negation of these predicates retum false value

In the second predicate, each Path_Link is identified in a sequence starting from the first

position until the last position of the Hieararchical_Link. Function

Is_Rel_Many_to_One is used to check if (1, Department, 0) H (2, Course, 1), 2, 1..n,
1..1) is a Many_to_One relationship type. This function retums a true value since its

predicate satisfies the following condition:

(first rei. pc ~ 1 /\ second rel.pc ~ 2 /\ first rel.cc = 1 /\ second rel.cc = 1)

Function Is_Rel_Many_to_Many, returns a true value for the Path_Link «2, Course,

1)1-+(5, Student, 2), 2, l..n, I..n) since it satisfies the following condition:

(first rel.pc ~ 1 /\ rei. second pc ~ 2 /\ first rel.cc ~ 1 /\ second rel.cc ~ 2)

and Function Is_Rel_One_to_Many returns a true value for the Path_Link «5, Student,

2) 1-+(9, lecturer, 3), 2, 1..1, I..n) since it satisfies the following condition:

first rel.pc ~ 1/\ second rel.pc ~ 1 rcftrst rel.cc = 1 /\ second rel.cc = 2)

Note :pc and cc are refer to parent constraint and child constraint respectively.

(3) ....,(VgivenFD: Funcional_Dependencies •

{3gfd: global_FD Igfd = Find_Global_Dependencies (givenFD) /\

gfd eglobal_ dependency} • gfd)
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The third predicate indicates that the function Find_Global_Dependencies returns a true
value since GFD {(6, sno, 3) -. {< (7,fname, 3),(8, lname, 3»} is found in the set of
givenFD since it satisfies the following predicate:

( 'v'fds: givenFD •

(:lfd.ids, att: Attribute Node: se: SimpleElement_node,· ce: ComplexElement_node I

currentelement =getFD_element (fd) A current_element = att Use

A get_level (att) = get_level (se) A Is_last (se, schema) = true

A has_link tauP=part of_link dseP~ att HSe Egloba/_FD) •fd)

For instance: fd: {(6, sno, 3) -. {< (7./name. 3),(8. lname, 3»)

Since all attribute nodes and simple element nodes are located at the same level, which
where is the last level in the schemaGDTD.

Hence, ...,(True) = False

The conjunction of all the three predicates with (True A False A False) will return a
False value. This means that the SchemaGDTD is not in the 4XNF. To transform the
SchemaGDTD to the 4XNF form, the following schema is applied:

!Fourth Norma/Form GDTD:&Restructure 3XNF schemaGDTD VNot NormalForm- - - - -

As presented in Chapter 5 (Section 5.6.6), Schema Restructure_3XNF_schemaGDTD
consists of the following schemas inclusion

(1) Find_Path_Link_with_Dependency

(1.1) Find_Global_Dependencies
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(2) Do_Insert_New_ComplexElement_Node

(3) Do_Replicate_Attribute_Node

(4) Do_Replicate_SimpleElement_Node

We present here how each of the above functions is used to normalise the structure of
SchemaGDTD.

Step 1: Find_Path_Link_with_Dependency schema returns the value true since there
exist many-to-one and many-to-many relationship in a set of relation PathLink in the
SchemaGDTD. For instance, with the existence of the following path links,

<{(I, Department, 0)H(2, Course, 1),2, l ..n; 1..1),

((2, Course, J)H (5, Student, 2), 2, l ..n, l ..n)>,

<{(I, Department, 0) H(12, lecturer new, 1) 2, Ln. 1..1)}>

the schema then generates an Existence report.

Step 1.1: Function Find_Global_Dependencies is used to get the GFD in the given FD.
In this function, one argument is given which is a set of FD and returns the GFD

The function Find_ Global_Dependencies returns

{(6, sno, 3) --+ {<(7,fname, 3),(8, lname, 3»)

Step 1.2: Then, the parent ofLHS and RHS ofGFD is determined using the relation
Has_A_Link and Part_oJ_Link Thus,

Has_A_Link-Q{(7,fname, 3),(8, [name, 3)}P= (5, student, 2) A

Part_of_Link-Q((6, sno, 3))P= (5, student, 2)

Step 2: Once the complex element (5, student, 2) is determined, schema
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!po_InsertNewComplexElement _Node ~ Insert _NewComplexElement _Node 1\

success V
ComplexElement _Node _AlreadyExisted

is applied.

Step 2.1 Insert_New_ComplexElement_Node will insert a newly created complex
element node into a new position in the schemaGDTD. Before the insertion is made, the
new complex element node must be created using the function
Create_NewComplexElement_Node. In this function, the properties of the new complex
element node such as ID, name and level, are created. The ID is generated automatically
based on the ordered preorder traversal method. For instance, in this case the ID is IS,
the name for a new complex element is given as student_new based on the complex
element node (5, student, 2) which has been determined from step 1.2. The level is
equivalent to level I. This process is demonstrated using the following predicates

(1) student new.level = 1 and student_new.ID = 15

(2) newnode = (15, student_new, 1)

(3) (15, studem new, 2) E schema.Cnodes

(4) schema'.Cnodes = schema.Cnodes U((J5, student_new, J)}

Step 2.2 The (15, student_new, 1) is linked with a root node using the following
statement

new link! = Create_Path_Link (newnode, rootnode)

A Path_Link is created between the newnode (15, student_new, 1) and root node which
is (1, department, 0).
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The instance of a new Path_Link which is (2, Lin, 1..1) is replicated from the previous

Path_Link between (1, department, 0) and (l5, student_new, 1). This process is shown

using the following predicates:

(1, department, 0) .... (15, student new, 1) Enewlink.PathLink~

(1) (1, department, 0) .... (l5, student_new, 1) E newlink.PathLink (Irue)

(2) Isroot (I.depanment, 0) (l'rue)

(3) newlink = (1, department, 0) t-+ (15, student_new, 1)

(4) newlink.degree = 2 A

(5) newlinkpc = 1..1 Anewlink.cc = l ..n

(6) schema 'Pathllnk = schema. PathLink U

{(I, department, 0) .... (15, student_new, 1),2, l ..n, 1..1)

Step 3: Do_Replicate_Attribute_Node

Do_Replicate_Attribute _Node ~ Replicate_Attribute _Node Asuccess
V

Attribute_Node _AlreadyExisled

newnode ?= (l5, student_new, 1) and oldnode?= (5, lecturer, 2)

(1) found_att! =partoft; (oldnode?) D

=Part 0/0 (5, lecturer, 2) D

= (6, sno, 3)

(2) newID = ID ....n

= 16

(3) replicate name = Get_Name (found_att!)

=GetName ((6, sno,3)

=sno
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(4) new jlevel = GetLeveltnewnode) +1

= GetLevel (15, student_new, 1)+1

= 1+1 =2

(5) replicateottribute = create_Attribute_Node(newID, replicate name, newlevel)

= create_Attribute_Node (16, sno, 2)

(6) new _Partof_linJc! =Create_Portof_Link (replicate_attribute, newnode)

= Create_Porto/_Link ((16, sno,2), (15, student_new, 1))

= (15, student_new, 1) .... (16, sno, 2) E Partof

(7) schemaGDTD'.Parto/= schemaGDTD U (15, student_new, 1) .... (16, sno, 2)

Step 4: Do_ Replicate_SimpleElement_Node

1D0_Replicate _SimpleElementNode 0 Replicate _SimpleElement _Node A success

Schema Replicate SimpleElement_Node consists of the following predicates:

newnode? = (15, student_new, 1) and oldnode? = (5, student, 2)

(1) found_se!= HasA 0(5, student, 2) D

= {(7,/name, 3), (8, lname, 3)}

(2) new_ID = ID n

=ID {I7, 18}

(3) replicate name= Get_Name (oldnode?)

= Get_Name (5, student, 2)

= {fname, lname}

(4) new_level =Get_Level (newnode?) +1
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= GetLevel (15, student_new. 1)+ 1

= 1+1 =2

(5) replicatese = Create_SimpleElement_Node(new_ID. replicate name,

newlevel)

=Create_SimpleElement_Node (17.jname. 2).

=Create_SimpleElement_Node (18.lname. 2)})

(6) new has a link! =Create Has A Link (replicate se. newnode)- -- - -- -

= Create_Has_A_Link (((17.jname. 2). (l5, student_new. I)}

= Create_Has_A_Link (((l8. lname, 2), (l5, student_new, I)}

= (l5, student new, 1) 1-+ (((17,jname. 2)) EHasA

= (15, student new, 1) 1-+ (((l8,jname, 2)) E HasA

(7) schemaGDTD '.HasA = schemaGDTD U

((IS, student_new, 1) 1-+(((17,fname, 2)

(15, student_new, 1) 1-+ (18, lname, 2)})

(8) Snodes' = Snodes \ oldnode

=Snodes \ ({7,fname, 3),(8, lname, 3)}

Step 5: Update the set of complex element nodes, simple element nodes and attribute

nodes using the following predicates

(1) schema'.Attnodes = schema.Attnodes U(16, sno, 2)

(2) schema'Bnodes = schema.Snodes E9 (((l7,fname, 2),(l8, lname, 2)})

(3) schema'iCnodes = schema.Cnodes U (15, stUdent_new, 1)

(4) schema'.HierachicaILink = schema.HierachicalLink U

((I, department, 0)1-+(15,student_new, 1),2, 1..n, I..I)

(5) schema'.Partof=schema.PartofU (l5, student_new, 1) 1-+ (16, sno, 2)}

237



(6) schema'.HasA = schema.Hass U

(15, student_new, I)H({(17,/name, 2),(18, lname, 2)})

Step 6: Update the data dependencies using the following predicates

(1) KD' = KD U {(l6, sno, 2) --.{15, student_new, 1)

(2) FD' = FD U {(16, sno, 2) --. ({17,fname, 2),(18, lname, 2)}}

The following Figures 6.7 and 6.8 are the &hemaGDTD in the 4XNF and set of FO.

Root = {(I,Department, OJ)

Cnodes = {(I, Department, 0), (2, Course, 1), (5, Student, 2), (9, lecturer, 3),

(12, lecturernew, 1), (15, student_new, I)}

Snodes = {(4, titles, 2), {(l7,/name, 2), (18, Iname,2)}, (14, tname, 3)}

Attnodes = {(3, cno, 2), (6, sno, 3), (lO, tno, 4), (13, tno, 3), (16, sno, 2)}

Partof= {(2, course, I)H(3, cno, 2), (5, student. 2) H(6, sno, 3),

(9. lecturer, 3)H (10, InO, 4) ,(12, lecturer_new, 2)H(J3, tno.B),

(l5, studem new, 1)H(16, sno, 2)}

HasA = {(2, course, 1)H(4, titles, 2),

(15, student, 2)H {(l7,/name, 3), (l8, tname, 3)},

(12, lecturer new, 2)H 14, tname, 3)}

Pathiink = <{(1, Department, 0) H(2, Course. 1), 2. Ln. 1..1),

(2, Course, l)H (5, Student, 2), 2, l ..n; l ..n),

(5, Student, 2)H (9, lecturer, 3), 2, 1..1, l ..n)}>,

< {(l, Department, O)H(2, Course, 1),2, l ..n, 1..1)

(2, Course, l)H (12, lecturer_new, 2), 2, 1..n, l .. l)}>

Figure 6.7: SchemaGDTD in 4XNF
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KD= {(3, cno, 2) -+ (2, Course, 1),

(6, sno, 3)-+ (5, Student, 2),

(10, tno, 4)-+ (9, lecturer, 3),

(13, tno, 2) -+ (12, lecturer_new, 1)

((16, sno, 2) (15, student_new, I)}

GFD = {(16, sno, 2) -+ {< ((17,jname, 2), (18, lname, 2»

(13, tno, 2)-+ (14, tname, 2)

TFD = (3, cno, 2) -+ (13, tno, 2)

(13, tno, 2)-+ (14, tname, 2)

(3, cno, 2) -+ (14, tname, 2)

PFD = {(3, ono, 2), (13, tno, 2) -+ (14, tname, 2),

(13, tno, 2) -+ (14, tname, 2)}

6.4 Summary

Figure 6.8: Set ofKDs and FOs

In this chapter, we have tested the formal specification of the XML document design
prototype, specifically the OOTO normaliser operations. To show the consistency and
the correctness of the specification, we reused the same case study as provided in
Chapter 4 and demonstrated step by step how the schema OOTO can be transformed
from lXNF design to 4XNF design in a formal way. We show that our specification for
the OOTO normalizer operations defined in Chapter 5 is consistent with the normal
forms and normalization rules defined in Chapter 4. This proves that our approach can
be used as a prototype to design a non-redundant XML document and gives confidence
that our prototype can be implemented successfully to generate an automatic XML
document schema design.
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Chapter7

Conclusion and Future Work

7.1 Contributions oftbe Research

This thesis has examined the requirements and problems of XML documents schema
design. This thesis argues that to produce a non-redundant schema of an XML
document for application A, we should first produce a conceptual modeJ, G-DTD at
schema level and then apply a normalization rule to transform G-DTD into a normal
form G-DTD' and finally convert the conceptual model G-DTD' back to the XML
schema DTD (see also statement of hypothesis in the Introduction).

To assess and support this research hypothesis, a main research aim and several
objectives were defined. In the following discussion, we revisit these objectives and
summarize how, and to what extent, they have been achieved.

Objective 1. To investigate how design guidelines for relational schema are applied to
XML database schema design using normalization theory. This involves
examining XML functional dependency (XFD) concepts, discussing various
definitions of XML normal forms based on these XFDs and highlighting their
strengths and limitations.

This thesis investigated an approach to database design and discussed theory that has
been developed to design non-redundant schema related to relational databases in
general. The review of database design theory presented in Chapter 2 provides the basic
concepts like data dependency, such as functional dependency. key dependency and
multi valued dependency. These data dependencies are formal constraints among
attributes, which are used as the main tool for formally measuring the semantic relations
among attributes. The functional dependencies, key dependencies and multi-valued
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dependencies can be used to group attributes into a normal form relation schema. To
address the normalization process, algorithms for 3NF and BCNF design that are based
on functional dependency are presented.

The thesis also described how design guidelines for relational schemas are applied to
XML document schema design using a normalization theory. As a relational database,
XML documents are also associated to a schema. Previous studies used DTD as a
schema for XML documents. In this thesis, we have presented and compared
thoroughly the notion of data dependency, namely, XML functional dependencies
(XFDs) by looking into the approaches taken to define the XFDs. The advantages and
disadvantages of the XFDs are highlighted with particular emphasis on semantic
expressiveness, which is a desirable property for defining XML normal forms.

In this thesis, various definitions of XML normal forms proposed by Arenas and Libkin
(2004), Vincent et al. (2004), Wang and Topor (2005), Kolahi (2007) and Vu and
Jagadish(2008) are presented and discussed. Most of them proposed the XNF, except
Kolahi proposed XML third normal form (X3NF). From the study of the characteristics,
we identified that XML normal form XNF, proposed by Arenas and Libkin (2004)
achieves the best possible design from the point of view of eliminating redundancies in
XML documents (Kolahi, 2007). Arenas and Libkin (2004) have defined XFDs and
XML normal forms (XNF) entirely on the concept of 'tree tuple' within the context of
the XML document and DTD.

However, it was found that the problem with Arenas and Libkin's approach is that the
way they express the semantic constraint i.e. XFD is complicated due to the textual
presentation of a DID. This led to difficulty in term of XML normal form notion and
posed an obstacle to database designer in designing redundancy-free XML document
schema. We have therefore suggested that this approach needs simplification for the
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benefit of the users. The new approach and method are explained further in the next

objectives.

Objective 2. To propose a systematic approach to simplify XML document schema
design by proposing a graphical XML schema based on DTD called Graph Data
Type Definition (G-DTD) at the schema level. We believe having the G-GTD
model as a tool could describe the structure of XML documents at the schema
level clearly and precisely

This thesis has proposed G-DTD, as a conceptual model to describe XML document at
the schema level in a precise and simple way. Following the review of prominent
current XML models, we have decided to adopt some of ER diagram (Chen, 1976) and
ORA-SS diagram (Dobbie et al., 2000) notation in the G-DTD's notation, based on the
argument made in Chapter 3. We accommodated semantic constraints in the G-DTD
explicitly to help to achieve automation of XML document schema normalization.

In Chapter 3, the objective and the rationale of having G-DTD were discussed. The
structure and semantics of G-DTD were introduced and developed to describe the XML
document at the schema level. G-DTD consists of five main parts: complex element
node, simple element node, attribute node, root node and relationship type. G-DTD
represents an XML document in a simpler and clearer manner compared with the
original textual representation, DTD. The second important property of the G-DTD is
that it has path links, Part_of link, and Has_A link type. These properties distinguished
G-DTD from other data models. More importantly, the semantic relationship between
complex element types can be modelled at the schema level using n-ary one-to-
many/many-to-one/many-to-many path relationships.

The thesis also presented the conceptual operations of the G-DTD model, which
describes the dynamic properties of the model. These operations are classified into five
main parts: Query operations, Insert operations, Delete Operations, Replicate Operations
and Update Operations. These operations are important as they are basic operations
during the normalization process, which we discussed further in Chapter S.
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The result of G-DTD offers a clear and precise meaning for designers by providing them
with information on the structure of attributes, simple element and complex element
types and the semantic relationship between them. This ultimately helps contribute to a
better understanding of DTD and DTD design. In Chapter 4, the thesis has shown that
having the G-DTD as a tool can assist in the design process, i.e. the normalization
process which as it is always easier to understand and interpret than a theoretical
approach.

Once the G-DTD is in a normal form design, it is important to transform it back to DTD.
To enable G-DTD to be used practically, the thesis proposed transformation rules to
transform from G-DTD back to DID.

Objective 3. To redefine a set of normal forms for G-DTD on the basis of Arenas and
Libkin's rule (2004) and Lv et at's rules (2004), which is easy to understand
and implement programmatically. To achieve this, a basic property of XML
normal form, which is functional dependency, is proposed, such as relationship
dependency, partial functional dependency, transitive functional dependency
and global functional dependency. In the context of XML document schema
normalization, it is important to develop normalization rules to transform an
XML document schema into a normalised one.

The thesis has refined a set of normal forms for G-DTD called as First Normal Form
(IXNF), Second Normal Form (2XNF), Third Normal Form (3XNF) and Fourth Normal
Form (4XNF). The set of normal forms for G-DTD have been generalised from Arenas
and Libkin (2004) and Lv et al.'s (2004) normal fonn. In defining these nonnal forms
we have adopted and applied traditional data dependencies based on functional
dependency, transitive dependency and partial dependency.

The thesis enhanced the normalization algorithm proposed by Arenas and Libkin (2004)
by adding two rules. One rule is to check whether a semantic constraint caused by GFD,
TFD or PFD existed. If one of these constraints exists, a complex element node together
with its children are moved up to another location and level or a new complex element
node is created and put under a root node. These rules are used to eliminate TFD and
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PFD in the O-DID. The other rule is to check the structure of O-DTD by considering
one-to-many, many-to-many or many-to-one path links between complex element nodes
in O-DID. Particularly, these algorithms have restructured the original O-DTD by
considering the tree structure, the level of nodes and semantic relationship types
between nodes associated with a given set of functional dependencies.

In Chapter 4, a case study illustrated and demonstrated that the application of O-DTD
normal forms and normalization rules achieved a redundancy-free XML document
schema design. In this case study, we showed how a O-DTD can simplify the complex
procedure of XML document design and normalization. Even though the length of the
XML document is longer than the original document, the structure is free from data
redundancy and update anomalies. Although our approach uses a simple case study, it
supports the claim that users (designers) can benefit in development of real XML
document schema normalization.

The thesis has compared the approach with the previous work proposed by Arenas and
Libkin (2004), Lv et a1.(2004) and Kolahi (2007) based on three criteria: Expression of
DID structure, XML normal forms and normalization algorithm. From the discussion,
we found that our approach complements to Arenas and Libkin's approach, since it
produces the same result as Arenas and Libkin. However, our approach provides an
alternative method which is easy to implement and more practical, because it is a
simple, precise and understandable and more importantly it works with a minimum of
abstract concepts. It is relatively easier for a schema designer. Another benefit is the
new set of normal form presented in this thesis, which has shown three advantages.
First, the designer can indentify complex elements, simple elements and attributes
graphically and can add the relationship types between the nodes from the user
specification. This will give more control to the designer to evaluate each successive
normal form O-DTD. Second, normalizing the O-DTD can effectively removes
redundancies and anomalies at a schema level. More importantly, it is able to preserve
both DTD tree structure and XML document structure and satisfy user requirements.
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Objective 4. To develop a prototype of an XML document schema design using a
formal approach. More specifically, to propose a formal framework of XML
document normalization using Z formal specification language in order to give a
precise and a clearer understanding of the whole system requirement.

The thesis proposed a novel prototype of an XML Document Schema Design. This is to
support the claim that users (designers) can profitably bring formal specification to bear
in development of a real XML Document Schema Design tool. The complete
framework and formal specification of the XML Document Design model was presented
in Chapter S. The full specification of the model using Z notation was constructed,
which gives the precise and clear meaning of the model.

This formal description is divided into three main layers: the G-DTD layer which aims
to define the data types and operations precisely to reveal the semantic constraint of the
G-DTD model; the G-DTD normalizer layer which presents the operations and
functions required to transform from one normal form to another normal form. A
specification to define normalization rules for normalization of G-DTD schema is
constructed and appJied to the rules for normalization presented in Chapter 4. Finally
the G-DTD translator layer which presents the operation to map from G-DTD back to
DTD is presented. The specification has shown that it is both possible and promising to
use our approach to design non-redundant XML document schema in a practical way.

Objective S. The final research objective is to test the specification constructed to show
the consistency of the specification using a simple case study

The thesis developed a justification of the XML document design specification. The
justification can be found in Chapter 6. The rationale of this specification testing is to
enable us to demonstrate that the specification constructed in Chapter 5 is satisfied and
consistent with certain fundamental criteria of XML document design. This will
increase the confidence in the implementation later. We tested the properties of XML
document design, in particular in G-DTD normaliser layer, to seek the validity of the
specification and assurance that the specification can be used to derive a required
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normal form one using our normalization algorithm. It can therefore increase the

confidence in the design model before the decision is taken to progress towards the

implementation of the model.

7.2 Limitations and Future Research

Having discussed the contributions that this research has made to the current state-of-

the-art in XML design, we would like to look at the limitations of the work, and

promising avenues for future research.

(1) The scope of the research is applied and limited to a simple DTD schema with

simple application only. However this approach can be extended in future to be

applied to a more complex DTD. In this way, the G-DTD model can be enriched

to allow users to declare more general applications with specific integrity

constraints. This model can also be extended to another schema language such as

XSD. Such extension is trivial because the syntax and semantics used in the

model can be generalized to XSD with some changes, as there is a similarity

between XSD and DTD in structure (Bex et al., 2004). Recently, XSD has

become one of the primary schemas for XML documents and is widely supported

by many applications (Lv. and Van, 2006). This is because XSD addresses most

of shortcomings of DTDs and in particular, is more expressive than DTDs and

most importantly it uses XML as the syntax for describing schemas (Marten et al.,

2007). XSD itself provides a rich set of data description mechanisms, including

mixedlfived value, empty content and cardinality constraints. It would be

interesting to incorporate there features into the G-DTD model.

(2) Another limitation is the time to implement the system. We provide only a

precise framework of XML document design using Z specification. Of course,

developing a formal specification is not easy and quite challenging; hence we are

bound to make mistakes. However, writing a specification led to the discovery of

some difficulties in the earlier design and enabled the final prototype to meet the

definition of the data model. Thus, the programming effort is much reduced when

there is a formal specification of the data model. For future work, an automatic
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XML document design system could be developed based on our formal
specification in order to derive an automatic generation of non-redundant XML
document design. The XML_DM system will consist of three major components:
(1) a graphical input layer to assist users in drawing their application-specific G-
DTD. This input must be conducted in an easy, natural and user-friendly manner
for the purpose of editing and drawing a G-DTD. (2) A normalization layer that
performs the automatic normalization process, which is always easy to understand
and interpret rather than a theoretical approach. This can offer a facility to
normalize the schema in one click. This can enable the XML document designer
to have this automation performed at a very early stage of XML document design,
i.e. at the conceptual level. (3) An output layer that shows the transformation
results in a DTD schema file.

(3) In theory, another avenue for potential future research is using formal methods to
help validate the G-DTD model. Proofs of important properties of the G-DTD
model could, in principle help the designer to build a confidence in the claim that
the model captures the intuitively desired structure and meanings. Formal
verification of G-DTD properties against such a specification could similarly
build confidence that the specification will be satisfied by the implementation.
Our work provides a concrete starting point for exploring this idea.
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Appendix A

Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesis. The glossary is

based on the glossary of Z notation presented in Spivey (1982)

A.I Schema Notation

Schema is the basic unit in Z. It contains a two-dimensional graphical notation for

grouping together. It has the following basic form:

SchemaName __

[ Declarations
Predicate

The declaration part is used to define variable names, each with a type. The predicate

part presents a relationship between the variables declared in the declaration part

The schema also can be written in a linear form as follows:

Schemablame ~ [ Declaration IPredicate]

A.I.I The A and E Conventions in Schema

The A notation is used for a schema to represent the change of state. Suppose we have a

schema S. In a linear form the schema S can be written as follows:

For example AS ~ SAS'

S __

[ aa.Deolarattons
Predicate
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Then as can be represented as follows:

68 __

S
S'

Predicate

In a linear form the schema S can be written as follows:

as ~ SA S'

The E notation is used for a schema to represent no change of state

ss
[fas-=-a-a-'------------------------------------------

A.2 Axiomatic Definitions

According to Spivey's definition (Spivey, 1982), an axiomatic schema introduces a

global variable definition. It can be used throughout the whole specification. It has the

following basic form:

Declarations

Predicate

A.3 Set in Z
Z the set of integers (whole numbers)

N the set of natural numbers( ~ 0)

NI the set of positive natural numbers ~ 1)

t ES t is an element of S

te: S t is not an element of S

S~ T S is contained in T

SeT S is strictly contained in T
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o or {} the empty set

PS Power set: the set of all subsets of S
IFS the set of finite subsets of S
SuT Union

SnT Intersection

S\T Difference

-:f not equal

A.4 Relations in Z

X, Y are sets and R is the name of a relation

X x Y the set of ordered pairs of X and Y

X +-+ Y the set of relations fromX to Y

x ....y (x,y)

dom R the domain ofa relation={ x:XI(3 y:Y . x Ry)· x}

ran R the range of a relation= {y:YI (3 x:X. x R y) • Y }
ROSD the relational image ofS in R

S<lR the relation R domain restricted to S

Se>R the relation R range restricted to S

S~ R the relation R domain anti-restricted to S

s ~R the relation R range anti-restricted to S

R+ the repeated self- composition of R

R- the inverse of R

A.S Function in Z

X -++ Y the set of partial functions fromX to Y

={ f: X +-+YIr EX -++ Y 1\ 'fly: ran r. (3) x:dom f .(x, y) E f)}

X -+Y the set of total functions fromX to Y

= {f:X -++ YI dom f= X. f)

the set of total injection functions fromX to Y
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fx or f(x)

fEag

the function fapplied to x

functional overriding = (dom g ~ f) U g

A.6 Sequences in Z

Seq X The set of sequence whose elements are drawn from X

={ 8:N -t+ XI dom 8 = 1..#8}

#8 The length of the sequence S

={ 1 1-+ Xh •••, n 1-+ Xn}

=81

=8#8

HeadS

Last 8


