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ABSTRACT 

IMAGE ANNOTATION AND RETRIEVAL BASED 

ON MULTI-MODAL FEATURE CLUSTERING AND 

SIMILARITY PROPAGATION 

Mohamed Maher Ben Ismail 

May 13, 2011 

The performance of content-based image retrieval systems has proved to 

be inherently constrained by the used lowlevel features, and cannot give 

satisfactory results when the user's high level concepts cannot be expressed 

by low level features. In an attempt to bridge this semantic gap, recent 

approaches started integrating both low level-visual features and high-level 

textual keywords. Unfortunately, manual image annotation is a tedious 

process and may not be possible for large image databases. 

In this thesis we propose a system for image retrieval that has three mains 

components. The first component of our system consists of a novel possi­

bilistic clustering and feature weighting algorithm based on robust model­

ing of the Generalized Dirichlet (GD) finite mixture. Robust estimation of 

the mixture model parameters is achieved by incorporating two complemen­

tary types of membership degrees. The first one is a posterior probability 

that indicates the degree to which a point fits the estimated distribution. 
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The second membership represents the degree of "typicality" and is used 

to indentify and discard noise points. Robustness to noisy and irrelevant 

features is achieved by transforming the data to make the features indepen­

dent and follow Beta distribution, and learning optimal relevance weight 

for each feature subset within each cluster. We extend our algorithm to 

find the optimal number of clusters in an unsupervised and efficient way 

by exploiting some properties of the possibilistic membership function. We 

also outline a semi-supervised version of the proposed algorithm. 

In the second component of our system consists of a novel approach to un­

supervised image annotation. Our approach is based on: (i) the proposed 

semi-supervised possibilistic clustering; (ii) a greedy selection and joining 

algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is 

based on possibilistic memebership degrees to annotate an image. 

The third component of the proposed system consists of an image retrieval 

framework based on multi-modal similarity propagation. The proposed 

framework is designed to deal with two data modalities: low-level visual 

features and high-level textual keywords generated by our proposed im­

age annotation algorithm. The multi-modal similarity propagation system 

exploits the mutual reinforcement of relational data and results in a non­

linear combination of the different modalities. Specifically, It is used to 

learn the semantic similarities between images by leveraging the relation­

ships between features from the different modalities. 

The proposed image annotation and retrieval approaches are implemented 

and tested with a standard benchmark dataset. We show the effectiveness 

of our clustering algorithm to handle high dimensional and noisy data. We 

compare our proposed image annotation approach to three state-of-the-art 
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methods and demonstrate the effectiveness of the proposed image retrieval 

system. 
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CHAPTER 1 

INTRODUCTION 

The widespread use of digital cameras, mobile phones with built-in cam­

eras, and the storage of personal computers reaching a level of hundreds of 

gigabytes generated huge amounts of non-textual information, such as im­

ages stored in digital libraries. Meanwhile, photo sharing communities [1, 2] 

through the internet are becoming more and more popular. This exponen­

tial growth in image databases has demonstrated that simply increasing 

information quantity and its availability could be counterproductive if this 

is not coupled with automated tools for storing, searching, and retrieving. 

Consequently, Content-Based Image Retrieval (CBIR) emerged as a new 

research field [3, 4]. CBIR involves the development of automated meth­

ods that are able to recognize the visual features of the images such as 

texture, color and shape, to characterize the salient information in the 

image, and to make use of this information in the indexing and retrieval 

processes. Building an efficient CBIR system requires tools from different 

disciplines. During the past few years, several CBIR systems have been 

proposed [22, 23] and research has focused on various topics such as sys-
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tern design [5], feature extraction [58], high dimensional indexing structures 

[6], similarity measures [7], perception analysis [8], semantic analysis [11], 

relevance feedback [21], user interfaces and user studies [66]. 

Unfortunately, after almost two decades of research in this field, the per­

formance of most CBIR systems has proved to be inherently constrained 

by the used low-level features, and cannot give satisfactory results when 

the user's high level concepts cannot be expressed by low level features. In 

an attempt to bridge this semantic gap [24] and make the retrieval systems 

more accurate and efficient, few approaches that integrate low level visual 

features and textual features, used as caption to annotate images, have 

been proposed [5, 6, 7]. Unfortunately, manual image annotation is subjec­

tive and labor intensive since image databases can be very large. Moreover, 

region labeling may be needed, which makes the process more tedious. To 

address this issue, few algorithms that can annotate images/regions in an 

unsu pervised (or semi-supervised) manner have been proposed recently. 

Learning image semantics can be posed as either a supervised or unsu­

pervised learning problem. The earliest efforts in this area were directed 

towards the reliable extraction of simple semantics, e.g., differentiating in­

door from outdoor scenes [8], and cities from landscapes [9]. These efforts 

posed the problem of semantic extraction as one of supervised learning. 

That is, a set of training images with and without the concept of interest 

are collected and a binary classifier is trained to detect that concept. The 

classifier is then applied to each image in the database to annotate it with 

respect to the presence or absence of the concept. 

Recently, there has been an effort to solve the annotation problem in 

greater generality by resorting to unsupervised learning. In fact, researchers 
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turned to machine learning algorithms to build automatic annotation sys­

tems [10, 12, 13, 14]. Some image annotation approaches [15, 16] treat the 

problem in two independent stages. First categorizing the images, and then 

associating labels to them using the top ranked categories. Others, rely on 

the basic idea that the visual features corresponding to the same keyword 

are coherent. These methods rely on image segmentation and identifying 

homogeneous image regions which share the same semantics. An example 

of this approach is the method proposed by Duygulu et al. [17] which treats 

the problem as a translation of image regions to words. Another approach, 

proposed by Mori et al. [18], uses co-occurrence statistics of fixed im­

age grids and words to model the associations. More recently, constrained 

clustering followed by semi-naive Bayesian model [19] and unsupervised 

clustering and feature discrimination (SCAD) [20] have been adapted to 

image annotation. 

Most of the existing approaches use clustering algorithms to group image 

regions into prototypical region clusters that summarize the training data 

and can be used as the basis for annotating new test images. However, the 

clustering problem in this application is not trivial as it involves high di­

mensional and possibly multi-modal features. One possible approach that 

proved to be effective to cluster high dimensional data is to perform clus­

tering and feature discrimination simultaneously [63, 64, 65]. However, 

learning using clustering and feature discrimination algorithm, like other 

unsupervised learning methods, may lead to sub-optimal solutions depend­

ing on the complexity of the data. To overcome this potential drawback, 

partial supervision could be used to "guide" the clustering process. 

Most of the existing image database categorization methods assume that 

the data can be modelled by a mixture of Gaussian distributions. However, 
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this assumption rarely holds in a very high-dimensional space and can 

affect the performance of subsequent annotation steps. Another common 

drawback associated with most existing image annotation methods is that 

they assume that region clusters are independent. For instance, many 

images may include planes in the sky, or animals on grass. Thus, one could 

not assume that the "planes" and "sky" regions are independent. This 

independency assumption could lead to inaccurate image annotation and 

eventually to the retrieval of irrelevant images. 

In this thesis, we propose an efficient and effective approach that addresses 

the above issues. Our approach consists of three main contributions. First, 

we propose a possibilistic approach to model image regions using a mix­

ture of Generalized Dirichlet (GD) [75, 76] distributions. This approach 

associates two types of memberships with each image region. The first 

one is the posterior probability and indicates how well a sample fits each 

estimated distribution. The second membership represents the degree of 

typicality and is used to identify noise regions and outliers. We extend this 

approach to learn relevance weights for each feature subset within each 

cluster. We also extend the algorithm to find the optimal number of clus­

ters in an unsupervised and efficient way by exploiting some properties of 

the possibilistic membership functions. We also propose a semi-supervised 

version of our algorithm that uses partial supervision information in the 

form of a set of constraints to guide the clustering process. This proposed 

clustering algorithm are used to categorize image regions into categories of 

regions that share common attributes. Membership values, assigned by the 

clustering algorithm to each region in each cluster, are explored and used 

to estimate the degree of dependency among the region clusters. 

The second component of this thesis consists of the development of a semi-
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naive Bayesian classifier to automatically annotate unlabeled images. This 

part is accomplished through two main steps. First, an unannotated image 

is segmented into homogeneous regions. Then, a greedy selection and join­

ing (GSJ) algorithm is used to decompose the set of region clusters present 

in this unannotated image into independent subsets. Then, the posterior 

probability of a concept given a set of independent region cluster subsets 

is computed and used to assign concept labels to the image regions. 

The third contribution of this thesis, consists of designing and implement­

ing a complete CBIR system that uses an iterative similarity propagation 

approach to exploit mutual reinforcement between images and their anno­

tations. 

The organization of the rest of this thesis is as follows: Chapter two gives 

a literature review of related concepts including unsupervised and semi­

supervised clustering, and image annotation techniques. In chapter three, 

we outline the proposed clustering algorithms. In chapter four, we outline 

the image annotation algorithms based on image region clustering. We also 

present an empirical comparison of the proposed methods with three state­

of-the-art image annotation techniques. Then, chapter five describes the 

proposed image retrieval approach based on multi-modal similarity prop­

agation, and its experimental results. Finally, chapter six outlines the 

conclusions and potential future work. 
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CHAPTER 2 

RELATED WORK 

Image retrieval has been an active research area since the 1970's [211. Re­

searchers from the database management and computer vision communities 

have proposed two different directions for image retrieval. The first one is 

text-based and the other one is based on the visual content of the im­

age. Text-based image retrieval requires the images to be annotated with 

keywords prior to retrieval. With the significant advances of database man­

agement and textual information retrieval, this retrieval mode has achieved 

some success. However, two major difficulties have limited the practicality 

of this approach when large number of images are involved. The first one 

is simply the vast amount of tedious labor needed to manually annotate 

all images in the database. The second one is due to the subjectivity of 

the annotators; different users may perceive images in very different ways, 

resulting in different labels. 

To overcome the above limitations, Content-Based Image Retrieval (CBIR) 

emerged as a new technique and started to gain more and more attention. 

CBIR retrieves images based on their visual content, such as color and 
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Figure 2.1: Overview of a typical CBIR system 

texture, rather than keywords. 

The standard CBIR approach is illustrated in figure 2.1. This approach 

can be conceptually separated in two main components: One is offline 

and consists of preprocessing, extracting features , and indexing the image 

database. The second one is online and consists of the user interaction with 

the system to query and retrieve images. 

In the off-line part of the system, visual and textual features (if available) 

are extracted from the entire image collection. Visual features could be 

global or local if each image is segmented into homogeneous regions [231. 

Textual feature , if available, are encoded into keywords and typically linked 

to the corresponding images by inverted tables. 

The retrieval part of the CBIR system typically starts with a keyword 

and/ or an example image through a user-interface. If the query consists of 

a set of keywords, the request is then sent to an inverted keyword index. 

In response, the system retrieves matching images, ranked by a similarity 

measure with respect to the textual features. In case of query by an example 
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image, a pre-processing step is needed to map the image into a feature 

vector that describes its visual content. Then, using a similarity measure, 

the system retrieves images that have similar visual features. Based on 

the relevancy of the retrieved images and the level of user satisfaction, the 

user can provide a relevance feedback. The system uses this information to 

improve the precision in subsequent iterations. 

Recently, to take advantages of the text based and content based retrieval 

modes and overcome their limitations, few approaches that integrate both 

features have been proposed [5, 6, 7]. Unfortunately, manual image an­

notation is subjective and labor intensive. Moreover, region labeling may 

be needed, which makes the process more tedious. Thus, automatic im­

age annotation techniques have attracted a lot of interest in recent years 

[13, 15, 16, 17]. The aim of automatic annotation techniques is to attach 

textual labels to un-annotated images in a completly unsupervised manner. 

These labels could be used as additional descriptors of the content of the 

image or of particular objects within the image. 

Typically, automatic image annotation is based on some machine learning 

techniques that can learn the correspondence between visual features and 

the semantics of images. That is, image annotation systems can recognize 

or classify visual features into some pre-defined classes [25]. 

Figure 2.2 shows the general architecture of a typical image annotation 

system. This system uses a set of labeled images for training. First, each 

training image is segmented into regions and local features are extracted 

and used to describe each region. There are two main segmentation strate­

gies; The first one partitions the image into a set of fixed sized blocks or 

grid [18, 27]. The second one partitions the image into a number of homo­

geneous regions that share common features [2, 3, 4, 5]. Ideally, each region 
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correspond to a different object in the image. After segmentation, each seg­

mented block or region is represented by a feature vector that describe its 

visual content. 

After segmenting all training images and extracting visual features from 

their regions, a machine learning algorithm is used to learn associations 

or joint probability distributions between these features and the keywords 

used to annotate the images. 

The testing part of the system takes, as input, an un-annotated image, seg­

ments it into homogeneous regions, extracts and encodes the visual content 

of each region by feature vectors. Then, it uses the learned associations 

or joint probability distributions to infer the set of keywords that best de­

scribe the visual features. These keywords are then used to annotate the 

image. 
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In the rest of this chapter, we review the most common learning algorithms 

used in CBIR systems for image segmentation, region clustering, and asso­

ciation rule mining of visual and textual feature. 

2.1 Unsupervised Learning Algorithms 

To handle the huge amounts of data available in image data sets, most 

image annotation systems use clustering algorithms. Clustering consists 

of partioning the data into homogeneous subsets and summarizing them 

by few representative samples. There are various clustering approaches 

that could be used as a component of either CBIR or automatic image 

annotation systems. Few of these algorithms are outlined in the following 

subsections. 

In the following, let X = {Xi E ]RDli = 1, ... , N} be a set of N feature 

vectors in a D-dimensional feature space. Let B = ((31, ... , (3M) represent a 

M-tuple of prototypes each of which characterizes one of the M clusters. 

Each (3j consists of a set of parameters. 

2.1.1 The Expectation Maximization (EM) Algorithm 

The Expectation Maximization (EM) algorithm [3~] is an efficient iterative 

procedure to compute the Maximum Likelihood (ML) estimate in case of 

missing or hidden data. In ML estimation, the goal is to estimate the model 

parameters for which the observed data are most likely. Each iteration of 

the EM algorithm consists of two processes: The E-step, and the M-step. 
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As before, we assume that data X = {Xl, ... , X N } is observed and is gen­

erated by some distribution p(x/e). We call X the incomplete data. We 

assume that a complete data set exists Z =(X, Y) and also assume (or 

specify) a joint density function: 

This new likelihood function, C(e/Z) = C(e/x, Y) = p(X, Y Ie), is called 

the complete-data likelihood. 

In the expectation, or E-step, the EM algorithm first finds the expected 

value of the complete-data log-likelihood log(X, Y Ie) with respect to the 

unknown data Y given the observed data X and the current parameter 

estimates. That is, 

Q (e, e(i-l)) = E [log (X,Y Ie) IX, e(i-l)] (2.1) 

Where e(i-l) are the current parameters estimates that are used to evaluate 

the expectation and e are the new parameters that are optimized to increase 

Q. 

The second step (M-step) of the EM algorithm is to maximize the expec­

tation computed in the E-step. That is, 

e(i) = argmaxQ (e, e(i-l)) . 
() 

(2.2) 

For instance, for mixture of Gaussian components [31], we assume that 

{Yi,O :S i :S N} are samples drawn from gaussians Xl, ... , X N . That is, 

we assume that Y i E [l...M]' where Y i = k if the ith sample was generated 
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by the kth mixture component. If the values of Yare known, the likelihood 

becomes: 

N 

log (£(OjX,Y)) = log (p(X,YjO)) = Llog(P(Xi/Yi)P(Y)) 
i=l 

The model to be estimated is then the parameters of the M Gaussian 

components, that is, 

(2.3) 

In (2.3), P1, ... ,PM are the mixture probabilities. 

Using the mixture of Gaussian representation, the E-step reduces to com-

puting the conditional probability 

(2.4) 

and the M-step maximizes the expected log-likelihood 

N M 

Q (0) = L L P(Xilcj, ~j) (log(pj) + log (p(Xilcj, ~j))) , (2.5) 
i=l j=l 

This optimization leads to the following update equations for the centers 

and covariances matrices of the Gaussian components: 

(2.6) 

and 

(2.7) 
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Algorithm 1 Expectation Maximization Algorithm 

Begin 
Initialize parameters 19 [OJ ; 

Repeat 
Compute P(XiIYi , Bj ) using equation (2.4); 
Compute Q(B) using equation (2.5); 
Compute Cj using equation (2.6); 
Compute ~j using equation (2.7); 

Until (point of maximum is reached) 

Return 19 
End 

The convergence of the EM algorithm is assured since the algorithm is 

guaranteed to increase the likelihood in each iteration. The EM algorithm 

for mixture of Gaussians is summarized below: 

2.1.2 The K-means Algorithm 

The K-means algorithm [281 formulates the problem of partioning the N 

feature vectors into M clusters as minimization of the sum of squared error 

objective function: 
M N 

J= L L IIXi-cjW, (2.8) 
j=1 XIECj 

where IIXi - Cj 112 is the Euclidean distance between a feature point Xi and 

the center of the lh cluster Cj. 

Minimization of (2.8) with respect to the cluster centers yields: 

(2.9) 

Initially, the data points are assigned randomly to clusters. Then, the 

K-means algorithm iteratively alternates between computing the cluster 
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Algorithm 2 K-means algorithm 

Begin 
Initialize cluster centers C1 ... CM. 

Repeat 
Assign each point Xi to the closest cluster {3j 
For each {3j, update its center using equation (2.9). 

Until (The centroids do not change) 
Return C1 ... CM 

End 

centers and assigning each point to the closest cluster based on its distance 

to the corresponding center. 

The K-means algorithm is summarized below: 

2.1.3 The Fuzzy C-means (FCM) Algorithm 

The Fuzzy C-Means (FCM) algorithm [67] is an extension of the K-means 

algorithm that distinguishes between objects strongly associated with a 

particular cluster from those that have only a marginal association with 

multiple clusters. The FCM algorithm attempts to partition the N feature 

vectors into a collection of M fuzzy clusters. It formulates the problem as 

a minimization of the following objective function 

M N 

J = L 2:) uji)md
2(Xi' (3j) (2.10) 

j=l i=l 

where d2 (Xi' (3j) represents the distance from feature vector Xi to cluster 

{3j. In (2.10), Uji represents the fuzzy membership of Xi in cluster {3j and 
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satisfies the following constraints: 

Uji E [0, 1], Vj 

o < 2:~1 Uji < N Vi, j (2.11) 

2:~1 Uji = 1 Vi 

In (2.10), m E (1, 00) is a weighting exponent. Minimization of (2.10) with 

respect to U = [Uji], subject to the constraints in (2.11), gives [671 

(2.12) 

If the Euclidean distance 

(2.13) 

is used, the FCM will seek spherical clusters. In this case, the update 

equation for the centroids is obtained by fixing the membership values and 

minimizing (2.10) with respect to Cj. This minimization yields 

(2.14) 

The FCM algorithm is summarized below: 
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Algorithm 3 FCM Algorithm 

Begin 
Fix the maximum number of clusters M; 
Fix mE (1, (0); 
Repeat 

Compute d2(Xi' Cj), for 1 ::; j ::; M and 1 ::; i ::; N 
Update the partition matrix U(k) using equation {2.12}; 
Update the centers using {2.14}; 

Until (11h.UII < c:) 
End 

2.1.4 The Possibilistic C-means (PCM) Algorithm 

An alternative approach to make the FCM (2.1.3) robust to noise and 

outliers is to relax the constraint that the membership degree of a point 

in all clusters must sum to 1. This is achieved by changing the objective 

function in (2.10) to 

M N M N 

J = L 2)uji)md
2(Xi , !3j) + L 1]j L(1- Uji) (2.15) 

j=l i=l j=l i=l 

and the membership cinstraints in (2.11) to 

{ 

Uji: [0, 1], 

° < Li=l Uji < N 

Vi,j, 
(2.16) 

Vj, 

In (2.15), 1]j are suitable positive numbers that typically relate to the overall 

size and shape of the cluster [82]. The first term in (2.15) minimizes the 

sum of intra-cluster distances, whereas the second term forces the Uji to 

be as large as possible, thus avoiding the trivial solution where all Uji are 

zero. 

Minimizing (2.15) with respect to U = [Uji], subject to the constraints in 
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Algorithm 4 PCM Algorithm 

Begin 
Fix the maximum number of clusters M; 
Initialize T/j and m E (1, (0); 
Repeat 

Compute d2(Xi' Cj), for 1 :S j :S M and 1 :S i :S N 
Update the partition matrix U(k) using equation {2.17}; 
Update the centers using {2.18}; 
Update T/j as suggested in [82j; 

Until {116UII < E} 
End 

(2.16), gives [82] 
1 

Uji = 1 (d2 (X' (3.))_1_' + 1, 1 m-1 
/.Lj 

(2.17) 

If the Euclidean distance is used, the PCM will seek spherical clusters. 

In this case, the update equation for the centroids is obtained by fixing 

the membership values and minimizing (2.10) with respect to Cj. This 

minimization yields 

(2.18) 

The PCM algorithm is summarized below: 

The possibilistic C-means (PCM) algorithm [82] can identify noise points 

as those points with low possibilistic membership in all clusters. 

More recently, few algorithms that combine features from the PCM and 

FCM algorithms have been proposed. These methods assign the two types 

of membership degrees to each point. Examples of these methods include 

the Robust Competitive Agglomeration (RCA) [83] and the Possibilistic­

Fuzzy Clustering Model (PFCM) [84] algorithms. 
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2.1.5 The Competitive Agglomeration (CA) Algorithm 

The Competitive Agglomeration (CA) algorithm [321 is an efficient clus­

tering algorithm that has the advantage of automatically determining the 

optimal number of clusters M. It minimizes 

(2.19) 

In (2.19), M is the initial number of clusters. It is larger than the expected 

number, and it is dynamically updated during the optimization process. 

Optimization of J with respect to U yields: 

U
J
" = uF.CM + uB.IAS 
'JZ JZ' (2.20) 

where 

(2.21 ) 

and 

(2.22) 

The update equation for the centroids are obtained by optimizing (2.19) 

with respect to j3j. This optimization yields the same equation as the FCM 

(i.e eq (2.14)). 

The choice of 0: in (2.19) reflects the importance of the second term relative 

to the first term. In [32], the authors recommend using 

,,\,M ,,\,N (u .. )2d2(X· 13,) 
(k) ( k/ ) L..j=1 L..i=1 JZ 1, J 

0: = TJoexp - T M N 

2:: j =1 12::i=1 UjiF 

(2.23) 
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Algorithm 5 CA Algorithm 

Begin 
Initialize the maximum number of clusters M = Mmax; 
Initialize iteration counter k = 0 and the fuzzy M partition U(O); 
Compute initial cardinalities N j for 1 ~ j ~ Musing N j = ~~1 Ujl; 

Repeat 
Compute d2(Xi, (3j), for 1 ~ j ~ M and 1 ~ i ~ N ; 
Update a(k) using equation (2.23); 
Update the partition matrix U(k) using equation (2.20); 
Compute the cardinality N j for 1 ~ j ~ M ; 
If ( N j < E) discard cluster Ci, ; 

Update the number of clusters M; 
Update the centers using (2.14); 
k++; 

Until (Prototype parameters stabilize) 
End 

where TJo is the initial value, T the time constant, and k is the iteration 

number. The CA algorithm is summarized below: 

2.1.6 Simultaneous Clustering and Attribute Discrim-

ination 

The challenge of selecting the best subset of features or attributes con­

stitutes an important part of the design of good learning algorithms for 

real world tasks. Irrelevant features can degrade the generalization perfor­

mance of these algorithms significantly. This selection is even more critical 

and challenging in applications involving high dimensional data. This is 

because clusters tend to form in different subspaces of the original feature 

space. 

Several techniques have been proposed for feature selection and weighting 

[33, 34, 35]. In particular, Frigui and Nasraoui [36, 37] proposed an algo­

rithm that performs Simultaneous Clustering and attribute Discrimination 
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(SCAD). The SCAD algorithm is designed to search for the optimal clus­

ters' prototypes and the optimal relevance weights for each feature within 

each cluster. However, for high dimensional data, learning a relevance 

weight for each feature may lead to overfitting. To avoid this case, a coarse 

approach to feature weighting called SCADc was proposed in [38]. SCADc 

is an extension of SCAD where instead of learning a weight for each feature, 

the set of features is divided into logical subsets, and a weight is learned 

for each feature subset. 

In [38], the authors assume that the D features have beem partitioned into 

d subsets: FSi, FS2, ... , FSd and each subset, FSB, includes dB features. 

Let dji be the partial distance between Xi and cluster j using the sth feature 

subset. Let V = [Vjs] be the relevance weight for FSs with respect to cluster 

j. The total distance, Dji , between Xi and cluster j is then computed by 

aggregating the partial distances and their weights, i.e., 

d 

DYi = L vjs(djY· (2.24) 
s=l 

SCADc minimizes 

M N d M d 

J(B, U, V; X) = L L ujJ L Vjs (dji)2 + L 8j L VYs' (2.25) 
j=l i=l s=l j=l s=l 

subject to the constraints in (2.11) and 

d 

Vjs E [0, I] V j, s; and L Vjs = 1, V j. (2.26) 
s=l 
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Optimization of J with respect to V yields 

(2.27) 

The first term in (2.27), (lid), is the default value if all d feature subsets 

are treated equally, and no discrimination is performed. the second term 

is a bias that can be either positive or negative. it is positive for compact 

feature sets where the partial distance is, on average, less than the total 

distance (normalized by the number of features). If a feature set is compact, 

compared to the other features, for most of the points that belong to a given 

cluster (high Uji), then it is relevant for that cluster. 

minimization of J with respect to U, subject to the constraints in (2.11), 

yields 

(2.28) 

Minimization of J with respect to the prototype parameters depends on the 

choice of dk Since the partial distances are treated independent of each 

other (i.e., disjoint feature subsets), and since the second term in (2.25) 

does not depend on prototype parameters explicitly, the objective function 

in (2.25) can be decomposed into d independent problems: 

M N 

L L U~VjS(dji)2, for s = 1, ... , d. (2.29) 
j=l i=l 

Each Js could be optimized with respect to a different set of prototype 

parameters. For instance, if dji is the Euclidean distance, minimization of 

Js would yield the following update equation for the centers of subset s, 

(2.30) 
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Algorithm 6 Coarse SCAD Algorithm 

Begin 
Fix the maximum number of clusters C = Cmax ; 

Fix m, mE (1, (0); 
Initialize the centers and the fuzzy M partition matrix U; 
Initialize the relevance weights to lid; 
Repeat 

Compute (dji)2, for 1 ':5:. j ':5:. M and 1 ':5:. i ':5:. Nand 1 ':5:. s ':5:. d 
Update the relevance weights Vjs using equation (2.27); 
Compute DJi using equation (2.24); 
Update the partition matrix U(k) using equation (2.28); 
Update the centers using equation (2.30); 

Until (centers stabilize) 
End 

SCADc is an iterative algorithm that starts with an initial partition and al-

ternates between the update equations of Uji, Vjs, and cj. It is summarized 

below: 

2.1.7 Dirichlet Mixture Models 

Another alternative approach to unsupervised or supervised learning is 

based on probabilistic modeling. The probabilistic approach assumes that 

data objects in different clusters are generated by different probability dis­

tributions. They can be generated from different types of density functions 

(e.g., multivariate Gaussian or t-distribution), or the same families, but 

with different parameters. If the distributions are known, finding the clus­

ters is equivalent to estimating the parameters of the underlying models. 

The mixture solving approach [85] is a widely used partitional clustering 

technique based on probabilistic models. It assumes that samples in a 

cluster are drawn from one of several distributions (usually Gaussian) and 

attempts to estimate the parameters of the distributions. Despite all recent 
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progress, probabilistic modeling remains a challenging research problem. In 

high dimensional space, Gaussian mixtures with diagonal covariance ma­

trices have been used frequently. However, Gaussian functions cannot pro­

vide reasonable approximation for asymmetric distributions. The problem 

is more acute when the data are high dimensional and some features may 

be irrelevant and/or correlated. 

Introduced as a good alternative, Dirichlet distribution is a multivariate 

generalization of the Beta distribution, which offers considerable flexibility 

and ease of use. In contrast with other distributions, the Dirichlet distri­

bution permits multiple symmetric and asymmetric modes [951. 

Let a set of N independent vectors X = (Xl, X 2 , ... , XN), and let the 

random vector Xi = (Xi1 ,Xi2 , ... ,XiD ) follows a Dirichlet distribution [100, 

1011. The joint density function is given by 

(2.31 ) 

where 

D 

LXil < 1 
1=1 

0< Xil < 1 Vl = l..D 
D 

X D+1 1- LXil 
1=1 

D+1 

lal Lal 
1=1 

al > o Vl = l..D + 1 

This distribution is the multivariate extension of the two-parameter Beta 

distribution. The mean and the variance of the Dirichlet distribution are 
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given by 

Var(Xil ) 

0:1 
10:1 
0:1(10:1 - 0:1) 

10:1 2 (10:1 + 1) 

and the variance between Xil and X ik is 

The Dirichlet mixture with M components is defined as 

M 

p(XIO) = L P(j) p(Xlj, OJ), 
j=l 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

where P(j) (0 < P(j) < 1 and ~~1 P(j) = 1) are the mixing proportions 

and p(Xlj, OJ) is the Dirichlet distribution. The symbol 0 refers to the 

entire set of parameters to be estimated 0 = (0:1, ... , O:M, P(1), ... , P(M)), 

where O:j is the parameter vector for the lh population. In the rest of this 

section, we use the notation OJ = (O:j) for j = 1...M. 

The problem of estimating the parameters which determine a mixture has 

been the subject of diverse studies [102]. During the last two decades, the 

method of maximum likelihood (ML) [103] has become the most common 

approach to this problem. Of the variety of iterative methods which have 

been suggested as alternatives to optimize the parameters of a mixture, the 

one most widely used is expectation maximization (EM) (2.1.1). However, 

this algorithm suffers from the need to specify the number of components 

each time. In order to overcome this problem, criterion functions have been 

proposed, such as the Akaike information criterion (AIC) [104], minimum 
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description length (MDL) [105], and Schwartz's Bayesian inference criterion 

(BIe) [1061. A maximum likelihood estimate associated with a sample of 

observations is a choice of parameters which maximizes the probability 

density function of the sample. Thus, with ML estimation, the problem of 

determining B becomes 

(2.36) 

with the constraints L,~l P(j) = 1 and P(j) > OVj E [1, MI . These 

constraints permit to take into consideration a priori probabilities P(j). 

Using Lagrange multipliers, the following function is maximized 

<!>(X, 0 , A) ~ log (P(X10)) + A ( 1 - t, P(j)) + I' t, P(j)log( P(j)) 

(2.37) 

where A is the Lagrange multiplier. For convenience, we have replaced the 

function in (2.36) by the function log (P(X I 0) ). If we assume that we have 

N random vectors Xi which are independent, we can write 

p(XIB) (2.38) 
i=l 

M 

p(XdB) LP(Xi,j, Bj)P(j). (2.39) 
j=l 

Replacing (2.38) and (2.39), we obtain 

<!>(X, 0, A) ~ ~ log (t, p(X;,j, OJ )P(j)) +A (1-t, P(j)) +1' t, P(j)log(P(j)) 

(2.40) 

The maximum-likelihood estimate of these distributions is not available in 

closed-form. In [108], the author proposed an iterative algorithm based on 

a fixed-point and Newton-Raphson iterations. The authors in [97], solved 
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this optimization problem and estimated the parameters of this mixture 

using the maximum likelihood and Fisher scoring methods [107]. 

2.1.8 Generalized Dirichlet Mixture Models 

Despite its flexibility, the Dirichlet distribution has a very restrictive neg-

ative covariance structure. In this section, we introduce the generaliza-

tion of the Dirichlet distribution which has a more general covariance 

structure than the Dirichlet distribution. Let the random vector Xi = 

(Xi1' X i2 , ... , X iD ) follows a Generalized Dirichlet distribution [96] as follow 

D 

where L Xil < 1; 0 < Xil < 1, for l = 1, ... , D; "II = (31 - 0:1 - (31+1, for 
1=1 

l = 1, ... , D - 1; and "I D = (3 D - 1. Note that the Generalized Dirichlet 

distribution is reduced to a Dirichlet distribution when (31 = 0:1+1 + (31+1' 

The mean of the Generalized Dirichlet distribution satisfy the following 

conditions: 

E(Xil ) (2.41 ) 

and the covariance between Xis and Xit is 

Numerous other properties of this distribution are given in [87]. 

The Generalized Dirichlet distribution has the advantage that by varying 
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its parameters, it permits multiple modes and asymmetry and can, thus, 

approximate a wide variety of shapes. Besides, it has a more general covari­

ance structure than the Dirichlet. This generalization has made Dirichlet 

distribution more practical and useful in Bayesian learning scenarios in 

general and finite mixture modeling in particular. For instance, in [88] the 

Generalized Dirichlet was used as the component distribution in finite mix­

tures to model continuous data. The Generalized Dirichlet was also used 

as a prior to the multinomial distribution, which is then integrated out to 

model count data [89]. In [76], the authors proposed using the Dirichlet 

distribution as a prior to perform multinomial and mixture model estima­

tion. These models have proven to be effective in many applications such as 

language modeling, and content-based image summarization and retrieval 

[86]. 

Given a set of N independent vectors X = (XI, X 2 , ... , XN)' A Generalized 

Finite Dirichlet mixture with M components is defined as 

M 

p(XIO) = L P(j)p(XIOj). (2.43) 
j=l 

where P(j) are the mixing probabilities and p(XIOj) is the Generalized 

Dirichlet distribution. 

Each OJ = (aj1,(3j1, ... ,ajD,(3jD) is the set of parameters defining the th 

component, and 0 is the complete set of parameters, 0 = (01 , ... , OM, P(l), ... , P(M)), 

needed to specify the mixture. Of course, being probabilities, P(j) must 

satisfy 

o < P(j) ~ 1 j = 1...M 

"E~l P(j) = 1. 
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The log-likelihood becomes 

N N M 

L(B,X) = log IIp(XM) = Llog LP(XiIBj)P(j). (2.46) 
i=l i=l j=l 

The problem of estimating the parameters of Generalized Dirichlet finite 

mixtures has been the subject of diverse studies. The most common ap-

proach is the Maximum likelihood (ML) [90]. This approach seeks the 

parameters that maximize the probability of generating all of the observed 

data. The maximum likelihood (ML) estimates 

BML = argmax{L(B,X)} 
() 

(2.47) 

The maximization defining the ML estimates is subject to the constraints 

in (2.44) and (2.45). However, the ML solution cannot be obtained analyt­

ically. Thus, iterative approaches, such as the expectation-maximization 

(EM) algorithm (2.1.1), have been proposed to approximate the ML esti­

mates. The majority of the studies either consider a single distribution [91] 

or are restricted to the two-parameter Beta distribution [92]. In [76], the 

authors proposed an hybrid stochastic expectation maximization algorithm 

to estimate the parameters of the Generalized Dirichlet mixture. The algo­

rithm was called stochastic because it contains a step in which the data el­

ements are assigned randomly to components in order to avoid convergence 

to a saddle point. The adjective "hybrid" is justified by the introduction of 

a Newton-Raphson step. Moreover, this algorithm autonomously selects 

the number of components by the introduction of an agglomerative term. 

In order to use the Generalized Dirichlet mixture model to get overlapping 

clustering, where a point can deterministically belong to multiple clusters, 

most of the existing methods choose a threshold value such that point 
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Xi belongs to the ph partition if P(Zi = jIXi ,8) > A where Zi is the 

label of Xi such that Zi E {O, I}, ~~1 Zi = 1, and Zi = 1 if Xi comes 

from the ph component. This thresholding technique can enable Xi to 

belong to multiple clusters. However, this is not a natural generative model 

for overlapping clustering. In the mixture model, the underlying model 

assumption is that a point is generated from only one mixture component, 

and P(Zi = jlXi, 8) > A simply gives the probability of Xi being generated 

from the ph mixture component. Moreover, these methods do not perform 

well when the data is noisy. In fact, noise points and outliers can drastically 

affect the model parameters estimation. 

2.2 Semi-supervised Clustering 

Clustering is a hard optimization problem with many local minima. One 

possible approach to simplify this problem is to use partial supervision to 

guide the clustering process and narrow the space of possible solutions. 

This additional information is usually available under the form of hints 

[70], constraints [71], or labels [72]. Supervision in the form of constraints 

is more practical, because it is much easier to specify whether pairs of 

points should belong to the same cluster or to different clusters. In the 

following we provide an overview of the semi-supervised mixture modeling, 

the Semi-supervised K-means [29], and the Semi-supervised Simultaneous 

Clustering and Attribute Discrimination (sSCAD) [73] algorithms. These 

algorithms have been applied successfully to categorize large collections of 

images or image regions. 
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2.2.1 Semi-supervised Mixture modeling 

Recently, researches on semi-supervised learning based on mixture models 

have been published. Wu and Huang [109] integrate multiple discrimi­

nant analysis (MDA) with EM framework so that learners are boosted 

by exploring discriminant features in a self-supervised fashion. Another 

approach dealing with labeled and unlabeled data for Gaussian mixture 

models [110] is to modify the mixture log-likelihood function as the combi­

nation of two terms: the one for unlabeled data and the other for labeled 

data. Recently, in [111], the authors presented a semi-supervised EM al­

gorithm. The supervison information is integrated using concept learning 

with multiple users' relevance feedbacks. 

These algorithms contribute to a general improvement of the learning per­

formance, when few labelled samples are available, with respect to other 

well-known unsupervised algorithms. However, they assume that the data 

follow a Gaussian distribution. Moreover, they have not been used with 

high dimensional datasets, and assume that the data is noise free. 

2.2.2 The Semi-supervised K-means Algorithm 

The traditional K-means clustering algorithm has been modified to make 

use of instance-level constraints [29]. Two types of pairwise constraints 

have been considered. The first one is Must-link constraints and specifies 

that two data points must be assigned to the same cluster. The second 

type of constraints is MustNot-link and specifies that two data points must 

not be assigned to the same cluster. 

Let M L be the set of Must-link pairs such as (X, Y) E M L implies that x 
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and y must be assigned to the same cluster. Similarly, we let N L be the 

set of MustNot-link pairs such as (X, Y) E N L means that X and Y must 

not be assigned to the same cluster. The constrained K-means algorithm 

minimizes 

C 

JConstrK-means = 2:~=12:~11Ix~j) - cjl12 + a[ L LClink(Xm,Xn) 
(XmxXnENL) j=1 

(2.48) 
C C 

+ L L L Mlink(Xm,Xn)] 
(Xm XXnEMlL) j=1 1=1,11-) 

where 

{ 1 if {Xm, Xn} E cluster j 

0 Otherwise 

{ 1 if Xm, E cluster j, andXn E clusterl 

0 Otherwise 

The first term in (2.48) is the objective function of K-means (2.1.2). The 

second term consists of the cost of violating the pairwise Must-link and 

MustNot-link constraints. The value of a in (2.48) controls the impor­

tance of the supervision information compared to the sum of intra-cluster 

distances. 

The constrained K-means algorithm is outlined below: 

2.2.3 The Semi-supervised Simultaneous Clustering and 

Attribute Discrimination (sSCAD) algorithm 

In [36], the authors proposed a semi-supervised version of SCADc (2.1.6). 

As in the constrained K-means, the supervision information consists of 
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Algorithm 7 Constrained K-means as EM algorithm 

Begin 
Initialize the cluster centers Cl···C M. 

Set the Must-link and MustNot-link constraints. 
Repeat 

Assign each point Xi to the closest cluster j given ML and NL con­
staints. 

Update the center of each cluster by averaging all points assigned to it. 
Until (The centroids do not change) 
Return Cl",CM 

End 

pairs of points that should be assigned to the same cluster and pairs of 

points that should not be assigned to the same cluster. 

The constrained sSCAD [731 algorithm minimizes 

J = ttUjlt(Vji)2(dji)2 + a [ L t t ujluik + L t Ujlu7k] 
j=1 i=1 8=1 (X;,XkEML) j=11=1,lij (X;,XkENlL) j=1 

(2.49) 

subject to (2.11) and (2.26). The first term is the objective function of 

SCADc (2.1.6) and is used to seek compact clusters and their partial feature 

relevance weights. The second term consists of the cost of violating the 

constraints. The value of a controls the importance of the supervision 

information. 

Minimization of J with respect to Vjs yields 

1 
Vjs = -",-d:---(-ds-.j-,f-.) , 

L...-t=l J J 
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Algorithm 8 Semi-Supervised SCAD Algorithm 

Begin 
Fix the number of clusters M; 
Fix the fuzzijier m, m E (1, (0); 
Fix the set of Should-Link (ML) and ShouldNot-Link (NL) constraints; 
Initialize the centers; 
Initialize the relevance weights to lid; 
Repeat Compute (dJi)2, for 15:cj 5:c Mandl5:c i 5:c Nandl5:c s 5:c d 

Update the relevance weights Vjs using equation (2.50); 
Compute Dji using equation (2.52); 
Update the partition matrix U(k) using equation (2.51); 
Update the centers using equation (2.30); 

Until (centers stabilize) 
End 

Minimization of J with respect to the memberships yields 

where 

Dji = m[D;i + a( L L ulk + L ujDl 
(Xi,XkEML) 1=1,1f.j (X"XkENL) 

(2.51 ) 

(2.52) 

In (2.52), Dji can be viewed as the total cost when considering point Xi 

in cluster {3j. This cost depends on the distances of Xi to cluster {3j and 

the cost of the violated constraints caused by Xi and X k . 

Since the second term in (2.49) does not depend on the prototype parame­

ters explicitly, minimizing (2.49) with respect to prototypes yields the same 

update equations as the SCAD algorithm. 

The Semi-Supervised SCAD algorithm is summarized below: 
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2.3 Unsupervised Image Annotation 

Image annotation systems aim at automatically annotating an image with 

some controlled keywords. They have been proposed as a solution to reduce 

the semantic gap in CBIR. In these systems, machine learning techniques 

are used to build a model that maps the image low-level (visual) features 

to high-level concepts or semantics. After the annotation model is learned, 

an image is annotated by finding the most likely keywords, describing the 

high-level concepts, given the visual features of the image. In the following 

we outline the main techniques that have been used for this task. 

2.3.1 Statistics-based Models 

Co-occurence Model: The co-occurrence model proposed by Mori et 

al. [18] is one of the first attempts at image auto-annotation. First, they 

divide the images into a regular grid, and compute a feature vector of colour 

and texture for each block. Feature vectors extracted from blocks of a set 

of training images are then summarized by few clusters. Each cluster is 

represented by its centroid. Each tile on the grid inherits the whole set of 

labels from the original image. Then, the probability of a label w related 

to a cluster c is estimated by the co-occurrence of the label and the image 

tiles within the cluster using 

p(wlc) = L, mc,w , 
wmc,w 

(2.53) 

where mc,w is the number of times word w occurs with an image tile from 

cluster c. 
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For testing, given an un-annotated image, they divide it into rectangular 

grid and extract feature vectors as it was done in the training phase. Next, 

the closest cluster centroid to each tile is identified. Then, the probability 

of each label in each of the tiles of the test image is computed using 

(2.54) 

In (2.54), p(wlI) represents the average probability of word w given image 

I, Ct is the closest cluster to the region/tile t extracted from image I, and 

III is the number of tiles. 

The labels Wi having the highest probabilities p(wilI) are chosen as the 

keywords to labels the test image. 

The co-occurence approach is limited because the average probability es­

timation can be affected by the noisy clusters obtained after categorizing 

the heterogeneous image tiles. Moreover, the fixed grid approach used to 

partition the images has its own limitations. For instance, a large number 

of blocks may result in an over-segmented regions. This may lead to ad­

ditional computations and irrelevant labeling. On the other hand, a small 

number of blocks may result in non-homogeneous tiles. 

Machine Translation Model Duygulu et al. [17] proposed a machine 

translation model for automatic image annotation. They argued that region 

based image annotation is more interesting because global annotation does 

not give information on which part of the image is related to which label. In 

their approach, they first use a segmentation algrithm to segment images 

into object-shaped regions. Then, feature quantization is applied to the 

feature vectors that are extracted from all the regions, to build a visual 
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vocabulary called 'blobs'. A 'blob' is a representitive of a cluster of visually 

similar image regions. Finally, a mapping between blobs and keywords, 

supplied with the images, is learned using a method based on the EM 

algorithm (described in 2.1.1). A test image is annoated by choosing the 

most likely words for each of its regions. 

The difficulties with this machine translation model arises from the unbal­

anced distribution of the word frequencies in the training dataset. More­

over, the co-occurence statistics can be affected significantly by the noise 

in quantizing the huge number of regions into a small number of blobs. 

Cross Media Relevance Model Jeon et al. [211 improved the model 

of Duygulu et al. [171 by introducing a generative language model to image 

annotation, referred to as the cross-media relevance model (CMRM). They 

use the same process to extract and represent image blobs. However, in­

stead of assuming one-to-one correspondence between the blobs and words, 

they assume that a set of blobs is related to a set of words. Thus, instead 

of seeking a probabilistic translation table, CMRM simply approximates 

the probability of observing a set of blobs and words in a given image. 

In the CMRM model, it is assumed that, for a given un-annotated image 

I, there exists an underlying probability distribution (denoted as P(.II)) 

of all possible blobs and words that could appear in image I. If the blob 

representation of I is I = {b1 , ... , bm }, where m is the number of blobs in 

I, the probability of observing word w is approximated as 

(2.55) 

For a given image, calculating P(wlb1 , ... bm ) is equivalent to calculating the 
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joint probability P( w, b, ... bm ), which is approximated as the expectation 

over the entire training set. Using the assumption that words and blobs are 

generated independently given a training image J, P(w, b, ... bm ) can then 

be computed using 

m 

(2.56) 
JET i=l 

where T is the training set. The prior probabilities, P( J), are kept uni­

form over all training images, while P(wIJ) and P(biIJ) are estimated by 

smoothed maximum likelihood. 

The actual CMRM approach uses the K-means algorithm [28], and simple 

inverted lists of the obtained clusters to estimate P( wi J) and P( bi I J). It 

also assumes that the events of observing a keyword wand blobs bl , ... , bm 

are mutually independent once image J is selected. This assumption may 

result in many incorrect annotations and makes the CMRM very sensitive 

to the training images used to learn the model. 

Semi-naive Bayesian Model More recently, Rui et al [9] proposed an 

approach based on the constrained K-means [19] to cluster image regions us­

ing partial supervision information. Then, they build a semi-naive Bayesian 

model for image annotation. In the learning stage of this approach, image 

segments are grouped into region clusters using the K-means algorithm with 

pair-wise constraints [29]. The set of MustNot-link relations are deduced 

from the irrelevance of all concepts annotating the images. In particular, 

if two images show little correlation in their annotation, then it is assumed 

that pairs of regions within these two images are semantically irrelevant. 

Under this assumption, Rui et al assert that for every image pair Ip and Iq, 
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if their annotations Cp and Cq are irrelevant, then all relationships across 

their regions are marked as MustNot-link. 

Once the pair-wise constraints between regions from different images is 

computed, the Pair-wise Constrained K-means (PCK-means) [291 is used 

to perform the clustering. 

After clustering and identifying image region clusters, the dependency be­

tween two clusters is computed using 

(2.57) 

where 

(2.58) 

Then, a greedy selection and joining (GSJ) algorithm is applied to find 

independent subsets of region clusters to be used in a semi-naive Bayesian 

(SNB) classifier. 

The annotation algorithm described above has several limitations. First, it 

is based on a simple K-means clustering algorithm (section 2.1.2) to par­

tition image regions into region categories. Since each region is usually 

represented by a high-dimensional feature vector that encodes its color, 

texture and structure information, a simple algorithm that uses the basic 

Euclidean distance and treats all features equally important may not be 

appropriate. Second, the set of constraints are extracted based on assump­

tions and are not necessarly valid. Another limitation is that the boundaries 

between region clusters is not well defined and using a simple inverted list 

to compute the dependency between region clusters (see eq.(2.57)) may not 

be effective. 
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Other Probabilistic Approaches Another annotation model that has 

shown promising performance is based on Latent Semantic Analysis (LSA) 

[74]. In this case, annotation is accomplished by finding the underlying 

semantic structure of words and image features in a linear latent space. 

For instance, in [40], Liu et al. reveal these latent variables of words and 

visual features using Probabilistic LSA (PLSA). The authors extend this 

approach to use a Nonlinear Latent Space and captures the dependency of 

images and words using Image-Word Embedding (IWE). 

Another probabilistic approach was proposed by Blei and Jordan [41]. They 

describe three models which are built upon the assumption that images and 

words are generated by a mixture of latent factors, each model correspond­

ing to the way images and words are generated. The Gaussian-multinomial 

mixture model assumes that the entire image and captions are conditional 

on the same factor, while the Gaussian-multinomial LDA model assumes 

that the image regions and captions are conditional on two disparate sets 

of factors. Both models are claimed to have some limitations. The third 

model, correspondence LDA, is a compromise of the former two. It assumes 

that the image regions can be conditional on any factors, but captions can 

only be conditional on factors that already exist in the images. Experi­

ments showed that the third model outperforms the other two. 

Carneiro et al. [42] proposed to estimate the semantic class distributions 

through a "pooling" process that is justified by Multiple Instance Learning 

(MIL) [43], without the need to segment the images. 
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2.3.2 Vector Space-Based Approaches 

The vector space model framework is another common technique in infor­

mation retrieval, especially text retrieval. Generally, documents are repre­

sented as vectors, each of which contains the occurrences of words within 

the document in question. The length of the vectors is equal to the vocab­

ulary size. In this section, several automatic image annotation approaches 

that utilize the vector space model are outlined. These approaches treat 

images as documents, and build visual terms which are analogous to words, 

from the image feature descriptors. 

The SvdCos Approach Pan et al. [441 proposed a series of auto­

annotation methods which capture the association between words and blobs 

[171 through their pattern of occurrence over the entire training set. Ac­

cording to their reported results, the SvdCos method achieved the best per­

formance. In this method, first, they construct a data matrix DN,w+B = 

[DwIDB], where Dw(i,j) is the count of word Wj in image hand DB(i,j) 

is the count of blob bj in image h After weighting the matrix D ac­

cording to the uniqueness of every kind of blobs and words, they ap­

plied singular value decomposition (SVD) in order to "clean up noise and 

reveal informative structure". The largest singular values that preserve 

90% of the variance were kept and the remaining were set to zero. Let 

DSVD = [DW,SVDIDB,SVv! denote the matrix after SVD. Then, they cal­

culated a translation table T, where ~j is the cosine value of the angle 

between the ith column vector of Dw and the lh column vector of DB, i.e. 

~,j = cos(Dw(i), DB(j)). Given a query image with a blob representation 

q = [ql, ... , qB], the words to be predicted can be chosen from the term­

likelihood vector P = Tq, where P = [PI, ... ,PW]T, and Pi is the likelihood of 

40 



word Wi. This approach requires, the specification of the optimal number 

of blobs, which is not trivial when dealing with huge dataset. 

Cross-Language Latent Semantic Indexing based Approach Du­

mais et al. [451 have demonstrated that Latent Semantic Indexing (LSI) 

can be used for cross-language information retrieval. Their system can per­

form text searching on a collection of French and English documents where 

queries could be in either language. This was realized by applying SVD 

to the term-by-document matrix in which the term vectors contain both 

French and English terms. As a result, the documents are projected into 

a low dimensional sub-space where co-occurrences of words from different 

languages were captured. Documents that are only in one language can 

then be mapped into the space and queried by keywords from the other 

language. Hare et al. [461 extended this approach to image retrieval of un­

annotated images through keyword queries. In terms of auto-annotation, 

the retrieval results indicate the likelihood of a label related to an image. 

This technique, called Cross-Language Latent Semantic Indexing (CL-LSI), 

is more suitable in bridging the semantic gap in image retrieval than in an­

notating image. 

2.3.3 Classification-Based Approaches 

Classification approaches for automatic image annotation view the process 

of attaching words to images as that of classifying images to a number of 

pre-defined groups, each of which is characterised by a concept or word. 
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Non-negative Matrix Factorization Approaches Non-negative ma­

trix factorization (NMF) [48] is a matrix factorization technique that has 

become popular recently. Because of its non-negative constraints, many 

researchers [49] [50] from the information retrieval community regard it as 

more suitable for partial representation of data, such as text documents 

and images, and for further applications such as classification or retrieval. 

In [50], Xu et al. adopted the NMF approach to document classification. 

They factor the term-by-document matrix X into a basis matrix U and co­

efficient matrix V. The class label of a document is chosen as the one with 

the maximum value in the corresponding column of V. In [49], Guillamet 

et al. used NMF for image classification. They build a collection of image 

patches which were categorized into 10 classes. Both the training set and 

test set are built by randomly choosing 1000 patches respectively. For the 

training patches, they apply NMF in order to map them into a sub-space in 

which a classifier is learned. Given a test image to classify, they project it 

to all the 10 sub-spaces built from the training set and choose the one which 

achieves the high value based on the classifiers. This method is highly sen­

sitive to the distance metric, and the optimal distance metric should be 

determined empirically which could be tedious and time consuming when 

the concerned dataset is huge. Moreover, it is practical only for a small 

number of classes. 

2.3.3.1 Thesaurus Based Image Annotation 

The thesaurus based image annotation approach (TBIA) [22] is based on 

image segmentation and clustering the visual features of all image regions. 

The cluster representatives are then used to create a visual thesaurus ca­

pable of translating region features into semantic labels. To address the 
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high dimensionality of the feature space, the authors make use of an un­

supervised learning algorithm that performs simultaneous clustering and 

attribute discrimination (SCAD) [361. 

For each identified cluster, its visual prototype (closest image to centroid), 

the features of its centroid, the relevance weights for each feature subset, 

and the dominant keywords from the textual feature are used to form one 

visual profile. The visual profiles of all clusters constitute the multi-modal 

thesaurus. This thesaurus is then used to translate from one modality to 

another. 

2.4 Major Contributions and Relation to Ex­

isting Work 

This thesis has three mains components. The first one consists of a novel 

possibilistic clustering and feature weighting algorithm based on robust 

modeling of the Generalized Dirichlet (GD) finite mixture. Unlike the 

FCM and Gaussian distribution based algorithms, which seek symetric and 

spherical clusters, our approach exploits the property of the GD and can 

model clusters with different and asymetric shapes. Moreover, to overcome 

the sensitivity to noise and outliers of the existing FCM and GD based 

algorithms, our approach can handle noise points and outliers and limit 

their influence on the learned models by using possibilistic membership 

functions. We also address the problems associated with high-dimensional 

feature spaces of existing clustering methods by transforming the data to 

make the features independent and follow Beta distribution, and by learn­

ing an optimal relevance weight for each feature subset within each cluster. 
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Our second contribution consists of a novel approach to unsupervised image 

annotation. Our approach is based on : (i) the proposed semi-supervised 

possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ) 

to avoid the independency assumption used by most of the existing meth­

ods; (iii) Bayes rule; and (iv) a probabilistic model that is based on possi­

bilistic memebership degrees generated by the clustering algorithm to an­

notate an image. We explore four variations and compare them to existing 

methods. 

The third contribution consists of an image retrieval framework based on 

multi-modal similarity propagation. The proposed framework is designed 

to take advantages of the two data modalities: low-level visual features 

and high-level textual keywords generated by our proposed image anno­

tation algorithm. The multi-modal similarity propagation system exploits 

the mutual reinforcement of relational data and results in a nonlinear com­

bination of the different modalities to overcome the semantic gap problem. 

Specically, It is used to learn the semantic similarities between images by 

leveraging the relationships between features from the different modalities. 
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CHAPTER 3 

DATA CLUSTERING BASED 

ON GENERALIZED 

DIRICHLET MIXTURE 

MODELS 

The first step of our proposed image annotation process is to summarize the 

collection of image regions by few clusters of regions that share common 

attributes. Then, instead of analysing each individual region, we anal­

yse the clusers' representatives to identify correlations among the different 

modalities. Summarizing the image region collection involves clustering 

sparse and high dimensional data. The problem is more acute when this 

high dimensional data are corrupted by noise and outliers. Generalized 

Dirichlet (G D) proved to be more appropriate for modeling data that are 

compactly supported, such as data originating from videos, images, or text. 

Our approach relies Generalized Dirichlet mixture to solve this challenge. 
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In this chapter, we first propose a novel possibilistic clustering approach 

based on robust modeling of Generalized Dirichlet finite mixture. This 

approach exploits a property of the Generalized Dirichlet distribution that 

transforms the data to make the features independent and follow a Beta 

distribution. Second, we extend our approach to learn feature relevance 

weights for each cluster. Third, we propose a semi-supervised version of 

this clustering. The supervision information consists of pairs of data points 

that should or should not be included in the same cluster. This partial 

supervision is used to guide the clustering process to avoid local minima 

and obtain more meaningfull clusters. Finally, we extend our approach to 

find the optimal number of clusters in an unsupervised and efficient way 

by exploiting some properties of the possibilistic membership function. 

3.1 Robust Unsupervised Learning of Finite 

Generalized Dirichlet Mixture Models 

In this section, we propose a possibilistic approach for Generalized Dirichlet 

(GD) mixture parameter estimation and data clustering. This approach 

associates two types of memberships with each data sample. The first 

one is a posterior probability and indicates how well a sample fits each 

estimated distribution. The second membership represents the degree of 

typicality and is used to identify noise points and outliers. The proposed 

algorithm, called Robust and Unsupervised Learning of Finite Generalized 

Dirichlet Mixture Models (RULe_ GDM), minimizes one objective function 

to optimize GD mixture parameters and possibilistic membership values. 

This optimization is done iteratively by dynamically updating the Dirichlet 

mixture parameters and the membership values in each iteration. 
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Let Y = (Y1, Y 2 , "" Y N) be a set of N points where Y i E ]RD, We assume 

that Y is generated by a mixture of GD distributions with parameters 

e = (e1, e2, .. " eM' P1, , .. , PM)' where ej , is the parameter vector of the lh 
GD component and Pj are the mixing weights, The finite GD mixture 

models the data using 

M 

p(Yle) = LPjp(Ylej ), (3,1) 
j=l 

where p(Ylej ) is the GD distribution, Each ej = (aj1 , (3j1' aj2 , (3j2, .. " ajD, (3jD) 

is the parameter vector of the lh GD component and Pj are the mixing 

weights where 

L Pj = 1 for j = l..M 
j 

Each GD distribution, p(Ylej ), is defined as 

D 

(3,2) 

where LYI < 1; 0 < Y l < 1, for l = 1, .. " D; "tjl = (3jl - ajl - (3jl+1' for 
1=1 

l = 1, .. " D - 1; and "tjD = (3jD - 1. 

In the mixture-based clustering, each Y i is assigned to each component, 

j, with a posterior probability p(jIYi ) ex: pjp(Yilej ), The GD distribu­

tion has a desirable property that allows the factorization of the posterior 

probability as 
D 

p(jIYi ) ex: Pj IIpb(xillejl ), (3.4) 
1=1 
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is a Beta distribution with ejl = (ajl ,(3jl)' l = 1, ... ,D. In other words, 

the clustering structure underlying Y is the same as that underlying X = 

(Xl, X2 , ... , X N ) governed by 

M D 

p(Xile*) = L Pj IIpb(Xillejl )· (3.5) 
j=l 1=1 

with conditionally independent features X. Thus, the problem of estimat­

ing the parameters of the Generalized Dirichlet mixture of Y is reduced to 

the estimation of the Beta mixture of X. 

In the following, we formulate the identification of the M mixture compo­

nents as an optimization problem. In particular, we define the following 

objective function 

The first term in (3.6) is related to the log likelohood of all N points 

being fitted by M components. In this term, Uji represents the possibilistic 

membership of point Xi in component j. We use a possibilistic membership 

[821 function that satisfies the constraints 

N 

Uji E [0, 1], and ° < LUji < N (3.7) 
i=l 

The membership value Uji is high (close to 1) for point Xi that is typical of 

distribution j and low (close to 0) for points that do not fit the distribution. 

Points that do not fit any of the M distributions will have low membership 

values in all components (i.e low L:~l Uji) and can be considered as noise. 

The second term in (3.6) forces Uji to be as large as possible to avoid the 
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trivial solution of the first term where all Uji are zero. The parameter "7j is 

a positive constants that control the importance of the second term with 

respect to the first one. It is related to the resolution parameter in the 

potential function and the deterministic annealing approaches [82]. It is 

also related to the idea of "scale" in robust statistics. In (3.6), mE [1,00) 

is called the fuzzifier. 

Using (3.5), the objective function ((3.6) can be written as 

subject to the membership constraint in (3.7). Since the columns of U are 

independent of each other, Minimizing J with respect to U is equivalent 

to minimizing the following individual objective functions with respect to 

each column j of U: 

for j = 1, ... , M. By setting the gradient of J(j) with respect to Uji to zero, 
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we obtain 

8J(j) (Uj ) 

8Uji 

=m 

~ 8(1- Ujir 
+"7jL 8 =0 

i=l Uji 

-m(Uji)m-J (109(Pj) + t, log( P,,(X.lOj,))) 

+m"7j(l - Uji)m-l = 0 

_m(uj;)m-J (lOg [pj fi Pb(X.IOj,)]) + mr/j(J - Uji)m-J ~ 0 

1 1 (log [pj TI~lPb(Xillejl)D 
(1 - Uji)m- - m( Uji)m- - m (3.40) 

"7j 

This yields the following necessary condition to update the possibilistic 

membership degrees: 

(3.11) 

To minimize J with respect to Pj subject to (3.7), we use the Lagrange 

multiplier technique, and obtain 

By setting the gradient of J with respect to A and Pj to zero, we obtain 

(3.13) 
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and 

(3.14) 

Solving equations (3.13) and (3.14) for Pj yields the following update equa­

tion for the GD mixture weights: 

~N m 
L...-i=l uji 

Pj = M N 

LLuj; 
j=l i=l 

(3.15) 

The presence of Gamma functions in the Beta distribution prevents ob­

taining a closed-form solution for Bjz that minimizes J. Thus, to minimize 

J with respect to B, we use the gradient descent method and estimate B 

iteratively using 

(3.16) 

where 

(3.17) 

It can be shown [751 that 

and 
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Algorithm 9 Robust Unsupervised Learning of Finite Generalized Dirich­
let Mixture Models (RULe GDM) 

Begin 
Fix the number of clusters M; 
Fix m, mE (1, (0); 
Initialize U ,e, and'r}, 
Repeat 

Compute log [Pb(Xillej1 )] 

Update e for few iterations using {3.16}; 
Update the partition matrix U using {3.11}; 
Update the mixture weights p using {3.15}; 

Until (U stabilize) 
End 

In (3.18) and (3.19), w(.) is the gamma function. Thus, 

8J M N 

80:. = - L L uft (w(O:jl + (3jl) - W(O:jl) + log(Xil )) 

Jl j=1 i=1 

and 

8J M N 

8(3. = -L L uft (W(O:jl + (3jl) - W((3jl) + log(l - Xil)) . 
Jl j=1 i=1 

The RULe_ GDM algorithm is summarized below: 
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3.2 Robust Unsupervised Learning of Finite 

GD Mixture Models with Feature Discrim-

ination 

The objective function in (3.8) can be optimized to yield the parameters of 

the M distributions that best fit the data. However, in high dimensional 

feature space, as in Image database categorization we do not expect all 

D features to be equally relevant for all M components. To address this 

issue, we propose a modification to (3.8) to learn the relevant features for 

each component. We consider the [th feature as irrelevant to cluster j if 

its distribution is independent of the corresponding component, i.e., if it 

follows density, denoted by q(Xd AI), that is common to all components. 

Let CPj = (CPj1, ... , CPjD) be a set of binary parameters, such that CPjl = 1 

if feature I is relevant to cluster j and CPjl = 0 otherwise. The likelihood 

function in (3.5) can be rewritten as 

M D 

p(XiIB) = LPj II[Pb(Xil IBjl )]¢jl[q(Xil IAl)](1-¢jl). (3.20) 
j=1 1=1 

Using an approach similar to the one in [93], we treat CPjl as a missing 

variable and define the probability that the [th feature is relevant to cluster 

j as the feature saliency Pjl = P(CPjl = 1). Thus, equation (3.20) becomes 

M D 

p(XiIB) = L Pj II (PjlPb(XilIBjl ) + (1 - Pjl)q(XilIAl)) . (3.21) 
j=1 1=1 

where B {{Pj}, {Bjl }, {AI}, {Pjl}} includes all model parameters. An 
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intuitive way to see how (3.21) is related to (3.20) is to notice that, because 

cPjl is binary, [Pb(XilIBjl)]¢jl [q(Xil IAI)](1-¢jLl can be written as cPjIPb(XilIBjl )+ 

(1 - cPjl)q(XilIAI). 

Vie approximate irrelevant features by one distribution, q, that is common 

to all clusters and that reflects our prior knowledge about the distribution 

of irrelevant features. In particular, we consider the distribution of an 

irrelevant feature as a Beta distribution that is independent of the clusters. 

By integrating the feature selection model in (3.21) into the objective func­

tion in (3.8), we minimize the following objective function 

J - t t u'll (log (Pj) + log fi [PjlPb( X"lBj,) + (1 - Pjt )q(X,,1 At)] ) 

M N 

+ L TUL(1- Uji)m, (3.22) 
j=l i=l -tt ( u'lllog(pj) +u'll t log [PjlPb(X"lBjl} + (1 - Pjt)q(x,tlAt}] ) 

M N 

+ L T}jL(l - Uji)m, (3.23) 
j=l i=l 

subject to the membership constraint in (3.7). Since the coloumns of U are 

independent of each other, minimizing J with respect to U is equivalent 

to minimizing the following individual objective functions with respect to 

each column of U: 

-t u'll (109(Pj) + t(109(PjtPb(x,tlOj,) + (i - Pjt)q(X"IAt») ) 

N 

+ L(l - Uji)m, (3.24) 
i=l 
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for j = 1, ... , M. By setting the gradient of J(j) with respect to Uji to zero, 

we obtain 

8J(j) (Uj ) 

8Uji 

L
N 8(1 - u··)m + JZ = 0 

8u·· i=l JZ 

_m(uji)m-l (IOY(Pj) + t, log (PjlPb(X,/IBj /) 

+(1 - Pjl)q(Xill).I)) ) + mT}j (1 - Uji)m-1 = 0 

m(l - Uji)m-1 - m(Uji)m-1 

(log [pj TI~l (PjlPb(Xill(}jl) + (1 - Pjl)q(Xill).I))]) 
-m = 0 (3.25) 

T}j 

This yields the following necessary condition to update the possibilistic 

membership degrees: 

1 -1 

Uj, ~ [1 _ COg [pj rr:~l (Pj/Pb(XuI~;) + (1 - pj/)q(X,dA/)) 1) m 'j 
(3.26) 

Minimizing J with respect to the feature weights yields 

Setting t~l to zero, and assuming that Pjs does not change significantly 

from iteration (t) to iteration (H 1) we obtain the following update equation 
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for Pjs : 

(t+1) 
Pjl (3.27) 

To minimize J with respect to Pj subject to (3.7), we use the Lagrange 

multiplier technique, and obtain 

J - t t uj! (lOg (Pj) +log [fi (Pj,Pb(X,d Bj,) + (1 - Pj' )q(X" 1>,,)) 1 ) 
M 

-A(L Pj - 1). (3.28) 
j=1 

By setting the gradient of J with respect A and Pj to zero, we obtain 

(3.29) 

and 

(3.30) 

Solving equations (3.29) and (3.30) for Pj yields the following update equa­

tion for the GD mixture weights: 

~N m 
L....i=1 u ji 

Pj = M N 

LLuy: 
j=1i=1 

(3.31 ) 

As in RULE_ GDM, to minimize J with respect to () and A, we use the 

gradient descent method and estimate () and .\, iteratively using 

()J~+1) ()(t) _ E oj 
jl 10 ()jl 

(3.32) 

A (t+1) 
I 

A(t) _ E oj 
I 20Al 

(3.33) 
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where 

and 

Thus, 

and 

8J 

8>"1 

The resulting algorithm, called Robust Unsupervised Learning of Finite 

Generalized Dirichlet Mixture Models and Feature Selection (RULe_ GDM_FS) 

is summarized below: 
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Algorithm 10 Robust Unsupervised Learning of Finite Generalized 
Dirichlet Mixture Models and Feature Selection (RULe_ GDM_FS) 

Begin 
Fix the number of clusters M; 
Fix m, mE (1, 00); 
Initialize U ,e, A, p, and TI, 

Repeat 
Compute log [Pb(Xille jl )] 

Update e for few iterations using {3.32}; 
Update A for few iterations using {3.33}; 
Update the partition matrix U using {3.26}; 
Update the mixture weights p using {3.31}; 

Until (U stabilize) 
End 

3.3 Robust Unsupervised Learning of Finite 

G D Mixture Models with Feature Subset 

Selection 

RULe_ GDM_FS algorithm proposed in section 3.3 is designed to search 

for the optimal relevance weights for each feature within each cluster. How­

ever, for high-dimensional data learning relevance weights for each feature 

may lead to overfitting. To avoid this case, we propose a coarse approach 

to feature weighting. We assume that the D features have been partitioned 

into d subsets and that each subset s has ks features, that is, D = 2:~=1 ks. 

For instance, in the considered image region collection clustering, we may 

have one subset for color features, another one for texture features, and a 

third subset for structure features. We use Yi to denote the components 

of Y i that include only features from subset s. 
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The mixture of M GD distributions in (3.1) can be re-written as, 

M M d 

p(Yle) = L Pj p(Ylej ) = L Pj IIPb(Y8!B.f). (3.36) 
j=l j=l 8=1 

In (4.8), ej = (a},,6J, a;, ,6J, ... , a1, ,61) is the parameter vector of the lh G D 

component and Pj are the mixing weights where Lj Pj = 1, for j = l..M. 

The factorization of the posterior probability in (3.4) becomes 

d 

p(jIYi) ex Pj IIPb(Xflej), 
8=1 

d k 8 

ex Pj II IIPb(XfdBjl) (3.37) 
s=ll=l 

Where X is the data representation in the new feature space as outlined 

in section (3.3). In (3.37), Pb(xsil!B.il) is a Beta distribution with ejl = 

(aJI' ,6ll) , l = 1, ... , k8
• That is, the clustering structure underlying Y is the 

same as that underlying X = (Xl, X2 , ..• , X N ) governed by 

M d 

p(Xile) = L Pj IIPb(Xfl e). (3.38) 
j=l 8=1 

Instead of assuming a set a binary parameters for each feature, let <Pj = 

(<Pj1, ... , <Pjd) be a set of binary parameters, such that <Pj8 = 1 if feature 

subset 8 is relevant to cluster j and <Pj8 = 0 otherwise. We treat <Pj8 as a 

missing variable and define the probability that the 8th feature subset is 

relevant to cluster j as the feature saliency Pjs = P( <Pjs = 1). Thus, the 
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likelihood function in (3.38) can be rewritten as 

M d 

p(XiIO) = LPj II (PjsPb(Xfl0j) + (1- Pjs)q(XfIAs)). (3.39) 
j=1 s=1 

where 0 = { {Pj }, {OJ}, { As}, {Pjs}} includes all model parameters. We ap­

proximate irrelevant feature subsets by one distribution, q, that is common 

to all clusters. In particular, we consider the distribution of an irrelevant 

feature subset as a Beta distribution that is independent of the clusters. 

By integrating the feature selection model in (3.39) into the objective func­

tion in (3.23), we minimize 

M N d 

J - f;8UY: (109(Pj) + ~ log [PjsPb(XfIOJ) 

M N 

+(1 - Pjs)q(XfIAs)]) + L TlJL(1- Uji)m, (3.40) 
j=1 i=1 

subject to the membership constraint in (3.7). 

Minimizing J with respect to U is equivalent to minimizing the following 

individual objective functions with respect to each column of U: 

N d -8 uy: (109(pj) + ~IOg[pjsPb(XfIOJ) 
N 

+(1- Pjs)q(XfIAs)]) + 7]jL(l - Uji)m, (3.41 ) 
i=1 

for j = 1, ... , M. By setting the gradient of J(j) with respect to Uji to zero, 
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we obtain 

8J(j) (Uj ) 

8Uji 

~ 8(1 - Uji)m _ 
+r/j L. 8 - 0 

i=l Uji 

-m (u;') m-
1 (109(P;) + t log [Pi ,Pb(Xi I Bj) 

+(1- Pjs)q(XfIAs)l) + m1]j(l - Uji)m-1 = 0 

m(l - Uji)m-1 - m(Uji)m-1 

(log [Pj TI~=l (PjsPb(Xi!B.n + (1 - pjs)q(XiIAs)]) 
-m = 0 (3.42) 

1]j 

This yields the following necessary condition to update the possibilistic 

membership degrees: 

1 -1 

U;' ~ [1 _ C"g [p; rr=~l (P;,Pb (XII~) + (1 -Pj, )q(Xi IA,)) l) m-' 1 
(3.43) 

Setting 88J to zero, and assuming that Pjs does not change significantly 
PJ8 

from iteration (t) to iteration (HI) we obtain the following update equation 

for Pjs : 
(t+1) 

Pjs (3.44) 

Minimizing (3.40) with respect to GD mixture weights yields the same 

update equation as in section 3.3. 

As outlined in section, to minimize J with respect to e and A, we use the 
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gradient descent method and estimate fJ and ). iteratively using 

where 

and 

Thus, 

aJ 
aos 

J 

A (t+1) 
s 

(3.45) 

(3.46) 

aJ ___ ~ urn" PjsPb(Xilaj) (1J!(aj + f3J) - 1J!(aj) + log(Xf)) 
L...J (3.47) 

aaj i=l J~ PjsPb(Xilaj) + (1 - Pjs)q(XiIAs) 

and 

The resulting algorithm, called Robust Unsupervised Learning of Finite 

Generalized Dirichlet Mixture Models and Feature Subset Selection (RULe_ GDM_FSS) 

is summarized below: 
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Algorithm 11 Robust Unsupervised Learning of Finite Gen­
eralized Dirichlet Mixture Models and Feature Subset Selection 
(RULe_ GDM_FSS) 

Begin 
Fix Thre, mE [1, (0); 
Fix the number of clusters M. 
Initialize U ,B, .x, p, and T], 

Repeat 
Compute log [Pb(XiIBjs)] 
Update B and .x for few iterations using {3.45} and {3.46}; 
Update U and p using {3.43} and {3.31}; 

Until (U stabilize) 
End 

3.4 Semi-supervised Possibilistic Clustering and 

Feature Subset Weighting based on Ro-

bust GD Mixture Modeling 

The unsupervised learning approaches proposed in this chapter require es­

timating several parameters using complex optimization and is prone to 

several local minima. Moreover. a large amount of data is required to ob­

tain accurate estimates of the parameters of the Generalized Dirichlet mix­

ture. To overcome this potential drawback, we propose a semi-supervised 

version of those algorithms. The supervision information consists of two 

types of pairwise constraints. The first one is Should-link constraints and 

specifies that two data points should be assigned to the same cluster. The 

second type of constraint is ShouldNot-link and specifies that two data 

points should not be assigned to the same cluster. 
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Let SL be the set of Should-link pairs such as (Xi, Xj) E SL implies that 

Xi and Xj should be assigned to the same cluster. Similarly, we let N L be 

the set of ShouldNot-link pairs such as (Xi, X j ) E N L means that Xi and 

Xj should not be assigned to the same cluster. We reformulate the problem 

of identifying the M mixture components in section 3.3 as a constrained 

optimization problem. In particular, we modify the objective function in 

(3.40) as follow 

M N d 

J - ~~ (Uftl09(Pj) + uft ~ log[PjsPb(Xf!e.J) 

M N 

+(1 - Pjs)q(Xfl,\s))]) + L 7]j L(1- Uji)m 
j=1 i=1 

+p, [ L tuj:ujk + L t t uj:u;] (3.49) 
(Xt,XkENL) j=1 (Xt,XkESL) j=1 p=1,pf-j 

subject to the membership constraint in (3.7). 

The last term in (3.49) consists of the cost of violating the pairwise Should­

link, and ShouldNot-link constraints. The value of p, controls the impor­

tance of the supervision information compared to the first term which is 

related to the log likelihood of all N points being fitted by M components. 

The second term as in RULe _ G D M forces the Uji to be as large as possible 

to avoid the trivial solution of the first term where all Uji are zero. 

Minimizing J with respect to U is equivalent to minimizing the following 
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individual objective functions with respect to each column of U: 

N d 

- ~ uft (109(Pj) + ~ log[PjsPb(XfIBj) 

N 

+(1 - Pjs)q(Xfl,\s)]) + 1]jL(1- Ujir 
i=l 

for j = 1, ... , M. By setting the gradient of J(j) with respect to Uji to zero, 

we obtain 

oJ(j) (Uj ) 

OUji 

N oUft (log(pj)+ l:~=llog (PjsPb(XfIBj) + (1 - Pjs)q(Xfl,\s))) 

-L OU" 
i=l )~ 

~ 8(1- Uj,)m 8 [(x"ENqUJ!Ujk] 
+1]j ~ OU "" + J..L OU)", 
i=l)~ • 

o [L t UfiU;k] 
(Xt,XkESL) p=l,pfj 

+J..L =0 
OUji 

-m(Uji)m-l (I09(Pj) + t.I09[pj'Pb(X:IBJ) 

+(1 - Pjs)q(Xfl,\s)] + J..L [ L ujk + L t U;;k]) 
(Xt,XkENL) (Xt,XkESL) p=l,pi'j 

+m1]j(l - Uji)m-l = 0 
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m(l - Uji)m-1 - m(Uji)m-1 

(log [Pj rr~=l(pjsPb(XileJ) + (1- pjs)q(XiIAs)]) 
-m~--~------------------------------~ 

T}j 

( I-L [ L ujk + L t U;k]) 
(Xt,XkEN L) (Xt,XkESL) p=l,pf.j 

-m =0 
T}j 

This yields the following necessary condition to update the possibilistic 

membership degrees: 

1-

m (lOg [Pj II:~1 (Pj,Pb(Xl I OJ) + (1 - Pj, )q(Xli A,)) 1 

T}j 

The term m(IOg [pj rr~=l(pjsPb(XfIOj) + (1- pjs)q(XfIAs)] + 

1 -1 
m-l 

(3.51) 

J-t [ L un + L t u~l) can be viewed as the total cost when 
(Xt,X,EN L) (Xt,XkESL) p=l,p#) 

considering point Xi in cluster j. This cost depends on the posterior prob-

abilties, and the cost of the violated constraints due to cluster j. 

Since the third term in (3.49) does not depend on the distribution param­

eters, the GD mixing weights, and the feature subset weights, minimizing 
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Algorithm 12 Semi-supervised Robust Learning of Finite Gen­
eralized Dirichlet Mixture Models and Feature Subset Selection 
(SRLe_ GDM_FSS) 

Begin 
Fix Thre, mE [1, (0); 
Let M be an overspecified number of clusters. 
Fix the set of 8houldLink {8L} and 8houldNotLink {CL} constraints. 
Initialize U ,0, .x, p, and 'f], 

Repeat 
Compute log [Pb(XfIOjs)] 
Update 0 and .x for few iterations using {3.45} and {3.46}; 
Update U and p using {3.48} and {3.31}; 

Until (U stabilize) 
Merge similar clusters. 

End 

(3.49) with respect to Ojs, Pj, and Pjs yields the same update equations as 

in section 3.4. 

The resulting algorithm, called Semi-supervised Robust Learning of Fi­

nite Generalized Dirichlet Mixture Models and Feature Subset Selection 

(SRLe_ GDM_FSS) is summarized below: 

3.5 Finding the Optimal Number of Clusters 

A nice property of the proposed Generalized Dirichlet based algorithms is 

that they associate a possibilistic membership degree with every sample in 

every cluster. Moreover, the memberships of a given point in all clusters 

are independent of each other and are not constrained to sum to 1. Thus, 

if we start with an initial partition that has an overspecified number of 

clusters/models M, clusters will be created independently of each other and 
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many of them will converge to the same dense regions in the feature space. 

This observation is illustrated in Figure 3.5(a) with a simple synthetic data 

set consisting of 2 clusters. We do not assume that we know the number of 

components, and we overspecify this value to 5. For each component, the 

proposed algorithms learn the GD model parameters and the parameters of 

its possibilistic membership function. Then, for each point in the feature 

space, we compute its possibilistic membership in all 5 clusters. These 

membership functions are displayed in Figure 3.5(b )-(f). As it can be seen, 

clusters 2, 3, 4 and 5 have very similar distributions. That is, these 4 

clusters are very similar and are modeled by 4 similar distributions. 

To detect similar clusters, we use the cluster similarity measure proposed 

in [94]. Given two clusters j1 and j2 , we compute their fuzzy similarity 

using the membership values of all points in the two clusters. 

(3.52) 

Clusters that have a similarity values larger than a certain threshold get 

merged, and the number of clusters is updated accordingly. 
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I·' Ib' Ie, 

Figure 3.1: Finding the optimal number of clusters. (a) data set containing 
two Beta distributions, (b )-(f) Possibilistic membership of every point in 
the feature space in the 5 identified clusters. 

Thus, RULe_ GDM is extended to the following algorithm 
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Algorithm 13 Extension of RULe _ G D M Algorithm 

Begin 
Fix Thre, mE (1, (0); 
Let M be an overspecified number of clusters. 
merge = 1; 
While (merge) 
merge = 0; 
Initialize U ,B, p, and Tj, 

Repeat 
Compute log [Pb(XilIB jl )] 

Update B for few iterations using {3.16}; 
Update the partition matrix U using {3.11}; 
Update the mixture weights p using {3.15}; 

Until (U stabilize) 
For each pair of clusters i and j compute S(i,j) using {3.52} 

End 
End 
End 

If (S(i,j) ~ Thre) 
Merge cluster i and cluster j. 

Update the number of clusters M 
Set merge = 1; 

End 

3.6 Experimental results 

We first illustrate the performance of the proposed Algorithms using syn­

thetic data sets. For all results reported using the Generalized Dirichlet 

mixture based algorithms, we use the following initialization scheme. First, 

we partition the data into M clusters using the fuzzy C-means (2.1.3). 

Then, we use the method of moments (MM) [112] to obtain initial beta 

distribution parameters for each cluster. For each iteration, we update B 

and A using (3.32) and (3.33) for 3 iterations. 
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cluster #1 cluster #2 

xl x2 xl x2 

relevance 
0.4973 0.5027 0.4819 0.5180 

weights 

Alpha 6.3597 4.8794 91.3969 109.0321 

Beta 70.6678 133.0715 48.0923 43.7654 

Table 3.1: Parameters learned by RULe GDM FS for two Beta dis­
tributed clusters 

cluster #1 cluster #2 

Features xl x2 x3 x4 xl x2 x3 x4 

Relevance 
0.39 0.09 0.40 0.12 0.06 0.45 0.11 0.38 

weights 

Alpha 6.35 1.16 4.87 1.12 2.30 91.39 1.53 109.03 

Beta 70.68 1.23 133.8 1.28 3.01 47.75 1.95 43.13 

Table 3.2: Parameters learned by RULe_ GDM_FS for a 4-dimensional 
data containing irrelevant features 

We generate two Beta distributed clusters. Each cluster contains 200 

points. We fix the fuzzyfier m to 2, and the resolution parameter for the 

possibilistic membership function, 1]), to 0.7 for all clusters. RULe_ GDM_FS 

converged after 3 iterations, and the estimated parameters of the two dis-

tributions are displayed in Table 3.1. These parameters are very close to 

those used to generate the data. Also, since both features are equally im­

portant for both distributions, RULe_GDM_FS assigns similar relevance 

weights (close to 0.5) to each feature. 

To demonstrate the ability of RULe_GDM_FS to cluster and identify 

relevant features, we increase the number of features in the previous data to 

four by adding two irrelevant features uniformely distributed in the interval 

[0 1]. We reorganize the features so that different features are relevant for 

different clusters. In particular, for cluster 1, features 2 and 4 are irrelevant 

and for cluster 2, features 1 and 3 are irrelevant. 
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The RULe _ G D M _ FS algorithm converged after 5 iterations, and the re­

sults are displayed in Table 3.2. As it can be seen, for cluster 1, the first 

and third features were correctly identified as the most relevant features. 

On the other hand, features two and four were identified as less relevant 

ones. Similarly, for cluster 2, the second and fourth features were correctly 

identified as relevant features, and features one and three were detected 

as irrelevant and assigned lower weights. In table 3.2, we also show the 

estimated Beta distribution parameters of the two clusters. As it can be 

seen, the obtained values are similar to those reported in Table 3.1 obtained 

before adding the irrelevant clusters. Thus, by detecting the irrelevant fea­

tures and assigning low weights to them, the distribution of the relevant 

features can be estimated robustly. 

To assess the robustness of RULe _ G D M _ FS with respect to noise and 

outliers, we generate a synthetic data set from two 2D Beta distributions 

with different parameters. 200 points were generated from each distribu­

tion. In addition, we generate 200 noise points (uniformly distributed in 

[0,1]). This dataset is shown in Figure 3.2(a). In Figure 3.2(b) and (c), we 

display the partitions obtained with the method proposed in [38], and using 

Gaussian mixture model as described in [1] respectively. Each data point is 

assigned to the component that has the highest posterior probability. We 

should emphasize here that since the sum of the posterior probabilities is 

1, noise points cannot be identified and get assigned to the closest compo­

nent. Moreover, since their posterior probability can be high (close to 1), 

they can affect the estimated parameters significantly. In Figure 3.2(d), 

we display the partition obtained using RULe_ GDM_FS. Points that are 

assigned low possibilistic memberships «0.1) in both clusters (i.e. noise 
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points) are displayed using the '+' symbol. As it can be seen, the obtained 

partition reflects the true structure of the data and the identified noise 

points would have a minimal effect on the estimated parameters. 

(a) (b) 

0,..,.. 000 ~oO_"O 

(e) (d) 

Figure 3.2: Clustering 2 Beta distributions corrupted with uniform noise. 
(a) data set , (b) partition obtained with the method in [113], (c) partition 
obtained using Gaussian mixture model as described in [85], and (d) parti­
tion obtained using RULe_GDM_FS. Identified noise points are displayed 
with a '+' sign 

In Table 3.3, we display the true model parameters used to generate the 

clusters in Figure 3.2(a) and the estimated parameters obtained with 

RULe_GDM_FS and the method in [113]. As expected, noise affects the 

parameters estimated with the EM method. On the other hand, RULe_ GDM_FS 

can identify noise points and assigns low possibilistic memberships to them, 

and thus, limiting their influence on the estimated model parameters. 

To assess the robustness of RULe_ GDM_FS in high dimensional spaces, 

we generate a data set with two Beta distributed clusters in a 3D-dimensional 

feature space. Each cluster contains 3000 points. We increase the noise rate 
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cluster 1 cluster 2 

Model [19.05 30.16] [4.95 53.17] 
parameters [6.07 7.10] [20.0 5.52] 
[ a1 a2 ] 

(31 (32 

Estimated with 

the method in 
[17.39 25.22] [8.11 53] 

[113] 
[3.11 5.74] [12.06 4.24] 

Estimated with [18.91 29.11] [4.99 53.21] 
RULe GDM FS [6.13 6.94] [20.01 5.51] 

Table 3.3: Comparaison of the parameters used to generate the data to the 
parameters est imated using the method in [113] and RULe_ GDM_FS. 

progressively from 10 to 50%. For each run , we compare the obtained par-

tition to the ground truth and compute the relative accuracy. As it can 

be seen in Figure 3.3, the performance of RULe_GDM_FS degraded at a 

much lower rate than the performance of the method in [38]. 

100 

80 

>-u 
I! 
:::I 60 u 
U 
1\1 
c: 
0 
±! 40 1:: 
1\1 
a.. 

20 

10 20 

-e- RULe_GDMJS 

-e- Method proposedinl1131 

30 
Noise rate 

40 50 

Figure 3.3: Comparison of the accuracy of the data clustered with the 
method in [113] and RULe_ GDM_FS when the dimensionality of the fea­
ture space is fixed to 30 and the noise rate is varied from 10 to 50 % 
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In the next experiment, we assess the robustness of RULe_ GDM_FS as 

we vary the dimensionality of the feature space. We generate two Beta 

distributed clusters. Each cluster contains 3000 points. We fix the noise 

rate to 30% (2000 points) and we increase the dimensionality of the feature 

space progressively from 2 to 40. For each run, we compare the accuracy of 

each algorithm. As it can be seen in Figure 3.4, using the method in [1131 

the accuracy decreases from 69 to 50%. On the other hand, the accuracy 

of RULe GDM FS remained above 70%. 

100 
I ~ RULe GOM FS I~ 
~ Method proposed Inl1131 

80 

>-u 
f 
::J 60 u 
U 
I'll 
I: 
0 

~ 40 
I'll 
0-

20 

,< 

2 5 10 15 20 25 30 35 40 

Data. dimension 

Figure 3.4: Comparison of the accuracy of the data clustered with the 
method in [1131 and RULe_ GDM_FS when the noise rate is fixed at 30% 
and the dimensionality of the feature space is varied from 2 to 40. 
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CHAPTER 4 

IMAGE ANNOTATION BASED 

ON CONSTRAINED REGION 

CLUSTERING 

In this chapter, we describe our image annotation approach that relies on: 

(i) semi-supervised clustering and feature weighting; (ii) a greedy selection 

and joining algorithm (GSJ); (iii) Bayes rule; and (iv) membership based 

Cross Media Relevance Model (CMRM). Clustering is used to group image 

regions into region clusters and provide a summary of the training data. 

These summaries will be used as the basis for annotating new test images. 

Since this learning task involves clustering sparse and high dimensional 

data that are corrupted by noise and outliers, we use a semi-supervised 

constrained learning apprach that performs simultaneous clustering and 

feature weighting. The constraints consist of pairs of image regions that 

should not be included in the same cluster. These constraints are deduced 

from the irrelevance of all concepts annotating the training images, and are 
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Figure 4.1: Overview of the proposed image annotation system 

used to guide the clustering process. 

The GSJ algorithm uses the fuzzy membership values generated by the 

clustering algorithm to compute a degree of mutual dependency among the 

clusters. Finally, Bayes rule and a membership based CMRM are used to 

label images based on their posterior probability in each concept. 

Figure 4.1 gives an overview of the proposed image annotation system. 

For the training phase, the labeled training images are segmented into 

homogeneous regions and each region inherits the annotating keywords of 

its image. We extract multiple visual features from each image region and 

combine them to form one feature descriptor for the region. This high 

dimensional feature representation is needed to represent the diverse image 

regions. However, it results in a very sparse feature space where features are 

not equally relevant to all categories. Consequently, standard unsupervised 
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clustering algorithm may not perform well for this application. To overcome 

this problem, we derive a set of constraints from the co-occurence of the 

annotating keywords. These constraints are then used within our proposed 

semi-supervised clustering and feature weighting algorithm to guide the 

clustering process. 

After region clustering, we propose two different approaches to learn as­

sociations or joint probability distributions of region clusters and textual 

vocabulary. The first one uses a semi-naive Bayesian model to estimate the 

posterior probability of each keyword given a set of image region clusters. 

The second one consists of a membership based Cross Media Relevance 

Model. Both of these approaches use a greedy Selection and Joining algo­

rithm to avoid making the assumption that region clusters are independent. 

The testing part of the proposed system takes, as input, an unlabeled 

image, segments it into homogeneous regions, extracts and encodes the 

visual content of each region by a feature vector, and assigns each image 

region to one of the predefined region categories. Then, it uses the learned 

models to infer a set of keywords that best describe the image. These 

keywords are then used to annotate the image. 

The rest of this chapter is organized as follows. In section 4.1, we describe 

the format of the training data and its feature representation. We also 

outline the constraints fomulation, and the semi-supervised clustering and 

feature weighting algorithm used to summarize the training image regions. 

Then, in section 4.2, we outline the proposed image annotation approaches. 

The experiments used to evaluate the performance of the proposed methods 

are described in section 4.3. 
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I Car, Grass, Road I I Beach, Sky, Tree, Water l 

Figure 4.2: Examples of globally annotated images 

4.1 Image Database Organization 

We assume that we have a training image collection, T , that contains a 

total of N images, and that each image is labeled by 1 to m keywords. 

The keywords provide global description of the images and are not ex­

plicitly associated with specific regions. Figure 4.2 provides a sample of 

three annotated images. This type of annotation does not require image 

segmentation and could be easily generated. 

4.1.1 Image Segmentation 

Each training image is segmented into a small number of homogeneous re­

gions. Segmentation is achieved by clustering the pixels' color information. 

We use the Competitive agglomeration (CA) (detailed in section 2.1.5). 

Our choice is based on the computational efficiency of this algorithm and 

its ability to cluster each image into an optimum number of regions. The 

initial segmentation of the database is carried out offline and computational 

efficiency is not a major issue. However, for test images, segmentation must 

be carried out online, and this process should be efficient. 
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Figure 4.3: Visual feature representation 

4.1.2 Feature Extraction and Representation 

After segmenting the training images, all image regions are represented by 

various features that represent color, texture and structure information. 

Formally, each region 7'j is represented by q feature subsets. Let 7'j be the 

representation of region 7'j by the 8th featue subset. Each 7'j is represented 

by a ds-dimensional vector, {J;{ ) , ... , f;~: } . Thus, an image that includes k 

regions 7'1 , ... , 7'k would be represented by k vectors of the form: 

f
(j) f(j ) f(j ) f (j) c . 1 k 
11 , ... , 1dl " '" J q1 , ... , J qdq ' lor J = ,... , 

where fN ), ... , fi~; is the representation of the ith visual feature subsets of 

region 7'j ' 

Each region inherits the annotating keywords of its image. The assump­

tion is that , if word w describes a given region 7'j , then a subset of its 
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visual features will be present in many annotated images. Thus, an asso­

ciation rule among them could be mined. Figure 4.3 illustrates our image 

representation approach. 

4.1.3 Constraints Formulation 

Clustering image regions in a high dimensional and sparse feature space 

is a hard optimization problem that is prone to many local minima. One 

possible approach to achieve robust results is to use partial supervision to 

guide the clustering process and narrow the space of possible solutions. 

This additional information can be under the form of labels, hints, or con­

straints. Supervision in the form of constraints is more practical. Typically, 

it consists of a set of pairs of points that must belong to the same cluster 

and another set of points that must belong to different clusters [711. U n­

fortunately, for large datasets, this approach is not practical because the 

constraint generation task could be tedious. To overcome this problem, 

we propose a method to extract these constraints in an unsupervised way 

based on the relevance of the concepts annotating the training image re­

gions. In particular, we first extract concept relevancy information based 

on the annotating keywords. Then, we use this information to infer a set 

of ShouldNot-link constraints. 

Let rj denote an individual region j. Every segmented region rj inherits 

its image level annotation. First, we build a weighted data matrix DWxQ 

where Q is the total number of regions extracted from all training images, 

and W is the size of the vocabulary (i.e number of keywords). The idea 

is to assign higher weights to keywords which are more "unique" in the 

training set, and assign lower weights to common keywords. Thus, the 
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(Wi, rj) element of matrix D is defined as 

Dwr = { 
" J 

log ( ~) if Wi is one of the keywords annotating r j 

o otherwise 

where Zi is the number of image regions annotated with keyword Wi. If 

we define a feature space where each dimension is an image region. Then, 

matrix D can be viewed as a mapping of the vocabulary into the training 

regions feature space. 

Let concept Cp be the set of keywords annotating image Ip. We define the 

relevance of two sets of concepts Cp and Cq, annotating images Ip and Iq, 

as: 

where 

(4.2) 

is the cosine similarity in the regions feature space. 

If the relevance of two image annotations, Rel (Cp , Cq ), is smaller than 

a predefined threshold, e, then Cp and Cq are regarded as "irrelevant" 

to each other and all of their corresponding image regions are considered 

as ShouldNot-link. Intuitively, this means that if two images show little 

concept relevancy, then it is assumed that pairs of regions within these two 

images are semantically different. Thus, we define the set of image region 

pairs that should not be assigned to the same cluster, N L, as 
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Figure 4.4 shows an example of two correlated images. The relevancy of 

the set of keywords annotating these two images, computed using (4.2), 

is shown in Table 4.1. The total relevancy of these two set of keywords 

is computed using (4.1) and it is equal to 1. Since this correlation value 

is high, the two images are considered relevant to each other. Thus, we 

cannot infer ShouldNot-link constraints between any pair of regions from 

these two images. 

Plane, Sky Sky, Bird 

Figure 4.4: Example of two correlated images. The first image is annotated 
by keywords "Plane" and "Sky" , while the second image is annotated by 
keywords "Sky" and "Bird". 

Table 4.1: Relevancy between pairs of keywords annotating the images in 
Fig 4.4 

Figure 4.5 displays two images that have weak concept relevancy. For 

instance, the keywords "beach", "Sky", "Sand", and "Tree" do not co-occur 

often with keywords like "Car", "Road" and "Grass" across the training data 

set. The relevancy of the set of keywords annotating these two images, 

computed using (4.2), is shown in Table 4.2 . The total relevancy of these 

two sets of concepts, computed using (4.1), is 0.14. Since this concept 
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Beach, Sky, Sand, Tree Car,Road, Grass 

Figure 4.5: Example of two uncorrelated images. The first image is an­
notated by keywords "Beach", "Sky", "Sand" and "Tree" while the second 
image is annotated by keywords "car", "road "and "grass". 

Rc I Beach I Sky I Sand I Tree I 
Car 0 0.01 0 0.01 

Road 0 0.013 0.003 0.02 
Grass 0.004 0.07 0.003 0.14 

Table 4.2: Relevancy between pairs of keywords annotating the images in 
Figure 4.5 

relevancy value is low, these two images are considered irrelevant to each 

other. Thus, a set of ShouldNot-link constraint is created between all pairs 

of regions from these two images. 

4.1.4 Semi-supervised Clustering and Cluster Corre­

lation Estimation 

Most existing image annotation approaches [13, 15, 18, 211 assume that 

clusters of image regions are independent. However, images contain mul­

tiple objects and some of them can be correlated to a certain degree. For 

instance, many images, would include planes in the sky. Thus, one could 

not assume that "Plane" and "Sky" regions are independent. 

A natural solution to avoid making this independence assumption is to 
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estimate the correlation among the regions and make use of it in the anno­

tation process. In [19], the authors used simple inverted lists of each region 

cluster to estimate this correlation. Unfortunately, the boundaries between 

the region clusters are not well defined and using a simple inverted list to 

compute the dependency between them is not effective. Moreover, image 

region collections may contain noise and outliers since the image segmen­

tation process cannot be accurate. To overcome these limitations, we first 

summarize the image region collection using clustering. Then, we use the 

generated membership degrees of all regions in all clusters to estimate the 

inter-cluster correlation. 

To achieve good clustering peformance, we use two semi-supevised cluster­

ing algorithms that peform simultaneous clustering and feature weighting. 

The supervision information consists of a set of ShouldNot-link constraints 

and specifies that two image regions should not be assigned to the same 

cluster. This set of constraints is extracted in an unsupevised way as de­

scribed in section 4.1.3. The first clusteing algorithm is the Semi-supervised 

simultaneous Clustering and Attribute Discrminiation algorithm (sSCAD) 

(outlined in section 2.2.3). sSCAD is a distance based algorithm that par­

titions the data into C clusters. It leans the center of each cluster and 

assigns a relevance weight to each feature subset in each cluster R j . Let 

profile PRJ consists of the visual features of the center, CRjl and the rele­

vance weights for each feature subset, vR. In addition, sSCAD assigns a 
J 

fuzzy membership degree UreRj to each region re in each cluster R j . 

The second algorithm we use to partition the image regions is the semi­

supervised possibilistic clustering and feature subset weighting based on 

robust GD mixture modeling (sRULe_GDM_FSS) that we proposed in 

section 3.4. sRULe_GDM_FSS is a probabilistic approach that learns C 
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Generalized Dirichlet models that best fit the training image regions. Fo 

each learned model, it identifies the relevant feature subsets. In addition, 

this clustering algorithm generates possibilistic membership degrees UreRj 

to each image region rein each model R j . 

After clustering the image regions (using sSCAD or sRULe_ GDM_FSS), 

we obtain a set of region clusters, R j , j = 1, .. , C. Each cluster R j includes 

a set of regions that share similar visual features and common keywords. 

Then, we use the fuzzy or possiblistic membership values to define the 

correlation between region clusters R j and Rk as 

N k[ k[ 

LL L min(UreRjl UrjRJ 
[=1 e=1 /=1 

Rco(RJo,Rk) = -----------
N k[ k[ 

LL L maX(UreRj , UrjRk) 

[=1 e=1 /=1 

(4.4) 

In (4.4), N is the total number of images in the training set, k[ is the 

number of regions in image I, UreRj is the membership degree of region 

re in cluster R j . This could be either the fuzzy membership generated by 

sSCAD or the possibilistic membership generated by sRULe _ G D M _ FSS. 

In other words, region clusters R j and Rk are highly correlated if most 

image regions in these clusters share similar membership values. 

The poposed approach to estimate cluster correlation is illustrated by the 

block diagram in Figure 4.1.4. 
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Figure 4.6: Block diagram of the proposed approach to estimate correlation 
between clusters of image regions 
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4.2 Image Annotation 

In this section, we describe our approach that uses a set of training images 

to build a model that learns the correspondence between region clusters and 

keywords that annotate the training images. This correspondence would 

be used as the foundation to translate from one modality to another. In 

particular, translating visual features into keywords, i.e., image annotation. 

We propose two different approaches. The first one is based on a semi-naive 

Bayesian model. The second approach is a membership based Cross Media 

Relevance Model. 

4.2.1 Image Regions Assignment 

Given an unlabeled test image 1*, we first segment it using the same method 

used to segment all training images (i.e CA with color distribution). Let 

{rl,r2, ... ,rd be the set of regions of image 1*. For each region rj, we 

extract its visual feature subsets, rj, s = 1, .. , q. Then, we assign each 

region to the closest region cluster. The cluster assignment depends on the 

clusteing algorithm used to categorize the image regions and is outlined in 

the following subsections. 

4.2.1.1 Minimum Distance Image Region Assignment: 

If the clustering algorithm used to summarize the regions of the training 

images is sSCAD, then, the algorithm summarizes each cluster Rz and 

represent it by a center CRI' First, we compare the visual features of each 
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region rj to the center of each region cluster Rl using 

q V S x dist(rB cB ) 
D(rj,R1)=L Rl DB J' Rl ,forj=1...Q,andl=1...C (4.5) 

s=1 avg 

In (4.5), s = 1...q are the q feature subsets, VRI is the relevance weight 

learned by sSCAD for feature subset s (computed using (2.50)), and cHI 

is the the center of cluster Rl that takes into account only feature subset 

s. In (4.5), dist() is the partial distance between visual features of image 

region rj and center of cluster Rl taking into account only feature subset 

s. In (4.5), D~vg is the average intra-cluster distance computed over the 

training data using subset s. It is used to normalize each partial distance 

to make all partial distances within a comparable range. This distance is 

computed using 

Then, we assign region rj to cluster R* such that 

R*= argmin D(rj,Rl) 
RIE{Rl ... Rc} 

4.2.1.2 Probabilistic Image Region Assignment: 

(4.6) 

(4.7) 

If the Generalized Dirichlet mixture modeling algorithm is used to summa-

rize the image regions, the assignment of a new image regions will be based 

on the distribution of the learned models. In paticular, for each region rj, 

we compute its posterior probability with respect to all models and select 
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the one with the highest probability. In other words, we assign each image 

region rj to region cluster R* such that 

R* = argmax (p(Rz/rj)) 
RlE{Rl, .. ,Rc} 

where p(Rz/rj) is the posterior probability of assigning region rjto cluster 

R I . 

4.2.2 Identifying Independent Subsets of Image Re-

glOns 

Most existing image annotation approaches assume that the events of ob­

serving region clusters within an image are mutually independent once an 

image is selected. However, this assumption does not often hold. For in­

stance, within the same image, the cluster of "Sky" regions can be highly 

correlated to the cluster of "Plane" regions. To overcome the restrictions 

of this "naive" assumption, our proposed annotation appoach takes into 

account the correlation among the region clusters of the test image. This 

correlation is estimated using the cluster correlation matrix Reo (computed 

using (4.4)), the membership degrees of all regions of the test image, and 

a greedy selection and joining (GSJ) algorithm for finding the independent 

subsets of region clusters. 

Assume that the regions of test image 1*,{ri, i = L.k}, belong to the 

clusters H = {Rjl, j' = L.k/}, where k' < k. We should note here that 

subscript i refers to the ith region of test image 1*, while subscript j' refers 

to the jlth region cluster. The GSJ algorithm is described below. 
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Algorithm 14 The Greedy Selection and Joining algorithm (GSJ) 
1 Initialization 
B = 0, S = 1, choose Rj' E H randomly, 
1:S j':S k',Bh = {Rj'} ,H = HI {Rjl}, 

2 Selection step: 
Select Rj' = argmaxRJ· EBhLR EB I Rco (Rj1" Rj21 )1, 

2' hI h 

and for any Rhl E Bh,IRco(Rjl" Rj')1 > c, 
c is a pre-defined threshold and Rco(Rj11' Rjl) is defined in 4.4; 

3 Joining step: 
If Rj' exists and IBhl < t 

Bh = Bh U {Rjl} ,H = HI {Rjl } 
Go to 2; 

Else If H =I <P 

h = h + 1, B = B U {Bh} 
Go to 1; 

Else 
Exit 

End 

In the GSJ algorithm, t is a threshold and it is used to control the number 

of region clusters to be included in each independent region cluster subset. 

The greedy selection and joining algorithm is thus used to decompose the 

clusters H = {Rl' R2 , ••• , Rkl}, occuring in a given test image, into l 

independent subsets B = {Bl' B2, ... , BI }, where 

4.2.3 Image Annotation using a Semi-naive Bayesian 

Approach 

To annotate a test image using the maximum a posteriori (MAP) criterion, 

we first compute the posterior probability, P(wi/Rl ,R2 , ... ,Rk' )' for all 
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keywords Wi in the dictionary. Then, we select a subset of few keywords 

that have the highest posterior probability. 

Using Bayes rule, the posterior probability can be computed using 

(4.8) 

In (4.8), {R1,R2 , ... ,Rk,} are the k' region clusters to which the regions of 

the test image are assigned, and P(R1' R2, ••• , Rk') is the evidence of the 

observed region clusters, which serves simply as a normalizing constant. 

If we assume that all regions {R 1, R2, •.• , Rk,} are independent, then 

k' 

P(R1' R2 , ... , Rk';Wi) = II P(Rj' /Wi). (4.9) 
j'=l 

where 

(4.10) 

In (4.10), VOl(Wi) is the number of images annotated with word Wi, and 

vol (Rj', Wi) is the number of images that include a region assigned to region 

cluster R j , and labeled with word Wi. 

As mentioned earlier, typically the assumption that region clusters {R1' R2 , ••• , Rk,} 

are independent may not be valid. For instance, many images, would in-

clude planes in the sky, or animals on grass. Thus, one could not assume 

that the "planes" and "sky" regions are independent. To overcome this lim­

itation, we propose an alternative labeling method that does not rely on 

the independence assumption. First, we estimate the degree of dependency 
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among all region clusters of the database as outlined in in section 4.1.4. Sec­

ond, we use the greedy selection and joining (GSJ) algorithm, outlined in 

section 4.2.2, to decompose the set of region clusters, {R1 , R2 , ... , Rk/}, of 

the test image I*, into l' independent subsets {B1, B2 , ... , Bd. Finally, we 

compute the class conditional density using 

I' 

P(R1 ,R2 , ... ,Rk/lwi) = P(B1 ,B2 , ... ,Bl'lwi) = II P(Bhllwi)' (4.11) 
h'=l 

In (4.11), P(Bhllwi) is the probability of observing a region from subset 

Bh" given a word Wi. It can be estimated using 

P(B ,I .) = vol(Bhl, Wi) 
h W z l( ) . VO Wi 

(4.12) 

where VOl(Wi) is the number of images annotated with word Wi, and vol(Bhl, Wi) 

is the number of images that include a region assigned to region clusters 

from subset Bh' and labeled with keyword Wi. 

The semi-naive Bayesian image annotation algorithm is summarized in Al-

gorithm 15 and is illustrated by the block diagram in Figue 4.7. 
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Figure 4.7: Block diagram of the proposed image annotation approach 
based on Semi-naive Bayesian Model 
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Algorithm 15 Image Annotation using a Semi-naive Bayesian Approach 

For each test image 1*; 
Segment I using rCA} algorithm {detailed in section 2.1.5}; 
Assign each region of 1* to a cluster. Let H = {R1 ,R2 , ... ,Rkl } be the 

set of region clusters ; 
Apply GSJ to decompose H into l independent subsets {B1 , ... , Bd; 
For each subset Bh' and keyword Wi 

Compute P(Bh1Iwi) using {4.12}; 
end 
For each keyword Wi 

Compute P(Rl' R1 , ... , Rk1lwi) using {4.11}; 
Compute P(wil1*) using {4.8}; 

end 
Label 1* with few keywords that have the highest P(wiII*). 

End 

4.2.4 Image Annotation using Membership based Cross 

Media Relevance Model 

In the membership based CMRM model, we assume that for a given un­

annotated image 1*, there exists an underlying probability distribution 

(denoted as P(.I1*)) of all possible region clusters and keywords that could 

appear in image 1*. As in the Bayesian approach, we start by segmenting 

the image 1* into k regions {rl' ... , rd, and assigning each region to one 

of the region clusters. Let {Rl' R2 , .•. , Rkl} be the region clusters to which 

regions {rl, ... , rk} are assigned. The image annotation goal is to estimate 

the probability of observing keyword Wi given the test image 1*, i.e., 

(4.13) 

Since P(R1 , R2 , ..• , Rkl ), the evidence of the observed region clusters, serves 

simply as a normalizing constant, calculating P(wiIRl' R2, ••• , Rkl) is equiv-
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alent to calculating the joint probability P(wi,R1,R2 , ••. ,Rk,). Since the 

test image representation {R1' R2 , ... , Rk,} does not contain any keyword, 

it is not possible to use the maximum-likelihood estimator. Instead, we use 

the training set of annotated images, T, to estimate the joint probability 

of observing the keyword Wi and the region clusters {R1' R2 , ... , Rk'} in 1*. 

That is, 

P(wilI*)::::: P(wi,R1,R2 , ... ,Rk,) = L P(I)P(wi,R1,R2 , ... ,Rk'II). 
JET 

(4.14) 

The prior probability P(I) is kept uniform over all images in T . 

Using the assumption that words and region clusters are generated indepen­

dently given a training image I, P(Wi' R1, R2 , ••• , Rk,) can then be computed 

using 

k' 

P(Wi' R1, R2 , ... , Rk') = L P(I)P(wilI) II P(Rj' II) (4.15) 
JET j'=l 

The posterior probabilities P(wilI) and P(Rj' II) are estimated by smoothed 

maximum likelihood. In particular, the probability of drawing word Wi from 

image I is given by: 

(4.16) 

where val (I, Wi) denotes the actual number of times the keyword W is used 

to annotate image I (usually 0 or 1, since the same word is rarely used 

multiple times for the same image), III stands for the aggregate count of 

all words occurring in image I, and ITI denotes the total size of the training 

set. In (4.16), the term L~=l val(I,wi) represents the total number of times 
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W is used to annotate images in the training set T. 

The computation of the probability of drawing a region cluster Rjl from 

image I depends on wether we assume that the clusters of regions are inde­

pendent or not. For independent clusters, this pobability can be computed 

using 

(4.17) 

where KJ is the number of image regions in image I, and the term L~~l UrjRjl 

represents the sum of the membership degrees of all regions of image I 

in cluster Rj' . These memberships could be the fuzzy membership pro­

duced by the sSCAD algorithm or the possibilistic membership produced 

by sRULe_ GDM_FSS. Similarly, L~=l L~~l UrjRjl is the cumulative sum 

of the membership degrees of all regions in cluster Rjl. In (4.16) and (4.17), 

the smoothing parameters 0: and f3 determine the degree of interpolation 

between the maximum likelihood estimates and the background probabili­

ties for the words and the regions respectively . 

Without the independence assumption, we first use the GSJ algorithm to 

map the {R l , R2 , ... , Rk/} region clusters to l' independent subset of clusters 

{Bl ,B2 , ... ,Bd. Then, we rewrite (4.15) as 

I' 

P(Wi, Rb R2 , ... , Rkl) = P(Wi, Bl , B2 , •.. , B11) = L P(I)P(wlI) II P(Bh/lI) 
JET h'=l 

(4.18) 

The probability of drawing word Wi from image I, i.e. P(wilI), is still 
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computed using (4.16), and P(Bh'll) is computed using 

(4.19) 

The term L:~~1 maXRjIEBhl(urjRjl) represents the sum of the maximum 

membership degrees of image I regions to the elements of subset Bh,. As 

in (4.19), these memberships can be either fuzzy or possibilistic depend­

ing on the clustering algorithm used to group the image regions. The 

term L:f=l L:~~1 max RjEBh, (UrjRjl) is the cumulative sum of the maximum 

membership degrees to the subset Bh elements of all region in the training 

set. 

Equations (4.16) - (4.19) provide a process for approximating the proba­

bility distribution P( will) underlying a given training image I. We gen­

erate automatic annotations for unlabeled test images by first estimating 

P(wilI*) and then selecting few keywords that have the highest probability. 

The membership based Cross Media Relevance Model based image anno­

tation algorithm is outlined in Algorithm 16 is illustrated in the block 

diagram in Figure 4.8. 
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Figure 4.8: Block diagram of the proposed image annotation approach 
using Membership based Cross Media Relevance Model 
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Algorithm 16 Image annotation using Membership based Cross Media 
Relevance Model 

For each test image 1*; 
Segment 1* using (CA) algorithm (detailed in section 2.1.5); 
Assign each region of I to a cluster. Let H = {Rl' R2 , •.. , Rk'} be the set 

of region clusters ; 
Apply GSJ algorithm to decompose H into l independent subsets 

{Bl' ... , Bl'}; 
For each subset B h" keyword Wi 

Compute P(Bh'lI) using (4.19); 
end 
For each keyword Wi 

Compute P(wil1*) using (4.15); 
end 
Label 1* with few keywords that have the highest P( Wi 11*). 

End 

4.3 Experimental Results 

A range of experiments were performed to asses the strengths and weak­

nesses of the proposed approaches. We use a subset of the Corel Stock 

Photo library [691. This is a collection of high-resolution color photographs 

grouped according to specific themes into CDs of 100 images each. The 

Corel subset used for this experiment consists of 9,264 images. Each image 

in the training set is manually labeled by 1 to 7 keywords. A total of 97 

keywords were used which provide a global description of the images and 

are not explicitly associated with specific regions. A list of these keywords 

is provided in Table 4.3. 

Figure 4.9 plots the occurrence frequencies of each keyword. The frequen­

cies are sorted in decreasing order. The plot shows that some common 

words, such as "sky", "grass", and "tree" have a high occurrence rate, whereas 

more specific words, such as "whale", "giraffe", and "raccoon" appear seldom. 
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antelope cloud helicopt.er road 
ape column hippo rock 
badger cow horse sand 
balloon crocodile leaves sculpture 
beach deer leopard seal 
bear desert lion sheep 
bird dirt lizard skunk 
bison dog llama sky 
boat donkey manatee smoke 
branch elephant mane snake 
bridge fence miscellaneous snow 
building field monkey squirrel 
bus fire mountain stone 
bush fish mushroom sun 
butterfly flower night tjger 
cactus footballfield opossum t.rain 
car forest, owl tree 
castle fox people turtle 
cat frog person wall 
cheetah giraffe pig water 
cherry tree goat plane whale 
chicken grapes porcupine wolf 
chipmunk grass rabbit zebra 
city ground raccoon 
cliff groundhog rhino 

Table 4.3: List of words used to label the training images 
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4.3.1 Image Segmentation 

The images have been coarsely segmented by clustering the color distri­

butions. The Competitive Agglomeration (CA) algorithm (described in 

section 2.1.5) was used to cluster each image into an optimum number of 

regions. We fixed the initial number of clusters to 10, and the parameters 

TJ and T in (2.23) to 0.01 and 10, respectively. Segmentation of all images 

resulted in a total of 40,051 regions. Examples of segmented images are 

provided in Figure 4.10 where each region is represented by the average 

cluster color. 

4.3.2 Feature Representation 

All extracted regions are represented by various features that represent 

color, texture, structure, and shape information. In our experiment, we 

use mainly standard MPEG-7 features [58] as they are commonly used 

in CBIR platforms [56, 57]. Each image region is characterized by the 

following set of features: 

4.3.2.1 RGB Color Histogram: 

The R, G and B color channels in each region are quantized into 64 bins, 

and represented by a 64-dimensional histogram. Each color histogram 

feature is normalized such that its components sum to 1. 
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Figure 4.10: Example of images from the training set segmented using the 
CA clustering algorithm 
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4.3.2.2 HSV Color Moments: 

Each region is mapped to the HSV color space. Then, the mean, standard 

deviation and skewness of the H, S, and V components are computed and 

used as features. This feature subset is represented by a 9-dimensional 

vector. 

4.3.2.3 LUV Color Moments: 

Each region is mapped to the LUV color space. Then, the mean, standard 

deviation and skewness of the L, U, and V components are computed. This 

feature subset is represented by a 9-dimensional vector. 

Both the HSV and LUV color Moments feature subsets are normalized to 

have zero mean and unit standard deviation. 

4.3.2.4 Edge Histogram: 

A variant of the MPEG-7 edge histogram descriptor (EHD) [58] is used 

to represent the frequency and directionality of edges within each image 

region. Simple edge detector operator are used to detect edges and group 

them into five categories: vertical, horizontal, diagonal, anti-diagonal and 

non-edge. The EHD includes five bins corresponding to the frequencies of 

the five categories. 

4.3.2.5 Wavelet Texture Features: 

Each region is analyzed at different frequencies with different resolutions. 

The Haar filter bank is used to decompose the image into three scales, 
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resulting in a total of ten components that include the approximation at 

scale three, and horizontal, vertical, and diagonal components at the three 

scales. Then, the mean and standard deviation are computed for each 

component. This makes the features vector 20-dimensional. This feature 

subset is normalized to have zero mean and unit standard deviation. 

4.3.2.6 Shape Feature: 

For each region, the eccentricity, orientation, area, solidity, and extent are 

computed. Eccentricity is computed by first finding an ellipse with the 

same second-moments as the region and then computing the ratio of the 

distance between the foci of the ellipse and its major axis length. The 

orientation is defined as the angle in degrees between the x-axis and the 

major axis of the ellipse containing the same second-moments as the region. 

The area is defined as the actual number of pixels within the region. The 

solidity is defined as the proportion of pixels in the convex hull that are 

also in the region. The extent is defined as the proportion of the pixels in 

the bounding box of the regions that are also in the region. It is computed 

as the area divided by the area of the bounding box. 

4.3.3 Constraint Formulation 

As detailed in section 4.1.3, we infer partial supervision information for the 

clustering algorithm from the training data itself. In our experiment, we 

set the threshold used to decide wether two annotations are relevant to each 

other or not (e in (4.3)) to 0.7. Thus, if the relevance of two annotations 

Rel(C1 , C2 ) is smaller than 0.7, then, their corresponding image regions 
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Figure 4.11: Constraint Formulation Example 

are regarded as "irrelevant" to each other and should not be grouped in the 

same cluster. 

Figure 4.11 illustrates an example of constraint formulation. In this figure , 

one image was labeled by three words: "Car", "Road", and "Grass". The 

second image was labeled by two words: "Sky" and "Bird". The relevance 

between pairs of these keywords Rc(Wi, Wj) is shown in Figure 4.11 . The 

total correlation computed using equation (4.1) is 0.15 . Since this is below 

the threshold, these two images are considered irrelevant and ShouldNot­

link constraints are created between all inter-image region pairs. 

Using this approach we considered 1931 image pairs to be "irrelevant" to 

each other. Thus, we obtained a total of 11,702 ShouldNot-link relations 

between inter-image regions that were used to guide the clustering process. 

We should note here that our unsupervised approach to construct the set of 

ShouldNot-link constraints is not accurate. There will be cases where sim-

ilar and relevant image regions would be included in the set of ShouldNot­

link constraints. However, this should not be a problem. In fact , our 

semi-supervised clustering algorithm takes these as suggestions and will 

not necessarly enforce them. 
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4.3.4 Image Region Clustering 

4.3.4.1 Minimum-distance based Clustering 

The 40,051 image regions encoded by the 6 feature subsets were clustered 

using sSCAD (detailed in section 2.2.3). Since this algorithm requires the 

specification of the number of clusters, we fix C to 380 (value found by 

sRULe_ GDM_FSS). The experimental parameters of this step are re­

ported in Table 4.4. 

Constant Constant Name Constant Value 

Number of feature subset K 7 
Maximum cluster number C 380 
Constraint term scaling a 5 
Fuzzifier III 1.1 

Table 4.4: Values of the constants used in the clustering process using 
sSCAD 

The clustering algorithm was relatively successfull in partitioning the data 

into homogeneous categories. Figure 4.12 displays representative regions 

(closest region to the cluster center) for six sample clusters. In addition, to 

partitionning the data into homogeneous clusters, sSCAD identified rele­

vance weights for each feature subset in each cluster. The feature relevance 

weights for the 6 clusters shown in Figure 4.12 are shown in Table 4.5. For 

instance, for the "horse" and "tiger" clusters, the shape and color features 

are more relevant than the other visual features. For the "grass" cluster, 

the texture and color are the most relevant features. For the "sky" cluster, 

the regions are blueish and consistently smooth, but the shape is less con­

sistent. For this cluster, the color and texture features are more relevant 
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Cluster Feature Subset 

RGBHist HSV LUV EHD Wavelet Shape 

0 .12 0.18 0 .16 0 .22 0.21 0.11 

0.17 0 .16 0.1 0 .1 0.26 

0.2 0 .2 0.07 0 .02 0 .11 

0.12 0 .13 0.14 0 .14 0.17 

0.21 0.22 0 .16 0 .2 0 .09 

0.2 0 .17 · 0 .03 0.1 0.3 

Table 4.5: Feature relevance weights for the 6 clusters displayed in Fig. 
4.12 

than shape. For the "plane" cluster, the shape of the regions is the most 

consistant and the corresponding feature is relatively relevant. 

4.3.4.2 P r obab ilistic Clustering 

An alternative to using sSCAD to cluster the image regions is to use the 

semi-supervised possibilistic clustering and feature subset weighting algo-

rithm based on robust Geneneralized Dirichlet mixture Model (sRULe_ GDM_FSS) 

that we proposed in section 3.4. For this algorithm, we set the fuzzyfier m 

to 1.2 and estimate the scale parameter 'r}j for each cluster j as suggested 

in [82]. We use the following initialization scheme. First, we partition 

the image region collection using the fuzzy C-means [67] . Then, we use 

the method of moments (MM) [112] to obtain initial beta distribution pa-
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Figure 4.12: Representative regions of six sample clusters obtained by sS­
CAD 
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Cluster Feature SUbset 

RGBHist HSV lUV EHD Wavelet Shape 

0.12 0.18 0.16 0 .22 0.21 0.11 

•• 0 .09 0 .15 0.15 0 .41 0.14 0 .06 

0.5 0.2 0.12 0 .07 0.02 0 .09 

0 .33 0.14 0 .14 0 .1 0 .12 0 .17 

0.17 0.17 0.22 0 .15 0.2 0 .09 

0.13 0.2 0.17 0.1 0 .1 0.3 

Table 4.6: Feature relevance weights for the 6 clusters displayed in Fig. 
4.13 

rameters for each cluster. We overspecify the number of clusters to 450. 

sRULe_ GDM_FSS converged after 210 iterations and the number of clus­

ters reduced to 380. For each iteration of sRULe_ GDM_FSS, we update 

e and A using (3.45) and (3.46) for 2 iterations. 

Figure 4.13 displays representative regions for six sample clusters. Similarly 

to sSCAD, sRULe_ GDM_FSS identified relevance weights for each feature 

subset in each cluster. The feature relevance weights for the 6 clusters in 

Figure 4.13 are shown in Table 4.13. For instance, for the "plane" and 

"horse" clusters, the shape and color features are more relevant than the 

other visual features . For the "grass" cluster, texture and color are the most 

relevant features. For the "tiger" cluster, the texture of the regions is the 

most consistant and the corresponding feature is relatively relevant . 
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Figure 4.13: Representative regions of six sample clusters obtained by 
sRULe GDM FSS 
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Both sSCAD and sRULe_ GDM_FSS algorithms achieve reasonable image 

region clustering. In particular, both algorithms performed well for hard 

cases where regions with similar visual colors such as "deer" and "horse" 

or "sky" and "water", but different semantics were assigned to different 

clusters. This was possible due to the extracted constraints. For instance, 

deer" and "horse" annotations are irrelevants to each other based on their 

correlation ocross the training set. This irrelevancy yields ShouldNot-link 

constraints between regions annotated by "horse" and regions annotated by 

"deer". 

By analyzing and comparing the content of the different clusters generated 

by the 2 clustering approaches, we observed that sSCAD splits many cat­

egories over several clusters. For instance, several clusters were used for 

the "flower" and "butterfly" categories. This is because these categories 

have large intra-cluster color variations and do not necessarly have spher­

ical shapes in the high dimensional feature space. Moreover, the image 

region collection includes regions that are unique and have different visual 

appearance than the majority of the regions in all categories. sSCAD does 

not detect these noise regions. This affects the clustering accuracy and 

yields non-homogeneous clusters. On the other hand, sRULe_GDM_FSS 

uses possibilistic memberships and can detect these noise regions and limit 

their influence on the estimated Generalized Dirichlet distributions. 

4.3.5 Image Annotation 

To validate the proposed annotation methods and compare them to existing 

methods, we use the following performance measures. 

Precision and Recall: Precision and recall, which are the most common 
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metrics for evaluating different information retrieval systems, are also widely 

adopted for evaluating the effectiveness of automatic annotation approaches. 

For our application, we use a per-image precision and recall. In particu­

lar, for each test image, precision is defined as the ratio of the number of 

words that are correctly predicted to the total number of words used for 

annotation. Similarly, recall is defined as the ratio of the number of words 

that are correctly predicted to the number of words in the ground-truth or 

manual annotations. Formally, these measures are computed using 

and 

R(I) = mc(I) 
mT(I) , (4.20) 

(4.21) 

where mc(I) is the number of keywords predicted correctly in annotating 

image I, mT(I) is the total number of words used to label image I, and 

mw(I) is the number of irrelevant keywords predicted for image I. The 

per-image precision and recall values are averaged over the whole set of 

test images to generate the mean precision and recall values. 

F-measure: In general, probabilistic models involve smoothing maximum 

likelihood probabilities, and include smoothing parameters. Thus, there is 

an implicit tradeoff between recall and precision, and both of these mea­

sures should be used simultaneously for setting the model parameters. A 

single comprehensive measure that combines both terms is the F-measure. 

The F -measure is defined as the harmonic mean of precision and recall, i.e., 

F(I) = 2. R(I) . P(I) 
R(I) + P(I) 
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We use the F-measure only during training to select the optimal param­

eters. As a single quantity, it cannot illustrate how recall and precision 

change with respect to each other. Thus, to evaluate and compare the 

performance during the testing phase, we use both recall and precision. 

Word accuracy: Word accuracy is defined as the ratio of the number of 

times a given word Wi is used in correct annotation to the total number of 

times Wi is used in annotating all images. 

We use a 4-fold cross validation approach where we divide the 9,267 im­

ages into 4 subsets of equal sizes. For each fold, we use 75% of the data 

for training and learning the model parameters and the remining 25% for 

testing. The final results are reported as the average of the 4 folds. 

To limit the level of dependency between region clusters to which the re-

gions of a test image are assigned, we carry out experiments by setting the 

parameter t used in the GSJ algorithm (described in section 4.2.2) to 1, 2 

and 3. The F-values obtained by varying parameter t from 1 to 3 for both 

clustering algorithms are reported in Figures 4.14(a)-(b). 

0.45 :~~g ~~~g;~~.n'fj.fe Bayesian ~proach 

0.4 -1------

0.35 -1------

.. 0.3 -1--==---­
:J 
1i 0.25 
> 
u.. 0.2 

0.15 

0.1 

0.05 

2 
Parameter t 

(a) 

0.45 . sRLl.e_OOMJSS based Semi· naive B~esilln approach 
• sRt.l..e_OOM1SS MB_CMRM 

0.4 -1------

0.35 -1------

'U 0.3 
:J 
'iii 0.25 
> 
u.. 0.2 

0.15 

0.1 

0.05 

2 
Parameter t 

(b) 

Figure 4.14: Effect of the parameter t used in the GSJ on the annotation 
results using (a) sSCAD algorithm, and (b) sRULe_ GDM_FSS algorithm. 
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As it can be seen, proposed image annotation approaches are more effective 

as we increase t. This is because a larger value of t can capture the co­

occurrence information of region clusters better. However, a larger value 

of t requires a considerably more computational time and a larger training 

set to evaluate the dependencies between the larger set of region clusters. 

As the increase of the performance measure from t = 2 to t = 3 is quite 

small, we use t = 2 for the rest of experiments. We also set the value of 

the threshold E used in the GSJ algorithm to 0.1. 

The smoothing parameters Ct and f3 in equations (4.16) and (4.17) can 

influence the performance of the fuzzy membership based Cross Media 

Relevance Model. In particular, Ct determines how much we rely on word 

frequency in an individual annotation to approximate the underlying model 

of an image. A larger Ct causes the probability distributions of the mod­

els to move closer to the distribution of the background. As a result of 

smoothing out the individual frequencies, the model becomes strongly bi­

ased by the most frequent words. In annotation, this would have the effect 

of annotating most images with the same frequent words. 

During training we do not examine all possible combinations of the Ct and 

f3 parameter values exhaustively in order to find the optimum values. We 

simply set the first one to a certain value and then vary the second one to 

find a local maximum. The optimal values for the smoothing parameter f3 

was found to be 0.8, and the optimal value for the smoothing parameter Ct 

was found to be 0.1. 

Figure 4.15 displays the individual keyword accuracy when five words are 

used to label an image using Semi-naive Bayesian Model. As expected, 

the accuracy is higher for most frequent keywords. For instance, frequent 
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keywords such "sky", "grass" and "tree" have the highest accuracy values. 

Reasonable accuracy is also obtained for less frequent keywords. For in­

stance, keywords such "footballfield" and "Bus" are most of the time cor­

rectly predicted although they are relatively rare in the data set. This could 

be explained by the fact that images originally labeled by these keywords 

are easy to segment and the low-level features extracted from the resulting 

regions are very discriminative. This helps to learn the correspondence 

between visual features and textual keywords. 

Figure 4.16 shows the individual keyword accuracy when five words are 

used to annotate an image using the membership based Cross Media Rele­

vance Model. As it can be seen, the membership based CMRM approach, 

when used with sSCAD or sRULe_ GDM_FSS algorithms, yields reason­

able accuracy values for most frequent keywords. The CMRM approach 

with fuzzy membership learned by sSCAD cannot learn efficiently the as­

sociation between clusters and less frequent keywords such "bear", bird", 

and "train". On the other hand, the CMRM with possibilistic membership 

learned by sRULe _ G D M _ FSS performs slightly better and less frequent 

words such "mushroom" and "butterfly" have higher accuracy. 

The goal of image annotation is to obtain high per-image precision and 

recall values, and high accuracy values for all words. For most frequent 

words, the accuracy values are reasonable, especially when we use five words 

to label the test images. This means that these words used correctly most of 

the time. However, there are some words with low accuracy which means 

that although they are not predicted often, the predictions are usually 

correct. 

In Table 4.7, 4.8, and 4.9 we report the average accuracy, precision and 

recall of the proposed image annotation approaches. From Table 4.7, one 
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Figure 4.15: Word accuracy obtained using semi-naive Bayesian Model 
with (a) sSCAD algorithm, (b) sRULe_ GDM_FSS algorithm. 
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Figure 4.16: Word accuracy obtained using membership based CMRM with 
(a) sSCAD algorithm, (b) sRULe_ GDM_FSS algorithm. 
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I 1 word I 3 words I 5 words I 7 words I 

sSCAD based semi-naive 12% 20% 26% 29% 
Bayesian model 

Fuzzy membership based 11% 16% 24% 26% 
CMRM 

sRULe GDM - FSS based 15% 28% 34% 37% -
semi-naive Bayesian model 

Possibilistic membership 14% 19% 24% 29% 
based CMRM 

Table 4.7: Average accuracy of the proposed images annotation approaches 
when 1, 3, 5, and 7 words are used to annotate each image 

can notice that while there is a drastic increase in accuracy when one, three, 

or five words are used to label each image, there is only a slight increase 

when the number of words is increased to seven. Similarly, Tables 4.8 

and 4.9 indicate that 5 words provides a reasonable compromise between 

precision and recall. Thus, we use five annotating keywords to validate the 

proposed image annotation approaches. 

Figures 4.17 and 4.18 present samples of image annotation obtained using 

the 4 proposed image annotation methods. As it can be seen, all pro­

posed image annotation approaches achieved good performance. However, 

methods based on sRULe GDM FSS clustering slightly outerform the 

approaches based on sSCAD clustering. 
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I 1 word I 3 words I 5 words I 

sSCAD based semi-naive Bayesian 68% 46% 37% 
model 

Fuzzy membership based CMRM 67% 42% 35% 

sRULe GDM - FSS based semi-naive 73% 50% 42% -
Bayesian model 

Possibilistic membership based 72% 45% 37% 
CMRM 

Table 4.8: Average per-image precision of the proposed image annotation 
methods when 1, 3, and 5 words are used to annotate each image 
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sSCAD based semi-naive Bayesian 
Model 

Fuzzy membership based CMRM 

sRULe GDM FSS based semi-naive 
Bayesian Model 

Possibilistic membership based 
CMRM 

I 1 word I 3 words I 5 words I 

18% 38% 55% 

19% 40% 51% 

24% 39% 57% 

22% 41% 53% 

Table 4.9: Average per-image recall of the proposed image annotation meth­
ods when 1, 3, and 5 words are used to annotate each image 
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Images Onginal 
Annotation 

Sky, Mountain, Building, 
Grass 

Sky, Plane 

Sky,Bird 

Horse, Grass, Flower 

Flower, leaves 

Sky, Building 

sSCAD and seml-nalve Fuzzy memberstip sRULe_GDM}SSand 
seml-nalve Bayesian 

model 
Bayeslill model based CMRM 

Sky, Mountain, Tree, 
Grass 

Sky, Smoke, Plane 

Sky, Bird, Plane 

Horse,Grass,Flower 

Flower, leaves,Grass 

Sky, Building, Tree 

Sky, Grass, Tree, Sky, Mountain, building, 
Building Grass 

Sky, Plane, Bird Sky, Smoke, Plane 

Sky, Bird, Plane Sky, Bird, Plane 

Horse, Grass, Flower Horse, Grass, Flower 

Flower, leayes, Sky Flower, Leaves, Sky 

Sky, Building, Tree Sky, Building, Cily 

Figure 4.17: Image Annotation Samples (1) 
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Posslbilistic 
memberstip based 

CMRM 

Sky, Mountain, Grass, 
Building 

Sky, Plane, Bird 

Sky, Bird, Plane 

Horse,Grass, Flower 

Flower, Lea,.., Sky 

Sky, Building, Tree 



Images ortglnal 
Annotation 

sSCAD and semloflaiVe Fuzzy 
Bayesiill model membership 

Beach, People, Sky, Sky, Beach, People, Cli! 
Water 

Wo~, Tree, Snow Wo~, Snow, Forest 

Car, Fence, Road Car, Road, dirt 

basedCMRM 

Sky, water, Grass, 
Building 

Snow, Tree, Rock 

Road, Building, water 

sRULe _ GDM JSS and Posslblllstic 
semioflaiveBayesian membership based 

model CMRM 

Beach, City, Sky, 
water 

Wo~, Tree, Snow 

Car, Fence, Road 

Beach, Building, Sky, 
water 

Wo~, Tree, Snow 

Car, Fence, City 

Boat, Cli!, Sky, water Sky, water, Boat, Tree Sky, water, Grass, Tree Boa\ People , Sky, water Boat, Tree, Sky, water 

Plan" Sky, Road Plane, Sky, Road Plane, water, Building Plane, Sky, Road Plane, Sky, Road 

Sky, Mountal~ Grass Sky, Mountain, Rock Sky, Mountain, Water Sky, Mountain, Grass, Snow Sky, Mountal~ 
Snow 

Figure 4.18: Image Annotation Samples (2) 

A further analysis of the results and a comparison between the annotation 

based on sSCAD and sRULe GDM FSS revealed that there are two main 
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reasons behind incorrect annotation: 

Bad segmentation: Some segmented regions are not homogeneous and 

may include parts of different objects. These regions represent noise points 

and outliers in the image region collection. The sSCAD algorithm is more 

sensitive to this issue as it does not indentify and discard noise points. 

These regions can affect the clustering partition and the overall annotation 

performance. 

Model assumptions: In our experiment, we used the Euclidean distance 

with sSCAD to cluster the image region collection. That is, sSCAD seeks 

spherical clusters. For the sRULe_GDM_FSS, we assume that the region 

clusters fit a Beta distribution. However, many image region categories 

have large intra-cluster color, texture, and structural variations and do not 

fit any specific model. The sSCAD based approach is more sensitive to this 

limitation as the spherical assumption is more restrictive. 

4.3.6 Empirical Comparison with State-of-the-art Meth­

ods 

The performance of the proposed sRULe_ GDM_FSS methods is assessed 

against three other methods: Two of them, the CMRM (described in section 

2.3.1) and the constrained K-means based (described in section 2.2.2) image 

annotation are global and assign labels to the entire image. The third one, 

Image to Word Transformation based image annotation (described in 2.3.1) 

is local and assigns labels to image regions. 

The K-means (described in section 2.1.2) and the pair-wise constrained 

K-means (described in section 2.2.2) algorithms are used as clustering al-
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gorithm for the CMRM and the semi-naive Bayesian model based annota­

tion methods, respectively, to summarize the image regions extracted from 

the training set. On the other hand, our approach, sRULe_GDM_FSS is 

based on simultaneous clustering and feature weighting. Moreover, it re­

lies on the generated possibilistic membership to compute the cross media 

relevancy. 

Figure 4.19 compares the precision/ recall curves of the different algorithms 

averaged over the four cross validation sets. As it can be seen, the two 

proposed annotation methods outperform the three other method signifi­

cantly. 
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Figure 4.19: Comparison of the Precision vs. Recall curves of the two pro­
posed sRULe_ GDM_FSS based methods and three other existing methods 

In figure 4.20, we compare the average accuracy for each word individu­

ally. This is basically the number of times this word appears in the top 

five annotation labels. For the most frequent words, like 'building', 'grass ' , 

'sky', 'tree' and 'water' (see Figure 4.9) , the five methods have satis­

factory and comparable accuracy. However, for less frequent words, the 

sRULe GDM FSS based semi-naive Bayesian model based annotation 
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Figure 4.20: Comparison of the accuracy of the most frequent words using 
5 different annotation methods 

Semi-naive 
MB CMRM 

BM -

Trans CMRM sKmeans (sRULe_ 
(sRULe_ 

GDM 
GDM -

- FSS) 
FSS) 

Average 0.11 0.16 0.18 0.37 0.32 
accuracy 

Table 4.10: Average accuracy of 5 image annotation methods 

(light blue curve)) and the possibilistic membership based Cross Media 

Relevance Model (red curve) outperform the other methods.. This con­

firms the precison/ recall analysis of Figure 4.19. The same conclusion can 

also be reached by comparing the results in Table 4.10 which displays the 

overall accuracy when averaged over all keywords. 

In Figure 4.21, we display the plot of the keyword average accuracy versus 

the number of labeling keywords for each method. For all methods, the 

average accuracy increases linearly as we increase the number of labeling 
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Figure 4.21: Word average accuracy vs. number of labeling keywords 

keywords which makes the empirical comparison of these methods with 

respect to their average accuracy independent from the final number of 

labeling keywords. 

The empirical comparison indicates that automatic labeling can be reliable 

for keywords that are frequent in the training dataset. However, for infre­

quent words, the precision of all methods is usually low. The results also 

show that overall , the sRULe_ GDM_FSS based methods outperform the 

other three methods. This is particularly true for keywords that are not 

frequent across the entire database. 
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CHAPTER 5 

IMAGE RETRIEVAL BASED 

ON MULTI-MODAL 

SIMILARITY PROPAGATION 

In this chapter, we propose an image retrieval framework based on multi­

modal similarity propagation. We use the proposed image annotation, out­

lined in the previous chapter, to augment the standard content based image 

retrieal approach in an attempt to improve the retrieval performance. In 

particular, we explore the correlation between visual and textual features 

to capture their semantics and discover the intrinsic similarity of images. 

First, we use our image annotation approaches to generate labeling key­

words. Then, these keywords are used as additional features in a content­

based image retrieval system. 

The proposed CBIR framework is outlined in figure 5.1. This system can be 

conceptually separated into two main components: One is offline and con­

sists of preprocessing, segmenting images, extracting features, annotation, 
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Figure 5.1: Block Diagram of the Proposed Image Retrieval System 

and indexing the image database. The second one is online and consists of 

the user 's interaction with the system to query and retrieve images. 

In the off-line step, first , color, texture, and shape features are extracted 

from each image to represent its visual content. Second, each image is 

segmented into homogeneous regions and annotated by few keywords using 

our image annotation algorithms. These keywords are then encoded into 

a textual feature vector linked to the corresponding images by inverted 

tables. 

The retrieval part starts with the user providing an example image through 

a graphical user-interface. First, the query image is segmented into homoge­

neous regions based on color feature. Then, low-level features are extracted 

from each region, and the image is annotated by few keywords. Finally, 

using a multi-modal similarity propagation algorithm, the system retrieves 

images that are semantically similar to the query image. 
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Figure 5.2: Illustration of the Multi-modal similarity propagation. Images 
A and B have similar visual features. Images Band C have similar textual 
features. Images B would be used as a bridge to enhance the similarity 
between images A and C. 

The proposed image retrieval approach, based on multi-modal similarity 

propagation, relies on the assumption that two images are similar if they 

are annotated with some common keywords. Similarly, if two images are 

labeled with two different, but similar annotations, then they are similar 

to a certain degree. The goal of the similarity propagation is to enhance 

or reduce the similarity between two objects (image or text). In other 

words, the similarity of two images will be increased (or decreased) if they 

are annotated by similar (or dissimilar) keywords. Figure 5.2 illustrates a 

case of similarity enhancement. This figure displays three images and their 

annotating keywords. As it can be seen, image B has similar visual features 

to image A and has similar textual features to image C. Our proposed 

approach uses image B as a bridge to enhance the similarity between image 

A and image C. 

The key features of the proposed image retrieval include: 

1. Instead of treating the image annotation as an additional feature , we use 
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an iterative approach to explore the mutual reinforcement between visual 

and textual features. This approach avoids any bias that may be introduced 

by the feature encoding, and provides a better combination of the visual 

and textual modalities. 

2. Since similarity is the variable that is propagated between different 

modalities, our approach can handle the sparse and high dimensional fea­

ture space quite effectively. The intra- and inter-object similarities are 

refined during the process. This in turn can reduce both false positives and 

false negatives and can reveal intrinsic similarities at the semantic level. 

3. Our approach is an iterative process. The effect of each retrieval modal­

ity is propagated to its related modalities in each iteration, and the inter­

actions inside and across the sets of relational data are explored during the 

mutual reinforcement. 

4. Fundamentally, this approach can be seen as a non-linear combination 

of different retrieval modalities that can exploit the relationships among 

different data types more effectively, and use these relationships to discover 

implicit semantic object similarities. 

5.1 Inter-modality Similarity Propagation 

The basic idea of iterative similarity propagation is that object similarities, 

with respect to different modalities, can mutually influence each other. Fig­

ure 5.3 illustrates this process. In this figure, V and T denote two hetero­

geneous object spaces of visual (v) and textual (t) features, and Vi and tj 

represent instances of these features. In particular, Vi is the visual features 

of one of the images in the database and tj is one of the keywords used 
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Figure 5.3: Illustration of the Similarity propagation process 

to annotate the database. The dotted lines represent links among modal­

ities (i.e. inter-object relation). The solid lines represent intra-modality 

similarities. The length of these lines is proportional to the degree of sim­

ilarity. Figure-5.3(a) displays the original object relationships. As it can 

be seen, in the visual space V , images II, h, 13 and 14 are similar to each 

other, but are dissimilar to image h. However, using the textual space, 

one can deduce that images 14 and h are semantically similar since they 

are annotated by the same keyword t3' Moreover, images 14 and h may be 

semantically similar to image 13, This is because 13 is annotated by key­

word t2 which is similar to keyword t3' On the other hand, images 12 and 

13 which appear to be visually similar are not semantically similar because 

their annotating keywords are not related. 

Figure-5.3(b) displays the relationship among the different objects after 

propagating the inter-modal similarity. As it can be seen, in the visual 

space V , image 15 became similar to images 13 and h On the other hand, 

the similarity between images 12 and h was reduced. Similarly, in the 

textual space, a weak similarity between tl and t2 has been established 
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because these keywords annotate images that are visually similar. 

Formally, let K MxM denote the similarity matrix between pairs of images 

in the database based on the visual content of the images. Let G1N1XNl 

and G2N2XN2 denote the intra-object similariy matrices of two set of image 

annotations in the textual feature space. In our system, these two sets 

of annotations are provided by the two annotation approaches proposed 

in chapter 4. Let K MxM , G1N1XNl and G2N2XN2 denote the intra-object 

similarity matrices after similarity propagation. Let ZlMXNl be the link 

matrix between images and text annotations obtained using the first image 

annotation approach and Z2MXN2 be the link matrix between image space 

and the second set of text annotations obtained using the second image 

annotation approach. Note that the transpose of the matrices, i.e. Z~ and 

Z~, are the link matrices from the textual space to the visual space. 

The Zl and Z2 matrices are constructed using 

l/Bi, if image Ii is annotated with keyword aj 
(5.1) 

o otherwise 

In (5.1), Bi is the number of non zero elements in the ith row of Z. 

The similarity propagation is an iterative process that updates the matrices 

K, G1 and G2 in each iteration using 

K aK + (1- a)A [ZlG1Z~ + Z2G2Z~] 

f31K + (1 - f31)AZ~KZl 
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where 0:, {31 and {32 are constants, and ). is a decay factor used to ensure 

that the propagated similarities are weaker than the original similarities. 

In (5.2), ZlG1Zi and Z2G2Z~ are the inter-object similarity matrices, i.e. 

the part of the intra-object similarities G1 and G1 that are propagated 

from the textual space T to the visual space V through the links Zl and 

Z2. Similarly, Zi k Zl and z~k Z2 are the inter-object similarity matrices, 

i.e. the parts of intra-object similarities K which are propagated from space 

V to space T through the links Zl and Z2. 

The equations in (5.2) combine both the intra- and inter-object similarities 

and address the mutual reinforcement in an iterative way. It is based on 

the idea that similarities based on one modality should be affected by the 

similarity with respect to other modalities. It is basically a non-linear com­

bination method that takes into account the different degrees of similarity 

from different modalities. This non-linear method is needed because the 

interactions among the objects are most probably non-linear and cannot 

be achieved by a simple linear combination method. 

5.1.1 Convergence of the Algorithm 

In this section, we prove that the system of equations in (5.2) converges. 
A () A (n) A (n) A A A 

Let K n , G1 and G2 denote the matrices K, G1 and G2 at the nth 

iteration. Assume that the process starts with propagation from space V 
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to space T. Then, 

k(n) _ k(n-1) (aK + (1 - a)'\ [ZlG1 (n) Z~ + Z2G2 (n) Z~]) 

- (aK + (1 - a)'\ [ZlG/
n
-

1
) Z~ + Z2G2 (n-1) Z~]) (5.3) 

(1 - a)'\ [Zl(G/
n
) _ G/n-1))Z~ + Z2(G2 (n) _ G/n-1))Z~] , 

G1 (n) - G1 (n-1) ((31 K + (1 - (3d'\Z~ k(n-1) Zl) - ((31 K + (1 - (31)'\Z~ k(n-2) Zl) 

and, 

A (n) A (n-1) 
G2 -G2 

(1 - (3d'\Z~ (k(n-1) - k(n-2)) Zl, (5.4) 

((32K + (1 - (32)'\z~k(n-1) Z2) - ((32K + (1 - (32)'\z~k(n-2) Z2) 

(1 - (32)'\Z~ (k(n-1) - k(n-2)) Z2. (5.5) 

A (n) A (n-1) A (n) A (n-1) 
Then, if we substitute G1 - G1 and G2 - G2 in (5.3) by their 

expressions in (5.4) and (5.5), we get 

k(n) - k(n-1) (1 - a),\2 [(1- (3dZ1Z~ (k(n-1) - k(n-2)) ZlZ~ 

+ (1 - (32)Z2Z~ ( k(n-1) - k(n-2)) Z2Z~] . (5.6) 

Let <P1 = (1 - a)(1 - (31),\2, <P2 = (1 - a)(1 - (32),\2, A1 = ZlZ~ and 

A2 = Z2Z~, Then, eq(5.6) can be rewritten as 

k(n) _ k(n-1) <p1A1 ( k(n-1) - k(n-2)) A1 + <p2A2 ( k(n-1) - k(n-2)) A2 

<p~-1 A~-l (k(1) - k(O)) A~-l + <p~-1 A~-l (k(1) _ k(O)) A~-l 

<p~-lA~-l (k(1) - K) A~-l + <p~-lA~-l (k(1) - K) A~-1(5.7) 
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According to the definitions of Zl and Z2 given in (5.1) , AlijlA2ij~ 1 Vi,j. 

Hence, we have limA~-l = 0 and lim A~-l = O. Also, (k(1) - K) is 
n---+oo n---+oo 

constant, <Pi < 1 and <P2 < 1. Thus k(n) - k(n-l) --+ 0 which proves the 

convergence of the system of equations (5.2). 

5.2 Image Retrieval Using Iterative Similarity 

Propagation 

The learned similarity matrices could be used to improve the acuracy of the 

image retrieval system. We use visual features, extracted from the image 

content for one modality, and the textual annotation of each image for the 

second modality. In particular, we construct the K similarity matrix using 

the Euclidean distance between MPEG-7 visual features. The Zl and Z2 

matrices are constructed by linking the images to the keywords used to 

annotate them. The G1 and G2 matrices are constructed based on the 

correlation between the annotating keywords. 

Let X be the visual feature matrix with rows as image regions and columns 

as their visual features. Let Yi and Y2 be the document term matrices with 

the images as rows and the terms (weighted by TF*IDF) as columns pro­

vided by the two different image annotation approaches outlined in chapter 

4. 

The initial image similarity matrix K = [Kij]MxM, which is based on the 

low-level visual features, is given by 

(5.8) 
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where Xl, .. , Xn ; are the set of ni regions forming image Ii and Xl,··, Xnj 

are the set of nj regions forming image I j . Let S(Xi' Xj) be the similarity 

between regions Xi and Xj of images Ii and I j . The similarity is computed by 

converting the Euclidean distance between image regions into similarities 

using 

where Xi and Xj denote the ith and lh rows of matrix X respectively. 

For the textual features, the initial similarity matrices G 1 = [G1;j] and G2 = 

[G2;j] are calculated based on the cosine similarity using 

(5.10) 

and 

(5.11) 

where Y1; and Y1j denote the ith and lh colums of matrix Y1 respectively, 

and 12; and 12j denote the ith and lh colums of matrix Y2 respectively. 

Initially, we set the initial intra-object similarities to be their content sim­

ilarities, i.e. k(O) = K, a1 (0) = G 1 and a2 (0) = G2 . Then, we perform 

few iterations of the similarity propagation using the system of equations 

in (5.2). 

Figure 5.4 shows the block diagram of the proposed image retrieval system 

based on multi-modal similarity propagation. 
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Figure 5.4: Block diagram of the proposed image retrieval using multi­
modal similarity propagation 
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5.3 Experimental Results 

In these experiments, we use the dataset described in section 4.3. First, all 

training images are coarsely segmented by clustering the color distribution. 

The Competitive Agglomeration (detailed in 2.1.5) is used to cluster each 

image into an optimum number of regions. Then, each region is character­

ized by two color, two texture, one shape and one textual feature set. The 

color features consist of HSV and LUV color moment of 9-Dim each. The 

texture feature consists of one global 5-Dim edge histogram, and 20-Dim 

wavelet coefficients. The shape feature consists of the eccentricity, orienta­

tion, area, solidity and extent of each region. Each low-level feature set is 

normalized such that its components sum to 1. 

In Figure 5.5, we present an illustrative example of the multi-modal simi­

larity propagation. In Figure 5.5(a), we show the similarity of two images 

to a given query image (top image) based on visual features. The closer 

and the bigger the image is, the more similar it is to the query image. For 

instance, the "Bird" image is more similar to the query image based on color 

and texture features. However, semantically this image is not relevant to 

the query image. On the other hand, the third image is semantically very 

relevant but it is less similar to the query based on the visual feature. In 

Figure 5.5(b), we show the same image similarity values after the multi­

modal similarity propagation. We notice that the new similarity values 

reflect the semantic relevance of the images. For instance, the "Bird" image 

similarity decreased because its annotation is irrelevant to the query image. 

On the other hand, the other "building" image gains in relevance because 

it is annotated with keywords that are common with the query image. 
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Figure 5.5: Illustration of the Multi-modal Similarity Propagation. (a) 
Similarity before propagation, and (b) Similarity after propagation. 

In Figure 5.5, we also display two tables that show similarities between 

pairs of keywords (Cd , annotating the images, before and after the multi­

modal similarity propagation. Keyword similarity values which decreased 

(increased) after the multi-modal similarity propagation are marked in 
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Parameter I 0: I {31 I {32 I A I 
Value I 0.4 I 0.7 I 0.7 I 0.6 I 

Table 5.1: Optimal values of the similarity propagation parameters 

Red (Green). For instance, keywords such "Dirt" and "Grass", or "Dirt" 

and "Tree" have their similarity values increased. Similarly, keywords such 

"Leaves" and "Tree", or "Branch" and "Tree" have their similarity decreased. 

The proposed similarity propagation is evaluated by using it to retrieve 

images and compare the precision and recall values with those obtained 

using standard CBIR system that uses visual features only. Precision is 

defined as the number of retrieved relevant images over the number of 

retrieved images. Recall is defined as the number of retrieved relevant 

images over the total number of relevant images. 

The weights used for similarity matrices (0:, (31 and (32) and the decay factor 

A are determined experimentally as the set of parameters that yield the best 

precision. The optimal values of these parameters are shown in Table 5.1. 

5.3.1 Comparison with Standard CBIR 

In Figure 5.6, we plot the precision values versus the number of iterations 

of the multi-modal similarity propagation when the top 20 images are con­

sidered. As expected, the precision obtained when we retrieve images using 

visual features is constant. On the other hand, the precision value of the 

proposed image retrieval method doubled after only three iterations and 

reached its maximum after five iterations. The precision value remains 

constant and does not improve beyond five iterations. 
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Figure 5.6: Precision Vs Number ofIterations when 20 images are retrieved. 

In Figure 5.7, we plot the recall values versus the number of iterations used 

for the multi-modal similarity propagation and compare the results with 

standard CBIR. As expected, the recall obtained when images are retrieved 

using visual features only is constant. On the other hand, the recall value 

of the proposed method doubled when the number of iterations is two and 

reaches its maximum within five iterations. after that, the recall value 

remains constant. Thus, in the following experiments, we set the number 

of iterations to five. 
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Figure 5.7: Recall Vs Number of Iterations when 20 images are retrieved. 

5.3.2 Comparison with Hybrid Method 

In this section, we compare our approach to a similar method that uses both 

visual and textual features to retrieve similar images. We use the method 

proposed in [74]. We implemented this baseline method as outlined in [74]. 

We tune the optimal weight parameter to the data set that we are using. 

The optimal value of this weight of similarity matrix was found to be 0.5 . 

Although the low-level visual features we used are different from [74], these 

differences will not bias the final evaluation since it is the method itself 

rather than the features that are being evaluated. The reason that we 

choose the method proposed in [74] as baseline method is as follows . First, 

this approach represents a traditional way of combining multi-modalities 

for image retrieval. Second, we do not involve a training phase to select 

representative query set and learn the optimal weight set for them. 

Figures 5.8, 5.9 and 5.10 compare the precision and recall values of the 
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baseline system with those obtained using the proposed system. In these 

experiments, we vary the number of retrieved images from 1 to 50. For 

each value, we process all query images and average the results. 
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Figure 5.8: Comparison of the precision values for the proposed system and 
the baseline system versus the number of retrieved images. 

In Figure 5.8, we display the retrieval precision values versus the number 

of retrieved images for both methods. As it can be seen, the proposed 

similarity propagation method yields higher precision values. The differ­

ence between the two systems is more pronounced when fewer images are 

retrieved . This indicates that the proposed similarity propagation does a 

better job at ranking the similar images. 

In Figure 5.9, we compare the recall values versus the number of retrieved 

images of the proposed and the baseline methods. As it can be seen, the 

similarity propagation method has a much higher recall. 
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Figure 5.9: Comparison of the recall values for the proposed system and 
the baseline system versus the number of retrieved images. 

In Figure 5.10, we plot the recall vs. precision graph, and compare the 

two curves. This figure confirms that our method significantly outperforms 

the baseline method. This greater performance is due to two main fac­

tors. First, the effectiveness of our image annotation approaches presented 

in chapter 4. Second, our similarity propagation method can reduce the 

effect of the semantic gap. Typically, textual features are more effective 

than image content features. However, when the annotation is automatic, 

it is prone to several mislabeling errors. Hence, combining the two kinds of 

features will do a better job, just as indicated in [75] that "while text and 

images are separately ambiguous, jointly they tend not to be". Our exper­

iments confirmed this observation. However, combining different features 

can also be biased by the features themselves. The iterative propagation 

approach explores the mutual reinforcement among different data types 

which in some sense can correct such biases. It can also be regarded as a 

non-linear combination method of different types of features . 
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Figure 5.10: Comparison of the precision values for the proposed system 
and the baseline system versus recall values 

In Figure 5.11 , we display the 24 most similar images to 4 sample query 

images retrieved using the proposed and the baseline methods. The first 

image represents the query provided by the user. As it can be seen, the 

retrieved images are the closest (share many images) to the ground truth 

partition. In other words, the retrieved images are compatible with the 

users ' notion of similar images. 

One can notice that the images retrieved by the baseline method are less 

homogeneous. For instance, in Figure 5.11(b) , many images from the bus 

category are retrieved when the query image is a flower or a ski scene. this 

is because these images share similar colors . Similarly, images from the wa­

terfall category are retrieved in response to a butterfly query image because 

they have similar visual appearance based on their texture descriptors. On 

the other hand, the proposed multi-modal similarity propagation approach, 

combines both visual and textual features, and does not retrieve as many 

147 



(a) (b) 

Figure 5.11: Top 25 representative from 4 typical clusters generated by (a) 
the proposed method, (b) the baseline method. 
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irrelevant images. 

149 



CHAPTER 6 

CONCLUSIONS AND 

POTENTIAL FUTURE WORK 

6.1 Conclusions 

In the first part of this thesis, we proposed a possibilistic approach for 

Generalized Dirichlet (GD) mixture parameter estimation, data cluster­

ing, and feature weighting. The proposed algorithm, called Robust and 

Unsupervised Learning of Finite Generalized Dirichlet Mixture Models 

(RULe _ GDM) addresses the problems associated with the high dimension­

ality and sparsity of the feature space. RULe_ GDM exploits a property of 

the Generalized Dirichlet distributions that transforms the data to make 

the features independents and follow Beta distributions. Then, it searches 

for the optimal relevance weight for each feature within each cluster. This 

property makes RULe_ GDM suitable for noisy and high-dimensional fea­

ture spaces. In addition, RULe_ GDM associates two types of memberships 

with each data sample. The first one is the posterior probability and in-
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dicates how well a sample fits each estimated distribution. The second 

membership represents the degree of typicality and is used to identify and 

discard noise points and outliers. RULe_ GDM minimizes one objective 

function that combines learning the two membership functions, the dis­

tribution parameters, and relevance weights for each feature within each 

distribution. In addition to the baseline RULe _ GDM, we proposed exten­

sions to this approach. The first one adapts the algorithm to learn relevance 

weights for each feature subset within each cluster. The second extension 

generalizes RULe_ GDM to find the optimal number of clusters in an unsu­

pervised and efficient way by exploiting some properties of the possibilistic 

membership function. The third extension is a semi-supervised version of 

RULe_ GDM that uses partial supervision information in the form of con­

straints to guide the clustering process. The performance of our clustering 

approach is illustrated and compared to similar algorithms. We used syn­

thetic data to illustrate robustness to noisy and high dimensional features. 

We also integrate it as main component of our image annotation system. 

In the second part of this thesis, we proposed two probabilistic image anno­

tation approaches where words are assigned conditionally to images. The 

first image annotation method relies on a semi-naive Bayesian model. The 

second one relies on a membership based Cross Media Relevance Model. We 

used our proposed semi-supervised possibilistic clustering and feature sub­

set weighting based on robust G D mixture modeling (sRULe _ G D M _ FSS) 

to summarize the image region collection. We proposed an approach that 

extracts partial supervision information based on the relevancy of the key­

words annotating the images. The possibilistic memberships generated 

by sRULe_GDM_FSS algorithm are used in subsequent steps to identify 

dependent region clusters using a greedy selection and joining algorithm. 
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Finally, Bayes rule and the possibilistic membership based Cross Media 

Relevance Model are used to label images based on the posterior probabil­

ity of each concept. 

The proposed image annotation approaches were implemented and tested 

with standard benchmark dataset. We compared our proposed image an­

notation approaches to three state-of-the-art methods. We showed that our 

approaches outperform these methods. We argued that the improvement 

in performance can be accredited to the following factors: 

• The use of Generalized Dirichlet (GD) to model the image region 

collection. 

• The use of possibilistic approach to detect noise points and outliers, 

and find the optimal number of clusters. 

• The use of constrained clustering and feature weighting algorithm to 

group image regions into homogeneous categories. 

• The extraction of pairwise constraints in an unsupervised way based 

on the relevancy of all concepts annotating the training image regions. 

• The use of membership degrees instead of simple inverted lists to 

estimate the correlation among the region clusters. 

• Instead of assuming the events of observing region clusters within 

an image are mutually independent, we use a Greedy Selection and 

Joining algorithm to find independent subsets of region clusters. 

In the third part of the thesis, we presented an image retrieval framework 

based on multi-modal similarity propagation. The proposed framework is 
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designed to deal with two data modalities: low-level visual features and 

high-level textual keywords. The iterative similarity propagation model 

attempts to fully exploit the mutual reinforcement of relational data which 

results in a non-linear combination of different modalities. It uses the 

intra-object similarities of textual modality to influence the low-level vi­

sual modality. It performs this approach iteratively and attempts to cap­

ture the similarities of images at the semantic level. Our experimental re­

sults demonstrated the effectiveness of the proposed multi-modal similarity 

propagation compared to the standard CBIR and hybrid image retrieval 

systems. We have shown that when low-level features are not sufficient to 

capture the high-level semantics of the images, the inclusion and propaga­

tion of the high-level keywords could improve the performance significantly. 

Similarly, when the annotating keywords are erroneous, due to the com­

pletely unsupervised method, their propagation with the visual features 

could adjust the correlation of these features and limit their influence on 

the overall retrieval accuracy. 

6.2 Potential Future Work 

The obtained experimental results have indicated that our proposed ap­

proach is effective and promising. However, they have also identified some 

limitations that could be addressed. In the following, we list some tasks 

that could be explored to enhance the performance of the proposed image 

annotation and retrieval framework. 
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6.2.1 System Scalability 

One extension of our system could be related to the scalability issue. In 

fact, we used a relatively small vocabulary size (less than 100 keywords 

and less than 10k images). In a more realistic scenario, a much larger data 

set may be needed. In this case, the vector space notation may not be 

appropriate, and thus, integrating the low-level features into the clustering 

phase is not trivial. Moreover, the sRULe_GDM_FSS algorithm used to 

categorize the image regions is not scalable. That is it cannot handle a 

large data set that does not fit into memory. One possible way to develop 

a scalable version of sRULe_ GDM_FSS is to partition the data, cluster 

each partition, and then combine the clustering results. In this case, each 

partition could be clustered in parallel on separate machines or in separate 

threads. 

6.2.2 User Relevance Feedback 

It is possible to integrate a relevance feedback component into our image 

retrieval system to further minimize the semantic gap. Relevance feedback 

has shown great results in focusing on users query. If this feedback could be 

captured and represented in an efficient way, it could be used to strengthen 

each component of our proposed system. For instance, relevance feedback 

could be used to provide more reliable supervision information for our semi­

supervised clustering algorithm. Similarly, it could be used to enhance the 

pefomance of the image annotation component and to adjust the image 

retrieval results. 
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